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Abstract

We present the design of a formal low-level multi-threaded lan-
guage with advanced region-based memory management and syn-
chronization primitives, where well-typed programs are memory
safe and race free. In our language, regions and locks are combined
in a single hierarchy and are subject to uniform ownership con-
straints imposed by a hierarchical structure: deallocating a region
causes its sub-regions to be deallocated. Similarly, when a region
is protected, then its sub-regions are also protected. We discuss as-
pects of the integration and implementation of the formal language
to Cyclone and evaluate the performance of code produced by the
modified Cyclone compiler against highly optimized C programs
using atomic operations, pthreads, and OpenMP. Although our im-
plementation is still in a preliminary stage, our results show that
the performance overhead for guaranteed race freedom and mem-
ory safety is acceptable.

1. Introduction

With the emergence of commodity multicore architectures, ex-
ploiting the performance benefits of multi-threaded execution has
become increasingly important to the extent that doing so is ar-
guably a necessity these days. Programming languages that retain
the transparency and control of memory such as C, seem best-suited
to exploit the performance benefits of multicore machines, except
for the fact that programs written in them often compromise mem-
ory safety by allowing invalid memory accesses, buffer overruns,
space leaks, etc. and become susceptible to data races by care-
less uses of locks. Thus, a challenge for programming language
research is to design and implement multithreaded low-level lan-
guages providing static guarantees for memory safety and freedom
from data races and at the same time allow for a relatively smooth
conversion of legacy C code to its multi-threaded counterpart.

Towards this challenge, we present the design of a formal low-
level concurrent language that employs advanced region-based
management and hierarchical lock-based synchronization primi-
tives. Similar to other approaches, our memory regions are orga-
nized in a hierarchical manner where each region is physically
allocated within a single parent region and may contain multiple
children regions. Our language allows deallocation of complete
subtrees in the presence of region sharing between threads and
deallocation is allowed to occur at any program point. Each re-
gion is associated with an implicit lock. Thus, locks also follow the
hierarchical structure of regions and in this setting each region is
protected by its own lock as well as the locks of all its ancestors. As
opposed to the majority of type systems and analyses that guarantee
race freedom for lexically-scoped locking constructs [8, 12, 20],
our language employs non-lexically scoped locking primitives,
which are more suitable for languages at the C level of abstrac-

tion. Furthermore, the formal language allows regions and locks
to be safely aliased and escape the lexical scope when passed to
a new thread. These features are invaluable for expressing numer-
ous idioms of multi-threaded programming such as sharing, region
ownership or lock ownership transfers, and region migration.

Our formal language is not just a paper design with some nice
properties. We have integrated our language in Cyclone [21], a
strongly-typed dialect of C which preserves explicit control and
representation of memory without sacrificing memory soundness.
We have opted for Cyclone both because it has a publicly avail-
able implementation but also because it is more than a safe variant
of C. Cyclone offers modern programming language features such
as first-class polymorphism, exceptions, tuples, namespaces, (ex-
tensible) algebraic data types, and region-based memory manage-
ment. We will discuss how these features interact with our language
and the additions that were needed to Cyclone’s implementation.

The contributions of this paper are as follows:

• We improve on our earlier work [18] by providing an opera-
tional semantics for our language that not only provides explicit
guarantees for race freedom and memory safety, but also ex-
plicit guarantees as to when a subtree is deallocated, thereby
avoiding temporary memory leaks.

• We discuss the integration of our formal language to Cyclone.
The resulting language is a concurrent language at the C level
of abstraction that enjoys the benefits of the formal system: it
offers memory safety and race freedom guarantees and allows
regions to be deallocated in bulk and also be locked atomically.

• We discuss implementation issues related to analysis, code gen-
eration and additions to the run-time system that were required
in order to make the integration possible. the complex proto-
cols used by Cyclone programs that wish to gain explicit control
over region lifetimes.

The next section starts by reviewing the Cyclone language. We
present our language and its operational semantics in Section 3. We
describe the interaction of our language with Cyclone in Section 4,
followed by a presentation of implementation (Section 5) and per-
formance (Section 6) aspects of its integration. The paper ends by
short sections presenting future improvements to our implementa-
tion (Section 7), discussing related work (Section 8), and with some
concluding remarks.

2. Cyclone: A memory-safe dialect of C

In this section, we provide a high-level overview of memory man-
agement in Cyclone. In particular, we discuss how traditional re-
gions are used in Cyclone and identify some shortcomes that are
alleviated in our language. Additionally, we clarify through sev-
eral examples that Cyclone’s memory safety guarantees only hold



for sequential programs. Cyclone has no race freedom guarantees,
which are important at the language-level and the compiler-level.

2.1 Memory management in Cyclone

Cyclone employs a uniform treatment of different memory seg-
ments such as the main heap, the stack and individual regions.
More specifically, memory segments are mapped into logical mem-
ory partitions. Each data object is allocated at a single memory
segment, but references to objects may refer to multiple segments.
Hereon, we overload the term “region” to mean a type-level logical
memory partition, a run-time entity that enables fast allocation and
bulk deallocation of objects, or a memory segment such as the heap
and the stack.

For instance, a stack frame is treated as a region holding the
values of variables declared in a lexical block. As another exam-
ple, the main heap is an immortal region that contains all global
variables. The type system of Cyclone tracks the set of live regions
at each program point and verifies that the regions associated with
each accessed object are indeed a subset of the live regions.

{ region < ‘r > h ; // live regions: {‘r}

int ∗ z = rnew(h) 10; // {‘r}

. . . // {‘r}

} // { }

The above example illustrates how a scoped region can be created
and used: the first statement allocates a fresh memory segment,
and associates this segment with a fresh type-level region (i.e., ‘r).
Following Cyclone’s terminology, we use a leading backquote for
type-level names, e.g., ‘r. (We will often use the same name without
the backquote for the corresponding region handle, which is here
explicitly named h.) The comments on the right-hand side of the
example’s code show the live region set (i.e., the effect) at each
program point.

The new region can be accessed via its region handle (h), which
is given the singleton type region t < ‘r >. The second statement
uses h to allocate memory for a single integer and initializes it to
the value 10. At the type level, the type of the fresh reference is
annotated with region ‘r (i.e., int ∗ ‘r). The type system ensures
that the reference can only be accessed when ‘r is in the current
effect.

The uniform treatment of memory allows for polymorphism
over different kinds of memory segments.

void swap (int ∗ ‘r1 x , int ∗ ‘r2 y );

For instance, the above line of code defines a function that swaps
the contents of the variables x and y located at regions ‘r1 and
‘r2 respectively. Both ‘r1 and ‘r2 are polymorphic and can be
instantiated with any region. The following line of code invokes
swap by explicitly instantiating both ‘r1 and ‘r2 to ‘r.

{ region < ‘r > h ;

int ∗ z = rnew(h) 10;

int ∗ y = rnew(h) 15;

swap(z, y); // effect of swap {‘r, ‘r}

}

As shown in the above example, type-level regions can be freely
aliased in a effect (e.g., {‘r, ‘r}). The downside of this approach is
that scoped regions can only be deallocated implicitly by the run-
time system when a region’s scope ends.

To overcome this restriction, the authors of Cyclone have ex-
tended the region system with three powerful features, namely
tracked types, the notion of borrowing tracked types and existen-
tial types. Tracked types, which are closely related to linear types,
disallow aliasing of tracked references. Borrowing can be used to

convert a tracked reference to an aliasable reference within a partic-
ular scope. The aliasable reference is accessible within the scope,
whereas the tracked reference becomes inaccessible for the dura-
tion of the scope. Finally, existential types serve as the means for
overcoming lexically scoped region names, by permitting the on-
demand concealment and disclosure of region names. Cyclone al-
lows access and deallocation of non-lexically scoped (i.e., dynami-
cally scoped) regions as follows:

• a request is made to the run-time system to allocate a fresh
dynamic region.

• the run-time returns an existential package containing some
region name ‘r and a key (i.e., a tracked reference) to the handle
of the fresh region. The handle is also annotated with ‘r.

• the existential value is unpacked and ‘r is brought into scope as
well as the key.

• the program can immediately deallocate the new region by
deallocating the key.

• or it may temporarily yield access to the key by allowing it to
be borrowed within a scope. During that scope ‘r is added to
the effect and the region handle referred by the key is usable.

The following example illustrates a similar scenario:

void access and deallocate (NewDynRgn pr ) {

let NewDynRgn{< ‘r > key} = pr; // open existential

{region h = open(key); // borrow key for this scope

let x = rnew(h) 5;

. . .

}

free ukey(key); // deallocate region

}

It should be noted that a dynamic region cannot be deallocated
when its key has been borrowed. Additionally, Cyclone allows
tracked references to leak and thus allows dynamic regions to leak
as well. To tackle this issue, an intra-procedural analysis can be
used to report tracked reference leaks. In practice, this analysis is
impractical as it produces a large number of false positives [27]. For
instance, when a function call takes place between the allocation
and deallocation point of a tracked reference, the analysis must
report that the tracked reference may leak as an uncaught exception
may be thrown during the call. For a detailed discussion about
Cyclone we refer the reader to [27].

As it will be discussed in latter sections, our work disallows
memory leaks in the presence of a complex shared memory man-
agement scheme with bulk region deallocation, allows region deal-
location at any program point and simplifies the process of creating,
using and deallocating explicitly freeable regions.

2.2 Concurrency in Cyclone

Cyclone does not have language support for concurrency. Instead,
it provides an interface to the pthreads library, which allows pro-
grammers to spawn new threads and use numerous synchronization
primitives to control the interaction between threads. The interface
to the pthreads library ensures that the run-time data structures are
correctly initialized before a new thread runs.

To preserve memory safety (e.g., absence of dangling pointers),
Cyclone requires that all memory regions passed to a new thread
must live at least as long as the immortal (main) heap. This im-
plies that threads can interact with other threads via dynamically
allocated references that reside in the heap or global variables. This
restriction diminishes the explicit memory management benefits of
Cyclone (aliasable heap references can only be garbage collected).



The following definition has been extracted from Cyclone’s inter-
face to pthreads library:

int pthread create (pthread t@, const pthread attr t ∗,

‘a(@‘H)(‘b), ‘b arg : regions(‘b) ≤ ‘H)

The most interesting part of the above definition is the part
regions(‘b) ≤ ‘H, which says that all region names occurring
in the type that will instantiate the type variable ‘b must be live
at least as long as the the immortal heap (‘H). Tracked pointers
cannot be passed to threads.

The memory safety guarantees of Cyclone can be compromised
in the presence of multi-threading. Here, we only mention a few
cases which can violate memory safety. Firstly, the data flow anal-
ysis performed for identifying where dynamic checks (e.g., null
pointer and array bounds checks) should be inserted is unsound in
a concurrent setting. Consider the following code fragment:

void foo (int ∗ ‘r ∗ ‘r x) {

if (x != NULL && ∗x != NULL) ∗∗x = 20;

}

Assuming that x is a shared possibly null reference, then the anal-
ysis will deduce that ∗∗x can be accessed within the conditional
statement as x and ∗x are definitely not null. This property does not
hold for concurrent programs that share x, but do not synchronize
accesses to it.

Secondly, some features of Cyclone such as pattern matching,
accesses to wide references (i.e., fat pointers) and swap operations
between tracked references must be performed atomically. The
lack of atomicity in swap operations and wide references can triv-
ially compromise memory safety and cause cause dangling pointer
dereferences and double “free” operations. As mentioned earlier,
the run-time system does handle the initialization of new threads,
but the region allocation subsystem is not reentrant.

Last but not least, Cyclone’s type system does not guard against
data races. The absence of data races gives additional guarantees
to the programmer and allows a thread-aware compiler to perform
certain kinds of optimizations that should only be applied to se-
quential programs. As it will be shown in the sections that follow,
we have solved some of the issues stated above by implementing
an adjusted version of our type system and operational semantics
in Cyclone. We have also re-engineered the run-time system so that
it is mostly non-blocking and thread-safe. The next section intro-
duces our type system and operational semantics.

3. Formal language

Earlier work on the hierarchical region type system provides an
operational semantics that satisfies our design goals, but admits
temporary leaks of region and locks [18]. The memory leaks are
temporary as the type system enforces that all regions and locks
will eventually be released and can be avoided, by disallowing the
release of aliased regions. However, this restriction would impede
the expressiveness and the benefits of our language, as region
aliasing is the rule not the exception.

We improve on earlier work, by providing semantics for the
same type system that disallows leaks and proving it safe. The key
idea is the introduction of dynamic effects and the preservation of
an exact correspondence between dynamic and static effects.

3.1 Language description

The language syntax is illustrated in Figure 1.1 The core expres-
sions comprise of variables (x), constants (c), functions, and func-

1 The constructs rgnı, locł and popγ e are not considered as a part of the
language. They are only introduced during program evaluation. We defer
the discussion about them until section 3.2.

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Expression e ::= x | c | f | (e e)ξ | e[r] | new e at e

| e := e | deref e | newrgnr ρ, x at e in e

| capr
η e | rgnı | locl | popγ e

Type τ ::= b | 〈〉 | τ
γ→γ
−→ τ | ∀ρ. τ | ref(τ, r) | rgn(r)

Effect γ ::= ∅ | γ, rκ⊲ π

Capability kind ψ ::= rg | lk

Capability op η ::= ψ + | ψ−

Region r ::= ρ | ı | ı@n

Capability κ ::= n, n | n, n

Region parent π ::= r | ⊥

Calling mode ξ ::= seq | par

Figure 1. Syntax.

tion application. Function application terms are annotated with a
calling mode (ξ). The calling mode specifies whether a function ap-
plication should be executed sequentially (seq) or in parallel (par).

Monomorphic functions (λx. e) must be annotated with their
type (τ). Our language is region-polymorphic and thus includes
polymorphic functions (Λρ. f ) and region application (e[ρ]).

The construct newrgnr ρ, x at e1 in e2 allocates a fresh region
ρ at the region indicated by handle e1, and binds x to the handle
of ρ. Both ρ and x are lexically bound to the scope of e2. The new
region must be explicitly released within e2. The region allocation
construct is annotated with the parent region name r, which is only
required for the type safety proof.

The constructs for manipulating references are standard. A
newly allocated memory cell is returned by new e1 at e2, where
e1 is an initializer expression for the new cell and handle e2 indi-
cates the region in which the new cell will be allocated. Standard
assignment and dereference operators complete the picture. A re-
gion can be released either by deallocation or by transferring its
ownership to another thread. At any given program point, each re-
gion is associated with a capability (κ). Capabilities consist of two
natural numbers, the capability counts: the region count and lock
count, which denote whether a region is live and locked respec-
tively. When first allocated, a region starts with capability (1, 1),
meaning that it is live and locked, so that it can be accessed directly
with no additional overhead. This is our equivalent of a thread-local
region.

By using the construct capr
η e, a thread can increment or decre-

ment the capability counts of some region r whose handle is speci-
fied in e. The cap construct annotation (r) is only required for the
type safety proof. The capability operator η can be, e.g., rg+ (mean-
ing that the region count is to be incremented) or lk− (meaning that
the lock count is to be decremented). When a region count reaches
zero, the region may be physically deallocated and no subsequent
operations can be performed on it. When a lock count reaches zero,
the region is unlocked, but it may still be protected by a locked an-
cestor region. As we explained, capability counts determine the va-
lidity of operations on regions and references. All memory-related
operations require that the involved regions are live, i.e., the region
count is greater than zero. Assignment and dereference can be per-
formed only when the corresponding region is live and protected.

A capability of the form (n1, n2) is called a pure capability,
whereas a capability of the form (n1, n2) is called an impure capabil-
ity. In both cases, it is implied that the current thread can decrement
the region count n1 times and the lock count n2 times. Impure ca-



Stack σ ::= ∅ | σ; γ

Hierarchy δ ::= ∅ | δ, n 7→ σ

Contents H ::= ∅ | H, ℓ 7→ v

Region list S ::= ∅ | S , ı 7→ H

Threads T ::= ∅ | T, n : e

Configuration C ::= δ; S ; T

E ::= � | (E e)ξ | (v E)ξ | E [r] | newrgnr ρ, x at E in e | capr
η E

| new v at E | deref E | E := e | v := E | new E at e | popγ E

Figure 2. Configuration, store, threads and evaluation contexts.

pabilities are obtained by splitting pure or other impure capabilities

into several pieces, e.g., (3, 2) = (2, 1) + (1, 1), in the same spirit
as fractional capabilities [10]. Splitting a linear resource into mul-
tiple pieces is particularly useful for region aliasing (e.g. the same
region can to be passed to a function in the place of two distinct re-
gion parameters). An impure capability implies that our knowledge
of the region and lock count is inexact. The use of such capabilities
must be restricted; e.g., an impure capability with a non-zero lock
count cannot be passed to another thread, as it is unsound to allow
two threads to simultaneously access the same region. Capability
splitting takes place automatically with function application.

3.2 Operational semantics

We define a small-step operational semantics for our language, us-
ing two evaluation relations, at the level of threads and expressions
(Figures 3 and 4 on the next page). The thread evaluation rela-
tion transforms configurations. A configuration C (see Figure 2)
consists of global hierarchy δ, an abstract store S and a thread map
T .2 The global hierarchy δ maps thread identifiers (n) to stacks (σ).
A thread stack σ is a list of frames (γ) and represents a hierarchy of
regions accessible to a thread. Each frame γ represents the portion
of σ that is accessible to a function. Notice, that frames include
region counts. A frame is a list of elements of the form rκ⊲ π, de-
noting that region r is associated with count κ and has parent π,
which can be another region or ⊥. Regions whose parents are ⊥ are
considered as roots in a region hierarchy. A store S maps region
identifiers (ı) to heaps (H). A heap H, maps memory locations to
values. A thread map T associates thread identifiers to expressions
(i.e., threads).

A thread evaluation context E (Figure 2) is defined as an expres-
sion with a hole, represented as �. The hole indicates the position
where the next reduction step can take place. Our notion of eval-
uation context imposes a call-by-value evaluation strategy to our
language. Subexpressions are evaluated in a left-to-right order.

We assume that concurrent reduction events can be totally or-
dered [24]. At each step, a random thread (n) is chosen from the
thread list for evaluation (Figure 3). It should be noted that the
thread evaluation rules are the only non-deterministic rules in the
operational semantics of our language; in the presence of more than
one active threads, our semantics does not specify which one will
be selected for evaluation. Threads that have completed their eval-
uation, have released all regions used by them, and have been re-
duced to unit values, represented as (), are removed from the active
thread list (rule E-T). Rule E-S reduces some thread n via the ex-
pression evaluation relation. Notice, that rule E-S only modifies the
stack of thread n and requires that the resulting hierarchy δ′ is con-
sistent (⊢ δ′): regions accessible to thread n should be inaccessible

2 The order of elements in comma-separated lists, e.g. in a store S or in a list
of threads T , is unimportant; we consider all list permutations as equivalent.

to other threads and regions having positive pure capabilities can
only be live at a single stack frame of thread n.3 Therefore, the op-
erational semantics will get stuck if the mutual exclusion protocol
is unsatisfied. Our approach differs from related work, e.g. the work
of Grossman [20], where a special kind of value junkv is often used
as an intermediate step when assigning a value v to a location, be-
fore the real assignment takes place, and type safety guarantees that
no junk values are ever read.

When a parallel function application redex is detected within
the evaluation context of a thread, a new thread is created (rule
E-SN). The redex is replaced with a unit value in the currently
executed thread and a new thread is added to the thread list, with
a fresh thread identifier. The calling mode of the application term
is changed from parallel to sequential. The topmost frame of the
spawning thread (γ) is split into two frames γ′ and γ1 so that
the intersection of regions locked in γ′ and in γ1 is empty.4 If it
is impossible to split γ, the thread evaluation relation gets stuck.
Notice, that γ1 is an effect annotation of the function abstraction.
Frame γ is then replaced by γ′ and γ1 becomes the initial frame of
the new thread.

The expression evaluation relation (defined in Figure 4) rewrites
tuples of the form σ; S ; e, where σ is a thread local stack, S is
the global store, and e is an expression. We have elided the fact
that constant regions may be of the form ı@n, which is a constant
region ı tagged with a unique identifier n. The region application
(E-RP) rule introduces tagged regions during substitution so as to
prevent the existence duplicate region names in function effects.
As mentioned earlier, effects are used as stack frames. Region
application using traditional substitution could introduce region
aliases in function effects and thus cause non-determinism in the
expression evaluation rules: region lookup on stack frames would
yield multiple regions.

Hereon, the symbol γmeans “the topmost frame of the currently
executed thread n”. The sequential function application (E-A) rule
splits γ into two stack frames γ1 and γr such that γ1 matches
the effect expected by the lambda abstraction, and substitutes the
sequence of stack frames γr; γ1 for γ. The function body is placed
within a pop construct, which is annotated with frame γr. A pop
construct must not be contained in the original program, and must
only appear during program evaluation. Rule E-E eliminates pop
constructs, when the function body has been reduced to a value and
the annotation γr of pop matches the frame preceding the topmost
frame γ′. Frames γr are γ′ are joined to form a new frame γ′′, which
replaces them on the current stack.

The remaining rules make use the judgements is live(γ, r) and
is accessible(γ, r) (Figure 7) to establish that a region r is live
and accessible in a frame γ. A region r is live in γ when the
region count of each region in the path between r and the root
region is positive. A region r is accessible in γ when it is live
and there exists at least one region in the path between r and the
root region with a positive lock count. We also define the following
partial functions: r̄ removes the unique identifier from a tagged
region,

[[

η
]]

(κ) decrements or increments the region or lock field of
κ by one, according to operation specified by η, and finally live(γ)
selects a subset of γ so that all regions in that subset are live.

Rule E-NG requires that region r is live in γ, adds a fresh and
empty region ı to S and adds the dynamic effect of ı to γ, which
specifies that r is the parent of ı and that ı has region and lock
count of one. Rule E-C requires that region r is live in γ, substitutes

3 The second invariant ensures that regions with positive pure capabilities
can safely be passed to other threads (e.g. locked). This is sound when the
current thread has no more counts of such regions in other stack frames.
4 The rules for splitting effects are defined in Figure 6 and discussed in
Section 3.3.



e′ ≡ (v1 v)par v1 ≡ λx. e as τ1

γ1→γ2
−→ τ2 e′′ ≡ (v1 v)seq δ = δ′′, n 7→ σ; γ

fresh n′ par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) δ′ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1

δ; S ; T, n : E[e′] { δ′; S ; T, n : E[()], n′ : e′′
(E-SN)

δ = δ′′, n 7→ σ σ; S ; e→ σ′; S ′; e′ δ′ = δ′′, n 7→ σ′ ⊢ δ′

δ; S ; T, n : E[e] { δ′; S ′; T, n : E[e′]
(E-S)

δ = δ′, n 7→ (∅; ∅)

δ; S ; T, n : () { δ′; S ; T
(E-T)

Figure 3. Thread evaluation relation C { C ′.

σ = σ′; γ seq ⊢ γ = γ1 ⊕ γr σ′′ = σ′; γr; γ1

σ; S ; ((λx. e as τ1

γ1→γ2
−→ τ2) v)

seq

→ σ′′; S ; popγr
e[v/x]

(E-A)
σ = σ′; γr; γ′ seq ⊢ γ′′ = γ′ ⊕ (γr ⊖ ∅) σ′′ = σ′; γ′′

σ; S ; popγr
v→ σ′′; S ; v

(E-E)

σ = σ′; γ is live(γ, r) fresh ı σ′′ = σ′; γ, ı1,1⊲ r

σ; S ; newrgnr ρ, x at rgnr̄ in e→ σ′′; S , ı 7→ ∅; e[ı/ρ][rgnı/x]
(E-NG)

σ = σ′; γ is live(γ, r) γ = γ′, rκ⊲ π

κ′ =
[[

η
]]

(κ) σ′′ = σ′; live(γ′, rκ
′
⊲ π)

σ; S ; capr
η rgnr̄ → σ′′; S ; ()

(E-C)

σ = σ′; γ is live(γ, r) fresh ℓ

σ; S ; new v at rgnr̄ → σ; S [r̄ 7→ S (r̄), ℓ 7→ v]; locℓ
(E-NR)

σ = σ′; γ is accessible(γ, r) (ℓ 7→ v1) ∈ S (r̄)

σ; S ; locℓ := v→ σ; S (r̄)[ℓ 7→ v]; ()
(E-AS)

σ = σ′; γ is accessible(γ, r) (ℓ 7→ v) ∈ S (r̄)

σ; S ; deref locℓ → σ; S ; v
(E-D)

fresh n′

σ; S ; (Λρ. f )[r]→ σ; S ; f [r̄@n′/ρ]
(E-RP)

Figure 4. Expression evaluation relation σ; S ; e→ σ′; S ′; e′.

