
A Type System for Race-free and Memory-safe Multithreading

Using Region Hierarchies

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas

School of Electrical and Computer Engineering

National Technical University of Athens, Greece

{pgerakios,nickie,kostis}@softlab.ntua.gr

Abstract

A current challenge for programming language research is to design and implement multithreaded

low-level languages providing static guarantees for memory safety and freedom from data races.

Towards this goal, in this paper we present such a language and its type system. Our language

guarantees memory safety by employing region-based memory management. Unlike other similar

languages employing regions, our regions are organized in a hierarchical manner so that each region

is owned by a single parent region and may contain multiple children regions. This structure imposes

constraints over region capability manipulation. In this setting, we allow early region deallocation

and thus overcome the restrictions of LIFO region lifetimes. Our type system combines fractional,

aliasable capabilities and hierarchy abstraction in a multithreaded setting. Regions may remain

thread-local, migrate to another thread or become shared between threads. Implicit locks are used to

protect each region from data races. Both lock and region capabilities are treated uniformly. Locking

also follows a hierarchical scheme as a parent lock subsumes children locks.

Keywords: Type systems, regions, memory management, safety, data race prevention, multi-

threaded programming, types and effects

1 Introduction

Writing safe and robust code is a hard task; writing safe and robust multithreaded low-level code is even

harder. In contrast to high-level languages, low-level languages such as C allow for explicit memory

management and precise control over data representations in memory. These features are often invaluable

for so-called systems programming, but at the same time open the door for memory safety violations

such as dangling pointer dereferences. Memory safety in such languages can be obtained via region-

based memory management [Tofte and Talpin, 1994, 1997]. A region can be thought of as a segment

of memory. The key idea of region-based memory management is that each data object is allocated in

some region. When a region is deallocated, all its objects are deallocated simultaneously. Region-based

memory management has numerous benefits. The programmer has explicit control of the location and

lifetime of memory objects as it is possible to allocate an object in any live region. In some languages it

is also possible to perform early region deallocation. Moreover, it is more efficient to allocate objects in

an existing memory segment or deallocate objects from it, rather than requesting a new memory area for

each object individually. Lexically-scoped regions must be deallocated at the end of the block in which

they were introduced and therefore such regions also protect against memory leaks.

So far, regions have been adopted by numerous languages. In the area of low-level memory-safe

languages, regions have been a key feature of the programming language Cyclone [Grossman et al.,

2002]. Cyclone offers multiple kinds of regions which can be roughly categorized as lexically-scoped

1

and reference-counted. It is worth noting that reference-counted regions have the same behaviour when

opened within a block scope as lexically-scoped regions, but when they are closed it is possible to ma-

nipulate an implicit region reference count. Cyclone’s type system does not statically track reference

counts, so a dynamic check is performed when opening or manipulating the reference count of such

regions. Grossman [2003] has presented a type system that prevents data races in a multithreaded exten-

sion of Cyclone, but his proposal was never fully integrated in Cyclone’s implementation. As a result,

Cyclone does not guarantee safety for multithreaded programs.

Multithreaded programs that interact through shared memory allow concurrent memory accesses in

a single address space. Threads, which are scheduled by a preemptive and weakly fair scheduler, gen-

erate random execution interleavings. Only a subset of these interleavings results in a consistent state.

Inconsistent execution states occur in a multithreaded program when one thread accesses a memory lo-

cation at the same time another thread attempts to write to it. In such interleavings we say that we have

a data race. A basic correctness guarantee for multithreaded programs is data race freedom. In a shared

memory system, which does not support transactional memory, threads must agree on the order of par-

ticular interleavings so that data races are avoided. More precisely, threads must somehow synchronize

their actions. In this paper, we only consider lock-based blocking synchronization. We also assume that

memory accesses are sequentially consistent. That is, each thread observes shared memory operations

happening in the same order. Apart from inconsistent states resulting from data races, explicit memory

management in a multithreaded environment may result in dangling pointer dereferences as one thread

may deallocate a memory block while another thread attempts to access that block.

Up to now, extensive research has taken place on how type systems employing locking primitives

can be used to provide both data race freedom [Grossman, 2003, Flanagan and Abadi, 1999] and atom-

icity [McCloskey et al., 2006, Hicks et al., 2006, Flanagan et al., 2008]. Lock-based type systems for

low-level languages have focused in embedding type-level lock names into reference types as well as us-

ing singleton lock types parameterized by lock names to track run-time locks [Hicks et al., 2006]; a type

and effect system statically tracks the acquired linear set of lock names at each program point. Dangling

pointer dereferences in concurrent programs can be prevented by using implicit reference counts for each

memory block [Grossman, 2003].

In this paper, we present a first-order region-polymorphic capability-based calculus, that allows for

safe early region deallocation, offers primitives that enable unscoped locking, and guarantees the absence

of data races in the presence of multiple threads. In this calculus, there exist no explicit lock handles.

Instead, each region is protected by an implicit lock. The main novelty of our type system is that it allows

a tree-like hierarchy of regions and locks. Furthermore, it allows safe capability aliasing in the presence

of threads using explicit capability consumption primitives. Our type system supports capability fork and

join operations [Boyland, 2003]. It also provides additional abstraction mechanisms such as capability

subtyping, hierarchy abstraction [Fahndrich and DeLine, 2002] and bounded existential types [Smith

et al., 2000]. In contrast to other type systems, we allow regions to switch state from thread-local to

sharable. Thread-local regions are allowed to migrate to another thread and preserve the right to access

data without requiring locking.