[[

η
]]

(κ) for κ in γ at the exponent of r, and removes dead regions
from the resulting frame. Rule E-NR requires that region r is live
in γ and updates the heap of r with a fresh location ℓ mapping
to value v. Notice, that r may be unlocked. Rules E-AS and E-D
require that some region r, which contains the location (ℓ) being
accessed, must be accessible in γ. Therefore, the semantics will get
stuck when a thread attempts to access a memory location without
having acquired an appropriate lock for this location.

3.3 Static semantics

We discuss the most interesting aspects of our type system. We
employ a type and effect system to enforce memory and race safety
invariants. Effects (γ) are used to statically track region capabilities.

The syntax of types is defined in Figure 1. A collection of base
types b is assumed; the syntax of values belonging to these types
and operations upon such values are omitted from this paper. We
assume the existence of a unit base type, which we denote by
〈〉. Region handle types rgn(r) and reference types ref(τ, r) are
associated with a type-level region r. Monomorphic function types
carry an input and an output effect. A well-typed expression e has
a type τ under an input effect γ and results in an output effect γ′.
The typing relation (see Figure 5) is denoted by R; M;∆;Γ ⊢ e :
τ& (γ;γ′) and uses four typing contexts: a set of region literals (R),
a mapping of locations to types (M), a set of region variables (∆),
and a mapping of term variables to types (Γ).

The typing rule for function application (T-AP) splits the output
effect of e2 (γ′′) by subtracting the function’s input effect (γ1). It
then joins the remaining effect with the function’s output effect (γ2).
In the case of parallel application, rule T-AP also requires that the
return type is unit. The splitting and joining of effects is controlled
by the judgement ξ ⊢ γ′′ = γ2⊕(γ⊖γ1), which is defined in Figure 6
(the auxiliary functions and predicates are defined in Figure 7). It
enforces the following properties:

• the liveness invariant for γ′′, i.e., γ′′ = live(γ′);

• the consistency of γ and γ′′, i.e., regions cannot change parent
and capabilities cannot switch from pure to impure or vice
versa; the domain of γ′′ is a subset of the domain of γ (i.e rules
ES-C and CS);

• regions having pure capabilities must appear once in the func-
tion input (γ1) and output (γ2) effects, i.e., ok (γ1; γ2). Further-
more, the capabilities required by a function’s input effect (γ1)
must be present in the environment (γ — rule ES-C).

• for parallel application, the thread output effect must be empty,
the thread input effect must not contain impure capabilities with
positive lock counts.

• finally a ≃ b holds when by erasing region tags from a and b
(i.e., replacing ı@n with ı), we obtain identical results.

The typing rules for references are standard. In Figure 5 we
only show the rules for dereference (T-D) and reference allocation
(T-NR ). The former checks that region r is accessible. The latter
only checks that the region r is live. Notice that effect typing is
left-to-right, which is consistent with the left-to-right evaluation in
the operational semantics. The output effect of the rightmost sub-
expression of each construct is always (except for rule T-NG ) used
for checking the liveness and accessibility invariants. The rule for
creating new regions (T-NG ) checks that e1 is a handle for some
live region r′. Expression e2 is type checked in an extended typing
context (i.e., ρ and x : rgn(ρ) are appended to ∆ and Γ respectively)
and an extended input effect (i.e., a new effect is appended to the
input effect such that the new region is live and accessible to this
thread). The rule also checks that the type and the output effect
of e2 do not contain any occurrence of region variable ρ. This
implies that ρ must be consumed by the end of the scope of e2.
The capability manipulation rule (T-CP) checks that e is a handle
of a live region r. It then modifies the capability count of r as
dictated by function

[[

η
]]

, which increases or decreases the region
or the lock count of its argument, according to the value of η. The
dynamic semantics ensures that an operational step is performed if
the updated hierarchy preserves the invariant that protected regions
are accessible to a single thread at instance of time. For instance,
if the lock of region r is held by some other executing thread,
the evaluation of cap

lk+
must be suspended until the lock can be

obtained. On the other hand, the evaluation of caprg− does not need
to suspend but may not be able to physically deallocate a region, as
it may be used by other threads.



R; M;∆;Γ ⊢ e1 : τ1

γ1→γ2
−→ τ2 & (γ;γ3) ξ = par⇒ τ2 = 〈〉

R; M;∆;Γ ⊢ e2 : τ1 & (γ3;γ4) ξ ⊢ γ5 = γ2 ⊕ (γ4 ⊖ γ1)

R; M;∆;Γ ⊢ (e1 e2)ξ : τ2 & (γ;γ5)
(T-AP)

R; M;∆;Γ ⊢ e : ref(τ, r) & (γ;γ′)

is accessible(γ′, r)

R; M;∆;Γ ⊢ deref e : τ& (γ;γ′)
(T-D)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′) is live(γ′, r) R;∆ ⊢ τ

R; M;∆, ρ;Γ, x : rgn(ρ) ⊢ e2 : τ& (γ′, ρ1,1⊲ r;γ′′) ρ < dom(γ′′)

R; M;∆;Γ ⊢ newrgnr ρ, x at e1 in e2 : τ& (γ;γ′′)
(T-NG)

R; M;∆;Γ ⊢ e1 : τ& (γ;γ′) is live(γ′′, r)

R; M;∆;Γ ⊢ e2 : rgn(r) & (γ′;γ′′)

R; M;∆;Γ ⊢ new e1 at e2 : ref(τ, r) & (γ;γ′′)
(T-NR)

is live(γ′, rκ⊲ π, r) γ′′ = live(γ′, rκ
′
⊲ π)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′, rκ⊲ π) κ′ =
[[

η
]]

(κ)

R; M;∆;Γ ⊢ capr
η e1 : 〈〉& (γ;γ′′)

(T-CP)

Figure 5. Selected typing rules.

ξ ⊢ γ = ∅ ⊕ γ
(ES-N)

ξ ⊢ γ, rκ2⊲ π = γ1 ⊕ γ2

ξ ⊢ κ = κ1 + κ2 π ≃ π′ r′ ≃ r

ξ ⊢ γ, rκ⊲ π = γ1, r
′κ1⊲ π′ ⊕ γ2

(ES-C)

ξ ⊢ γ = γ1 ⊕ γr ξ ⊢ γ′ = γ2 ⊕ γr

γ′′ = live(γ′) ok (γ1; γ2) ξ = par⇒ γ2 = ∅

ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1)
(ESJ)

rg(κ) = rg(κ1) + rg(κ2) lk (κ) = lk (κ1) + lk (κ2) is pure(κ)⇔ is pure(κ2)

is pure(κ1)⇒ κ = κ1 ξ = par ∧ ¬is pure(κ1)⇒ lk (κ1) = 0

ξ ⊢ κ = κ1 + κ2

(CS)

Figure 6. Effect and capability splitting.

(rκ⊲⊥) ∈ γ rg(κ) > 0

is live(γ, r)

γ = γ′, rκ⊲ r′ rg(κ) > 0 is live(γ′, r′)

is live(γ, r)

(rκ⊲ π) ∈ γ lk (κ) > 0 is live(γ, r)

is accessible(γ, r)

γ = γ′, rκ⊲ r′ lk (κ) = 0 rg(κ) > 0 is accessible(γ′, r′)

is accessible(γ, r)

Figure 7. Auxiliary predicates: region liveness and accessibility.

The type safety formulation is based on proving the preserva-
tion and progress lemmata.5 Deadlocked threads are not considered
to be stuck. A well-typed configuration δ; S ; T is not stuck when
each thread in T can take one of the evaluation steps in Figure 3
(E-S, E-T or E-SN) or it is waiting for a lock held by some other
thread. Given these definitions,the progress and preservation lem-
mata definitions are standard.

4. Interaction with Cyclone

We have integrated the type system and operational semantics pre-
sented in earlier sections to Cyclone. In this section, we provide an
in-depth description of the interaction between our system and Cy-
clone. We have identified five important goals that the integration
should accomplish or preserve:

• Memory safety: dangling and null pointer dereferences as well
as buffer overruns should be prevented.

• Thread safety: The type system should guarantee that shared
data accesses should be race free. Furthermore, the run-time
system must be re-entrant and thread safe. We defer the discus-
sion about implementation issues until the next section.

• Separate compilation: it should be possible to compile and link
separate modules independently.

• Backwards compatibility: sequential Cyclone code should work
as expected with no further modifications.

• Allow accessing local data without synchronization: thread-
local data is often the rule, not the exception. It should be

5 Full proofs and a full formalization of our language are given in the
Appendix.

possible to access thread-local data with no additional overhead
(e.g. synchronization).

4.1 Extended regions

In contrast with traditional lexically scoped regions, which are
allocated in a LIFO manner, our extended regions can be allocated
at any extended region ancestor. We consider the main heap (‘H) as
the root of our region hierarchy. Thus, the heap handle can also be
used for allocating an extended region.

The following example illustrates this point. In particular, we
allocate a fresh extended region (‘child) within an existing region
‘parent. The type system ensures that ‘parent is live at the alloca-
tion point, but not necessarily accessible.

{ region child @ parent //add ‘child1,1⊲ ‘parent to effect

. . .

xdec(child); // remove ‘child from effect

. . .

}

As in traditional regions, child is the handle to the fresh region.
This form of allocation generalizes the stack-based region organi-
zation to a tree-based organization and enables finer-grained con-
trol of region lifetimes.

As in the operational semantics, region ‘child is a sharable
region, but no synchronization is required for accessing its data,
as it is initially accessible to the thread allocating ‘child.

4.2 Kind system

Our current design draws a line between our regions and traditional
regions. In this way, we are able to restrict what kinds of regions can
be shared. Traditional lexically scoped regions cannot be shared



safely. For instance, the stack frame of a function is treated as a
region and sharing the stack in a safe manner would have a severe
impact on concurrency between threads.

The type system of Cyclone uses kinds to group types. Tradi-
tional region type variables are of kind R. As mentioned earier, such
regions cannot be shared among threads. In order to distinguish be-
tween sharable and unsharable regions, we have introduced a new
kind X as a subkind of R. Subkinding allows regions of kind X to
be treated as regions of kind R. However, our regions differ in re-
spect to traditional Cyclone regions in that they can be unlocked
or released at any program point. Therefore, we disallow function
calls, which treat extended region effects as traditional Cyclone ef-
fects. We expect future implementations to allow a higher degree
of interaction between regions of different kinds.

4.3 Traditional Cyclone effects

The effect system of Cyclone tracks the set of accessible regions at
each program point. Functions are annotated with a single effect,
which can be automatically inferred by calculating the union of
region variables occuring in the types of function parameters. As
mentioned, traditional regions cannot be deallocated once they have
been added in a function’s effect, as unrestricted region aliasing
within an effect is admitted. Therefore, a function effect serves
as both a precondition and a postcondition of the regions that are
accessible before and after calling a function respectively.

The following example illustractes a function, which has been
annotated explicitly with the effect {‘r}. This effect implies that
region ‘r is both live and accessible for the entire scope of f oo.

void foo ( region t < ‘r > h ; {‘r});

We have decided to place our effects in separate annotations as
full effect inference for our regions is beyond the scope of this work
and we wish to preseve backwards compatibility with traditional
Cyclone programs that enjoy full inference.

Our effects are mutually exclusive with traditional effects so a
region name may not exist in both effects. We expect that future
implementations will integrate the two different kinds of effects
into a single effect and will enjoy effect inference for both kinds
of regions. For instance, it is possible to have a single effect for all
kinds of regions, by using positive and negative capabilities.

The following example shows how we can write function foo so
that it uses the extended regions:

void foo ( region t < ‘r > h ) @ieffect({‘r, i(1, 1), ‘H})

@oeffect({‘r, i(1, 1), ‘H});

The @ieffect and @oeffect annotations denote the input and
output effects of function foo. These effects consist solely of ex-
tended regions or ‘H.6 The equivalent type of function foo in our
formal type system would be:

∀‘r. region t < ‘r >
γ→γ
−→〈〉 where γ ≡ ‘r1,1⊲⊥

The heap region is mapped to ⊥ as it is immortal. The im-
pure capability n1, n2 maps to i(n1, n2), whereas the pure capabil-
ity n1, n2 maps to p(n1, n2). Pure capabilities are most useful when
transferring lock capabilites to other threads. It is therefore ex-
pected that impure capabilities would be the common case. There-
fore, the above definition can be abbreviated as follows:

void foo( region t < ‘r > h ) @ieffect({‘r, 1, 1, ‘H})

@oeffect({‘r, 1, 1, ‘H});

Finally, it is possible to omit the output effect annotation when
the functions consumes the regions declared at the input effect.

6 ‘H can only occur as a parent annotation.

4.4 Hierarchy abstraction

In order to allow a function to access a region without having to
pass all its ancestors explicitly, its ancestors can be abstracted from
an effect for the duration of a function call. To maintain soundness,
we require that abstracted parents are live before and after the call.
Regions whose parent information has been abstracted cannot be
passed to a new thread as this may be unsound. The definition of
foo can be further simplified, by using hierarchy abstraction:

void foo ( region t < ‘r > h ) @ieffect({‘r, 1, 1})

@oeffect({‘r, 1, 1});

4.5 Operating on capabilities

The cap operator of the formal semantics has been encoded as a set
of library functions:

void xdec ( region t <‘r>; ) @ieffect(‘r, 1, 0);

void xinc ( region t <‘r>; ) @ieffect(‘r, 1, 0)

@oeffect(‘r, 2, 0);

void xldec( region t <‘r>; ) @ieffect(‘r, 1, 1)

@oeffect(‘r, 1, 0);

void xlinc (region t <‘r>; ) @ieffect(‘r, 1, 0)

@oeffect(‘r, 1, 1);

For instance, the first function xdec encodes the operator caprg−

for any region ‘r. It requires that the calling context has at least
one region capability. This invariant is encoded in its input effect.
The output effect of xdec is omitted, thus exactly one region ca-
pability is consumed. Similary the remaning functions encode the
remaining functionality of operator cap. It would be preferable to
use dependent types to express arbitrary additions or subtractions.
To the best of our knowledge this is impossible to express at the
type level, in Cyclone’s type system. However, we plan on extend-
ing the type-level expressiveness in future versions.

4.6 Exceptions

Having static guarantees about the control flow of a program plays
a crucial role in manual memory management. As mentioned in
earlier sections, Cyclone allows memory leaks7 of tracked pointers
even when they point at dynamic regions.

We decided that our regions should always be reclaimed manu-
ally. Towards this goal, we have made possible to annotate Cyclone
function declarations with uncaught exception names that may be
thrown from a function’s body.8 We have not opted for an inter-
procedural analysis as this would violate separate compilation.

In addition, exact knowledge of a function’s control-flow graph
is required to guarantee soundness: if the body of a function does
not satisfy the @oeffect postcondition of that function (as a
result of a statically unknown exception), then it is possible to
introduce dangling pointers. There exist three kinds of annotations
for exceptions:

• the @throws(. . .) clause enumerates all exceptions that may be
thrown from a function body.

• the @nothrow annotation is an abbreviation for @throws().

• finally, @throwsany acts as a wildcard for any exception that
may be thrown. This annotation may be useful for legacy library
prototypes and code.

The default annotation for functions is @throwsany. Exceptions
may be thrown explicitly by the programmer or implicitly by the
run-time system. Implicit exceptions arise in situations where:

7 These pointers will eventually be reclaimed by the garbage collector.
8 We have noticed that Cyclone has a @throws clause but it is undocu-
mented and not functioning.



• a null pointer is dereferenced.

• an out of bounds array access is performed.

• the system has insufficent memory to fulfill an allocation re-
quest.

• a value cannot be matched against any of the available patterns.

The exception analysis takes into consideration both explicit and
implicit exceptions. In the future we plan on relaxing the excep-
tion analysis and adding run-time support to ensure that function
postconditions are always satisfied.

4.7 Re-entrant functions

Global data are implicitly shared by all threads and this may cause
a data race. To preserve race-freedom, we have constrained our
language so that it only admits access to sharable regions.9 Thus,
traditional regions cannot be passed to a new thread. To enforce,
this policy we require that each explictly spawned thread must be
declared as @re entrant. In addition, a function annotated as
@re entrant yields access to global variables, the immortal heap,
tracked objects and it can only invoke @re entrant functions.
Function main, is not @re entrant. Global data and tracked ob-
jects can still be directly accessed by any non-reentrant function
invoked directly or indirectly by function main. Therefore, sequen-
tial programs have full access to global data. In the future, we in-
tend to relax type-checking so that tracked objects can be passed
to threads, provided that these objects are consumed from the envi-
ronment performing a spawn operation.

4.8 Thread creation

Threads can be explicitly created by the means of the spawn
operator. This operator takes two expressions e1 and e2, i.e.,
spawn (e1) e2), and spawns a new thread. The first expression
is a list of thread-specific parameters such as the stack size. The
second expression e2 must be a function call and the function must
be annotated as @re entrant@nothrow and its @oeffect an-
notation must be either empty or omitted. Further, the traditional
Cyclone effect must be empty so that unsharable regions cannot be
used in the new thread. Both expressions e1 and e2 are evaluated
from left to right. The spawning thread does not block and returns
immediately.

4.9 Type polymorphism

Cyclone effects are not polymorphic. To allow the invocation of
functions, which have polymorphic arguments (e.g., say ‘a), Cy-
clone programmers use the regions(‘a) operator. The purpose of
this operator is to defer effect checking until the function call is per-
formed, where the calling environment must prove that all regions
occuring in the type that instantiates ‘a are present in the environ-
ment’s effect:

void foo ( ‘a ; regions(‘a));

In terms of extended regions, the regions operator would re-
quire that all regions occuring in ‘a are live and accessible for the
scope of the function call. However, this is beyond the scope of our
type system. Further,we cannot provably guarantee memory safety
if this construct is used in the way described above. Therefore, the
type checker disallows uses of regions operator within our effects.

This limitation could be improved in future work but as a
workaround we allow extended regions to interoperate with tra-
ditional regions. We explain this feature in the section that follows.

9 In practice, we allow reading global variables that are declared as constant.

4.10 Interoperability with traditional regions

The distinction between traditional and extended regions may be
limiting for programs that require both kinds of regions. We intro-
duce a language construct similar to the alias and open constructs
of Cyclone, that borrows a part (or a fraction) of an accessible ex-
tended region for a certain scope. Consider the following example:

{ region child @ parent;

{ region h = xopen(child); //consume one lock capability

. . .

} // restore lock capability

xdec(child);

}

The xopen construct borrows exactly one lock capability from
the extended region ‘child for the scope of the xopen construct.
The type system requires that region ‘child is live by the end of
the xopen scope and creates a fresh logical region ‘h, which can be
used as a traditional Cyclone region. It should be noted that ‘child
is still live and possibly accessible (if it has more than one lock
capability) during the scope of xopen. On the downside, region
‘child must remain locked for the scope of xopen.

4.11 Memory consistency

Our formal language semantics assumes a sequentially consistent
memory model [24], which implies that concurrent read and write
operations are viewed as an interleaving of atomic steps.

Modern, processors are implemented with much weaker mem-
ory consistency specifications as sequential consistency restricts
common compiler and hardware optimizations. Research on re-
laxed memory models [1, 19] has shown that race-free10 programs
running on relaxed memory systems have a sequentially consistent
view of memory operations.

Assuming that the compilation process preserves the original
Cyclone code semantics, then we obtain race-free native code with
sequential consistency guarantees. At the implementation level,
we must guarantee that memory operations to extended regions
cannot escape the scope of a “lock/unlock” primitive as locking
operations synchronize memory. This situation may arise as a result
of compiler optimizations such as register promotion [7]. We have
taken the most conservative approach and require that extended
region data objects are compiled down to C as volatile.11 According
to the GCC manual, “an implementation is free to reorder and
combine volatile accesses which occur between sequence points,
but cannot do so for accesses across a sequence point” [17]. Our
locking primitives are translated to sequence points and thus the
compilation process will not reorder volatile accesses in an unsafe
manner.

5. Implementation

5.1 Compiler

We have implemented extended region checking as a separate com-
piler pass in Cyclone. First, the type well-formedness of our anno-
tations (effects, exceptions, types) is checked. During type check-
ing, we disregard control-flow and verify that the extended regions
being accessed exist in a function’s scope (i.e., by inspecting the
@ieffect annotation and tracking fresh regions). This allows us
to catch common errors early. Once type checking is finished, the
compiler enters the static analysis stage where it performs data-
and control-flow analyses and determines where dynamic checks
should be placed.

10 Read and write operations to shared memory locations only occur within
memory synchronization primitives.
11 GCC is invoked by the Cyclone compiler to generate native code.



As illustrated in Section 2, memory access checks in concurrent
programs should be optimized away when the accessed memory
is thread-local or shared and protected by a lock. The compiler
eliminates such checks by utilizing programmer-inserted checks.
In this case, the analysis should ensure that the lock is not released
between the programmer-inserted check and the memory access
location. Our current implementation, is highly conservative and
only allows dynamic check elimination for trivial cases of shared
memory accesses.

An exception analysis, utilizing information from the previous
passes about where implicit exceptions may be thrown, performs a
control-flow sensitive analysis to verify that uncaught exceptions
that may be thrown from a function body are included in the
function’s @throws specification.

Finally, a control-flow sensitive analysis is performed. The anal-
ysis propagates effects through the control flow graph and verifies
that the output effect of the function body matches the function’s
@oeffect specification. This analysis also utilizes function at-
tributes, when checking function calls. For instance, effects are not
propagated from function calls that never return to the calling con-
text (i.e., attribute((noreturn)) ).

5.2 Code generation and run-time system

As discussed in the Section 3.2, each thread must maintain a local
view of the hierarchy. Otherwise, some regions of the hierarchy
may become falsely shared and thus reduce concurrency between
threads.

Consider the case where a thread owning an unlocked region ρ
shares that region with a new thread, which in turn allocates a fresh
region ρ1 at region ρ. The second thread uses ρ1 locally and then
deallocates it. With respect to the global view of the hierarchy, ρ1

is owned by the second thread. If the first thread attempts to lock
ρ, then it will have to block until ρ1 is deallocated by the second
thread. Here we use the notion of a global view for simplicity. The
implementation only makes use of local views.

Deallocating regions en masse may temporarily cause a region
leak, if hierarchies passed to functions are not tracked dynamically.
(Note that the leak is temporary because the region containing the
leaked regions will eventually deallocate them and roots of the
hierarchy cannot leak.)

At the type-level, when a non-leaf node of a hierarchy is re-
moved from the current effect, then the the entire subtree of that
node will be removed from the effect. If the run-time system only
decrements the reference count of the node being removed, then the
node’s subtree may leak. If the node being removed is pure, then it
is safe to deallocate its subtree from the local hierarchy without
requiring additional information. Otherwise, the compiler has two
options: issue a warning about a possible leak or generate code that
dynamically tracks the hierarchy passed to a function. That is, the
compiler could preserve an exact correspondence between run-time
views and static effects. The advantage of the second approach is
that it prevents temporary memory leaks. On the downside, it places
an overhead for each function call that uses non-trivial hierarchies.

The current implementation strictly adheres to the formal se-
mantics and implements the second option. As an optimization,
we avoid code generation for function calls that use hierarchies of
height one. However, it is entirely possible to allow the program-
mer to decide whether such leaks should be prevented, by adding
annotations to functions (e.g. @noleak), or by introducing new
compiler flags.

In the paragraphs that follow we discuss how the code generator
assists the run-time system with type information so that the it can
disallow false sharing and prevent region leaks. We also discuss
about new features that have been added to the run-time system.

Code generation. We have altered the code generation pass so
that we can perform the following tasks:

• Translate spawn statements to low-level primitives, which re-
quire (un)packing of the function arguments and placing the
call into a wrapper function, which acts as a glue between the
call and thread that will executing it.

• Generate specialized code for allocating extended regions and
references.

• Generate code for allowing “dynamic effect tracking” before
some function calls. The sub-tree passed to a call is not actually
copied. Instead we use a form of dynamic scoping (shallow
binding in particular) so as to map type-level region names to
nodes of the local tree. Each dynamic scope is pushed into the
virtual stack frame of the run-time system. An additional pop
statement is added after the call.

Run-time system. In order to maintain a local view of the global
hierarchy, the run-time system performs the following tasks:

• It registers fresh regions to the local thread hierarchy in which
they are allocated.

• When a subtree has to be deallocated, it uses the dynamic scop-
ing structures to retrieve nodes of the local hierarchy and update
their dynamic counts accordingly. Notice that all remaining re-
gion locks are released during the deallocation phase.

• The implementation of spawn uses a similar technique to con-
struct the subtree passed to new thread and makes this tree ac-
cessible to the new thread. It also performs capability account-
ing tasks so that the dynamic trees of both threads match the
static effects.

• Region locking is implemented in a straightforward manner by
traversing the local hierarchy. To avoid deadlocks, subtrees are
always locked in a top-down left-to-right manner.

• The region allocation subsystem has been re-engineered so that
it can serve concurrent allocation requests in a non-blocking
manner (i.e., using atomic operations).

6. Performance evaluation

We evaluated our implementation on five concurrent benchmark
programs, taken from “The Computer Language Benchmarks
Game” (http://shootout.alioth.debian.org/u32q/). As a
basis for our evaluation we used the fastest version of the programs
in C, with one exception mentioned below, which we translated to
our language as directly as possible. The results are summarized in
Table 1. The five benchmark programs were:12

binary-trees a program that allocates, traverses and deallocates
many binary trees. The original program (#7) uses GCC Open-
MP and memory pools, as implemented in the Apache Portable
Runtime Library.

chameneos-redux a program that simulates the interaction of a
number of creatures, using symmetrical thread rendez-vous.
Our basis for the comparison is the second fastest version in C
(#2); it uses pthreads and mutex locks. On our testing machine,
it only produced the correct result when compiled with -O2 and
we compiled our program with the same option. The fastest
version in C (#5) uses the processor’s “compare and swap”
instruction, instead of locks, and explicitly schedules threads to
processor cores; it cannot be translated directly to our language.

12 Our implementation and the benchmark programs are available from:
http://www.softlab.ntua.gr/˜pgerakios/cyc_reglock.tgz.

http://shootout.alioth.debian.org/u32q/
http://www.softlab.ntua.gr/~pgerakios/cyc_reglock.tgz


lang
CPU

(s)

memory

(KB)

load per core

(%)

elapsed

(s)
factor

Benchmark: binary-trees

gcc 21.34 100,688 46 88 50 89 7.54 1.00

cyc 23.88 122,412 73 81 88 79 7.21 0.96

Benchmark: chameneos-redux

gcc 56.38 576 68 90 72 91 17.04 1.00

cyc 276.08 1,112 85 99 84 100 76.69 4.50

Benchmark: fannkuch

gcc 152.69 572 97 100 97 97 39.18 1.00

cyc 177.28 1,032 99 99 100 99 44.63 1.14

Benchmark: mandelbrot

gcc 24.24 28,260 100 99 100 100 8.13 1.00

cyc 46.21 32,176 95 95 95 97 16.15 1.99

Benchmark: thread-ring

gcc 143.09 4,536 26 38 24 16 133.04 1.00

cyc 254.38 18,108 13 49 22 16 246.95 1.86

Table 1. Performance overhead, compared to GCC, for five bench-
marks taken from “The Computer Language Benchmarks Game.”

fannkuch a program that performs indexed access to small se-
quences of integer numbers. The original program (#2) uses
pthreads. On our testing machine, it only produced the correct
result when compiled with optimization turned off and we did
the same for our program.

mandelbrot a program that plots a bitmap of the Mandelbrot set.
The original program (#6) uses pthreads and special SSE2 128-
bit floating-point instructions. Our translation implements the
same algorithm but is based on a simpler C# version of the
program, using normal double precision numbers.

thread-ring a program that creates a large number of threads,
organized in a ring, and repeatedly passes a token from one
thread to the next. The original program (#1) uses pthreads
and mutex locks. (We should mention that the original program
performs very poorly, compared to versions in other languages.)

The testing machine is a quad-core 2.4GHz Intel, with 2GB of
RAM, running a Linux 2.6.30 kernel. Our implementation used
GCC 4.3.2 as a back end, which was also used to compile the C
programs. We used -O3, except as explained above. In our Cyclone
implementation we turned off Boehm’s garbage collector, which is
only used for Cyclone’s original regions and is not need for these
benchmarks.

As shown in Table 1, the benchmark programs fall in three cat-
egories. First, in binary-trees and fannkuch, the Cyclone program
runs a little faster (7%) and a little slower (15%) than the origi-
nal C program, respectively. Especially for the case of binary-trees,
this result is particularly interesting as the two compared programs
use both the same algorithm and the same region-based memory
management scheme. Second, in mandelbrot and thread-ring, the
Cyclone program runs almost twice as slow, by a factor of 86%
and 99%, respectively. In the case of mandelbrot, this is attributed
to our Cyclone’s inability to exploit the CPU’s specialized num-
ber crunching instructions and, we believe, is not very interesting
for the purposes of this paper. On the other hand, thread ring is an
extreme case of benchmark, stressing thread communication; we
believe that we can achieve better results here by further tuning the
performance of our locks.

Third, we observe a very heavy performance penalty in chame-
neos-redux, which runs 4.5 times slower than the original program.
This is the most interesting of our benchmarks, as it reports an
inherent limitation of locking supported by the type system. The

original program uses one lock for the meeting place, where the
creatures meet. In addition, our program also uses a second lock
for the entire array holding the creatures’ data. In our program, the
array must be locked because it is not possible to convince the type
system that the creature who waits in the meeting room will never
access its data, but this will be updated by its peer and therefore no
data race will occur. We believe that it is this second lock which
causes the performance penalty.

7. Future work

The benchmarks of the previous section show that Cyclone ex-
tended with our language constructs provides static memory safety
guarantees without significantly compromizing performance com-
pared with optimized C. Still, there are plenty of optimizations and
improvements that could be done to our implementation. Here, we
identify the most important ones according to our current bench-
marking experiences.

Waiting for threads. A lexically-scoped Cilk-like [14] construct
for allowing parent threads to wait for the children threads to
terminate would be highly desirable:

join {

for (int i = 0 ; i < size ; i++)

spawn worker(a[i]);

}

The compiler and run-time system could utilize join information
so as to make better scheduling decisions.

Read only data. The multiple readers, single writer lock idiom
has proven to be invaluable. Concurrent applications often use data
structures as read-only for certain parts of a concurrent computa-
tion. Our type system can straightforwardly be extended to support
this idiom, by introducing a new dimension for our capabilities:

κ′ := n, n | n, n

κ := ro(κ′) | rw(κ′)

A region capability can be read only (i.e., ro(κ′)) or read/write
(i.e., rw(κ′)), which which permit read only operations or read/write
operations to a region respectively.

Finer grained locking. For certain applications it would be
preferable to associate locks to individual references as opposed
to regions. It is possible to extend our system to support finer-
grained locking by blurring the distinction between regions and
references. That is, a fresh region effect could be assigned to new
lockable references. In turn, this could be implemented by intro-
ducing a new language construct or utilizing existing methods such
as tracked pointers and existential types (i.e., a similar mechanism
to dynamic regions). At run-time the new reference would be allo-
cated in the parent region’s space and explicit deallocation would
still be possible by using reaps.

Run-time system improvements. Undoubtedly, there are plenty
of optimizations that could be performed in our run-time system.
However, we strongly believe that the most important feature that
should be added is scheduling support for efficiently mapping ker-
nel threads to processors. A desirable feature would be to schedule
tightly-coupled threads sharing the same regions on the same pro-
cessor. The integration of cooperative threads (and possibly adding
language support for such threads) would be highly desirable as
the cooperative model seems to be highly scalable for event-based
applications [29].



8. Related work

The first statically checked stack-based region system was devel-
oped by Tofte and Talpin [28]. Since then, several memory-safe
systems that enabled early region deallocation for a sequential lan-
guage were proposed [2, 13, 22, 30]. RC [15] and Cyclone [21]
were the first imperative languages to allow safe region-based man-
agement with explicit constructs. Both allowed early region deal-
location and RC also introduced the notion of multi-level region
hierarchies. RC programs may throw region-related exceptions,
whereas our approach is purely static. Both Cyclone and RC make
no claims of memory safety or race freedom for multi-threaded pro-
grams. Grossman proposed a type system for safe multi-threading
in Cyclone [20]. Race freedom is guaranteed by statically tracking
locksets within lexically-scoped synchronization constructs. Gross-
man’s proposal allows for fine-grained locking, but does not enable
early release of regions and locks. In contrast, we support hierarchi-
cal locking, as opposed to just primitive locking, and bulk region
deallocation. In addition, Grossman’s system provides no support
for data migration or lock transfers.

Statically checked region systems have also been proposed [9,
31, 32] for real-time Java to rule out dynamic checks imposed by
its specification. Boyapati et al. [9] introduce hierarchical regions
in ownership types but the approach suffers from similar disadvan-
tages as Grossman’s work. Additionally, their type system only al-
lows sub-regions for shared regions, whereas we do not have this
limitation. Boyapati also proposed an ownership-based type system
that prevents deadlocks and data races [8]; in contrast to his sys-
tem, we support locking of arbitrary nodes in the region hierarchy.
Static region hierarchies (depth-wise) have been used by Zhao [32].
Their main advantage is that programs require fewer annotations
compared to programs with explicit region constructs. In the same
track, Zhao et al. [31] proposed implicit ownership annotations for
regions. Thus, classes that have no explicit owner can be allocated
in any static region. This is a form of existential ownership. In con-
trast, we allow a region to completely abstract its owner/ancestor
information by using the hierarchy abstraction mechanism. None
of the above approaches allow full ownership abstraction for region
subtrees.

At the program verification side, Concurrent C minor [23] is
a concurrent version of C with threads, shared memory and first-
class locks, which uses a variant of separation logic to reason about
programs. Even though, their specifications are finer-grained and
more flexible than our type system, they require interactive proofs.

Many systems, such as Safe-C [6], CCured [25], and Deputy [11],
aim to make C code safe. Some of these systems drop soundness
guarantees, so as to reduce the annotation burden, drop the explicit
memory representation of C programs or provide no guarantees
for concurrent programs. There also are numerous of static anal-
yses for avoiding data races [26] and valid data sharing [4, 5] for
C programs. However, these systems drop soundness guarantees,
so as to reduce the annotation burden and require whole program
analyses, which are not always possible in the presence of libraries
and legacy code.

There are numerous languages at the C level of abstraction with
explicit concurrency features [3, 14, 16] but to the best of our
knowledge none of them provides both memory safety and race
freedom guarantees.

9. Concluding remarks

We have presented the design and implementation of a formal, con-
current language employing region-based memory management
and locking primitives to Cyclone, a variant of C that guarantees
memory safety for sequential programs. The formal language pro-
vides memory safety and race freedom guarantees for well-typed

programs. We discussed the integration of the formal language to
Cyclone and argued about the decisions that we have made in order
to guarantee memory safety and race freedom at the implementa-
tion level. Finally, we evaluated the performance of our programs
against highly optimized C programs and report the results.

The main contribution of our work is the development of an ex-
tension to Cyclone that supports race-free and memory-safe multi-
threading. To the best of our knowledge, it is the first variant of
Cyclone that has been implemented with these properties, and one
of the very few programming languages at this level of abstraction
that have been designed and implemented with this goal in mind.
Although our implementation is still not very mature, the bench-
mark results that were reported are acceptable and promising.
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Appendix

Language Syntax & Substitution Relation

Value v ::= f | c | rgnı | locl

Expression e ::= x | c | f | (e e)ξ | e[r] | new e at e

| e := e | deref e | newrgnr ρ, x at e in e

| capr
η e | rgnı | locl | popγ e

Capability kind ψ ::= rg | lk

Capability op η ::= ψ+ | ψ−

Region r ::= ρ | ı | ı@n

Capability κ ::= n, n | n, n

Region parent π ::= r | ⊥

Effect γ ::= ∅ | γ, rκ⊲ π

Type τ ::= b | 〈〉 | τ
γ→γ
−→ τ | ∀ρ. τ | ref(τ, r) | rgn(r)

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Calling mode ξ ::= seq | par

x1[v/x] = v x1 ≡ x

| x1 otherwise

r1[r/r′] = r r1 ≡ r′

| r1 otherwise

π[r1/r2] = ⊥ | r[r1/r2]

e[v/x] = x[v/x] | c | rgnı | cap
r′

η e1[v/x] | popγ e[v/x]

| new e1[v/x] at e2[v/x] | deref e1[v/x] | e1[v/x] := e2[v/x]

| locl | f | (e1[v/x] e2[v/x])ξ | (e1[v/x])[r]

| newrgnr ρ, y at e1[v/x] in e2[v/x] y . x

f [r/r2] = λx. e[r/r2] as τ1[r/r2]
γ1[r/r2]→γ2[r/r2]
−→ τ2[r/r2] | Λρ′. f [r/r2] ρ′ . r2

e[r/r2] = x | c | rgnı | cap
r′[r/r2]
η e1[r/r2] | (e1[r/r2] e2[r/r2])ξ[r/r2] | popγ[r/r2] e[r/r2]

| new e1[r/r2] at e2[r/r2] | deref e1[r/r2] | e1[r/r2] := e2[r/r2]

| locl | f [r/r2] | (e1[r/r2])[r1[r/r2]]

| newrgnr′[r/r2] ρ′, x at e1[r/r2] in e2[r/r2] ρ′ . r2

τ[r1/r2] = b | 〈〉 | rgn(r[r1/r2]) | ref(τ[r1/r2], r[r1/r2])

| τ1[r1/r2]
γ1[r1/r2]→γ2[r1/r2]

−→ τ2[r1/r2]

| ∀ρ′. τ[r1/r2] ρ′ . r2

Γ[r/ρ] = ∅ | Γ1[r/ρ], x : τ[r/ρ]

ξ[r1/r2] = seq | par

γ[r1/r2] = ∅ | γ′[r1/r2], r[r1/r2]κ⊲ π[r1/r2]
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Operational Semantics

(rκ⊲⊥) ∈ γ rg(κ) > 0

is live(γ, r)

γ = γ′, rκ⊲ r′ rg(κ) > 0 is live(γ′, r′)

is live(γ, r)
(rκ⊲ π) ∈ γ lk(κ) > 0 is live(γ, r)

is accessible(γ, r)

γ = γ′, rκ⊲ r′ lk(κ) = 0 rg(κ) > 0 is accessible(γ′, r′)

is accessible(γ, r)

σ ≃ σ1; γ, ıκ⊲ π + σ2

lk(κ) > 0 ∨ (π = r ∧ is accessible(σ, r̄))

is accessible(σ, ı)

σ ≃ σ1; γ, ıκ⊲ π⇒ is pure(κ) ∧ rg(κ) = 0∧

ı < dom(∅; γ) ∧ σ1 , ∅ ⇒ zero pure(σ1, ı)

zero pure(σ, ı)

⊢ δ σ ⊢ δ

⊢ δ, n 7→ σ ⊢ ∅

σ ⊢ δ

∀ı ∈ dom(σ).is accessible(σ, ı)⇒ ¬is accessible(σ′, ı)

σ ⊢ δ, n 7→ σ′

∀ı ∈ dom(σ).σ ≃ σ1; γ, ıκ⊲ π + σ2 ∧ rg(κ) > 0 ∧ is pure(κ)

⇒ zero pure(σ1, ı) ∧ ı < dom(σ2; γ)

σ ⊢ ∅

r̄ =

{

ı if r = ı

r̄′ if r = r′@n′

σ ≃ σ′ =

{

σ1 ≃ σ2 ∧ γ1 ≃ γ2 if σ = σ1; γ1 ∧ σ
′ = σ2; γ2

σ1 ≡ σ2 otherwise

rg(κ) = n1 if κ = n1, n2 ∨ κ = n1, n2

lk(κ) = n2 if κ = n1, n2 ∨ κ = n1, n2

live(γ) = { rκ⊲ π | (rκ⊲ π) ∈ γ ∧ is live(γ, r) }

σ1 + σ2 =

{

(σ1 + σ); γn if σ2 ≡ σ; γn

σ1 if σ2 ≡ ∅

γ1 + γ2 =

{

(γ1 + γ), rκ⊲ π if γ2 ≡ γ, r
κ⊲ π

γ1 if γ2 ≡ ∅

dom(γ) = { r | (rκ⊲ π) ∈ γ }

dom(σ) =

{

{r̄ | (rκ⊲ π) ∈ γ} ∪ dom(σ′) if σ = σ′; γ

∅ if σ = ∅

pops(σ : e) =







































































































































pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ (e1 e2)ξ ∧ e1 , v

pops(σ : e2) ∧ pops(∅; ∅ : v) if e ≡ (v e2)ξ

pops(σ : e1) if e ≡ (e1) [v]

pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ newrgnr ρ, x at e1 in e2

pops(σ : e1) if e ≡ capr′

η e1

pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ new v at e1

pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ new e1 at e2 ∧ e1 , v

pops(σ : e1) if e ≡ deref e1

pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ e1 := e2 ∧ e1 , v

pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ v := e1

pops(σ′ : e1) if e ≡ popγr
e1 ∧ σ = ∅; γr + σ

′

σ ≡ ∅; γ ∧ pops(∅; ∅ : e′) if e ≡ λx. e′ as τ

σ ≡ ∅; γ ∧ pops(∅; ∅ : f ) if e ≡ Λρ. f

σ ≡ ∅; γ if e ∈ {locℓ, rgnı, ()}

Stack σ ::= ∅ | σ; γ

Hierarchy δ ::= ∅ | δ, n 7→ σ

Contents H ::= ∅ | H, ℓ 7→ v

Region list S ::= ∅ | S , ı 7→ H

Threads T ::= ∅ | T, n : e

Configuration C ::= δ; S ; T

E ::= � | (E e)ξ | (v E)ξ | E [r] | newrgnr ρ, x at E in e | capr
η E

| new v at E | deref E | E := e | v := E | new E at e | popγ E
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δ = δ′′, n 7→ σ σ; S ; e→ σ′; S ′; e′ δ′ = δ′′, n 7→ σ′ ⊢ δ′

δ; S ; T, n : E[e] { δ′; S ′; T, n : E[e′]
(E-S)

e′ ≡ (v1 v)par v1 ≡ λx. e as τ1

γ1→γ2
−→ τ2 e′′ ≡ (v1 v)seq δ = δ′′, n 7→ σ; γ

fresh n′ par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) δ′ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1

δ; S ; T, n : E[e′] { δ′; S ; T, n : E[()], n′ : e′′
(E-SN)

σ = σ′; γ is live(γ, r) γ = γ′, rκ⊲ π

κ′ =
[[

η
]]

(κ) σ′′ = σ′; live(γ′, rκ
′

⊲ π)

σ; S ; capr
η rgnr̄ → σ′′; S ; ()

(E-C)

δ = δ′, n 7→ (∅; ∅)

δ; S ; T, n : () { δ′; S ; T
(E-T)

σ = σ′; γ seq ⊢ γ = γ1 ⊕ γr σ′′ = σ′; γr; γ1

σ; S ; ((λx. e as τ1

γ1→γ2
−→ τ2) v)

seq

→ σ′′; S ; popγr
e[v/x]

(E-A)

fresh n′

σ; S ; (Λρ. f )[r]→ σ; S ; f [r̄@n′/ρ]
(E-RP)

σ = σ′; γ is accessible(γ, r) (ℓ 7→ v) ∈ S (r̄)

σ; S ; deref locℓ → σ; S ; v
(E-D)

σ = σ′; γ is live(γ, r) fresh ℓ

σ; S ; new v at rgnr̄ → σ; S [r̄ 7→ S (r̄), ℓ 7→ v]; locℓ
(E-NR)

σ = σ′; γ is accessible(γ, r) (ℓ 7→ v1) ∈ S (r̄)

σ; S ; locℓ := v→ σ; S (r̄)[ℓ 7→ v]; ()
(E-AS)

σ = σ′; γ is live(γ, r) fresh ı σ′′ = σ′; γ, ı1,1⊲ r

σ; S ; newrgnr ρ, x at rgnr̄ in e→ σ′′; S , ı 7→ ∅; e[ı/ρ][rgnı/x]
(E-NG)

σ = σ′; γr; γ
′ seq ⊢ γ′′ = γ′ ⊕ (γr ⊖ ∅) σ′′ = σ′; γ′′

σ; S ; popγr
v→ σ′′; S ; v

(E-E)

Static Semantics

is pure(κ) = ∃n1. ∃n2. κ = n1, n2

[[

η
]]

(κ) =

κ′ if η ≡ ψ ± ∧is pure(κ)⇔ is pure(κ′)∧

(ψ = rg⇒ rg(κ′) = rg ± 1 ∧ lk(κ′) = lk(κ))∧

(ψ = lk⇒ lk(κ′) = lk ± 1 ∧ rg(κ′) = rg(κ))

valid pure(γ) = ∀rκ⊲ π ∈ γ.∃γ1.γ = γ1, r
κ⊲ π ∧ is pure(κ)⇒ ∀r′ ≃ r.r′ < dom(γ1)

ok(γ1; γ2) = valid pure(γ1) ∧ valid pure(γ2)

valid(γ1; γ2) = (∀(rκ⊲ π) ∈ γ1. ∀(rκ
′

⊲ π′) ∈ γ2. π = π
′ ∧ (is pure(κ)⇔

is pure(κ′))) ∧ live(γ1) = γ1 ∧ live(γ2) = γ2 ∧ dom(γ2) ⊆ dom(γ1)

r1 ≃ r2 ≡

{

ı1 ≡ ı2 if r1 ≡ ı1@n1 ∧ r2 ≡ ı2@n2

r1 ≡ r2 otherwise

π1 ≃ π2 ≡

{

r1 ≃ r2 if π1 ≡ r1 ∧ π1 ≡ r2

π1 ≡ π2 otherwise

γ1 ≃ γ2 ≡

{

γ3 ≃ γ4 ∧ r1 ≃ r2 ∧ π1 ≃ π2 if γ1 = γ3, r
κ
1
⊲ π1 ∧ γ2 = γ4, r

κ
2
⊲ π2

γ1 ≡ γ2 otherwise

τ1 ≃ τ2 ≡















































τ1 ≡ τ2 if ({τ1} ∪ {τ2}) ∩ {〈〉, b}

τ3 ≃ τ4 ∧ r1 ≃ r2 if τ1 = ref(τ3, r1) ∧ τ2 = ref(τ4, r2)

r1 ≃ r2 if τ1 = rgn(r1) ∧ τ2 = rgn(r2)

τ3 ≃ τ5 ∧ τ4 ≃ τ6 ∧ γ1 ≃ γ3 ∧ γ2 ≃ γ4 if τ1 ≡ τ3

γ1→γ2
−→ τ4 ∧ τ2 ≡ τ5

γ3→γ4
−→ τ6

τ3[ρ/ρ1] ≃ τ4[ρ/ρ2] if τ1 ≡ ∀ρ1. τ3 ∧ τ2 ≡ ∀ρ2. τ4 ∧ fresh ρ

set(γ; γ′) = (∀(rκ⊲ π) ∈ γ.∃γ1.γ = γ1, r
κ⊲ π ∧ r < dom(γ1)) ∧ (∀(rκ⊲ π) ∈ γ′.∃γ1.γ

′ = γ1, r
κ⊲ π ∧ r < dom(γ1))

Region List R ::= ∅ | R, ı

Type variable list ∆ ::= ∅ | ∆, ρ

Memory List M ::= ∅ | M, ℓ 7→ (τ, ı)

Variable list Γ ::= ∅ | Γ, x : τ

Constraint Well-formedness Region Well-formedness

R;∆ ⊢ ∅

R;∆ ⊢ γ1 R;∆ ⊢ r1 r1 , π π = r2 ⇒ R;∆ ⊢ r2

R;∆ ⊢ γ1, r
κ
1
⊲ π

r ∈ ∆ ⊎ R

R;∆ ⊢ r

R;∆ ⊢ ı

R;∆ ⊢ ı@n

Type Well-formedness

R;∆ ⊢ b

R;∆ ⊢ r

R;∆ ⊢ rgn(r)

R;∆, ρ ⊢ τ

R;∆ ⊢ ∀ρ. τ

R;∆ ⊢ τ R;∆ ⊢ r

R;∆ ⊢ ref(τ, r)

valid(γ1; γ2)

R;∆ ⊢ τ1 R;∆ ⊢ γ1 R;∆ ⊢ τ2 R;∆ ⊢ γ2

R;∆ ⊢ τ1

γ1→γ2
−→ τ2

R;∆ ⊢ 〈〉
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Variable Context Well-formedness Memory Location Well-formedness Program Typing Context Well-formedness
R;∆ ⊢ τ1 x < dom(Γ1)

R;∆ ⊢ Γ1

R;∆ ⊢ Γ1, x : τ1

R ⊢ M1 ℓ < dom(M1)

R; ∅ ⊢ ref(τ1, ı)

R ⊢ M1, ℓ 7→ (τ1, ı)

set(γ; γ′) ok(γ; γ′)

R ⊢ M R;∆ ⊢ Γ R;∆ ⊢ γ R;∆ ⊢ γ′

⊢ R; M;∆;Γ; γ; γ′

⊢ R; M;∆;Γ; γ; γ (x : τ) ∈ Γ τ ≃ τ′

R; M;∆;Γ ⊢ x : τ′& (γ;γ)
(T-V)

⊢ R; M;∆;Γ; γ; γ

R; M;∆;Γ ⊢ c : b & (γ;γ)
(T-I)

⊢ R; M;∆;Γ; γ; γ

R; M;∆;Γ ⊢ () : 〈〉& (γ;γ)
(T-U)