The key idea of a region hierarchy is that a region can only be deallocated when its children have

been deallocated. Locking is dual to deallocation: a region can only be locked when its children have

been locked. Therefore, we apply the idea of ownership of Boyapati et al. [2003] to regions and locks.

At compile time, a capability-based type system [Walker et al., 2000] verifies that a program respects

the above invariant. Our type system provides the means to safely alias a capability an unlimited number

of times within a certain scope, in the presence of threads. A region can also be temporarily unadopted

from the entire region hierarchy, thus allowing to write generic functions.

Outline. The rest of this paper is structured as follows: The next section provides an overview of our

language and Section 3 describes its operational semantics. Section 4 builds a type system on top of the

operational semantics which guarantees memory safety and the absence of data races. The type system

2

also enforces the ownership invariants for locks and regions as described in this section. Section 5

presents progress and preservation lemmata and the main type safety theorem; proof sketches can be

found in the appendix. Section 6 presents related work. Finally, Section 7 ends the paper with some

concluding remarks.

2 Language

Before proceeding to a detailed description of our language and its semantics, we provide a number

of examples illustrating its main features. It should be noted that our language is low-level and is not

meant to be used directly by programmers. Instead, we expect it to be used as a compilation target for a

syntactically much more user-friendly language (which we do not present here).

It should also be noted that, for presentation purposes, in the examples that follow we often simplify

the type system, e.g. by omitting some input/output effects. We use also more intuitive syntax, e.g.

spawn, which can be trivially translated to our language constructs. In a few cases we use language

extensions, e.g. List.

2.1 The Main Language Features through Examples

The first example shows the hierarchical organization of regions and how regions, which start their life

as local to a thread, can migrate or become shared between threads. It also shows how capabilities are

being transfered or consumed during execution.

Example 1 (Region hierarchy and capability flow) Assume that we have functions whose types are as

shown below:

create list : ∀ρ. rgn(ρ) → List [ρ]
thread fun1 : ∀ρ. 〈rgn(ρ) × List [ρ]〉 → 〈〉
thread fun2 : ∀ρ. 〈rgn(ρ) × List [ρ]〉 → 〈〉

Notice that the functions are region polymorphic.

Function create list takes a region handle and returns a list allocated in this region. Similarly,

thread fun1 and thread fun2 take a pair, whose first element is a region handle and its second element is

a list located in this region. We can then define the following function:

def par comp = Λρ.λx.
newrgn ρ1, x1 at x in

newrgn ρ2, x2 at x in

let l1 = call create list [ρ1] x1 in

spawn thread fun1 [ρ1] (x1, l1);
let l2 = call create list [ρ2] x2 in

ldec x2; rinc x2;
spawn thread fun2 [ρ2] (x2, l2);
call thread fun2 [ρ2] (x2, l2)

Function par comp is a region polymorphic function, which takes a region handle x and returns the unit

value. Using the newrgn construct, two regions ρ1 and ρ2 are allocated within region ρ. The handles of

these two regions are x1 and x2. By invoking function create list, a list is then allocated in region ρ1.

3

Each region name is associated with two distinct type-level reference counts, namely lock and region

capabilities. A region capability is a type-level count indicating whether a region is live. A lock capabil-

ity indicates whether a region is thread-local or sharable. When sharable, the lock capability indicates

whether the associated region has been locked (i.e., its reference count is greater than zero) or unlocked.

Region ρ1 starts its life with a thread-local lock capability and a single region capability. Subse-

quently, passing the handle of region ρ1 with a thread-local lock capability to the spawn operation has

two implications. First, the obligation for deallocating ρ1 is delegated to the spawned thread. That is,

all region capabilities are consumed by the spawned thread. Second, the thread-local lock capability is

also transfered to the spawned thread, which can now access ρ1 without requiring locking. Therefore, ρ1

migrates from the spawning to the spawned thread.

In the following let, a new list is allocated at region ρ2 and bound to a variable l2 for the scope of the

remaining expressions. We wish to share list l2 between this thread and another thread. Sharing a region

implies that access to that region is maintained once the spawn operation has completed. Therefore, we

certainly must avoid migration and also keep ρ2 alive for this thread.

It is worth noting that migration of a region to a spawned thread implies that it will become dead

(i.e., inaccessible) for the spawning thread. However, it is possible for a region to become dead after a

spawn operation without migrating. This is because we distinguish between thread-local lock capability

and region capability delegation at once (migration) and strict region capability delegation (i.e., non-zero

reference-counted lock capabilities cannot be passed to another thread).

The expression ldec x2 allows the spawning thread to yield the local access right by transforming

the lock capability of ρ2 from thread-local to sharable-unlocked. Thus, we have established that ρ2 will

not migrate.

The second spawn will definitely consume at least one capability.1 Therefore, we need to establish

that ρ2 will remain live after the spawn operation. Expression rinc x2 provides the spawning thread

with an additional region capability for region ρ2 so that ρ2 will remain live after the spawn operation.