⊢ R; M;∆;Γ; γ; γ R;∆ ⊢ ı r ≃ ı

R; M;∆;Γ ⊢ rgnı : rgn(r) & (γ;γ)
(T-R)

⊢ R; M;∆;Γ; γ; γ (ℓ 7→ (τ, ı)) ∈ M

τ′ ≃ ref(τ, ı)

R; M;∆;Γ ⊢ locl : τ′& (γ;γ)
(T-L)

is live(γ′, rκ⊲ π, r) γ′′ = live(γ′, rκ
′

⊲ π)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′, rκ⊲ π) κ′ =
[[

η
]]

(κ)

R; M;∆;Γ ⊢ capr
η e1 : 〈〉& (γ;γ′′)

(T

⊢ R; M;∆;Γ; γ; γ τ ≡ τ1

γ1→γ2
−→ τ2 set(γ1; γ2)

τ ≃ τ′ ok(γ1; γ2)⇒ R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)

R; M;∆;Γ ⊢ λx. e as τ : τ′& (γ;γ)
(T-F)

R; M;∆, ρ;Γ ⊢ f : τ& (γ;γ)

R; M;∆;Γ ⊢ Λρ. f : ∀ρ. τ& (γ;γ)
(T-RF)

R;∆ ⊢ r

R; M;∆;Γ ⊢ e : ∀ρ. τ& (γ;γ′)

R; M;∆;Γ ⊢ e [r] : τ[r/ρ] & (γ;γ′)
(T

R; M;∆;Γ ⊢ e1 : τ1

γ1→γ2
−→ τ2 & (γ;γ3) ξ = par⇒ τ2 = 〈〉

R; M;∆;Γ ⊢ e2 : τ1 & (γ3;γ4) ξ ⊢ γ5 = γ2 ⊕ (γ4 ⊖ γ1)

R; M;∆;Γ ⊢ (e1 e2)ξ : τ2 & (γ;γ5)
(T-AP)

R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′) is live(γ′, r) R;∆ ⊢ τ

R; M;∆, ρ;Γ, x : rgn(ρ) ⊢ e2 : τ& (γ′, ρ1,1⊲ r;γ′′) ρ < dom(γ′′)

R; M;∆;Γ ⊢ newrgnr ρ, x at e1 in e2 : τ& (γ;γ′′)
(T-NG)

R; M;∆;Γ ⊢ e1 : τ& (γ;γ′) is live(γ′′, r)

R; M;∆;Γ ⊢ e2 : rgn(r) & (γ′;γ′′)

R; M;∆;Γ ⊢ new e1 at e2 : ref(τ, r) & (γ;γ′′)
(T-NR)

R; M;∆;Γ ⊢ e1 : ref(τ, r) & (γ;γ′)

R; M;∆;Γ ⊢ e2 : τ& (γ′;γ′′)

is accessible(γ′′, r)

R; M;∆;Γ ⊢ e1 := e2 : 〈〉& (γ;γ′′)
(T-A)

R; M;∆;Γ ⊢ e : ref(τ, r) & (γ;γ′)

is accessible(γ′, r)

R; M;∆;Γ ⊢ deref e : τ& (γ;γ′)
(T-D)

seq ⊢ γ′ = γ2 ⊕ (γr ⊖ ∅) R;∆ ⊢ γr ok(γr; ∅)

R; M;∆;Γ ⊢ e : τ′& (γ1;γ2) τ ≃ τ′ set(γr; ∅)

R; M;∆;Γ ⊢ popγr
e : τ& (γ1;γ′)

(T-E)

ξ ⊢ γ = ∅ ⊕ γ
(ES-N)

ξ ⊢ γ, rκ2⊲ π = γ1 ⊕ γ2

ξ ⊢ κ = κ1 + κ2 π ≃ π′ r′ ≃ r

ξ ⊢ γ, rκ⊲ π = γ1, r
′κ1⊲ π′ ⊕ γ2

(ES-C)

ξ ⊢ γ = γ1 ⊕ γr ξ ⊢ γ′ = γ2 ⊕ γr

γ′′ = live(γ′) ok(γ1; γ2) ξ = par⇒ γ2 = ∅

ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1)
(ESJ)

rg(κ) = rg(κ1) + rg(κ2) lk(κ) = lk(κ1) + lk(κ2) is pure(κ)⇔ is pure(κ2)

is pure(κ1)⇒ κ = κ1 ξ = par ∧ ¬is pure(κ1)⇒ lk(κ1) = 0

ξ ⊢ κ = κ1 + κ2

(CS)

Type Safety Judgements

nolock(δ, n, e) ≡ e = E[capr
+lk
rgnj] ∧ ∃δ

′′, π, κ, κ′. δ = δ′′, n 7→ σ; γ, rκ⊲ π ∧ κ′ = [[lk+]] (κ) ∧ ¬ ⊢ δ′′, n 7→ σ; γ, rκ
′

⊲ π

redex(e) = (∃ σ,σ′, S , S ′, e′, n. σ; S ; e→ σ′; S ′; e′) ∨ (∃v1, v2, γ1.e = (v1 v2)par)

⋃

(ı7→H)∈S {ℓ | (ℓ 7→ v) ∈ H} = {ℓ | (ℓ 7→ (τ, )) ∈ M}

M ⊢ S

R = {ı | (ı 7→ H) ∈ S }

R ⊢ S

∀(n 7→ σ) ∈ δ.∀γ ∈ σ.∀(rκ⊲ π) ∈ γ.

r̄ ∈ R ∧ (π = r′ ⇒ r̄′ ∈ R)

R ⊢ δ
M ⊢ S R ⊢ S

∀(ℓ 7→ (τ, ı)) ∈ M.R; M; ∅; ∅ ⊢ S (ı)(ℓ) : τ& (∅;∅)

R; M ⊢ S
Store Typing Not Stuck
⊢ δ R; M ⊢ S R ⊢ δ

R; M ⊢ δ; S

∀(n : e) ∈ T. (δ; S ; T { δ; S ′; T ′ ∧ (n : e) < T ′) ∨ nolock(δ, n, e)

⊢ δ; S ; T
Thread Typing Configuration Typing

R; M; ∅ ⊢ ∅

R; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅)

R; M; δ′ ⊢ T ∀(n′ : e′) ∈ T.n′ , n

δ = δ′, n 7→ σ; γ pops(σ; γ : e)

R; M; δ ⊢ T, n : e

R; M; δ ⊢ T R; M ⊢ δ; S

R; M ⊢ δ; S ; T
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n > 0 δ; S ; T {n−1 δn−1; S n−1; Tn−1

δn−1; S n−1; Tn−1 { δn; S n; Tn

δ; S ; T {n δn; S n; Tn

(E-M1)
δ; S ; T {0 δ; S ; T

(E-M2)

Type Safety Proof

Definition Type Safety Initial Environment

R0 = {ιH}

δ0 = {1 7→ ι
1,0
H
⊲⊥}

S 0 = {ιH 7→ ∅}

T0 = {1 : (main[ιH] rgnιH )seq}

Theorem 1 (Type safety) Let R0, δ0, S 0 and T0 be defined as in Definition . If the operational semantics takes any number of

steps δ0; S 0; T0 {
n δn; S n; Tn, then the resulting configuration δn; S n; Tn is not stuck.

Proof. The proof is trivial: Lemma 1 is applied to the assumptions δ; S ; T is well-typed and the operational semantics

performs n steps, to obtain that δn; S n; Tn is well-typed for some Rn; Mn. Then, lemma 53 is applied to the latter fact

to prove that δn; S n; Tn is not stuck.

Lemma 1 (Multi-step Program Preservation ) Let δ; S ; T be a closed well-typed configuration such that R; M ⊢ δ; S ; T

for some R;M. If the operational semantics evaluates δ; S ; T to δ′; S ′; T ′ in n steps then there exists a closed well-typed

configuration such that R′; M′ ⊢ δ′; S ′; T ′, where R′ and M′ are supersets of R and M respectively.

Proof. Proof by induction on the number of steps n. When no steps are performed the proof is immediate from the assumption.

If n steps are performed, we have that δ; S ; T {n δ′; S ′; T ′ or δ; S ; T {n−1 δn−1; S n−1; Tn−1 and δn−1; S n−1; Tn−1 { δ′; S ′; T ′.

By applying the induction hypothesis on the fact that δ; S ; T is well-typed and that n − 1 steps are performed we obtain that

there exist Rn−1; Mn−1 such that Rn−1; Mn−1 ⊢ δn−1; S n−1; Tn−1. We complete the proof by applying lemma 2 on the latter fact and

δn−1; S n−1; Tn−1 { δ′; S ′; T ′.

Lemma 2 (Preservation — Program) Let δ; S ; T be a well-typed configuration with R; M ⊢ δ; S ; T. If the operational se-

mantics takes a step δ; S ; T { δ′; S ′; T ′, then there exist R′ ⊇ R and M′ ⊇ M such that the resulting configuration is well-typed

with R′; M′ ⊢ δ′; S ′; T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : The premise of this rule are T1, n : () = T and δ1, n 7→ (∅; ∅) = δ, for some δ1 and T1. By applying lemma 3 to the

configuration typing assumption we have that R; M ⊢ δ1, n 7→ (∅; ∅); S ; T1, n : () holds.

By inversion of the latter configuration typing derivation we obtain the store (R; M ⊢ δ1, n 7→ (∅; ∅); S ), and thread

(R; M; δ1, n 7→ (∅; ∅) ⊢ T1, n : ()) typing derivations. By inversion of the thread typing derivation, we have that R; M; δ1 ⊢

T1 is well-typed. Lemma 9 is applied to the store typing derivation (R; M ⊢ δ1, n 7→ (∅; ∅); S ) to obtain that R; M ⊢ δ1; S

holds. The new store and thread typing derivations give us R; M ⊢ δ1; S ; T1.

Case E-S : The premises of this rule are T1, n : E[e] = T , δ = δ1, n 7→ σ, ⊢ δ′, δ′ = δ1, n 7→ σ′ and σ; S ; e → σ′; S ′; e′.

The resulting configuration is δ′; S ′; T1, n : E[e′]. By applying lemma 3 to the latter configuration typing derivation, we

have that R; M ⊢ δ; S ; T1, n : E[e] holds. By inverting the configuration typing we obtain that R; M; δ ⊢ T1, n : E[e] and

R; M ⊢ δ; S holds. By inversion of the thread typing derivation we have that R; M; ∅; ∅ ⊢ E[e] : 〈〉&(γ; ∅), σ = σ′′; γ,

pops(σ′′; γ : E[e]) holds, and R; M; δ1 ⊢ T1 holds. By applying lemma 11 to the typing derivation of E[e] we obtain

that R; M; ∅; ∅ ⊢ e : τ, (γ; γ′) for some γ′ and τ. By applying lemma 29 to ⊢ δ[n 7→ σ′] (rule E-S), the typing

derivation of e, the expression evaluation step (σ; S ; e → σ′; S ′; e′) and the store typing derivation (R; M ⊢ δ; S ),

we obtain that e′ is also well-typed (R′; M′; ∅; ∅ ⊢ e′ : τ&(γ′′; γ′)), where γ′′ is the top stack frame for thread n

(σ′ = σ′′′; γ′′ for some σ′′′), for some R ⊆ R′, M ⊆ M′, and the resulting store δ[n 7→ σ′]; S ′ is also well-typed

(R′; M′ ⊢ δ[n 7→ σ′]; S ′). By applying lemma 12 to the typing derivation of e′ we have that ⊢ R′; M′; ∅; ∅; γ′′; γ′.

By inversion of the latter derivation we have that R′ ⊢ M′. By applying lemma 4 to R; M; δ ⊢ T1, n : E[e], R ⊆ R′,

M ⊆ M′ and R′ ⊢ M′, we have that R′; M′; δ ⊢ T1, n : E[e] holds. By inversion of the latter derivation we have that

R′; M′; ∅; ∅ ⊢ E[e] : 〈〉&(γ; ∅). By lemma 23 we can substitute e′ for e in the evaluation context E (all well-typed in

R′; M′) to obtain R′; M′; ∅; ∅ ⊢ E[e′] : 〈〉&(γ′′; ∅).

The application of lemma 6 to pops((σ′′; γ) : E[e]) implies that ∃σ1, σ2.σ
′′; γ = σ1 + σ2 ∧ pops(σ2 : e)). The

application of lemma 7 to pops((σ′′; γ) : E[e]), (σ′′; γ); S ; e → σ′; S ′; e′, σ′′; γ = σ1 + σ2, and pops(σ2 : e), gives us

that pops(σ1 + σ
′
2

: E[e′]), where σ′ = σ1 + σ
′
2
.

By inversion of R′; M′; δ ⊢ T1, n : E[e] we have that R′; M′; δ1 ⊢ T1 and ∀(n′ : e′) ∈ T1.n
′
, n. We can reconstruct

a similar derivation by using the latter derivations along with pops(σ1 + σ
′
2

: E[e′]), δ′ = δ1, n 7→ σ1 + σ
′
2

and

R′; M′; ∅; ∅ ⊢ E[e′] : 〈〉&(γ′′; ∅): R′; M′; δ′ ⊢ T1, n : E[e′]. Both R′; M′ ⊢ δ′; S ′ and R′; M′; δ′ ⊢ T1, n : E[e′] imply that

R′; M′ ⊢ δ′; S ′; T1, n : E[e′] holds.

17



Case E-SN : The program evaluation assumption gives us that e ≡ E[e′], such that e′ is a parallel application redex, and its

premise asserts that e′ is moved to a new thread as a local application redex e′′. It also gives that T1, n : E[e′] = T

and that n′ is fresh. The resulting store map δ′ is equal to δ′′, n 7→ σ; γ′, n′ 7→ γ1, where δ equals δ′′, n 7→ σ; γ

and par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) holds. By applying lemma 3 to the configuration typing derivation, R; M ⊢ δ; S ; T ,

T1, n : E[e′] = T and δ = δ′′, n 7→ σ; γ, we have that R; M ⊢ δ′′, n 7→ σ; γ; S ; T1, n : E[e′] holds.

We need to prove that R; M ⊢ δ′; S ; T1, n : E[()], n′ : e′′ holds. It suffices to prove that R; M; δ′ ⊢ T1, n : E[()], n′ : e′′ and

R; M ⊢ δ′; S .

Thread typing: The following obligations must be proved:

– R; M; ∅; ∅ ⊢ E[()] : 〈〉& (γ′;∅): we must prove that that R; M; δ′′, n 7→ σ; γ ⊢ T1, n : E[e′]. By inversion of

this obligation it suffices to prove that R; M; ∅; ∅ ⊢ E[e′] : 〈〉&(γ; ∅) holds. By applying lemma 11 to the typing

derivation of E[e′], we obtain that e′ is well-typed in the context R; M; ∅; ∅ with effect (γ; γ′′) for some γ′′. The

application of lemma 10 to the latter derivation implies that par ⊢ γ′′ = ∅ ⊕ (γ ⊖ γ′
1
), where γ′

1
≃ γ1. The

application of lemma 33 implies that par ⊢ γ′′ = ∅ ⊕ (γ ⊖ γ1) holds. The capability addition derivation rule is

deterministic thus, that γ′′ is equal to γ′. Thus, e′ is well-typed with effect (γ; γ′).

By applying lemma 12 to the typing derivation of e′, we have that ⊢ R; M; ∅; ∅; γ; γ′. Thus, ⊢ R; M; ∅; ∅; γ′; γ′

also holds (trivial). Consequently, by rule T-U we have that R; M; ∅; ∅ ⊢ () : 〈〉&(γ′; γ′) holds. Now we can

substitute the well-typed unit value described above for e′ in the evaluation context E, by using lemma 23, to

obtain that E[()] is well-typed in the typing context R; M; ∅; ∅ with effect (γ′; ∅).

– ∀(n′′ : e′′′) ∈ T1.n
′′
, n: immediate from the thread typing assumption (premise), which can be obtained by

inversion of the original configuration typing derivation.

– δ = δ′′, n 7→ σ; γ′: immediate.

– pops(σ; γ′ : E[()]): this is immediate by the application of lemma 8 to the fact that pops(σ; γ : E[e′]).

– R; M; ∅; ∅ ⊢ e′′ : 〈〉& (γ1;∅): the application of lemma 24 to the fact that e′ is well-typed in the context R; M; ∅; ∅

with effect (γ; γ′), yields that e′′ is well-typed in the context R; M; ∅; ∅ with effect (γ1; ∅).

– ∀(n′′ : e′′′) ∈ T1.n
′′
, n′ and n′ , n: immediate from the fact that n′ is fresh.

– δ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1: immediate.

– pops(∅; γ1 : e′′): the asssumption that pops(σ; γ : E[e′]) and lemma 7 imply thatσ; γ = σa+σb and pops(σb : e′).

Expression e′ comprises of values thus by the definition of pops we have that σb = ∅; γ. The definition of pops

also allows us to derive pops(∅; γ1 : e′). Thus, pops(∅; γ1 : e′′) also holds.

Store typing: by applying lemma 12 to the typing derivation (as shown earlier) of e′ implies that ok(γ; γ′) holds. The

proof is immediate by the application of lemma 28 to the fact that ok(γ; γ′) holds, R; M ⊢ δ; S holds, δ′ is equal to

δ′′, n 7→ σ; γ′, n′ 7→ γ1, live(γ1) = γ1 (by inversion of the function type well-formedness derivation, which is a premise

of the function typing derivation) and par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1).

Lemma 3 (Reordering) R; M ⊢ δ; S ; T ∧ T ′ = T ∧ δ′ = δ⇒ R; M ⊢ δ′; S ; T ′

Proof. Trivial.

Lemma 4 (Thread Weakening) R; M; δ ⊢ T ∧ R ⊆ R′ ∧ M ⊆ M′ ∧ R′ ⊢ M′ ⇒ R′; M′; δ ⊢ T

Proof. Proof by induction on the shape of T .

- ∅: R′; M′; δ ⊢ ∅ trivially holds.

- T ′, n : e: By inversion of this derivation we have that

– R; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅): The application of lemma 21 to R ⊆ R′ and the typing derivation of e gives us

R′; M; ∅; ∅ ⊢ e : 〈〉& (γ;∅). The application of lemma 22 to the latter derivation, M ⊆ M′ and R′ ⊢ M′ gives us

R′; M′; ∅; ∅ ⊢ e : 〈〉& (γ;∅).

– R; M; δ′ ⊢ T ′: By the induction hypothesis R′; M′; δ′ ⊢ T ′ holds.

– ∀(n′ : e′) ∈ T ′.n′ , n

– δ = δ′, n 7→ σ; γ

– pops(σ; γ : e)

We can use the above facts to derive R′; M′; δ ⊢ T ′, n : e holds.
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Lemma 5 (pops expression preservation) σ0; S ; e → σ′
0
; S ′; e′ ∧ pops(σ2 : e) ∧ σ0 = σ1 + σ2 ⇒ ∃σ

′
2
. ∧ σ′

0
= σ1 + σ

′
2
∧

pops(σ′
2

: e′)

Proof. Proof by case analysis on the operational rules.

Case E-C: the premises of this rule tell us that σ0 = σ; γ and σ′
0
= σ; live(γ′, rκ

′

⊲ π). Thus, σ; γ = σ + ∅; γ and σ′
0
=

σ + ∅; live(γ′, rκ
′

⊲ π). By the definition of predicate pops we can derive pops(∅; live(γ′, rκ
′

⊲ π) : ()).

Case E-A : the premises of this rule tell us that σ0 = σ; γ and σ′
0
= σ; γr; γ1. Thus, σ; γ = σ + ∅; γ and σ′

0
= σ + ∅; γr; γ1.

By inversion of the assumption that pops(σ : (λx. e as τ v)seq) holds we have that pops(∅; ∅ : e). It is trivial to show

that pops(∅; γ1 : e) also holds by induction on predicate pops. We combine the latter fact with ∅; γr; γ1 = ∅; γr + ∅; γ1

to derive pops(∅; γr; γ1 : popγr
e).

Case E-NG : the premises of this rule tell us that σ0 = σ; γ and σ′
0
= σ; γ, r1,1⊲ r′. Thus, σ; γ = σ + ∅; γ and σ′

0
=

σ + ∅; γ, r1,1⊲ r′. By inversion of the assumption that pops(σ : newrgnr′ ρ, x at rgnr̄′ in e) holds we have that

pops(∅; ∅ : e). It is trivial to show that pops(∅; γ, r1,1⊲ r′ : e) also holds by induction on predicate pops. Thus, the proof

is completed if σ2 is equal to ∅; γ, r1,1⊲ r′.

Case E-E : the premises of this rule tell us that σ0 = σ; γr; γ
′ and σ′

0
= σ; γ′′. Thus, σ; γ = σ + ∅; γr; γ

′ and σ′
0
= σ + ∅; γ′′.

By inversion of the assumption pops(∅; γr; γ
′ : popγr

v) we have that pops(∅; γ′ : v) holds. By the definition of predicate

pops we can rewrite the latter fact as pops(∅; γ′′ : v). Thus, the proof is completed if σ2 is equal to ∅; γ′′.

Case E-RP : this rule implies that σ0 = σ
′
0
= σ. The assumption that pops(σ2 : ( f ) [r]) holds tells us that σ2 = ∅; γ for some

γ. Thus, σ = σ1 + ∅; γ. σ′
0
= σ = σ1 + ∅; γ. Thus σ′

2
= ∅; γ. The assumption that pops(σ2 : ( f ) [r]) also tells us that

pops(∅; ∅ : f ) holds. By the definition of pops, pops(∅; γ : f ) also holds. Thus, pops(σ′
2

: f ) holds.

Case E-D,E-NR ,E-AS: similar to the previous case.

Lemma 6 (pops implication) pops(σ : E[e])⇒ ∃σ1, σ2.σ = σ1 + σ2 ∧ pops(σ2 : e))

Proof. We perform induction on the shape of E:

Case �[e]: Let σ1 and σ2 be equal to ∅ and σ respectively. By the latter facts and the assumption pops(: E[e])

we have that pops(σ : e) (assumption) holds.

Case ((E′ e2)ξ)[e]: this is equivalent to (E′[e] e2)ξ. By inversion of the assumption we have that pops(σ : E′[e]) holds (E′[e]

is not value; this is dealt with in the next case). By the induction hypothesis there exists σ1 and σ2 such that σ = σ1+σ2

and pops(σ2 : e).

Case ((v1 E′)ξ)[e]: this is equivalent to (v1 E′[e])ξ. By inversion of the assumption we have that pops(σ : E′[e]) holds By

the induction hypothesis there exists σ1 and σ2 such that σ = σ1 + σ2 and pops(σ2 : e).

Case (popγ E′))[e],(E′ [r])[e]: this is equivalent to popγr
E′[e]. By inversion of the assumption we have that σ = 0; γr + σ

′

and pops(σ′ : E′[e]). By applying the induction hypothesis we have that σ′ = σ′
1
+σ2 and pops(σ2 : e). Thus, the proof

is completed if σ1 equals ∅; γr + σ
′
1
.

Case (capr
η E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (new v at E′))[e], (newrgnr ρ, x at E′ in e2)[e]:

Similar to the above proof structure.

Lemma 7 (pops evaluation context preservation) pops(σ1 + σ2 : E[e]) ∧ pops(σ2 : e) ∧ σ1 + σ2; S ; e → σ′; S ′; e′ ⇒

∃σ3.σ
′ = σ1 + σ3 ∧ pops(σ′ : E[e′]).

Proof. We proceed by induction on the structure of E:

Case �[e]: the application of lemma 5 to pops(σ2 : e) and σ1 + σ2; S ; e→ σ′; S ′; e′ implies that there exists an σ3 such that

σ′ = σ1 + σ3 and pops(σ3 : e′) holds. The assumption implies that pops(σ1 + σ2 : �[e]) and pops(σ2 : e). This can

only hold if σ1 = ∅. We have shown that pops(σ3 : e′) holds. Thus, pops(σ1 + σ3 : �[e′]) holds.

Case ((E′ e2)ξ)[e]: By the definition of the evaluation context and the assumption that pops(σ1 + σ2 : E[e]) holds, we have

that pops(σ1 + σ2 : (E′[e] e2)ξ) holds. E′[e] is not a value as e is a redex (operational step assumption). Therefore, by

inversion of pops(σ1 + σ2 : (E′[e] e2)ξ) and the latter fact we obtain that pops(σ1 + σ2 : E′[e]) and pops(∅; ∅ : e2). By

applying the induction hypothesis we have that there exists an σ′
3

such that pops(σ′ : E′[e′]) and σ′ = σ1 + σ
′
3

holds.