The last expression is an ordinary function application, which applies thread fun2 to a pair consisting

of the region handle to ρ2 as well as the variable l2. There exists no explicit region decrement command

after invoking thread fun2 for deallocating ρ2. This is because thread fun2 will definitely deallocate

ρ2. This fact can be deduced by the preceding spawn operation: for a function to typecheck, it must

definitely deallocate all regions passed to it. Function thread fun2 is such an example.

The following example illustrates how reference-counted capabilities can be used to resolve the un-

soundness caused by the interaction between region polymorphism and explicit capability consumption.

Furthermore, we discuss how this approach allowed us to unify spawn and the ordinary call operation.

Finally, this approach exposes and controls information, often encoded implicitly in the run-time system,

in a type-safe manner.

Example 2 (Linearity, polymorphism and capability forking) The key invariant that must be enforced

in a capability-based calculus is to preserve capability linearity. In systems without support for early re-

gion deallocation, region capabilities may be freely aliased within function calls as the capability will

remain linear upon return to the calling context. In the presence of early region deallocation, region

polymorphism is unsound.

Consider the deallocate both function, which deallocates both regions ρ1 and ρ2, whose type is

shown below.

deallocate both : ∀ρ1.∀ρ2. 〈rgn(ρ1) × rgn(ρ2)〉 → 〈〉

1The number of capabilities that will be consumed are explicitly specified in the thread function type as an effect. However,

we are not dealing with effects in this example, so we shall assume that the thread consumes exactly one capability.

4

It is unsound to instantiate ρ1 and ρ2 with the same region ρ and then invoke the function with the

same region handle, as it will attempt to deallocate the same region twice:

newrgn ρ, x2 at x1 in

call deallocate both [ρ] [ρ] (x2, x2)

The above example will be rejected by our type system as ρ is created with a single region capabil-

ity, whereas function deallocate both [ρ] [ρ] attempts to consume two region capabilities from the same

region ρ.

To allow safe region polymorphism in the presence of early region deallocation, we use reference-

counted capabilities, which can be passed to a polymorphic function, behaving as distinct capabilities,

and joined upon return to the calling context.

Henceforth, we use the term fractional to describe a capability which has been derived by a pure (i.e.,

non-fractional) capability. A fractional capability is generated when a pure capability is aliased within a

function call. When a new region is allocated, both its lock and region capabilities are pure.

The following example typechecks as ρ starts (newrgn construct) with a single region capability,

and rinc provides ρ with an additional capability. Therefore, its pure region capability is two. The

function call aliases the pure region capability of ρ so the type system splits ρ into two fractional region

capabilities. Upon return to the calling context, the remaining fractional capabilities are joined to form a

pure capability.

newrgn ρ, x2 at x1 in

rinc x2;
call deallocate both [ρ] [ρ] (x2, x2)

Reference-counted capabilities allow us to treat spawn operations as ordinary function calls: A spawn

operation takes a function, which accepts fractional or pure capabilities and is obliged to consume those

capabilities by the end of its execution. Therefore, the type system does not distinguish between thread

and ordinary functions: thread functions can be invoked by a call operation or a spawn operation.

This is also reflected upon our run-time system, which in contrast to other approaches, does not need to

perform implicit accounting operations before spawning a new thread.

The bad interaction between region polymorphism and capability consumption also applies to lock

capabilities. In our calculus,we allow primitives that enable unscoped locking: When a lock ℓ1 is acquired

before another lock ℓ2, then ℓ1 may be released before ℓ2 is released.

In the presence of region polymorphism, it is possible to write a function unlock fst access snd that

accepts two region handles and assumes (in an effect annotation, which has been elided in the following

example) that the two regions ρ1 and ρ2 are locked (i.e., have a single lock capability).

unlock fst access snd : ∀ρ1.∀ρ2.〈rgn(ρ1) × rgn(ρ2)〉 → 〈〉

As the name of the above function suggests, its body releases the first lock handle and accesses data

allocated in the second handle ρ2, as ρ2 is already locked. This is unsound with respect to data race

freedom, when this function is instantiated with the same region name and passed the same region handle:

{* x2 is a handle to a locked region *}
call unlock fst access snd [ρ] [ρ] (x2, x2)

As in the region deallocation example, this example will also be rejected by our type system as the

function call requires two capabilities and ρ has a single lock capability. To preserve soundness, we have

adapted the counter-based capability approach for lock capabilities. The following example will type-

check as we produce an additional lock capability for ρ before invoking function unlock fst access snd.

5

{* x2 is a handle to a locked region *}
linc x2;
call unlock fst access snd [ρ] [ρ] (x2, x2)

Example 3 (Capability subtyping) On the one hand, reference-counted capabilities resolve the bad

interaction between polymorphism and early deallocation or unscoped locking. On the other hand,

reference-counted capabilities limit polymorphism as reference counts are not polymorphic themselves.

Let region and lock capabilities be denoted as κ1 and κ2 respectively, then the region effect of region

ρ1 with parent region ρ2 is denoted as ρκ1,κ2

1
⊲ ρ2.

new int : ∀ρ1.∀ρ2. 〈rgn(ρ1) × int〉
γ→γ
−→ ref(int, ρ1)

{* where γ ≡ ρ1,1
1
⊲ ρ2, ρ

1,1
2
⊲ ∅ *}

Function new int is a integer constructor which, given a region handle and an integer value, returns

a fresh reference to a location at region ρ1 that is initialized to the integer value of the second parameter.

The input and output effect lists (γ) of this function are denoted on top of the function type. In this

example, the input and output effect lists are identical. This implies that the body of function new int

invokes no operations that consume capabilities or, if it does, then it restores the original capabilities of

ρ1 and ρ2.

The input effect list consists of two elements: ρ1,1
1
⊲ ρ2 and ρ1,1

2
⊲ ∅. Both elements have a single

region and lock capability (1, 1). Region ρ2 could be the root region as it has no parents.

To enable capability polymorphism, we have used a subtyping relation. As discussed earlier, pure

capabilities can be split into several fractional capabilities. Capability subtyping allows to temporarily

treat a pure or fractional capability as a (smaller) fractional capability.

new int : ∀ρ1.∀ρ2. 〈rgn(ρ1) × int〉
γ→γ
−→ ref(int, ρ1)

{* where γ ≡ ρ1,1
1
⊲ ρ2, ρ

1,1
2
⊲ ∅ *}

The type of new int can now be expressed in terms of fractional capabilities. The function type assumes

that the input effect γ contains two region names ρ1 and ρ2, which hold at least a single region and lock

capability. The calling context tracks the fractional capabilities not passed to the function and joins them

along with the fractional capabilities returned from the function call.

The top symbol in the subtyping hierarchy for non-zero capabilities is denoted by ∗. It should be

noted that thread-local capabilities can be converted to ∗.

new int : ∀ρ1.∀ρ2. 〈rgn(ρ1) × int〉
γ→γ
−→ ref(int, ρ1)

{* where γ ≡ ρ∗,∗
1
⊲ ρ2, ρ

∗,∗
2
⊲ ∅ *}

This definition of new int is more generic than the previous one, as the lock capability can be either

thread-local or locked.

The ∗ capability reserves a single fractional capability for the scope of a lexical block. Therefore, it

can be safely aliased multiple times. The main disadvantage of ∗ is that it cannot be passed to capability

modification operations, such as increment or decrement, or to a new thread (spawn).

Example 4 (Hierarchy abstraction) Region hierarchies provide a higher degree of explicit control over

region lifetimes. On the downside, this requires explicit annotations of the form ρ1⊲ρ2, which means that

ρ1 is a subregion of ρ2 (here we have omitted capability superscripts, for simplifying the presentation).

A subregion is live when its region count is greater than zero and its parent region is live or there exists

no parent region. This fact implies that a region is inaccessible when its parent is not present in the type

6

annotation of a function. This feature is limiting for region-polymorphic functions as all region names up

to the root region need to be declared in a function type annotation to typecheck accesses to a particular

subregion. The following function illustrates a polymorphic function that accepts immediate children of

the root region:

access : ∀ρ1.∀ρ2. 〈rgn(ρ1) × rgn(ρ2)〉
γ→γ
−→ 〈〉

{* where γ ≡ ρ1 ⊲ ρ2, ρ2 ⊲ ∅ *}

To tackle this problem, we allow parent regions to be temporarily abstracted in the typing annotations

of functions. Of course, this may lead to unsoundness, as a parent region may be deallocated if it is

abstracted by all its children regions, before deallocating its subregions. We prevent such issues by

enforcing hierarchy invariants before and after a function call. With the use of hierarchy abstraction, the

access function can be written as a truly generic function:

access : ∀ρ1. rgn(ρ1)
γ→γ
−→ 〈〉 {* where γ ≡ ρ1 ⊲ ∅ *}

Example 5 (Bounded existential quantification) Bounded region quantification has been used before

(for example in Cyclone) as a means of allowing region abstraction without sacrificing memory safety.

The key idea of that work was to use existential quantification so as to abstract regions. For instance a

region handle can be packaged within an existential type as follows:

pack ρ, x as ∃ρ.rgn(ρ)

Existential values may escape the lexical scope of a region, in this case the scope of region ρ, and

be opened when that region is deallocated. To overcome the unsoundness, Grossman et al. [2001] added

region bound annotations to existential types in Cyclone. For instance, if region ρ has a greater lexical

scope than (outlives) ρ′ then the value in the above example can be given the following type:

pack ρ, x as ∃ρ[ρ′].rgn(ρ)

In our calculus, we have adapted bounded existential types so that they can be safely used in the

presence of early region deallocation and region sharing between multiple threads. In particular, it is

unsound to rely on region subtyping (i.e., the outlives relation) in the presence of early deallocation and

threads. First, early region deallocation allows a region of certain lexical scope to be deallocated before

a region of a smaller scope. Second, it is unsafe to assume that when a region of smaller lexical scope is

locked then a region of greater scope is also locked.