Therefore, we can combine pops(σ′ : E′[e′]) and pops(∅; ∅ : e2) to derive pops(σ′ : (E′[e] e2)ξ).
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Case ((v1 E′)ξ)[e]: By the definition of the evaluation context and the assumption that pops(σ1 + σ2 : E[e]) holds, we have

that pops(σ1 + σ2 : (v1 E′[e])ξ) holds. By inversion of pops(σ1 + σ2 : (v1 E′[e])ξ) and the latter fact we obtain that

pops(σ1 + σ2 : E′[e]) and pops(∅; ∅ : v1). By applying the induction hypothesis we have that there exists an σ′
3

such

that pops(σ′ : E′[e′]) and σ′ = σ1+σ
′
3

holds. Therefore, we can combine pops(σ′ : E′[e′]) and pops(∅; ∅ : v1) to derive

pops(σ′ : (v1 E′[e′])ξ).

Case (popγ E′))[e]: By the definition of the evaluation context and the assumption that pops(σ1 + σ2 : E[e]) holds, we

have that pops(σ1 + σ2 : popγr
E′[e]) holds. By inversion of the latter fact we obtain that σ1 + σ2 = ∅; γr + σx and

pops(σx; E′[e]). σ2 is a postfix of σx as pops(σ2 : e) would not hold otherwise (definition of pops predicate). Thus,

there exists an σ′x such that σx = σ
′
x + σ2 and σ1 = 0; γr + σ

′
x. By applying the induction hypothesis we obtain that

pops(σ′x+σ3 : E′[e′]) for some σ3. We can combine the latter fact with σ1 = 0; γr +σ
′
x to derive pops(σ1+σ3 : E′[e′]).

Case (E′ [r])[e],(capr
η E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (new v at E′))[e], (newrgnr ρ, x at E′ in e2)[e]:

Similar to the above proof structure.

Lemma 8 (pops — Replace value) pops(σ; γ : E[(v v′)ξ])⇒ ∀γ′.pops(σ; γ′ : E[()])

Proof. Proof by induction on the shape of E:

Case �: this is immediate by the definition of pops for the unit value.

Case (E′ e2)ξ
′

: By the definition of the evaluation context and the assumption that pops(σ; γ : E[(v v′)ξ
′

]) holds, pops(σ; γ :

(E′[(v v′)ξ] e2)
ξ′

) also holds. By inversion of the latter judgement and the fact that the hole does not contain a value

we obtain that pops(σ; γ : E′[(v v′)ξ]) and pops(∅; ∅ : e2). By applying the induction hypothesis we obtain that

∀γ′.pops(σ; γ′ : E′[()]). We can use the latter fact and pops(∅; ∅ : e2) to derive ∀γ′.pops(σ; γ′ : (E′[()] e2)ξ
′

).

Case (v1 E′)ξ
′

: By the definition of the evaluation context and the assumption that pops(σ; γ : E[(v v′)ξ
′

]) holds, pops(σ; γ :

(v1 E′[(v v′)ξ])
ξ′

) also holds. By inversion of the latter judgement we obtain that pops(σ; γ : E′[(v v′)ξ]) and pops(∅; ∅ :

v1). By applying the induction hypothesis we obtain that ∀γ′.pops(σ; γ′ : E′[()]). We can use the latter fact and

pops(∅; ∅ : v1) to derive ∀γ′.pops(σ; γ′ : (v1 E′[())ξ
′

).

Case (popγ E′))[e]: By the definition of the evaluation context and the assumption that pops(σ; γ : E[(v v′)ξ
′

]) holds,

pops(σ; γ : popγr
E′[(v v′)ξ]) also holds. By inversion of the latter judgement we obtain that σ; γ = ∅; γr + σ

′

and pops(σ′ : E′[(v v′)ξ]). σ; γ = ∅; γr + σ
′ implies that there exists a σ′′ such that σ′ = σ′′; γ. Thus, pops(σ′ :

E′[(v v′)ξ]) becomes pops(σ′′; γ : E′[(v v′)ξ]). The application of the induction hypothesis to the latter fact gives us

that ∀γ′.pops(σ′′; γ′ : E′[(v v′)ξ]). Thus, we can derive from the above facts that pops(σ; γ′ : popγr
E′[()]) holds.

Case (E′ [r])[e],(capr
η E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (new v at E′))[e], (newrgnr ρ, x at E′ in e2)[e]:

Similar to the above proof structure.

Lemma 9 (Store Strengthening — Empty γ ) If store δ, n 7→ (∅; ∅); S is well-typed in the context R; M, then δ; S is also

well-typed in the same context.

Proof. By inversion of the store typing assumption we have that

- R; M ⊢ S

- R ⊢ δ, n 7→ (∅; ∅)

- ⊢ δ, n 7→ (∅; ∅)

R ⊢ δ trivially holds by observing the premise of R ⊢ δ, n 7→ (∅; ∅). By inversion of ⊢ δ, n 7→ (∅; ∅), we obtain that ⊢ δ holds.

Therefore, the latter facts and R; M ⊢ S imply that R; M ⊢ δ; S also holds.

Lemma 10 (Inversion)

R; M;∆;Γ ⊢ x : τ′& (γa;γb)⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ (x : τ) ∈ Γ ∧ τ ≃ τ′

∧

R; M;∆;Γ ⊢ c : τ& (γa;γb)⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ τ = b

∧

R; M;∆;Γ ⊢ () : τ& (γa;γb)⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ τ = 〈〉

∧

R; M;∆;Γ ⊢ rgnı : τ& (γa;γb)⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ τ ≃ rgn(ı) ∧ R;∆ ⊢ ı

∧
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R; M;∆;Γ ⊢ locl : τ& (γa;γb)⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ τ ≃ ref M(ℓ)

∧

R; M;∆;Γ ⊢ capr
η e1 : τ& (γ;γ′′)⇒ τ = 〈〉 ∧ R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′, rκ⊲ π) ∧ κ′ =

[[

η
]]

(κ) ∧ γ′′ = live(γ′, rκ
′

⊲ π) ∧

is live(γ′, rκ⊲ π)

∧

R; M;∆;Γ ⊢ λx. e as τ : τ′& (γa;γb) ⇒ γa = γb = γ ∧ ⊢ R; M;∆;Γ; γ; γ ∧ R;∆ ⊢ τ ∧ τ ≡ τ1

γ1→γ2
−→ τ2 ∧ γ′ =

γ1 ∧ set(γ1; γ2) ∧ (ok(γ1; γ2)⇒ R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)) ∧ τ′ ≃ τ

∧

R; M;∆;Γ ⊢ Λρ. f : τ& (γa;γb)⇒ γa = γb = γ ∧ τ = ∀ρ. τ′ ∧ R; M;∆, ρ;Γ ⊢ f : τ′& (γ;γ)

∧

R; M;∆;Γ ⊢ e [r] : τ& (γ;γ′)⇒ τ = τ′[r/ρ] ∧ R;∆ ⊢ r ∧ R; M;∆;Γ ⊢ e : ∀ρ. τ′& (γ;γ′)

∧

R; M;∆;Γ ⊢ (e1 e2)ξ : τ2 & (γ;γ5)⇒ R; M;∆;Γ ⊢ e1 : τ1

γ1→γ2
−→ τ2 & (γ;γ3) ∧ par⇒ τ2 = 〈〉 ∧ R; M;∆;Γ ⊢ e2 : τ1 & (γ3;γ4) ∧

ξ ⊢ γ5 = γ2 ⊕ (γ4 ⊖ γ1)

∧

R; M;∆;Γ ⊢ newrgnr′ ρ, x at e1 in e2 : τ& (γ;γ′′) ⇒ R; M;∆;Γ ⊢ e1 : rgn(r) & (γ;γ′) ∧ r′ ≡ r ∧ is live(γ′, r) ∧ R;∆ ⊢

τ ∧ R; M;∆, ρ;Γ, x : rgn(ρ) ⊢ e2 : τ& (γ′, ρ1,1⊲ r;γ′′) ∧ ρ < dom(γ′′)

∧

R; M;∆;Γ ⊢ new e1 at e2 : τ& (γ;γ′′) ⇒ τ = ref(τ′, r) ∧ R; M;∆;Γ ⊢ e1 : τ′& (γ;γ′) ∧ is live(γ′′, r) ∧ R; M;∆;Γ ⊢ e2 :

rgn(r) & (γ′;γ′′)

∧

R; M;∆;Γ ⊢ e1 := e2 : τ′& (γ;γ2) ⇒ τ′ = 〈〉 ∧ R; M;∆;Γ ⊢ e1 : ref(τ, r) & (γ;γ′) ∧ R; M;∆;Γ ⊢ e2 : τ& (γ′;γ′′) ∧

is accessible(γ′′, r)

∧

R; M;∆;Γ ⊢ deref e : τ& (γ;γ′)⇒ R; M;∆;Γ ⊢ e : ref(τ, r) & (γ;γ′) ∧ is accessible(γ′, r)

∧

R; M;∆;Γ ⊢ popγr
e : τ& (γ;γ′) ⇒ ok(γr; ∅) ∧ R; M;∆;Γ ⊢ e : τ& (γ1;γ2) ∧ seq ⊢ γ′ = γ2 ⊕ (γr ⊖ ∅) ∧ R;∆ ⊢ γr ∧ τ ≃

τ′ ∧ set(γr; ∅)

Proof. Straightforward pattern matching on the typing derivations.

Lemma 11 (Context Inversion) If E[e] is a well-typed expression in the typing context R; M;∆;Γ with effect (γ1; γ2), then e

is also a well-typed expression for some type τ, in the same typing context with effect (γ1; γ3) for some γ3.

Proof. By straightforward induction on the shape of the evaluation context. The

Case �[e] then proof is immediate.

Case ((E′ e2)ξ)[e]: An equivalent expression for this case is (E′[e] e2)ξ. By the assumption, (E′[e] e2)ξ is a well-typed

application term. Lemma 10 implies that E[e] is well-typed in the same typing context with effect (γ1; γ′), where γ′

is its output effect. The application of the induction hypothesis to the the latter typing derivation yields that e is a

well-typed term in the same typing context with effect (γ1; γ′′) for some γ′′.

Case ((v1 E′)ξ)[e]: An equivalent expression for this case is (v1 E′[e])ξ. Lemma 10 implies that (v1 E′[e])ξ, E′[e] and v1

are well-typed. In addition, v1 is a value with effect (γ1; γ1) (this is immediate by performing a case analysis on v and

applying lemma 10). Thus, the input effect of E′[e] is γ1. The application of the induction hypothesis to the latter fact

implies that e is well-typed for some type τ with effect (γ1; γ3), for some γ3.

Case (capr
η E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (new v at E′))[e],(popγ E′))[e],(E′ [r])[e],

(newrgnr ρ, x at E′ in e2)[e]: Similar to the above proof structure.

Lemma 12 (Well-Formedness) If an expression e is well-typed in the typing context R; M;∆;Γ, with effect (γ; γ′), then ⊢

R; M;∆;Γ; γ; γ′ holds.

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting cases are the ones of rules

T-AP and T-E :

- T-A : By applying lemma 10 to the typing derivation of e we have that e1 is well-typed with effect (γ; γx), e2 is well-

typed with effect (γx; γy) and ξ ⊢ γ′ = γ2 ⊕ (γ ⊖ γy). By applying the induction hypothesis to e1 and e2 we obtain that

⊢ R; M;∆;Γ; γ; γx and ⊢ R; M;∆;Γ; γx; γy respectively. It suffices to prove the following obligations:

– R ⊢ M: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.
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– R;∆ ⊢ Γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.

– R;∆ ⊢ γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γx.

– R;∆ ⊢ γ′: the effect addition assumption implies that the regions of γ′ is a subset of the regions of γ. Thus,

R;∆ ⊢ γ′ follows from the fact that R;∆ ⊢ γ holds as shown earlier.

– set(γ; γ′): by inversion of ⊢ R; M;∆;Γ; γ; γx we obtain that set(γ; ∅) holds. The effect addition assumption implies

that the regions of γ′ are contained in the regions of γ. Thus, set(γ′; ∅) is immediate from the fact that set(γ; ∅).

Hence set(γ; γ′).

– ok(γ; γ′): by inversion of ⊢ R; M;∆;Γ; γ; γx we obtain that ok(γ; ∅) holds. The effect addition assumption implies

that the regions of γ′ are contained in the regions of γ and the purity of each atomic effect of γ′ is identical to the

purity of the same effect in γ. Thus, ok(γ; γ′) holds.

Case T-E : By applying lemma 10 to the typing derivation of e we obtain that e1 is well-typed with effect (γ; γ2), seq ⊢

γ′ = γ2 ⊕ (γr ⊖ ∅), ok(γr; ∅), set(γr; ∅) and R;∆ ⊢ γr. By applying the induction hypothesis to e1 we obtain that

⊢ R; M;∆;Γ; γ; γ2. It suffices to prove the following obligations:

– R ⊢ M: immediate by inversion of ⊢ R; M;∆;Γ; γ; γ2.

– R;∆ ⊢ Γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γ2.

– R;∆ ⊢ γ: immediate by inversion of ⊢ R; M;∆;Γ; γ; γ2.

– R;∆ ⊢ γ′: the effect addition assumption implies that the regions of γ′ is a subset of the regions of γr. Thus,

R;∆ ⊢ γ′ follows from the fact that R;∆ ⊢ γr.

– set(γ; γ′): the effect addition assumption implies that the regions of γ′ are contained in the regions of γr. Thus,

set(γ′; ∅) is immediate from the fact that set(γr; ∅). By inversion of ⊢ R; M;∆;Γ; γ; γ2 we obtain that set(γ; ∅)

holds. Hence set(γ; γ′).

– ok(γ; γ′): we have shown that ok(γr; ∅) holds. The effect addition assumption implies that the regions of γ′ are

contained in the regions of γr and the purity of each atomic effect of γ′ is identical to the purity of the same effect

in γr. Hence, ok(γ′; ∅) holds. By inversion of ⊢ R; M;∆;Γ; γ; γ2 we obtain that ok(γ; ∅) holds. Thus, ok(γ; γ′)

holds.

Lemma 13 (Value-Effect — Using well-formedness ) If value v is well-typed in the typing context R; M;∆;Γ, with effect

(γ; γ) and ⊢ R; M;∆;Γ; γ1; γ2, then v is well-typed in the same typing context with effect (γ1; γ1) and (γ2; γ2).

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies that ⊢ R; M;∆;Γ; γ1; γ1 and

also ⊢ R; M;∆;Γ; γ2; γ2 hold (trivial). By lemma 10 we obtain the well-formedness derivation as well as some other premises

(in the case of rules T-L,T-R,T-V,T-F ). We may use the latter premises of value typing, which still hold (same typing context),

along with the latter two well-formedness derivations to formulate the new value typing derivations with effect (γ1; γ1) and

(γ2; γ2) respectively. The case for rule T-RF can be shown trivially by induction (the base case is the same as for rule T-F ).

Lemma 14 (Value-Effect) If value v is well-typed in the typing context R; M;∆;Γ, with effect (γ; γ), and e is well-typed in the

same typing context with effect (γ′; γ′′), then v is well-typed in the same typing context with effect (γ′′; γ′′) and (γ′; γ′).

Proof. By applying lemma 10 to the typing derivation of v, we have that ⊢ R; M;∆;Γ; γ; γ. Similarly, the application of

lemma 12 to the typing derivation of e implies that ⊢ R; M;∆;Γ; γ′; γ′′. The proof is completed by applying lemma 13.

Lemma 15 (R Well-Formedness Weakening) R;∆ ⊢ r ∧ R ⊆ R′ ⇒ R′;∆ ⊢ r

Proof. We proceed by performing a case analysis on r:

- ı@n: By inversion of this derivation we have that R;∆ ⊢ ı. We can use the induction hypothesis to complete the proof.

- r , ı@n: By inversion of this derivation r̄ ∈ R ⊎ ∆ holds. Thus, r̄ ∈ R′ ⊎ ∆ also holds.

Lemma 16 (Effect Well-formedness Weakening) R;∆ ⊢ γ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ γ

Proof. We proceed by performing a case analysis on γ:
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- ∅: R′;∆ ⊢ ∅ trivially holds.

R;∆ ⊢ γ′, rκ⊲ π: R′;∆ ⊢ γ′ holds by the induction hypothesis. R′;∆ ⊢ r holds by lemma 15. If π = r′, then R′;∆ ⊢ r′

holds by lemma 15.

Lemma 17 (Type Context Well-formedness Weakening) R;∆ ⊢ τ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ τ

Proof. We proceed by performing a case analysis on τ:

- b: R′;∆ ⊢ b trivially holds.

- 〈〉: R′;∆ ⊢ 〈〉 trivially holds.

- rgn(r): R′;∆ ⊢ r holds by lemma 15.

- ref(τ′, r): R′;∆ ⊢ r holds by lemma 15. R′;∆ ⊢ τ′ holds by the induction hypothesis.

- ∀ρ. τ′: R′;∆, ρ ⊢ τ′ holds by the induction hypothesis.

- τ′
γ1→γ2
−→ τ′′: R′;∆ ⊢ τ′ holds by the induction hypothesis. R′;∆ ⊢ τ′′ holds by the induction hypothesis. R′;∆ ⊢ γ1 holds

by lemma 16. R′;∆ ⊢ γ2 holds by lemma 16.

Lemma 18 (Variable Context Well-formedness Weakening) R;∆ ⊢ Γ ∧ R ⊆ R′ ⇒ R′;∆ ⊢ Γ

Proof. We proceed by performing a case analysis on Γ:

- ∅: R′;∆ ⊢ ∅ trivially holds.

R;∆ ⊢ Γ′, x : τ: R′;∆ ⊢ Γ′ holds by the induction hypothesis. R′;∆ ⊢ τ holds by lemma 17.

Lemma 19 (Memory Context Well-formedness Weakening — R) R ⊢ M ∧ R ⊆ R′ ⇒ R′ ⊢ M

Proof. We proceed by performing a case analysis on M:

- ∅: R′ ⊢ ∅ trivially holds.

R ⊢ M′, ℓ 7→ (τ, ı): R′ ⊢ M′ holds by the induction hypothesis. R′; ∅ ⊢ ref(τ, ı) holds by lemma 17.

Lemma 20 (Typing Context Well-formedness Weakening) ⊢ R; M;∆;Γ; γ1; γ2 ∧ R ⊆ R′ ⇒⊢ R′; M;∆;Γ; γ1; γ2

Proof. Immediate by lemmas 19, 18, 16.

Lemma 21 (Typing Context Weakening — R) If expression e is well-typed in the typing context R; M;∆;Γ and R′ is a super-

set of R, then e is well-typed in the context R′; M;∆;Γ with the same type and effect.

Proof. By applying lemma 12 to the typing derivation of e we have that ⊢ R; M;∆;Γ; γ1; γ2. Lemma 20 implies that ⊢

R′; M;∆;Γ; γ1; γ2 holds.

- T-I : Immediate by applying rule T-I to ⊢ R′; M;∆;Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ⊢ R′; M;∆;Γ; γ1; γ2.

- T-R : By applying lemma 10 to this derivation we have that R;∆ ⊢ ı and r ≃ ı. Lemma 15 implies that R′;∆ ⊢ ı holds.

Thus, we can apply rule T-R to the latter fact, r ≃ ı and ⊢ R′; M;∆;Γ; γ1; γ2 to complete the proof.

- T-L : By applying lemma 10 to this derivation we have that (ℓ 7→ (τ′, ı)) ∈ M and ref M(ℓ) ≃ τ. Thus, we can apply

rule T-L to ⊢ R′; M;∆;Γ; γ1; γ2 , (ℓ 7→ (τ′, ı)) ∈ M and ref M(ℓ) ≃ τ to to complete the proof.

- T-V : By applying lemma 10 to this derivation we have that (x : τ′) ∈ Γ and τ′ ≃ τ. Thus, we can apply rule T-V to

⊢ R′; M;∆;Γ; γ1; γ2 , (x : τ′) ∈ Γ and τ′ ≃ τ to complete the proof.
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- T-F : By applying lemma 10 to this derivation we have that

– ⊢ R; M;∆;Γ; γ; γ: We have shown that ⊢ R′; M;∆;Γ; γ1; γ2 holds.

– R;∆ ⊢ τ: R′;∆ ⊢ τ holds by lemma 17.

– τ′ ≃ τ

– τ ≡ τ1

γ1→γ2
−→ τ2

– set(γ1; γ2)

– ok(γ1; γ2) ⇒ R; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2): Assuming that ok(γ1; γ2) holds, we apply the induction

hypothesis to the derivation of e′ to derive that R′; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2) holds.

We then apply rule T-F to the above facts to derive R′; M;∆;Γ ⊢ λx. e′ as τ : τ′& (γ;γ).

Case T-AP , T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-E, T-A : similar reasoning is performed to prove the remaining cases.

Lemmas 15 and 17 can be used for premises of the form R;∆ ⊢ r and R;∆ ⊢ τ respectively.

Lemma 22 (Memory Context Weakening) If expression e is well-typed in the typing context R; M;∆;Γ, R ⊢ M′ holds, and

M′ is a superset of M, then e is well-typed in the context R; M′;∆;Γ withthe same type and effect.

Proof. By applying lemma 12 to the typing derivation of v we have that ⊢ R; M;∆;Γ; γ1; γ2. Thus, we can substitute premise

R ⊢ M with R ⊢ M′ to obtain ⊢ R; M′;∆;Γ; γ1; γ2.

- T-I : Immediate by applying rule T-I to ⊢ R; M′;∆;Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ⊢ R; M′;∆;Γ; γ1; γ2.

- T-R : By applying lemma 10 to this derivation we have that R;∆ ⊢ ı. The proof is completed by applying rule T-R to

R;∆ ⊢ ı. and ⊢ R; M′;∆;Γ; γ1; γ2.

- T-L : By applying lemma 10 to this derivation we have that (ℓ 7→ (τ′, ı)) ∈ M and ref M(ℓ) ≃ τ. Thus, (ℓ 7→ (τ′, ı)) ∈ M′

and ref M′(ℓ) ≃ τ also hold as M ⊆ M′. We can apply rule T-L to ⊢ R; M′;∆;Γ; γ1; γ2 , (ℓ 7→ (τ′, ı)) ∈ M′ and

ref M′(ℓ) ≃ τ to to complete the proof.

- T-V : By applying lemma 10 to this derivation we have that (x : τ′) ∈ Γ and τ′ ≃ τ. Thus, we can apply rule T-V to

⊢ R; M′;∆;Γ; γ1; γ2 , (x : τ′) ∈ Γ and τ′ ≃ τ to complete the proof.

- T-F : By applying lemma 10 to this derivation we have that

– ⊢ R; M;∆;Γ; γ; γ: We have shown that ⊢ R; M′;∆;Γ; γ1; γ2 holds.

– set(γ1; γ2)

– R;∆ ⊢ τ

– τ′ ≃ τ

– τ ≡ τ1

γ1→γ2
−→ τ2

– ok(γ1; γ2) ⇒ R; M;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2): assume that ok(γ1; γ2) holds. By applying the induction

hypothesis to this derivation we have that R; M′;∆;Γ, x : τ1 ⊢ e′ : τ2 & (γ1;γ2) holds.

We can apply rule T-F to the above facts to derive R; M′;∆;Γ ⊢ λx. e′ as τ : τ′& (γ;γ).

Case T-AP , T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-E, T-A : We can perform similar reasoning to prove the remaining cases.

Lemma 23 (Replacement) If expressions E[e1], e1 and e2 are well-typed in the typing context R; M;∆;Γ, with effects (γ1; γ2),(γ1; γ3)

and (γ4; γ3) respectively, then expression E[e2] is also well-typed in the same typing context with effect (γ4; γ2).

Proof. By straightforward induction on the shape of the evaluation context. The intuition behind this proof is that the substi-

tution of e2 for e1 in the evaluation context E will not surpise its environment as both e1 and e2 yield the same output effect. In

regards to the input effect, we know that the environment will not be surprised as the expressions preceding e1 will definitely

be values and can be given the input effect of e2 (by lemma 14).

Case �[e] then proof is immediate.
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Case (new v at E′)[e]: Lemma 10 implies that that R; M;∆;Γ ⊢ v : τ1&(γ1; γ1). The application of lemma 14 to the latter

judgement and the fact e2 is well-typed with effect (γ4; γ3) yields R; M;∆;Γ ⊢ v : τ1&(γ4; γ4). By applying lemma 10

to the memory allocation construct typing derivation yields is live(γ3, r) and R; M;∆;Γ ⊢ E′[e] : rgn(r)&(γ1; γ2).

The application of the induction hypothesis on the derivation of E′[e2] and the derivation of e2 (assumption) yields

R; M;∆;Γ ⊢ E′[e2] : τ1 & (γ4;γ2). Now, T-NR can be applied to the latter judgment, the new derivation of v, and

the fact that is live(γ3, r) to obtain R; M;∆;Γ ⊢ new v at E′[e2] : ref(τ1, r) & (γ4;γ2) or equivalently R; M;∆;Γ ⊢

(new v at E′)[e2] : ref(τ1, r) & (γ4;γ2) .