Therefore, we allow bounded existential types, but instead of using a subtyping relation to determine

whether an existentially quantified region is accessible, we use a sub-effecting relation. That is, an

existentially quantified region must belong to a list of region names (ǫ). To access that region all regions

that belong in ǫ must be accessible.

pack ρ, x as ∃ρ[ρ1, ρ2].rgn(ρ)

2.2 Syntax Description

We have divided the language syntax into a core syntax and an extended syntax as illustrated in Fig-

ures 1 and 2 respectively. The core syntax comprises values and expressions. Values can be inte-

gers, tuples, region handles (rgnı) and memory locations (locℓ). Expression syntax is similar to value

syntax and has additional elements such as constructs for manipulating references: memory allocation

7

Value v ::= n | (v, . . . , v) | rgnı | locl

Expressions e ::= x | n | (e, . . . , e) | prjn e
| newrgn ρ, x at e in e | rgnı | cap

ψ
η e

| new e at e | deref e | e := e | locl

Capability kind ψ ::= rg | lk

Capability op η ::= + | −

Figure 1: Core syntax

Region r ::= ρ | ı

Region list ǫ ::= ∅ | ǫ, r

Capability κ ::= n | n | ⊥ | ∗

Effect list γ ::= ∅ | γ, rκ,κ ⊲ ǫ | γ, r⊤ ⊲ ǫ

Type τ ::= int | rgn(r) | 〈τ × . . .× τ〉 | ref(τ, r)

| τ
γ→γ
−→ τ | ∀ρ. τ | ∃ρ[ǫ]. τ

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Operation ξ ::= seq | par

Value v ::= . . . | f | pack r, v as τ

Expressions e ::= . . . | f | (e e)ξ | e[r]
| pack r, e as τ | open e as ρ, x in e

Program P ::= def x = f ; | def x = f ;P

Figure 2: Full syntax

(new e1 at e2), location dereferencing (deref e), assignment (e1 := e2), constructs for manipulating

regions (newrgn ρ, x at e1 in e2) and (capψη e), and tuple projection (prjn e).

Most constructs are standard, except for the region manipulation constructs. The newrgn ρ, x at e1 in e2
construct allocates a new region ρ with region handle x for the scope of e2. The new region is allocated

in a parent region specified by expression e1, which must evaluate to a region handle. Expression e2
is obliged to deallocate region ρ by the end of its scope. As mentioned earlier, each region has two

reference counts: one for itself and one for the implicit lock protecting it. The capψη e construct enables

region reference count and lock count manipulation. This construct is parameterized by ψ, which can

be either a region (rg) or a lock (lk), and η, which can increment (+) or decrement (−) the appropriate

reference count. Expression e must evaluate to a region handle.

Our calculus is region polymorphic. Therefore, the extended syntax (Figure 2) defines a new meta-

variable r, which can be a region variable (ρ) or a concrete name (ı). The run-time region state is

statically tracked via effects. Elements of an effect list γ are of the form rstate ⊲ ǫ, which means that

region r is at state and depends on regions defined in ǫ. Region state can either be unknown (⊤) or some

state κ1, κ2 for the region and lock reference count correspondingly.

A capability κ can be a pure capability n, a fractional capability n or an aliasable capability (∗). This

applies to both regions and locks. Additionally, a lock capability may also be equal to ⊥ when a region

is thread-local. Non-aliasable capabilities are treated linearly whereas aliasable capabilities may be

copied an unbounded number of times. A pure capability n implies that a thread can decrement n times

the same capability. Pure lock capabilities differ with respect to pure region capabilities in that they can

be incremented once they reach the value 0. Fractional capabilities are derived by splitting pure or other

fractional capabilities into several pieces. Therefore, fractional capabilities have a similar behaviour as

pure capabilities. Of course, there exist some restrictions when using fractional capabilities; for instance

one thread is not allowed to pass a fractional lock capability to another thread, as it is unsound to assume

that two threads can simultaneously acquire the same lock. Section 4 explains how and where these

invariants are enforced.

8

Contents H ::= ∅ | H, ℓ 7→ v

Run-time region I ::= (ı, n1, n2, n3)

Region list S ::= ∅ | S, I : (H,S)

Threads T ::= ∅ | T, n : e

Configuration C ::= S;T

Figure 3: Store, threads and declarations

E ::= � | (v, . . . , E, . . . , e) | prjı E | (E e)ξ | (v E)ξ | E [r]
| newrgn ρ, x at E in e | capψη E

| new E at e | new v at E | deref E | E := e | v := E

| pack r, E as τ | open E as ρ, x in e

Figure 4: Evaluation contexts

Types consist of integers (int), region handles (rgn(r)), tuples (〈τ1×· · ·×τn〉), references (ref(τ, r)),

functions (τ1
γ1→γ2
−→ τ2), polymorphic functions (∀ρ. τ) and bounded existential (∃ρ[ǫ]. τ) types. Region

handles and reference types are associated by a type level region name. In combination with the effects,

this formulation allows us to determine the state of each region handle and memory reference at each

program point. Bounded existential types differ from ordinary existential types in that the abstracted

region must belong in one of the regions of ǫ.

At the term level, functions are explicitly annotated with their types. Function types are annotated

with the input effects that the calling environment must supply as well as the output effects (i.e., trans-

formed input effects) returned to that environment. The syntax of values and expressions is extended

with standard primitives for handling existential values and functions. It is worth noting that there ex-

ists no explicit construct for spawning threads, but rather function application is annotated with “par”

for parallel and “seq” for sequential (i.e., thread-local) application. Finally, we define the syntax of the

entire program as a series of function definitions.

3 Operational Semantics

The small-step operational semantics of our language is defined as two evaluation relations, at the level

of threads and expressions (Figures 5 and 6 on the next page). The thread evaluation relation transforms

configurations. A configurationC (see Figure 3) consists of an abstract store S and a list of active threads

T . Each thread in T is of the form n : e, where n is a thread identifier and e is an expression. The store

is a list of regions of the form I : (H,S). Regions are hierarchically organized. Each region can be

decomposed into a region header I , a memory heap H and a list of subregions S. The region memory

heap is a function that maps locations to values. A region header is defined as a tuple which consists of a

run-time region name (ı), a region reference count and a lock count (n1 and n2 respectively) and a thread

owner identifier (n3).

A thread evaluation context E (Figure 4) is defined as an expression with a hole, represented as �.

The hole indicates the position where the next reduction step can take place. Our notion of evaluation

context imposes a call-by-value evaluation strategy to our language. Subexpressions are evaluated in a

left-to-right order.

We assume that concurrent reduction events can be totally ordered. At each step, a random thread

is chosen from the thread list for evaluation (rule E-S in Figure 5). The thread evaluation relation

is annotated with the entire program P , which is passed to the expression evaluation relation. The

evaluation relation is also indexed by ı, the identifier of the currently evaluated thread. It should be

noted that rule E-S is the only non-deterministic rule in the operational semantics of our language; in the

9

S; e→P
ı S

′; e′

S;T1, ı :E[e], T2
P S′;T1, ı :E[e′], T2

(E-S)
S;T1, ı : (), T2

P S;T1, T2

(E-T)

 is a fresh thread identifier

S;T1, ı :E[((λx. e as τ) v)par], T2
P S;T1, ı :E[()], T2,  : e[v/x]

(E-SN)

Figure 5: Thread evaluation relation C P C ′

1 ≤ i ≤ n

S; prji (v1, . . . , vn) →
P
ı S; vi

(E-P)
(def x = f) ∈ P

S;x→P
ı S; f

(E-F)

S; ((λx. e as τ) v)seq →P
ı S; e[v/x]

(E-A)
S; (Λρ. f)[r] →P

ı S; f [r/ρ]
(E-RP)

(ℓ, S′) = alloc(, S, v)

S; new v at rgn →
P
ı S

′; locℓ
(E-NRF)

v = lookupı(S, ℓ)

S; deref locℓ →
P
ı S; v

(E-D)
S′ = updateı(S, ℓ, v)

S; locℓ := v →P
ı S

′; ()
(E-AS)

(k, S′) = newrgn(, S)

S; newrgn ρ, x at rgn in e→
P
ı S

′; e[k/ρ][rgnk/x]
(E-NR)

S′ = updcapı(, S, ψ, η)

S; capψη rgn →
P
ı S

′; ()
(E-C)

updcapı(, S, ψ, η) = “block”

S; capψη rgn →
P
ı S; capψη rgn

(E-CB)
S; open (pack , v as τ) as ρ, x in e→P

ı S; e[/ρ][v/x]
(E-OR)

Figure 6: Expression evaluation relation S; e→P
ı S′e′

presence of more than one active threads, our semantics does not specify which one will be selected for

evaluation.

Threads that have completed their evaluation and have been reduced to unit values, represented as (),
are removed from the active thread list (rule E-T). When a parallel function application redex is detected

within the evaluation context of a thread, a new thread is created (rule E-SN). The redex is replaced with

a unit value in the currently executing thread and a new thread is added to the thread list, with a fresh

thread identifier.

The expression evaluation relation is defined in Figure 6. The rules for reducing projections (E-P),

opening existential values (E-OR), function application (E-A) and region application (E-AR) are stan-

dard. Rule E-F resolves function names to the appropriate function bodies. The remaining rules make

use of five partial functions that manipulate the store. These functions are undefined when their con-

straints are not met. All of them require that some region be live. A region is live when its own region

count is greater than zero, as well as the region counts of all its parents. In addition to liveness, some of

these functions require that some region be accessible from the currently executing thread. A region is

accessible from some thread  when it is live, its lock count is greater than zero and its thread owner is

equal to  (in other words,  has successfully obtained a lock for this region).

• alloc(, S, v) is used in rule E-NRF for creating a new reference. It allocates a new object in S.

The object is placed in region  and is set initially to the value v. Region  must be live. Upon

success, the function returns a pair (ℓ, S′) containing a fresh location of the new object and the

new store.

• lookupı(S, ℓ) is used in rule E-D to look up the value of location ℓ in S. The region in which

ℓ resides must be live and accessible from the currently executed thread ı. Upon success, the

function returns the value v held in ℓ.

10

• updateı(S, ℓ, v) is used in rule E-AS to assign the value v to location ℓ in S. The region in which

ℓ resides must be live and accessible from the currently executed thread ı. Upon success, the

function returns the new store S′.

• newrgn(, S) is used in rule E-NR to create a new region in S. The new region is made a subregion

of , which must be live. Its region and lock counts are set to 1 and −1 respectively. Upon success,

the function returns a pair (k, S′) containing a fresh region name for the new region and the new

store.

• updcapı(, S, ψ, η) is used in rules E-C and E-CB . It requests to obtain or drop (depending on η)

a capability of kind ψ (i.e., region or lock) for region  in S. Upon success, the function returns the

new store S′. It may also return the special value “block” in case the currently executing thread (ı)
cannot immediately obtain or drop this capability.