Case ((E′ e2)ξ)[e], ((v E′)ξ)[e], (capr
η E′)[e],(deref E′)[e],(E′ := e2)[e], (locℓ := E′)[e], (new E′ at e2))[e], (popγ E′))[e],(E′ [r])[e],

(newrgnr ρ, x at E′ in e2)[e]: Similar to the above proof structure.

Lemma 24 (Parallel-Sequential typing implication) If a parallel application term is well-typed (R; M;∆;Γ ⊢ (v1 v2)par :

〈〉&(γ; γ′)), where v1 ≡ λx. e as τ1

γ1→∅

−→ 〈〉, then the corresponding sequential application term ((v1 v2)seq) is also well-typed in

the same typing context, with effect (γ1; ∅).

Proof. Lemma 10 implies that v1 and v2 are well typed in the same typing context R; M;∆;Γ, with effects (γ; γ) and (γ; γ)

respectively. It also implies that R; M;∆;Γ, x : τ1 ⊢ e : 〈〉&(γ1; ∅). By applying lemma 14 to the typing derivations of v1,v2, and

the fact that e is well-typed with effect (γ1; ∅), we obtain that v1 and v2 are well-typed in the same typing context with effect

(γ1; γ1). We can derive seq ⊢ ∅ = ∅ ⊕ (γ1 ⊖ γ1). By applying T-AP to the latter facts, we have that R; M;∆;Γ ⊢ (v1 v2)seq :

〈〉&(γ1; ∅) holds.

Lemma 25 (Store Typing Preservation for ⊢ δ — Helper 1) If σ; γ ⊢ δ′′, ok(γ; γ′) and par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) hold, δy ⊆ δ
′′

then σ; γ′ ⊢ δy also holds.

Proof. Proof by induction on the structure of δy:

- ∅: given that σ; γ′ ≃ σ1; γx, ı
κ⊲ π + σ2, rg(κ) > 0 and is pure(κ) hold, it suffices to prove that zero pure(σ1, ı) and ı <

dom(σ2; γx) for all ı in the domain of σ; γ′. The assumption that σ; γ ⊢ δ′′ holds implies that σ; γ ≃ σ3; γy, ı
κ′⊲ π′ + σ4,

ı < dom(σ4; γy) and zero pure(σ3, ı). We proceed by performing a case analysis:

– ı belongs in the domain of ∅; γ: the following constraints hold from the above facts: σ2 = σ4 = ∅ and σ1 ≃

σ3 ≃ σ, γ ≃ γy, ı
κ′⊲ π′ and γ′ ≃ γx, ı

κ⊲ π. Thus, zero pure(σ1, ı) holds and the assumption ok(γ; γ′) implies that

ı < dom(σ2; γx).

– ı does not belong in the domain of ∅; γ: the following constraints hold from the above facts: σ1; γx, ı
κ⊲ π ≃

σ3; γy, ı
κ′⊲ π′, σ2 ≃ σa; γ′, σ4 ≃ σb; γ and σa ≃ σb. Thus, zero pure(σ1, ı) is immediate. The equalties and

ı < dom(σ4; γy) imply that ı < dom(σb) and thus ı < dom(σa). It suffices to show that ı < γx. This is immediate

by the fact that ı < dom(σ2; γy) and dom(∅; γy) ⊆ dom(∅; γx) (by the capability addition assumption).

Case δ1, n1 7→ σ1: by applying the induction hypothesis we have that σ; γ′ ⊢ δ1 holds. Given that is accessible(σ; γ′, ı) holds

for all ı that belong in the domain of σ; γ′, it suffices to prove that ¬is accessible(σ1, ı) holds. The assumption that

σ; γ ⊢ δ′′ holds implies that is accessible(σ; γ, ı) ⇒ ¬is accessible(σ1, ı). The capability addition assumption implies

that if is accessible(σ; γ′, ı), then is accessible(σ; γ, ı). Thus, the latter two facts imply that ¬is accessible(σ1, ı).

Lemma 26 (Store Typing Preservation for ⊢ δ — Helper 2) If ⊢ δ′′, n 7→ σ; γ, par ⊢ γ′ = ∅⊕ (γ⊖ γ1) hold and δy ⊆ δ
′′, n 7→

σ; γ′, then ∅; γ1 ⊢ δy holds.

Proof. Proof by induction on the shape of δy.

- ∅: given that ∅; γ1 ≃ σ1; γx, ı
κ⊲ π + σ2, rg(κ) > 0 and is pure(κ) hold, then it suffices to prove that zero pure(σ1) and

ı < dom(σ2; γ). for all ı in the domain of ∅; γ1. This is immediate by the fact that σ1 and σ2 are empty and ok(γ1; γ2)

(obtained by inversion of the effect addition assumption).

- δ1, n1 7→ σ1: ∅; γ1 ⊢ δ1 is immediate by applying the induction hypothesis. Given that is accessible(0; γ1, ı), it suffices

to prove ¬is accessible(σ1, ı) holds for all ı that belong in the domain of γ1. If ı exists in the domain of γ1, then the

effect addition assumption tells us that ı exists in γ and is accessible(γ, ı) holds. Thus, by inversion of ⊢ δ′′, n 7→ σ; γ

we have that ¬is accessible(σ1, ı) holds, when n1 , n.

To complete the proof it must be proved that ¬is accessible(σ; γ′, ı) holds. The capability addition assumption implies

that ı or at least one of its ancestors has a positive pure capability in both γ and γ1. It also tells us that there exists

no positive impure capability in γ1. Assume  is a region protecting ı (may be equal to ı) with a positive and pure

capability. By inversion of ⊢ δ′′, n 7→ σ; γ we have that σ; γ ⊢ ∅ holds. By inversion of the latter derivation we have that

zero pure(σ1, ) and  < dom(σ2; γ3). Region  is positive in γ thus, σ1 = σ, σ2 = ∅ and γ = γ3, 
κ′⊲ π′. Consequently,

¬is accessible(σ; γ′, ) holds by the latter fact and the effect addition assumption.
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Lemma 27 (Store Typing Preservation for ⊢ δ — Spawn) If δ = δ′′, n 7→ σ; γ, δ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1, ok(γ; γ′), ⊢ δ

and par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) hold, then ⊢ δ′ holds.

Proof. It suffices to show that:

- ⊢ δ′′: immediate by inversion of ⊢ δ.

- σ; γ′ ⊢ δ′′: by inversion of ⊢ δ we obtain that σ; γ ⊢ δ′′. The proof for this case is completed by the application of

lemma 25.

- ∅; γ1 ⊢ δ
′′, n 7→ σ; γ′: the proof for this case is immediate by lemma 26.

Lemma 28 (Store Typing Preservation — Spawn) If δ; S is a well-typed store in respect to R; M where δ equals δ′′, n 7→

σ; γ, ok(γ; γ′) holds, par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) holds, live(γ1) = γ1, and δ′ equals δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1 (fresh n′), then δ′; S

is well-typed in respect to R; M.

Proof. By inversion of the store typing assumption, we have that:

- R ⊢ δ

- R; M ⊢ S

- ⊢ δ

The capability addition assumption implies that the regions of γ1 and γ′ are subsets of the regions of γ. Therefore R ⊢ δ

implies that R ⊢ δ′ holds. We have that R; M ⊢ S , thus it suffices to show that ⊢ δ and par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1) imply that ⊢ δ′

holds. This is immediate by lemma 27.

Lemma 29 (Preservation — Expressions) Let e be a well-typed expression with, ⊢ δ[n 7→ σ′; γ′], δ(n) = σ; γ, R; M; ∅; ∅ ⊢

e : τ& (γ;γ′′) and R; M ⊢ δ; S . If the operational semantics takes a step δ(n); S ; e → (σ′; γ′); S ′; e′, then there exist R′ ⊇ R

and M′ ⊇ M, such that the resulting expression and the resulting store are well-typed with R′; M′; ∅; ∅ ⊢ e′ : τ& (γ′;γ′′),

R; M ⊢ δ[n 7→ σ′; γ′]; S ′

Proof. By induction on the typing derivation. It is worth noting that e is a redex, which is immediate by the definition of

evaluation relation. Henceforth, we use u where e should be used to stress that u is a redex.

Case T-I , T-U , T-F , T-L , T-R , T-V , T-RF : the proof is immediate as u is a value and the assumption that we perform a single

operational step does not hold.

Case T-E : The shape of u is popγr
v for some value v. By applying lemma 10 to rule T-E , we have that ok(γr; ∅), seq ⊢ γ′ =

γ2 ⊕ (γr ⊖ ∅) and R; M; ∅; ∅ ⊢ v : τ′&(γ1; γ2), where γ1 and γ′ is the input and output effect of popγr
v respectively,

and τ′ ≃ τ. By applying lemma 10 to the latter fact we have that γ1 = γ2. Thus, the earlier facts can be rewritten as

seq ⊢ γ′ = γ1 ⊕ (γr ⊖ ∅) and R; M; ∅; ∅ ⊢ v : τ′&(γ1; γ1). The application of lemma 34 to the latter derivation and τ ≃ τ′

implies that R; M; ∅; ∅ ⊢ v : τ&(γ1; γ1) holds.

The operational rule that matches the shape of u is E-E and gives us that δ; S ; popγr
v evaluates to δ′; S ; v. The premises

of rule E-E are seq ⊢ γ′′ = γ1 ⊕ (γr ⊖ ∅), where δ and δ′ equal δ′′, n 7→ σ; γr; γ1 and δ′′, n 7→ σ; γ′′ respectively.

The capability addition rule is deterministic, thus γ′′ equals γ′. The application of lemma 13 to ⊢ R; M; ∅; ∅; γ′; γ′

and R; M; ∅; ∅ ⊢ v : τ&(γ1; γ2), yields R; M; ∅; ∅ ⊢ v : τ&(γ′; γ′). To complete the proof, we need to show that

R; M ⊢ δ′; S . This is immediate by the application of lemma 52 to R; M ⊢ S , ok(γr; γ1) (obtained by ok(γr; ∅) and

ok(γ1; γ2); ok(γ1; γ2) is immediate by applying lemma 12 to the typing derivation of v), seq ⊢ γ′′ = γ1 ⊕ (γr ⊖ ∅),

δ = δ′′, n 7→ σ; γr; γ1 and δ′ = δ′′, n 7→ σ; γ′′.

Case T-RP : The typing derivation of T-RP gives us that u is of the form (e) [r]. The operational rule that matches the

shape of u is E-RP . Thus, u is of the form (Λρ. f ) [r]. We can apply lemma 10 to the latter derivation to obtain that

R; M; ∅, ρ; ∅ ⊢ f : τ&(γ; γ), where γ equals δ(n). The application of lemma 35 to the latter fact, r̄@n′ ∈ R (premise

R; ∅ ⊢ r of rule T-RP), the fact that r̄@n′ is fresh (premise of rule E-RP), R; ∅ ⊢ γ (premise of ⊢ R; M; ∅; ∅; γ; γ; the well-

formedness fact is immediate by the application of lemma 12 to the typing derivation of type application), r̄@n′ ≃ r (by

the premise of rule E-RP and the definition of relation ≃), gives us that R; M; ∅; ∅ ⊢ f [r̄@n′/ρ] : τ[r/ρ]&(γ; γ).

Therefore, typing is preserved. The resulting store is identical to the input store, thus it is also well-typed by the

assumption of this lemma.
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Case T-CP : Expression typing: The application of lemma 12 to the typing derivation of the assumption gives us that

⊢ R; M; ∅; ∅; γ; γ′′, where γ is the equal to δ(n). Thus, ⊢ R; M; ∅; ∅; γ′′; γ′′ also holds. The application of rule T-U to the

latter fact gives us R; M; ∅; ∅ ⊢ () : 〈〉&(γ′′; γ′′).

Store typing: The operational rule E-C matches the shape of u. Thus, we need to prove that R; M ⊢ δ′; S holds, where

δ′ = δ[n 7→ σ′; γ′]. It suffices to show that ⊢ δ′ holds. This is immediate by the assumptions of this lemma.

Case T-NG : Rule E-NG matches the shape of u. This rule implies thatσ; S ; newrgnr ρ, x at rgnr̄ in e2 → (σ; γ, ı1,1⊲ r); S ′; e2[ı/ρ][rgnı/x],

σ = σ0; γ, is live(γ, r), S ′ = S , ı 7→ ∅, fresh ı and δ′ = δ, n 7→ σ; γ, ı1,1⊲ r hold.

Store typing: We must prove that R, ı; M ⊢ δ′; S ′ hold given that R; M ⊢ δ; S holds. The latter derivation gives

us that R; M ⊢ S , R ⊢ S and ⊢ δ.

– R, ı; M ⊢ S ′:

∗ M ⊢ S ′: Trivially holds as M ⊢ S holds and S ′ = S , ı 7→ ∅.

∗ R, ı ⊢ S ′: Trivially holds as R ⊢ S holds and S ′ = S , ı 7→ ∅.

– R, ı ⊢ δ′: R ⊢ δ holds and the only new region introduced in δ′ is ı.

– ⊢ δ[n 7→ σ0; γ, ı1,1⊲ r]: immediate by the assumption of this lemma.

Expression typing: The store typing derivation of δ′; S ′ implies that ı < R. Lemma 10 implies that R; M; ∅, ρ; ∅, x :

rgn(ρ) ⊢ e2 : τ&(γ, ρ1,1⊲ r; γ′′), such that ρ < dom(γ′′). The application of lemma 21 to the typing derivation of e2 and

the fact that ı < R yields R, ı; M; ∅, ρ; ∅, x : rgn(ρ) ⊢ e2 : τ&(γ, ρ1,1⊲ r; γ′′). By applying lemma 12 to the original

typing derivation of newrgn construct we obtain the well-formedness derivation. By inversion of the latter derivation

we have that ok(γ; γ′′), thus ok(γ; ∅) holds. ρ is a fresh type variable so it does not exist in the domain of γ. Thus,

ok(γ, ρ1,1⊲ r) also holds. We then apply lemma 46 on the latter fact, the derivation of e2 and the fact that ı is fresh to

obtain R, ı; M; ∅; ∅, x : rgn([ı/ρ]) ⊢ e2[ı/ρ] : τ[ı/ρ]&(γ[ı/ρ], ı1,1⊲ r; γ′′[ı/ρ]). By applying lemma 12 to the original

typing derivation of newrgn construct we have that the typing the context (including γ and γ′′) is not defined in terms

of ρ (i.e. ρ is fresh). Further, the premise of newrgn derivation suggests that τ is also independent of ρ (i.e. R; ∅ ⊢ τ).

Hence, the above facts and the definition of the substitution relation imply that the typing derivation of e2 becomes

R, ı; M; ∅; ∅, x : rgn(ı) ⊢ e2[ı/ρ] : τ&(γ, ı1,1⊲ r; γ′′). By the application of lemma 12 to the fact that e2 is well-typed,

we have that ⊢ R, ı; M; ∅; ∅; γ, ρ1,1⊲ r; γ′′ is well formed. By the definition of well-formedness, ⊢ R, ı; M; ∅; ∅; ∅; ∅ also

holds. The definition of the typing rule T-R , the latter fact and the fact that R, ı ⊢ ı holds imply that rgnı is well-typed

(with type rgn(ı)) in the context R, ı; M; ∅; ∅ with effect (∅; ∅). By applying lemma 36 to the latter derivation and the

fact that R, ı; M; ∅; ∅, x : rgn(ı) ⊢ e2[k/ρ] : τ&(γ, ı1,1⊲ r; γ′′) we obtain R, ı; M; ∅; ∅ ⊢ e2[ı/ρ][rgnı/x] : τ&(γ, ı1,1⊲ r; γ′′).

Case T-D: Rule E-D matches the shape of u. Its premises also imply that the value read from the store is equal to S (r̄)(ℓ),

for some r such that r̄ = ı. The store typing assumption yields that R; M; ∅; ∅ ⊢ v : τ′&(∅; ∅), where v = S (ı)(ℓ) and

M(ℓ) = (τ′, ı).

The application of lemma 12 to the typing derivation of dere f gives us ⊢ R; M; ∅; ∅; γ; γ. By applying lemma 13 to the

latter derivation and R; M; ∅; ∅ ⊢ v : τ′&(∅; ∅) gives us that R; M; ∅; ∅ ⊢ v : τ′&(γ; γ). By applying lemma 10 to the

typing derivation of dere f we have that if ref(τ′′, r) is the type assigned to locℓ, then ref(τ′′, r) ≃ ref M(ℓ) holds.

Thus τ′′ ≃ τ′ also holds. We can use lemma 34, the latter fact and R; M; ∅; ∅ ⊢ v : τ′&(γ; γ) (lemma 10) to derive

R; M; ∅; ∅ ⊢ v : τ′′&(γ; γ). The output store is identical to the input store hence it is also well-typed.

Case T-A :

Expression typing: The application of lemma 12 to the typing derivation of e yields that R; M; ∅; ∅; γ; γ′ holds. Thus,

R; M; ∅; ∅; γ′; γ′ holds. The application of rule T-U to the latter fact yields that R; M; ∅; ∅ ⊢ () : 〈〉&(γ′; γ′).

Store typing: The store preservation proof is as follows: Lemma 10 implies that the following hold: R; M; ∅; ∅ ⊢ locℓ :

ref(τ, r)&(γ; γ), where γ is equal to δ(n), R; M; ∅; ∅ ⊢ v : τ&(γ; γ) and ref(τ, r) ≃ ref M(ℓ) (this also implies that

ref(τ, r) contains no type variables). Let M(ℓ) be equal to (τ′, r′) for some τ′ and r′, then we also have that τ ≃ τ′.

By applying lemma 34 to τ ≃ τ′ and R; M; ∅; ∅ ⊢ v : τ&(γ; γ), we have that R; M; ∅; ∅ ⊢ v : τ′&(γ; γ). The application

of lemma 12 to the latter derivation implies ⊢ R; M; ∅; ∅; γ; γ. Thus, ⊢ R; M; ∅; ∅; ∅; ∅ also holds. The application of

lemma 13 to the latter fact and R; M; ∅; ∅ ⊢ v : τ′&(γ; γ) gives us R; M; ∅; ∅ ⊢ v : τ′&(∅; ∅).

The premise of the operational rule E-AS implies that if the input store is δ; S , then the output store is δ; S [r̄ 7→

S (r̄), ℓ 7→ v]. We have from the original store typing assumption that:

– ⊢ δ

– R ⊢ δ

– R; M ⊢ S : R ⊢ S and M ⊢ S

Thus, it suffices to show that R; M ⊢ S ′ holds. R ⊢ S ′ holds as R ⊢ S holds as no regions are added to S ′. M ⊢ S ′

holds as M ⊢ S holds for all other locations than ℓ, and ℓ itself contains now the updated value v with typing derivation

R; M; ∅; ∅ ⊢ v : τ′&(∅; ∅). Thus, M ⊢ S ′ holds.

Case T-NR : The rule that matches this case is rule E-NR . This rules implies that the new store S ′ = S [n 7→ S (r̄), ℓ 7→ v],

where v is the new value that is stored in S ′, δ is constant and ℓ is a fresh location (i.e. ℓ does not exist in S ). Therefore,

store typing assumption (R; M ⊢ S ) implies that ℓ does not belong in the domain of M.

By applying lemma 10 to the typing derivation of construct new we have that:
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– R; M; ∅; ∅ ⊢ v : τ&(γ; γ)

– R; M; ∅; ∅ ⊢ rgnr̄ : rgn(r′)&(γ; γ)

– r′ ≃ r̄

Let τ′ be such that τ′ ≃ τ and τ′ contains no region names of the form ı@n. By applying lemma 34 to the latter fact we

have that R; M; ∅; ∅ ⊢ v : τ′&(γ; γ).

The application of lemma 30 to the latter typing derivation of v tells us that R; ∅ ⊢ τ′ holds. The application of lemma 10

to the typing derivation of rgnr̄ gives us that R; ∅ ⊢ ı. Thefore, R; ∅ ⊢ ref(τ′, ı) holds. By applying lemma 12 to the

typing derivation of v we have that ⊢ R; M; ∅; ∅; γ; γ. By inversion of the latter derivation R ⊢ M holds. Location ℓ is fresh

so it does not belong to the domain of M. Consequently, we can combine the latter facts to derive that R ⊢ M, ℓ 7→ (τ′, r̄).

Expression typing: The latter derivation is substituted for R ⊢ M in the premises of ⊢ R; M; ∅; ∅; γ; γ to derive that

⊢ R; M, ℓ 7→ (τ′, r̄); ∅; ∅; γ; γ holds. By applying rule T-L to the latter fact, M, ℓ 7→ (τ′, r̄) and ref(τ, r) ≃ ref (τ′, r̄) we

obtain that R; M, ℓ 7→ (τ′, r̄); ∅; ∅ ⊢ locℓ : ref(τ, r)&(γ; γ).

Store typing: By applying lemma 12 to the typing derivation of construct new we have that ⊢ R; M; ∅; ∅; γ; γ′′, where

γ′′ equals γ. Thus, ⊢ R; M; ∅; ∅; ∅; ∅ also holds. By applying lemma 13 to the latter fact and R; M; ∅; ∅ ⊢ v : τ′&(γ; γ)

we have that R; M; ∅; ∅ ⊢ v : τ′&(∅; ∅) holds. By applying lemma 22 to the latter derivation R ⊢ M, ℓ 7→ (τ′, r̄) and

M ⊆ M, ℓ 7→ (τ′, r̄) we have that R; M, ℓ 7→ (τ′, r̄); ∅; ∅ ⊢ v : τ′&(∅; ∅).

By inversion of the store typing assumption we have that M ⊢ S and ∀(ℓ′ 7→ (τ′′, )) ∈ M.R; M; ∅; ∅ ⊢ S ( )(ℓ′) :

τ′′& (∅;∅). We must show that R; M, ℓ 7→ (τ′, r̄) ⊢ δ; S ′. It suffices to show that the following hold:

– M, ℓ 7→ (τ′, r̄) ⊢ S ′: The locations contained in store S ′ are equal to the location contained in S except for an

additional location ℓ. Thus, the latter fact and M ⊢ S imply that M, ℓ 7→ (τ′, r̄) ⊢ S ′ holds.

– ∀(ℓ′ 7→ (τ′′, )) ∈ M, ℓ 7→ (τ′, r̄).R; M; ∅; ∅ ⊢ S ′( )(ℓ′) : τ′′& (∅;∅): immediate by ∀(ℓ′ 7→ (τ′′, )) ∈ M.R; M; ∅; ∅ ⊢

S ( )(ℓ′) : τ′′& (∅;∅) and R; M, ℓ 7→ (τ′, r̄); ∅; ∅ ⊢ v : τ′&(∅; ∅).

Case T-AP : The only operational rule that matches the shape of the application term is rule E-A :

– ξ = seq

– seq ⊢ γ = γ1 ⊕ γr

– δ = δ′′, n 7→ σ; γ

– δ′ = δ′′, n 7→ σ; γr; γ1

– δ(n); S ; ((λx. e as τ) v)seq → δ(n)′; S ; popγr
e[v/x]

Expression typing: The proof for the typing preservation is similar to the previous proofs. By applying lemma 10 to

the derivation of the application term we obtain the following premises:

– R; M; ∅; ∅ ⊢ λx. e1 as τx : τ′
1

γ′
1
→γ′

2
−→ τ′

2
&(γ; γ): γ is equal to δ(n). by applying lemma 10 to this derivation we

obtain that:

∗ ok(γ1; γ2)⇒ R; M; ∅; ∅, x : τ1 ⊢ e1 : τ2&(γ1; γ2)

∗ τx ≡ τ1

γ1→γ2
−→ τ2.

∗ τ′ ≃ τ: by inversion of this fact we obtain that γ1 ≃ γ
′
1
, γ2 ≃ γ

′
2
, τ′

1
≃ τ1 and τ′

2
≃ τ2.

– seq ⊢ γ′′ = γ′
2
⊕ (γ ⊖ γ′

1
): by applying lemma 33 to seq ⊢ γ′′ = γ′

2
⊕ (γ ⊖ γ′

1
), γ1 ≃ γ

′
1

and γ2 ≃ γ
′
2
, we have

that seq ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1). By inversion of the latter derivation we obtain that ok(γ1; γ2) holds. By applying

lemma 31 to seq ⊢ γ = γ1⊕γr and the latter fact we have that seq ⊢ γ′′ = γ2⊕ (γr ⊖∅). R; ∅ ⊢ γr holds as R; ∅ ⊢ γ

holds (premise of ⊢ R; M; ∅; ∅; γ; γ′′, which is immediate by lemma 12) and the regions of γr is a subset of the of

regions γ (by seq ⊢ γ = γ1 ⊕ γr). ⊢ R; M; ∅; ∅; γ; γ′′ also tells us that ok(γ; γ′′) holds. As mentioned earlier, γr is

a subset of γ, thus set(γr; ∅) holds.