Rules E-C and E-CB guarantee that our operational semantics does not get stuck as a result of a

deadlock, when attempting to modify a region or lock count. The former rule is used in case the partial

function updcap returns a new store, which means that the modification attempt was successful. The

latter implements a naı̈ve “busy-wait” semantics by taking an idle step. It is used in case updcap returns

the special value “block,” meaning e.g. that the lock for a region is already held by another thread and

that the currently executed thread must wait for it to be released, before it can obtain it.

It should be noted at this point that our semantics will get stuck if a thread attempts to assign to a

memory location without first acquiring the lock for the region where this location belongs. In this case,

the result of update will be undefined and it will not be possible to use rule E-AS . The same is true in

several other situations (e.g., reading from a non-existent location). Threads that may cause a data race

will definitely get stuck.

Our semantics follows a different approach from related work (e.g., the work of Grossman [2003]),

where a special kind of value junkv is used as an intermediate step when assigning a value v to a location,

before the real assignment takes place. Then, type safety guarantees that no junk values will ever be used.

As we described above, we use a more direct approach by incorporating the locking mechanism in our

operational semantics. However, our progress lemma in Section 5 guarantees that, at any time, all threads

can make progress. Thus, a possible implementation of our semantics does not have to check at run-time

if a lock is held by the currently executed thread.

4 Static Semantics

In this section we discuss the typing rules of our language. To enforce our safety invariants we use a type

and effect system. As mentioned earlier, effects are used to statically track the state of each region. A

well-typed expression e has a type τ under an input effect list γ and results in an output effect list γ′. We

denote this by R;M ;∆; Γ ⊢ e : τ & (γ;γ′). This typing judgement uses four standard typing contexts:

R is a set of concrete region names, M is a mapping of concrete location names to types, ∆ is a set of

region variables, and Γ is a mapping of term variables to types. Region and location types are tagged

with regions. This allows us to associate well-typed region handles and locations with the set of effects

available at each program point.

The typing rules for variables, values, tuple creation and projection are standard. To improve presen-

tation, we have omitted all well-formedness premises for contexts from our typing rules. In the typing

of variables and values, the input effect list is the same as the output effect list. The typing rule for

lambda abstraction terms requires that the type annotation be α-equivalent to the arrow type deduced by

the premise of the rule. Furthermore, it is necessary to summarize the input and output effect lists before

typechecking the body of a lambda abstraction; we denote the summarized effect lists by γ1 and γ2. The

rationale behind the summarization process is that region substitution in an effect list may violate the

11

Variables and Values

(x 7→ τ) ∈ Γ,Γ0

R;M ;∆; Γ ⊢ x : τ & (γ;γ)
(T-V)

R;M ;∆; Γ ⊢ n : int & (γ;γ)
(T-I)

R;∆ ⊢R ı

R;M ;∆; Γ ⊢ rgnı : rgn(ı) & (γ;γ)
(T-R)

(ℓ 7→ (τ, ı)) ∈M

R;M ;∆; Γ ⊢ locl : ref(τ, ı) & (γ;γ)
(T-L)

τ ≡ τ1
γ1→γ2
−→ τ2 R;M ;∆; Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)

R;M ;∆; Γ ⊢ λx. e as τ : τ & (γ;γ)
(T-F)

R;M ;∆, ρ; Γ ⊢ f : τ & (γ;γ)

R;M ;∆; Γ ⊢ Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

Tuples

R;M ;∆; Γ ⊢ ei : τi & (γi;γi+1) forall 0 ≤ i < n

R;M ;∆; Γ ⊢ (e0, . . . , en−1) : 〈τ0 × . . .× τn−1〉 & (γ0;γn)
(T-Tu)

0 ≤ i < n
R;M ;∆; Γ ⊢ e : 〈τ0 × . . .× τn−1〉 & (γ;γ′)

R;M ;∆; Γ ⊢ prji e : τi & (γ;γ′)

Function and Region Application

R;M ;∆; Γ ⊢ e1 : τ1
γ1→γ2
−→ τ2 & (γ;γ′)

R;M ;∆; Γ ⊢ e2 : τ1 & (γ′;γin)
if ξ ≡ par then τ2 ≡ 〈〉 γout = output(γin , ξ, γ1, γ2)

R;M ;∆; Γ ⊢ (e1 e2)
ξ

: τ2 & (γ;γout)
(T-App)

R;∆ ⊢R r
R;M ;∆; Γ ⊢ e : ∀ρ. τ & (γ;γ′)

R;M ;∆; Γ ⊢ e [r] : τ [r/ρ] & (γ;γ′)
(T-RApp)

References to Mutable Objects

R;M ;∆; Γ ⊢ e1 : τ & (γ;γ′)
R;M ;∆; Γ ⊢ e2 : rgn(r) & (γ′;γ′′) live(γ′′, {r})

R;M ;∆; Γ ⊢ new e1 at e2 : ref(τ, r) & (γ;γ′′)
(T-NR)

R;M ;∆; Γ ⊢ e : ref(τ, r) & (γ;γ′) accessible(γ′, {r

R;M ;∆; Γ ⊢ deref e : τ & (γ;γ′)