– R; M; ∅; ∅ ⊢ v : τ′
1
&(γ; γ): the application of lemma 12 to the typing derivation of the application term gives us

that ⊢ R; M; ∅; ∅; γ; γ′′. Thus, ⊢ R; M; ∅; ∅; ∅; ∅ also holds. We can use the latter fact and the derivation of value

v along with lemma 13 to obtain R; M; ∅; ∅ ⊢ v : τ′
1
&(∅; ∅). The application of lemma 34 to the latter derivation

and τ′
1
≃ τ1 gives us R; M; ∅; ∅ ⊢ v : τ1&(∅; ∅).

We have shown that ok(γ1; γ2) ⇒ R; M; ∅; ∅, x : τ1 ⊢ e1 : τ2&(γ1; γ2) and ok(γ1; γ2) holds, thus R; M; ∅; ∅, x : τ1 ⊢ e1 :

τ2&(γ1; γ2) holds. Lemma 36 is applied to the typing derivation of v and e yields: R; M; ∅; ∅ ⊢ e[v/x] : τ2&(γ1; γ2).

The application of rule T-E to τ′
2
≃ τ2, set(γr; ∅), seq ⊢ γ′′ = γ2⊕(γr⊖∅), R; ∅ ⊢ γr and R; M; ∅; ∅ ⊢ e[v/x] : τ2&(γ1; γ2).

gives us R; M; ∅; ∅ ⊢ popγr
e[v/x] : τ′

2
&(γ1; γ′′).

Store typing: The application of lemma 49 to the store typing assumption (R; M ⊢ δ; S ), seq ⊢ γ = γ1 ⊕ γr and

ok(γ; γ1) (obtained by ok(γ1; γ2) and ok(γ; γ′′) holds as shown earlier) implies that R; M ⊢ δ′; S holds.
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Lemma 30 (Type Well-formedness) R; M;∆;Γ ⊢ e : τ&(γ; γ′)⇒ R;∆ ⊢ τ

Proof. Straightforward induction on the typing rules.

Lemma 31 (Capability Addition Implication) ξ ⊢ γ = γ1 ⊕ γr ∧ ξ ⊢ γ
′ = γ2 ⊕ (γ ⊖ γ1)⇒ ξ ⊢ γ′ = γ2 ⊕ (γr ⊖ ∅)

Proof. By inversion of ξ ⊢ γ′ = γ2 ⊕ (γ ⊖ γ1) we have that:

- ξ ⊢ γ = γ1 ⊕ γr′ : the capability addition rule ES-C is determistic, thus γr′ = γr.

- ξ ⊢ γ′ = γ2 ⊕ γr′ : similarly ξ ⊢ γ′ = γ2 ⊕ γr holds. rule ES-N implies that ξ ⊢ γr = ∅ ⊕ γr holds.

- γ′′ = live(γ′)

- ok(γ1; γ2): ok(γ2; ∅) trivially holds.

- ξ = par⇒ γ2 = ∅

Rule ESJ is applied to the above facts to derive ξ ⊢ γ′ = γ2 ⊕ (γr ⊖ ∅).

Lemma 32 ( Effect Addition Implication) ξ ⊢ γ′ = γ′
1
⊕ γr ∧ γ1 ≃ γ

′
1
⇒ ξ ⊢ γ = γ1 ⊕ γr

Proof. If γ1 is empty then the conclusion holds by rule ES-N . Otherwise,rule ES-C applies and gives us the following facts:

- γ = γ′, rκ⊲ π

- γ1 = γ
′′, r′′κ1⊲ π′′: γ1 ≃ γ

′
1

implies that γ′
1
= γ′′

1
, r′′′κ1⊲ π′′′, r′′′ ≃ r′′, π′′′ ≃ π′′ and γ′′ ≃ γ′′

1
.

- ξ ⊢ γ′, rκ2⊲ π = γ′′ ⊕ γr: we can apply the induction hypothesis to this fact and γ′′ ≃ γ′′
1

to obtain ξ ⊢ γ′, rκ2⊲ π = γ′′
1
⊕ γr.

- ξ ⊢ κ = κ1 + κ2

- π ≃ π′′: we use the fact that π′′′ ≃ π′′ to obtain π ≃ π′′′.

- r ≃ r′′: we use the fact r′′′ ≃ r′′, and that to obtain r′′′ ≃ r.

Thus, ξ ⊢ γ = γ′
1
⊕ γr holds by applying rule E-SC to the above facts.

Lemma 33 ( Effect Addition/Subtraction Implication) ξ ⊢ γ′′ = γ′
2
⊕ (γ ⊖ γ′

1
) ∧ γ1 ≃ γ

′
1
∧ γ2 ≃ γ

′
2
⇒ ξ ⊢ γ′′ = γ2 ⊕ (γ ⊖ γ1)

Proof. By inversion of the effect addition/subtraction assumption we have that

- ξ ⊢ γ = γ′
1
⊕ γr: the application of lemma 32 to ξ ⊢ γ = γ′

1
⊕ γr and γ1 ≃ γ

′
1

implies that ξ ⊢ γ = γ1 ⊕ γr.

- ξ ⊢ γ′ = γ′
2
⊕ γr: the application of lemma 32 to ξ ⊢ γ′ = γ′

2
⊕ γr and γ2 ≃ γ

′
2

implies ξ ⊢ γ′ = γ2 ⊕ γr.

- γ′′ = live(γ′)

- ξ = par⇒ γ2 = ∅

- ok(γ′
1
; γ′

2
): ok(γ′

1
; γ′

2
) trivially holds.

Lemma 34 (Value Type Implication) R; M;∆;Γ ⊢ v : τ&(γ; γ) ∧ τ ≃ τ′ ⇒ R; M;∆;Γ ⊢ v : τ′&(γ; γ)

Proof. Trivial proof by case analysis on the shape of value v.

Lemma 35 ( Polymorphic value substitution) R, r̄; ∅ ⊢ γ ∧ R, r̄; M;∆, ρ; ∅ ⊢ f : τ&(γ; γ)∧ fresh r ∧ r ≃ r′ ⇒ R, r̄; M;∆; ∅ ⊢

f [r/ρ] : τ[r′/ρ]&(γ; γ)

Proof. We proceed by performing a case analysis on the shape of f :

Case f ≡ λx. e as τ′: By inversion (lemma 10) of the assumption typing derivation we have that ok(γ1; γ2)⇒ R, r̄; M;∆, ρ; ∅ ⊢

λx. e as τ′ : τ&(γ; γ) holds. If ok(γ1[r/ρ]; ∅) does not hold then the proof is immediate. Otherwise, the application of

lemma 46 to the latter derivation, the fact that r is fresh, and ok(γ1[r/ρ]; ∅) gives us R, r̄; M;∆; ∅ ⊢ (λx. e as τ′)[r/ρ] :

τ[r/ρ]&(γ[r/ρ]; γ[r/ρ]). The assumption implies that γ is defined independently of ρ (R, r̄; ∅ ⊢ γ). Thus, R, r̄; M;∆; ∅ ⊢

(λx. e as τ′)[r/ρ] : τ[r/ρ]&(γ; γ) also holds. By lemma 10 we obtain the premises of the latter derivation. We can

use rule T-F , the premises and the fact that τ[r/ρ] ≃ τ[r′/ρ] (r ≃ r′) to derive R, r̄; M;∆; ∅ ⊢ (λx. e as τ′)[r/ρ] :

τ[r′/ρ]&(γ; γ).
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Case f ≡ Λρ′. f ′: By inversion (lemma 10) of the typing derivation of the assumption we have that R, r̄; M;∆, ρ, ρ′; ∅ ⊢ f ′ :

τ&(γ; γ). We can use the induction hypothesis to derive that R, r̄; M;∆, ρ′; ∅ ⊢ f ′[r/ρ] : τ[r′/ρ]&(γ; γ). The application

of rule T-RF to the latter derivation yields R, r̄; M;∆; ∅ ⊢ Λρ′. f ′[r/ρ] : ∀ρ′. τ[r′/ρ]&(γ; γ).

Lemma 36 (Variable Substitution) R; M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2) ∧ R; M; ∅; ∅ ⊢ v : τ1 & (∅;∅) ⇒ R; M;∆;Γ ⊢ e[v/x] :

τ2 & (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma 37 ( Region substitution preserves ok ) ξ ⊢ γ3 = γ2 ⊕ γ1 ∧ ok(γ3; ∅) ∧ ok(γ2; ∅) ∧ ok(γ3[rx/ρ]; ∅)⇒ ok(γ2[rx/ρ]; ∅)

Proof. If ρ does not exist in γ2 then the proof is immediate by the assumption that ok(γ2; ∅). Otherwise we assume that ρ must

exist in both γ2 and γ3 (by ξ ⊢ γ3 = γ2 ⊕ γ1 we have that the domain of γ2 is a subset of the domain of γ3). Assume that rx

belongs in the domain of γ3. This is a contradiction as the assumption ok(γ3[rx/ρ]; ∅) does not hold. We have mentioned that the

regions of γ2 are a subset of the regions of γ3. Therefore, rx does not belong in the domain of γ2 either. By the assumption that

ok(γ2; ∅) holds, the definition of predicate ok and the fact that rx does not occur in the domain of γ2 implies that ok(γ2[rx/ρ]; ∅)

holds.

Lemma 38 ( Region substitution preserves ⊕ ) ξ ⊢ γ3 = γ2 ⊕ γ1 ⇒ ξ[r/ρ] ⊢ γ3[r/ρ] = γ2[r/ρ] ⊕ γ1[r/ρ]

Proof. If γ1 is empty then rule ES-N implies that γ3 equals γ1. Thefore, ξ[r/ρ] ⊢ γ1[r/ρ] = ∅⊕γ1[r/ρ] holds. It can be trivially

shown that if ξ ⊢ κ = κ1 + κ2, then for any r, ρ, ξ[r/ρ] ⊢ κ = κ1 + κ2 also holds. If γ1 is not empty then rule ES-C applies. By

inversion of this rule we have that the following hold:

- π ≃ π′: π[r/ρ] ≃ π′[r/ρ] is immediate.

- r′ ≃ r: r′[r/ρ] ≃ r[r/ρ] is immediate.

- ξ ⊢ γ31, r
′κ2⊲ π = γ12 ⊕ γ1: ξ[r/ρ] ⊢ (γ31, r

′κ2⊲ π)[r/ρ] = γ12[r/ρ] ⊕ γ1[r/ρ] holds by the induction hypothesis.

- γ3 = γ31, r
′κ2⊲ π′: γ3[r/ρ] = (γ31, r

′κ2⊲ π′)[r/ρ] is immediate.

- γ1 = γ12, r
κ1⊲ π: γ1[r/ρ] = (γ12, r

κ1⊲ π)[r/ρ] is immediate.

By using rule ES-C we obtain that: ξ[r/ρ] ⊢ γ3[r/ρ] = γ2[r/ρ] ⊕ γ1[r/ρ]

Lemma 39 ( Valid implication — ⊕) ξ ⊢ γ = γ1⊕γr∧valid(γa; γb)∧γ1 ⊆ γa∧γ2 ⊆ γb∧dom(γ2) ⊆ dom(γ1)⇒ ξ ⊢ γ = γ2⊕γ
′
r

Proof. Proof by induction on the structure of γ2:

- ∅: immediate by rule ES-N .

- γ2 = γ21, r
κ3⊲ π: valid(γa; γb), γ1 ⊆ γa, γ2 ⊆ γb and dom(γ2) ⊆ dom(γ1) imply that γ1 = γ12, r

κ1⊲ π and is pure(κ1) ⇔

is pure(κ3). By inversion of the assumption ξ ⊢ γ = γ1 ⊕ γr we have that:

– γ3 = γ31, r
′κ2⊲ π′.

– π ≃ π′ and r′ ≃ r.

– ξ ⊢ κ = κ1 + κ2: ξ ⊢ κ = κ3 + κ
′
2

also holds for some κ′
2

as a result of is pure(κ1)⇔ is pure(κ3).

– ξ ⊢ γ31, r
′κ2⊲ π = γ12 ⊕ γ

′
r: ξ ⊢ γ31, r

′κ2⊲ π = γ21 ⊕ γ
′′
r holds by induction hypothesis.

By applying rule ES-C to the latter facts we obtain that ξ ⊢ γ = γ2 ⊕ γ
′′
r .

Lemma 40 ( Region substitution preserves ⊕/⊖ ) ξ ⊢ γ3 = γ2⊕ (γ⊖γ1)∧ok(γ; γ3)∧ok(γ[r/ρ]; ∅)∧valid(γ1; γ2)∧ fresh r ⇒

ξ[r/ρ] ⊢ γ3[r/ρ] = γ2[r/ρ] ⊕ (γ[r/ρ] ⊖ γ1[r/ρ])

Proof. The assumption that ok(γ; γ3) holds implies that ok(γ; ∅) and ok(γ3; ∅) hold. By inversion of the first assumption we

obtain the following facts:

- ok(γ1; γ2): this fact implies that ok(γ1; ∅) and ok(γ2; ∅) hold. The application of lemma 37 to ξ ⊢ γ = γ1 ⊕ γr, ok(γ1; ∅),

ok(γ; ∅) and ok(γ[r/ρ]; ∅) implies that ok(γ1[r/ρ]; ∅) holds. The application of lemma 39 to valid(γ1; γ2), γ1 ⊆ γ1,

γ2 ⊆ γ2 and dom(γ2) ⊆ dom(γ1) (by inversion of valid(γ1; γ2)), we have that ξ ⊢ γ = γ2 ⊕ γ
′
r, for some γ′r. The

application of lemma 37 to ξ ⊢ γ = γ2 ⊕ γ
′
r, ok(γ2; ∅), ok(γ; ∅) and ok(γ[r/ρ]; ∅) implies that ok(γ2[r/ρ]; ∅) holds. Thus,

ok(γ1[r/ρ]; γ2[r/ρ]) holds.
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- ξ ⊢ γ = γ1 ⊕ γr: ξ[r/ρ] ⊢ γ[r/ρ] = γ1[r/ρ] ⊕ γr[r/ρ] immediate by the application of lemma 38 to ξ ⊢ γ = γ1 ⊕ γr.

- ξ ⊢ γa = γ2 ⊕ γr: ξ[r/ρ] ⊢ γa[r/ρ] = γ2[r/ρ] ⊕ γr[r/ρ] immediate by the application of lemma 38 to ⊢ γa = γ2 ⊕ γr.

- γ3 = live(γa): it suffices to prove that (live(γa))[r/ρ] = live(γa[r/ρ]). This is trivial to show given that r is fresh (i.e. it

does not belong in the domain of γa).

- ξ = par⇒ γ2 = ∅: ξ[r/ρ] = par⇒ γ2[r/ρ] = ∅ trivially holds.

Lemma 41 (R Well-Formedness Substitution) R, r̄′;∆, ρ ⊢ r ⇒ R, r̄′;∆ ⊢ r[r′/ρ]

Proof. We proceed by performing a case analysis on r:

- ı@n: By inversion of this derivation we have that R, r̄′;∆, ρ ⊢ ı. The proof is completed by applying the induction

hypothesis.

- r , ı@n: By inversion of this derivation we have that r̄ ∈ R, r̄′ ⊎ ∆, ρ. Thus, r̄[r′/ρ] ∈ R, r̄′ ⊎ ∆ also holds as r̄[r′/ρ]

cannot be contained in ∆. Therefore, R, r̄′;∆ ⊢ r[r′/ρ] holds.

Lemma 42 (Effect Well-formedness Substitution) R, r̄′′;∆, ρ ⊢ γ ⇒ R, r̄′′;∆ ⊢ γ[r′′/ρ]

Proof. We proceed by performing a case analysis on γ:

- ∅: R, r̄′′;∆ ⊢ ∅ trivially holds.

R, r̄′′;∆, ρ ⊢ γ′, rκ⊲ π: R, r̄′′;∆ ⊢ γ′[r′′/ρ] holds by the induction hypothesis. R, r̄′′;∆ ⊢ r[r′′/ρ] holds by lemma 41. If

π = r′, then R, r̄′′;∆ ⊢ r′[r′′/ρ] holds by lemma 41.

Lemma 43 (Type Context Well-formedness Substitution) R, r̄′;∆, ρ ⊢ τ ∧ fresh r′ ⇒ R, r̄′;∆ ⊢ τ[r′/ρ]

Proof. We proceed by performing a case analysis on τ:

- b: R, r̄′;∆ ⊢ b trivially holds.

- 〈〉: R, r̄′;∆ ⊢ 〈〉 trivially holds.

- rgn(r): R, r̄′;∆ ⊢ r[r′/ρ] holds by lemma 41.

- ref(τ′, r): R, r̄′;∆ ⊢ r[r′/ρ] holds by lemma 41. R, r̄′;∆ ⊢ τ′[r′/ρ] holds by the induction hypothesis.

- ∀ρ′. τ′: R, r̄′;∆, ρ′ ⊢ τ′[r′/ρ] holds by the induction hypothesis.

- τ′
γ1→γ2
−→ τ′′: R, r̄′;∆ ⊢ τ′[r′/ρ] holds by the induction hypothesis. R, r̄′;∆ ⊢ τ′′[r′/ρ] holds by the induction hypothesis.

R, r̄′;∆ ⊢ γ1[r′/ρ] holds by lemma 42. R, r̄′;∆ ⊢ γ2[r′/ρ] holds by lemma 42. We have that valid(γ1; γ2) and we must

prove that valid(γ1[r′/ρ]; γ2[r′/ρ]) holds. It suffices to show that:

– if (r[r′/ρ]κ⊲ π[r′/ρ]) ∈ γ1[r′/ρ] and (r[r′/ρ]κ
′

⊲ π′[r′/ρ]) ∈ γ2[r′/ρ] for some r, then π = π′ ∧ (is pure(κ) ⇔

is pure(κ′)): this is immediate by (rκ⊲ π) ∈ γ1 and (rκ
′

⊲ π′) ∈ γ2, then π = π′ ∧ (is pure(κ) ⇔ is pure(κ′)), which

can be obtained by inversion of valid(γ1; γ2).

– live(γ1[r′/ρ]) = γ1[r′/ρ] and live(γ2[r′/ρ]) = γ2[r′/ρ]: immediate by inversion of valid(γ1; γ2), the definition of

substitution and the fact that r′ is fresh.

– dom(γ2) ⊆ dom(γ1): dom(γ2[r′/ρ]) ⊆ dom(γ1[r′/ρ]) is immediate.

Lemma 44 (Variable Context Well-formedness Substitution) R, r̄;∆, ρ ⊢ Γ ∧ fresh r ⇒ R, r̄;∆ ⊢ Γ[r/ρ]

Proof. We proceed by performing a case analysis on Γ:

- ∅: R′;∆ ⊢ ∅ trivially holds.

R;∆ ⊢ Γ′, x : τ: R′;∆ ⊢ Γ′[r/ρ] holds by the induction hypothesis. R′;∆ ⊢ τ[r/ρ] holds by lemma 43 and the fact that r

is fresh.
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Lemma 45 (Well-formedness Substitution) R, r̄; M;∆, ρ;Γ; γ1; γ2∧ fresh r ∧ok(γ1[r/ρ]; γ2[r/ρ])⇒ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ]

Proof. By inversion of the first typing context and effect well-formedness assumption we have that

- R, r̄ ⊢ M

- R, r̄;∆, ρ ⊢ Γ: R, r̄;∆ ⊢ Γ[r/ρ] immediate by lemma 44 and the fact that r is fresh.

- R, r̄;∆, ρ ⊢ γ1: R, r̄;∆ ⊢ γ1[r/ρ] immediate by lemma 42.

- R, r̄;∆, ρ ⊢ γ2: R, r̄;∆ ⊢ γ2[r/ρ] immediate by lemma 42.

- ok(γ1; γ2): ok(γ1[r/ρ]; γ2[r/ρ]) immediate from the assumption.

Lemma 46 (Region Substitution) R, r̄; M;∆, ρ;Γ ⊢ e : τ& (γ1;γ2)∧ fresh r ∧ ok(γ1[r/ρ]; ∅)⇒ R, r̄; M;∆;Γ[r/ρ] ⊢ e[r/ρ] :

τ[r/ρ] & (γ1[r/ρ];γ2[r/ρ])

Proof. Proof by induction on the expression typing derivation.

Case T-I : by applying lemma 10 to the derivation of e we have that γ1 = γ2. Thus, ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2

and the assumption that ok(γ1[r/ρ]; ∅) holds. The application of lemma 45 to the latter derivation, the fact that r is fresh

and ok(γ1[r/ρ]; γ2[r/ρ]) implies that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds. The proof for this case is completed

by applying rule T-I .

Case T-U , by applying lemma 10 to the derivation of e we have that γ1 = γ2. Thus, ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2

and the assumption that ok(γ1[r/ρ]; ∅) holds. The application of lemma 45 to the latter derivation, the fact that r is fresh

and ok(γ1[r/ρ]; γ2[r/ρ]) implies that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds. The proof for this case is completed

by applying rule T-U .

Case T-R : the application of lemma 10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. the application of

lemma 45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that ⊢ R, r̄; M;∆;Γ[r/ρ];

γ1[r/ρ]; γ2[r/ρ] holds.

– ⊢ R, r̄; M;∆, ρ,Γ; γ; γ: we have already shown that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ[r/ρ]; γ[r/ρ] holds.

– R;∆ ⊢ ı: R, r̄;∆ ⊢ ı[r/ρ] holds by lemma 41.

– r′ ≃ ı: r′[r/ρ] ≃ ı[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-R to the derived facts.

Case T-L : the application of lemma 10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. The ap-

plication of lemma 45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that

⊢ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ⊢ R, r̄; M;∆, ρ,Γ; γ; γ: we have already shown that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ[r/ρ]; γ[r/ρ] holds.

– (ℓ 7→ (τ, ı)) ∈ M

– τ′ ≃ ref(τ, ı): τ′[r/ρ] ≃ ref(τ, ı)[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-L to the derived facts.

Case T-V : the application of lemma 10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. The ap-

plication of lemma 45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that

⊢ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ⊢ R, r̄; M;∆, ρ,Γ; γ; γ: we have already shown that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ[r/ρ]; γ[r/ρ] holds.

– (x : τ) ∈ Γ: (x : τ[r/ρ]) ∈ Γ[r/ρ] trivially holds.

– τ ≃ τ′: τ[r/ρ] ≃ τ′[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-V to the derived facts.

Case T-F : the application of lemma 10 to the derivation of e yields:
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– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. The ap-

plication of lemma 45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that

⊢ R, r̄; M;∆;Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ⊢ R, r̄; M;∆, ρ,Γ; γ; γ: we have already shown that ⊢ R, r̄; M;∆;Γ[r/ρ]; γ[r/ρ]; γ[r/ρ] holds.

– R, r̄;∆, ρ ⊢ τ: lemma 43 and the fact that r is fresh imply that R, r̄;∆ ⊢ τ[r/ρ] holds.

– τ′ ≃ τ: τ′[r/ρ] ≃ τ[r/ρ] trivially holds.

– τ ≡ τ1

γa→γb
−→ τ2: the function type after substitution is τ[r/ρ] ≡ τ1[r/ρ]

γa[r/ρ]→γb[r/ρ]
−→ τ2[r/ρ].

– set(γa; γb): set(γa[r/ρ], γb[r/ρ]) trivially holds as r is fresh.

– ok(γa; γb) ⇒ R, r̄; M;∆, ρ;Γ, x : τ1 ⊢ e : τ2 & (γa;γb): Let us assume that ok(γa[r/ρ]; γb[r/ρ]) holds, then,

R, r̄; M;∆; (Γ, x : τ1)[r/ρ] ⊢ e[r/ρ] : τ2[r/ρ] & (γa[r/ρ];γb[r/ρ]) holds by the induction hypothesis.

The proof for this case is completed by applying rule T-F to the derived facts.

Case T-AP : the application of lemma 10 to the derivation of e yields:

– R, r̄; M;∆, ρ;Γ ⊢ e1 : τ1

γa→γb
−→ τ2 & (γ1;γ3): By applying lemma 30 to the derivation of e1 we obtain that R, r̄;∆, ρ ⊢

τ1

γa→γb
−→ τ2. By inversion of the latter fact valid(γa; γb) holds.

R, r̄; M;∆;Γ[r/ρ] ⊢ e1[r/ρ] : (τ1

γa→γb
−→ τ2)[r/ρ] & (γ1[r/ρ];γ3[r/ρ]) holds by the induction hypothesis, the as-

sumption that r is fresh and ok(γ1[r/ρ]; ∅). By applying lemma 12 to the latter fact and performing inversion to

the resulting well-formedness derivation we have that ok(γ3[r/ρ]; ∅).

– par⇒ τ2 = 〈〉: par⇒ τ2[r/ρ] = 〈〉 trivially holds.

– R, r̄; M;∆, ρ;Γ ⊢ e2 : τ1 & (γ3;γ4): R, r̄; M;∆;Γ[r/ρ] ⊢ e2[r/ρ] : τ1[r/ρ] & (γ3[r/ρ];γ4[r/ρ]) holds by the in-

duction hypothesis and ok(γ3[r/ρ]; ∅). By applying lemma 12 to the latter fact and performing inversion to the

resulting well-formedness derivation we have that ok(γ4[r/ρ]; ∅).

– ξ ⊢ γ2 = γb ⊕ (γ4 ⊖ γa): we have shown that ok(γ4[r/ρ]; ∅) and valid(γa; γb). ξ ⊢ γ2[r/ρ] = γb[r/ρ] ⊕ (γ4[r/ρ] ⊖

γa[r/ρ]) is immediate by lemma 40, ok(γ4[r/ρ]; ∅), valid(γa; γb) and ok(γ4; γ2), which can be obtained by apply-

ing lemma 12 to the typing derivation of e, and the fact that r is fresh.

Case T-CP , T-RP , T-NG , T-NR , T-D, T-RF, T-E, T-A : We can perform similar reasoning to prove the remaining cases. The

key point is to prove in the remaining cases that (live(γx))[r/ρ] = live(γx[r/ρ]), where γx is the effect of interest. The

proof can be summarized as follows:

– ρ is a leaf element in γx: liveness for this regions is unaffected as its parents are unaffected.

– ρ is an intermediate node in γx: assuming that there exist an immediate and live descendant r′, then its parent

annotation is ρ. Thus after substitution r′ will still be live.

Lemma 47 (Store typing preservation — Push Helper 2) σ; γ ⊢ δ ∧ ok(γ; γ1) ∧ seq ⊢ γ = γ1 ⊕ γr ⇒ σ; γr; γ1 ⊢ δ

Proof. Proof by induction on the shape of δ:

- ∅: it must be shown that for all ı that belong in the domain of dom(σ; γr; γ1), an given that σ; γr; γ1 ≃ σ1; γx, ı
κ⊲ π +σ2,

rg(κ) > 0 and is pure(κ) hold, then both zero pure(σ1) and ı < dom(σ2; γx) hold. We proceed by performing a case

analysis as follows:

– ı does belong in the domain of ∅; γ: stack σ1 ≃ σ and σ2 = ∅. By inversion of σ; γ ⊢ ∅ (obtained by σ; γ ⊢ δ) we

have that zero pure(σ) (or zero pure(σ1)) and ı < dom(∅; γx). The assumption that ok(γ; γ1) holds implies that ı,

which is associated with a pure capability, belongs in the domain of either ∅; γr or ∅; γ1 with a pure and positive

capability. If it does belong in the domain of ∅; γr, then γr ≃ γx, ı
κ⊲ π and ı < dom(∅; γ1; γx) trivially hold from

the above fact, the assumption that ok(γ; γ1) and seq ⊢ γ = γ1 ⊕ γr. Otherwise, γ1 ≃ γx, ı
κ⊲ π, zero pure(σ; γr)

and ı < dom(∅; γx) trivially hold from the above facts and the assumption that ok(γ; γ1).

– ı does not belong in the domain of ∅; γ: stack σ2 ≃ σ′
2
; γr; γ1 for some stack σ′

2
(the assumption that seq ⊢

γ = γ1 ⊕ γr holds implies that dom(∅; γr) ⊆ dom(∅; γ) and dom(∅; γ1) ⊆ dom(∅; γ) ). By inversion of σ; γ ⊢ ∅

(obtained by σ; γ ⊢ δ) we have that zero pure(σ1) and ı < dom(σ2). (or ı < dom(σ′
2
; γ; γx)). The latter fact

implies that ı < dom(σ′
2
; γr; γ1; γx).

Case δ1, n1 7→ σ1: it suffices to show that

– σ; γr; γ1 ⊢ δ1: by inversion of σ; γ ⊢ δ we obtain σ; γ ⊢ δ1. The proof for this case is completed by applying the

induction hypothesis.
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– Given that is accessible(σ; γr; γ1, ı), then prove that ¬is accessible(σ1, ı) for all regions ı that belong in the do-

main ofσ; γr; γ1: the capability addition assumption implies that is accessible(σ; γr; γ1, ı) implies is accessible(σ; γ, ı).

By inversion of σ; γ ⊢ δ and the latter fact, and the fact that ı belongs in the domain of ∅; γ (capability addition

assumption), we obtain that is accessible(σ; γ, ı) and thus ¬is accessible(σ1, ı).

Lemma 48 ( Store typing preservation — Push Helper 1) ⊢ δ, n 7→ σ; γ∧ ok(γ; γ1)∧ seq ⊢ γ = γ1 ⊕ γr ⇒⊢ δ, n 7→ σ; γr; γ1

Proof. It suffices to prove that:

- ⊢ δ: immediate by inversion inversion of the assumption ⊢ δ, n 7→ σ; γ.

- σ; γr; γ1 ⊢ δ: by inversion of the assumption ⊢ δ, n 7→ σ; γ we have that σ; γ ⊢ δ. The application of lemma 47

completes the proof for this case.

Lemma 49 ( Store typing preservation — Push ) R; M ⊢ δ; S ∧ ok(γ; γ1) ∧ seq ⊢ γ = γ1 ⊕ γr ∧ δ = δ
′′, n 7→ σ; γ ⇒ δ′ =

δ′′, n 7→ σ; γr; γ1 ∧ R; M ⊢ δ′; S

Proof. The store typing assumption implies that the following hold:

- R; M ⊢ S

- R ⊢ δ: immediate by the fact that the regions of γ1 and γr are a subset of γ (by the effect addition assumption).

- ⊢ δ: by inversion of R; M ⊢ δ; S we have that ⊢ δ′′, n 7→ σ; γ. The proof is immediate by the application of lemma 48 to

the latter fact, ok(γ; γ1) and seq ⊢ γ = γ1 ⊕ γr.

Lemma 50 ( Store typing preservation — Pop Helper 2) σ; γr; γ1 ⊢ δ ∧ ok(γr; γ1) ∧ seq ⊢ γ = γ1 ⊕ (γr ⊖ ∅)⇒ σ; γ ⊢ δ

Proof. Proof by induction on the shape of δ:

- ∅: it must be shown that for all ı that belong in the domain of dom(σ; γ), an given that σ; γ ≃ σ1; γx, ı
κ⊲ π+σ2, rg(κ) > 0

and is pure(κ) hold, then both zero pure(σ1) and ı < dom(σ2; γx) hold. By inversion of σ; γr; γ1 ⊢ ∅ (obtained by the

assumption σ; γr; γ1 ⊢ δ) we have that σ; γr; γ1 ≃ σ3; γy, ı
κ′⊲ π + σ4, zero pure(σ3) and ı < dom(σ2; γy).

Region ı cannot be contained as a positive and pure effect in both γr and γ1 as the effect addition assumption would not

hold. We proceed by performing a case analysis as follows:

– ı does belong in the domain of γ1: σ1 ≃ σ3 ≃ σ; γr, σ2 = σ4 = ∅, and γ1 ≃ γy, ı
κ′⊲ π. Thus, we have that

zero pure(σ3, ı) (or zero pure(σ, ı)) and ı < dom(∅; γy). The effect addition assumption and the assumption that

ok(γr; γ1) imply that ok(γ) holds. Thus, ı < dom(∅; γx).

– ı does belong in the domain of γr: σ1 ≃ σ3 ≃ σ, σ2 ≃ ∅, σ4 ≃ ∅; γ1, and γr ≃ γy, ı
κ′⊲ π. Thus, we have that

zero pure(σ3, ı) (or zero pure(σ, ı)) and ı < dom(∅; γ1; γy). The effect addition assumption and the assumption

that ok(γr; γ1) imply that ok(γ) holds. Thus, ı < dom(∅; γx).

– ı does not belong in the domain of ∅; γr; γ1: σ2 ≃ σ′
2
; γr; γ1, σ4 ≃ σ′

2
; γ, for some stack σ′

2
, σ3; γy, ı

κ′⊲ π ≃

σ1; γx, ı
κ⊲ π. Thus, we have that zero pure(σ3, ı) (or zero pure(σ1, ı)) and ı < dom(σ′

2
; γ1; γr; γy). The effect

addition assumption implies that dom(∅; γ) ⊆ dom(∅; γr). Thus, ı < dom(σ′
2
; γ; γx).

Case δ1, n1 7→ σ1: it suffices to show that

– σ; γ ⊢ δ1: by inversion of σ; γr; γ1 ⊢ δ we obtain that σ; γr; γ1 ⊢ δ1. The proof for this case is completed by

applying the induction hypothesis.

– Given that is accessible(σ; γ, ı), then prove that ¬is accessible(σ1, ı) for all regions ı that belong in the domain of

σ; γr; γ1: the capability addition assumption implies that is accessible(σ; γ, ı) implies is accessible(σ; γr; γ1, ı).

By inversion of σ; γr; γ1 ⊢ δ and the latter fact, and the fact that ı belongs in the domain of ∅; γr; γ1 (capability

addition assumption), we obtain that is accessible(σ; γr; γ1, ı) and thus, ¬is accessible(σ1, ı).

Lemma 51 ( Store typing preservation — Pop Helper 1) ⊢ δ, n 7→ σ; γr; γ1 ∧ ok(γr; γ1)∧ seq ⊢ γ = γ1 ⊕ (γr ⊖∅)⇒⊢ δ, n 7→

σ; γ
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Proof. It suffices to prove that:

- ⊢ δ: immediate by inversion inversion of the assumption ⊢ δ, n 7→ σ; γr; γ1.

- σ; γr; γ1 ⊢ δ: by inversion of the assumption ⊢ δ, n 7→ σ; γr; γ1 we have that σ; γr; γ1 ⊢ δ. The application of lemma 50

completes the proof for this case.

Lemma 52 ( Store typing preservation — Pop ) R; M ⊢ δ; S ∧ok(γ; γ′)∧seq ⊢ γ′′ = γ′⊕(γ⊖∅)∧δ = δ′′, n 7→ σ; γ; γ′∧δ′ =

δ′′, n 7→ σ; γ′′ ⇒ R; M ⊢ δ′; S

Proof. The store typing assumption implies that the following hold:

- R; M ⊢ S

- R ⊢ δ: immediate as the regions of γ′′ are a subset of γ′ and γ (by the effect addition assumption).

- ⊢ δ′: by inversion of R; M ⊢ δ; S we have that ⊢ δ′′, n 7→ σ; γ; γ′. The proof is immediate by the application of lemma 51

to the latter fact, ok(γ; γ′) and seq ⊢ γ′′ = γ′ ⊕ (γ ⊖ ∅).

Lemma 53 (Progress — Program) Let S ; T be a closed well-typed configuration with R; M ⊢ δ; S ; T, then S ; T is not stuck

(⊢ S ; T).

Proof. In order to prove that the configuration is not stuck, we need to prove that each of the executing threads can either

perform a step or nolock predicate holds for it. Without loss of generality, we choose a random thread from the thread list,

namely n : e and show that it is not stuck. Thus, T = T1, n : e for some T1. We use lemma 3 to obtain R; M ⊢ δ; S ; T1, n : e. By

inversion of the configuration typing derivation we have that R; M; δ ⊢ T1, n : e and R; M ⊢ δ; S . By inversion of the former

derivation we obtain that R; M; ∅; ∅ ⊢ e : 〈〉&(γ; ∅), pops(σ; γ : e), δ = δ1, n 7→ σ; γ and R; M; δ1 ⊢ T1.

If e is a value then lemma 56 tells us that e is (). pops(σ; γ : ()) implies that σ; γ ≡ ∅; ∅. We already have that T = T1, n : e

for some T1. Thus, a single step can be performed via rule E-T . Otherwise, e is not a value. The application of lemma 55 to

the latter fact and the typing derivation of e implies that ∃e1, E. E[e1] = e and redex(e1). Thus, R; M; ∅; ∅ ⊢ E[e1] : 〈〉&(γ; ∅) is

also well-typed. The application of lemma 54 to redex(e1), δ = δ1, n 7→ σ; γ, the typing derivation of E[e1], pops(σ; γ : E[e1])

and R; M ⊢ δ; S implies that one of the following holds:

- nolock(δ, n, e1): the proof is trivially completed as nolock(δ, n, E[e1]) also holds.

- ⊢ δ[n 7→ σ′] ∧ ∃ δ′, S ′, e′. σ; S ; e1 → σ′; S ′; e′: A single step can be performed via rule E-S.

- ∃e2, v, τ, γ1. e1 ≡ (λx. e2 as τ v)par: A step can only be performed via rule E-SN . Thus, it suffices to show that the

premises of that rule are satisfied:

– T1, n : e = T : we have shown that this property holds.

– fresh n′: it is possible to find a thread identifier n′ that has never been used previously.

– v1 ≡ λx. e2 as τ: immediate from the assumption.

– e1 ≡ (v1 v)par: immediate from the assumption.

– e′ ≡ (v1 v)seq: the language syntax allows us to formulate this term.

– δ = δ1, n 7→ σ; γ: we have shown that this property holds.

– par ⊢ γ′ = ∅ ⊕ (γ ⊖ γ1): The application of lemma 11 to the typing derivation of E[e1] implies that R; M; ∅; ∅ ⊢

e1 : τ&(γ; γ′′) for some τ and γ′′. By applying lemma 10 to the latter derivation we obtain that v1 is a well-typed

abstraction and par ⊢ γ′′ = ∅ ⊕ (γ ⊖ γ′
1
), where γ′

1
is the effect embedded in the type assigned to v1. By applying

lemma 10 to the typing derivation of v1 we have that if γ1 the type ascribed on v1, then γ1 ≃ γ
′
1
. The application

of lemma 33 to the latter facts give us that par ⊢ γ′′ = ∅ ⊕ (γ ⊖ γ1). The effect addition derivation is deterministic

thus γ′′ = γ′.

– δ′ = δ1, n 7→ σ; γ′, n′ 7→ ∅; γ1: the syntax of δ allows us to formulate this context.

Lemma 54 (Progress — Expressions) redex(e) ∧ δ = δ1, n 7→ σ; γ ∧ R; M; ∅; ∅ ⊢ E[e] : 〈〉& (γ;∅) ∧ pops(σ; γ : E[e]) ∧

R; M ⊢ δ; S ⇒ nolock(δ, n, e) ∨ (⊢ δ[n 7→ σ′] ∧ ∃σ′, S ′, e′. (σ; γ); S ; e → σ′; S ′; e′) ∨ (∃e1, τ, v. e ≡ (λx. e1 as τ v)par)
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Proof. The application of lemma 11 to the typing derivation of E[e] gives us that R; M; ∅; ∅ ⊢ e : τ& (γ;γ′) for some γ′ and τ.

We proceed by perfoming induction on the typing derivation of e.

Case T-I , T-U , T-F , T-L , T-R , T-RF ,T-V : this is a contradiction as e should be a value, but we have assumed that e is a redex.

Case T-E : The conclusion of rule T-E implies that shape of e is of the form popγr
e′. We have assumed that e is a redex, thus

e is of the form popγr
v. The assumption that pops(σ; γ : popγr

v) implies that σ = σ′; γr. By applying lemma 10 to

the derivation of e we obtain that seq ⊢ γ′ = γ⊕ (γr ⊖ ∅) holds. We can apply rule E-E to the latter fact and the fact that

∃ δ1. δ = δ1, n 7→ σ′; γr; γ to perform a single step. Lemma 51, ok(γr; γ1)1 and seq ⊢ γ′ = γ ⊕ (γr ⊖ ∅) we have that

⊢ δ[n 7→ σ′] holds, where σ′ = σ; γ′.

Case T-AP : The conclusion of rule T-AP implies that shape of e is of the form (e1 e2)ξ. We have assumed that e is a redex,

thus e is of the form (v1 v2)ξ. Thus, R; M; ∅; ∅ ⊢ (v1 v2)ξ : τ&(γ; γ′) holds. If ξ equals par then the proof is trivially

completed. Otherwise, ξ = seq and we can use lemma 10 to derive that ξ ⊢ γ′ = γ′
2
⊕ (γ ⊖ γ′

1
), if τ′

1

γ′
1
→γ′

2
−→ τ is the

type assigned to v1. The application of lemma 10 to v1 typing derivation, implies that γ1 ≃ γ
′
1

and γ2 ≃ γ
′
2
. Thus, by

lemma 33 we have that ξ ⊢ γ′ = γ2 ⊕ (γ ⊖ γ1), where γ1 and γ2 are the types ascribed on v1. The latter derivation

implies that ξ ⊢ γ = γ1 ⊕ γr, for some γr. Consequently, rule E-A can be used to perform a single step. Lemma 48,

⊢ δ (immediate by R; M ⊢ δ; S ), ok(γ; γ1) (obtained by ok(γ1; γ2) and ok(γ; γ′′) holds2) and ξ ⊢ γ = γ1 ⊕ γr imply that

⊢ δ[n 7→ σ′] holds, where σ′ = σ; γr; γ1.

Case T-RP : rule E-RP can be used to perform a single step. ⊢ δ holds by the assumption R; M ⊢ δ; S .

Case T-NG : Lemma 11 implies that the region allocation construct is well-typed. Lemma 10 implies that is live(γ, r) holds,

where r is the parent region. Therefore, we can perform a single step by rule E-NG . ⊢ δ[n 7→ σ′′; γ, ı1,1⊲ r], where

σ = σ′′; γ, trivially holds as ı is a fresh region.

Case T-NR : Similar to the previous case. The store and redex typing gives us that region r̄ exists in S . Rule E-NR can be

used to perform a single step. ⊢ δ holds by the assumption R; M ⊢ δ; S .

Case T-D: Similar to the previous case. The store and redex typing gives us that region r̄ and location ℓ exist in S . The

application of lemma 10 to the typing derivation of e implies that is accessible(γ, r) holds. Rule E-D can be used to

perform a single step. ⊢ δ holds by the assumption R; M ⊢ δ; S .

Case T-A : Similar to the previous case. Rule E-AS can be used to perform a single step. ⊢ δ holds by the assumption

R; M ⊢ δ; S .

Case T-CP : Lemma 11 implies that the cap construct is well-typed. Lemma 10 implies that region is live(γ, r). If nolock(δ, n, e)

holds and the proof is immediate. Otherwise, ¬nolock(δ, n, e) holds and we have that at least one of the following holds:

– δ , δ′′, n 7→ σ; γ, rκ⊲ π: this case does not hold as it contradicts an assumption of this lemma and is live(γ, r).

– η , lk+: the proof is completed by applying lemma 57 to δ = δ′′, n 7→ σ; γ, rκ⊲ π, δ′ = δ′′, n 7→ σ′, where

σ′ = σ; live(γ, rκ
′

⊲ π), ⊢ δ (store typing assumption), κ′ =
[[

η
]]

(κ) (premise of rule E-C) and η , lk+.

– ⊢ δ[n 7→ σ′]: if this case holds the proof is trivially completed.

Lemma 55 (Expression — Redex) R; M;∆;Γ ⊢ e : τ1 & (γ1;γ2) ∧ e . v1 ⇒ ∃ e′, E.E[u] ≡ e ∧ redex(e)

Proof. Straightforward proof by induction on the typing derivation.

Case T-I , T-U , T-F , T-L , T-R , T-RF then the proof is immediate as e is a value.

Case T-V : Immediate as it holds for E ≡ � and u ≡ x . v.

Case T-NR : By observing the shape of the expression of T-NR typing derivation, e ≡ new e1 at e2. If e1 and e2 are both values

then the proof is immediate (E ≡ � and u ≡ new e1 at e2). Otherwise, if e1 is not a value the application of the induction

hypothesis on the typing derivation of e1 (obtained from T-NR inversion) yields that ∃ E[u].E[u] ≡ e1 ∧ u . v2.

Consequently, ∃ E.new E[u] at e2 ≡ e ∧ u . v2 or equivalently, ∃ E.(new E at e2)[u] ≡ e ∧ u . v2. The last case is

that e1 is a value and e2 is not. By applying similar reasoning we can prove that ∃ E.(new e1 at E)[u] ≡ e ∧ u . v2.

Case T-AP , T-RP , T-NG , T-CP , T-D, T-A ,T-E : We can perform similar reasoning to prove the remaining cases.

Lemma 56 (Cannonical Forms) R; M;∆;Γ ⊢ v : τ& (γ1;γ2)⇒

τ ≡ 〈〉 ⇒ v ≡ () ∧

τ ≡ rgn(r̄)⇒ (v ≡ rgnr̄ ∧ r̄ ∈ R) ∧

τ ≡ ref(τ, r)⇒ (v ≡ locℓ ∧ ℓ 7→ (τ, r̄) ∈ M) ∧

τ ≡ b⇒ v ≡ n ∧

τ ≡ τ1

γ1→γ2
−→ τ2 ⇒ v ≡ λx. e as τ1

γ1→γ2
−→ τ2 ∧

τ ≡ ∀ρ. τ⇒ v ≡ Λρ. f

1ok(γr; γ1) can be obtained in the same way as in lemma 29 case T-E .
2we can obtain ok(γ1; γ2) and ok(γ; γ′′) in the same way as in lemma 29 case T-AP .
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Proof. Straightforward proof by observation of the value typing derivations.

Lemma 57 (Store Progress — ⊢ δ) δ = δ′′, n 7→ σ; γ, rκ⊲ π∧δ′ = δ′′, n 7→ σ; live(γ, rκ
′

⊲ π)∧ ⊢ δ∧κ′ =
[[

η
]]

(κ)∧η , lk+⇒⊢ δ′.

Proof. To prove that ⊢ δ′ holds it suffices to show that its premises hold. By inversion of ⊢ δ′ we have that:

- ⊢ δ′′: The assumption tells us that ⊢ δ′′, n 7→ σ; γ, rκ⊲ π holds. By inversion of the latter fact we have that ⊢ δ′′ holds.

- σ; live(γ, rκ
′

⊲ π) ⊢ δ′′: Let γ0 be equal to γ, rκ⊲ π and γ′
0

be equal to live(γ, rκ
′

⊲ π). The proof is completed by the

application of lemma 58 to κ′ =
[[

η
]]

(κ), δ = δ′′, n 7→ σ; γ0, δ′ = δ′′, n 7→ σ; γ′
0
, σ; γ0 ⊢ δ

′′ (by inversion of ⊢ δ), δ′′ ⊆ δ′′

and η , lk+.

Lemma 58 (Store Progress — Helper lemma 1) κ′ =
[[

η
]]

(κ) ∧ δ = δ′′, n 7→ σ; γ ∧ δ′ = δ′′, n 7→ σ; γ′ ∧ γ = γ′′, rκ⊲ π ∧ γ′ =

live(γ′′, rκ
′

⊲ π) ∧ σ; γ ⊢ δ′′ ∧ δ0 ⊆ δ
′′ ∧ η , lk+⇒ σ; γ′ ⊢ δ0.

Proof. We proceed by induction on the derivation of δ0.

- ∅: given that σ; γ′ ≃ σ1; γx, ı
κ1⊲ π + σ2 and rg(κ1) > 0 and is pure(κ1), it suffices to prove that zero pure(σ1, ı) and

ı < dom(σ2; γx) for all regions ı that belong in the domain of σ; γ′. By inversion of σ; γ ⊢ ∅ (derived by the assumption

σ; γ ⊢ δ′′), we have that σ; γ ≃ σ3; γy, ı
κ2⊲ π + σ4, rg(κ2) > 0 and is pure(κ2), zero pure(σ3, ı), and ı < dom(σ4; γy). We

proceed by performing a case analysis:

– If ı does not belong in the domain of ∅; γ, then σ3 ≃ σ1, γy ≃ γx and there exists a stack σ′
4

such that σ2 ≃ σ
′
4
; γ′

and σ4 ≃ σ
′
4
; γ. Hence, zero pure(σ1, ı) holds. The assumption that γ′ = live(γ′′, rκ

′

⊲ π) and γ = γ′′, rκ⊲ π holds

implies that dom(∅; γ′) ⊆ dom(∅; γ). Consequently, ı < dom(σ′
4
; γ′; γx) holds.

– If ı does belong in the domain of ∅; γ, then σ4 = σ2 = ∅ and σ1 ≃ σ3 ≃ s. Hence, zero pure(σ1, ı) trivially holds.

The assumption that γ′ = live(γ′′, rκ
′

⊲ π) and γ = γ′′, rκ⊲ π holds implies that dom(∅; γ′) ⊆ dom(∅; γ) and thus,

dom(∅; γx) ⊆ dom(∅; γy). Consequently, ı < dom(∅; γx) holds.

Case δ1, n1 7→ σ1: it suffices to prove that

– σ; γ′ ⊢ δ1: is immediate by applying the induction hypothesis.

– Given that is accessible(σ; γ′, ı) holds for all ı that belong in the domain of σ; γ′, it suffices to prove that

¬is accessible(σ1, ı) holds. The assumption that σ; γ ⊢ δ′′ holds, the fact that ı is accessible in γ′ and η , lk+

imply that is accessible(σ; γ, ı) and thus ¬is accessible(σ1, ı).
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