R;M ;∆; Γ ⊢ e1 : ref(τ, r) & (γ;γ′) R;M ;∆; Γ ⊢ e2 : τ & (γ′;γ′′) accessible(γ′′, {r})

R;M ;∆; Γ ⊢ e1 := e2 : 〈〉 & (γ;γ′′)
(T-A)

Region Primitives

R;M ;∆; Γ ⊢ e1 : rgn(r) & (γ;γ′) live(γ′, {r}) R;∆ ⊢T τ
R;M ;∆, ρ; Γ, x : rgn(ρ) ⊢ e2 : τ & (γ′, ρ1,⊥ ⊲ r;γ′′) ρ 6∈ dom(γ′′)

R;M ;∆; Γ ⊢ newrgn ρ, x at e1 in e2 : τ & (γ;γ′′)
(T-NRG)

R;M ;∆; Γ ⊢ e1 : rgn(r) & (γ;γ′)
γ′′ = modcap(γ′, ψ, η, r)

R;M ;∆; Γ ⊢ capψη e1 : 〈〉 & (γ;γ′′)

Bounded Existential Quantification

R;∆ ⊢T τ τ ≡ ∃ρ[ǫ]. τ ′ R;∆ ⊢R r r ∈ ǫ
R;M ;∆; Γ ⊢ e : τ ′[r/ρ] & (γ;γ′)

R;M ;∆; Γ ⊢ pack r, e as τ : τ & (γ;γ′)
(T-EP)

R;∆ ⊢T τ
′ R;M ;∆; Γ ⊢ e : ∃ρ[ǫ]. τ & (γ;γ′)

R;M ;∆, ρ′; Γ, x : τ [ρ′/ρ] ⊢ e′ : τ ′ & (γ′, ρ′⊤ ⊲ ǫ;γ′′, ρ′⊤ ⊲ ǫ

R;M ;∆; Γ ⊢ open e as ρ′, x in e′ : τ ′ & (γ;γ′′)

Figure 7: Static semantics

12

Table 1: Capability conversion

ψ ξ κ1 κ2 κin out(κin , ψ, ξ, κ1, κ2) constraints

any seq n1 n2 n1 n2

any seq n1 n2 n3 n2 + n3 − n1 n1 ≤ n3

any seq n1 n2 n3 n2 + n3 − n1 n1 ≤ n3

any seq ∗ ∗ n3 n3 0 < n3

any seq ∗ ∗ n3 n3 0 < n3

any seq ∗ ∗ ∗ ∗

lk seq ⊥ ⊥ ⊥ ⊥

lk seq ⊥ 0 ⊥ 0

lk seq ∗ ∗ ⊥ ⊥

rg par n1 0 n2 n1 − n2 0 ≤ n1 ≤ n2

rg par n1 0 n2 n1 − n2 0 ≤ n1 ≤ n2

lk par 0 0 n1 n1

lk par 0 0 n1 n1

lk par ⊥ 0 ⊥ 0

invariant that each effect rstate ⊲ ǫ in the list refers to a unique region r. Summarization restores this

invariant by appropriately merging different states.

The typing rule for function application computes the output effect list for the call γout , taking into

account γin (the output effect list of expression e2, which corresponds to the beginning of the call), the

input and output effect lists γ1 and γ2 ascribed on the type of the function, and the application tag ξ
which can be either seq or par. For any region r, the partial function output isolates the effects related to

r in γin , γ1 and γ2. If such an effect only exists in γin , then it is copied to γout unchanged (the function

does not affect region r at all). If, however, effects for r also exist in γ1 and γ2, then the region and

lock capabilities of all three effects must be combined in the effect that will be copied to γout , in the way

given in Table 1. In all other cases, e.g. if γ1 contains an effect for region r and γ2 does not contain such

an effect, then the result of output is undefined and this results in a type error.

Table 1 defines the output capability for any region r, given the capability kind ψ, the type of ap-

plication ξ and the three capabilities κin , κ1 and κ2 for r that are found in γin , γ1 and γ2, respectively.

Effects of unknown state (r⊤ ⊲ ǫ) must have previously been excluded from the transformation process.

From Table 1 it is obvious that aliasable capabilities cannot be passed in a parallel function application.

Furthermore, when a thread-local region (with a ⊥ lock capability) is passed to another thread, it remains

local (i.e., we have region migration). On the other hand, we can permanently convert the local lock ca-

pability ⊥ to 0. This feature is particularly useful when sharing a region between threads. Moreover, we

can convert a pure or fractional capability to another fractional capability.

Fractional capabilities of the two kinds are treated differently in the presence of parallel application.

Region capabilities in γin can be either fractional or pure, but in the scope of the thread function both

become pure as we delegate the obligation of region deallocation to the new thread. The output capability

in γout in this case is defined as the difference between κin and κ1. Fractional lock capabilities are

disallowed in parallel application, as it is unsound to assume statically that two threads can acquire the

same lock simultaneously. Finally, as we see in Table 1, the new thread is forced to release all capabilities

by the end of its scope (or earlier).

In addition to allowing for capability abstraction, the partial function output allows for abstraction

over dependencies of each effect (i.e. shrink ǫ in rstate ⊲ ǫ). The idea is to temporarily ignore (some or

all) dependencies for the function scope. This feature is particularly useful in the presence of threads:

a region is live (at the type level) when its dependencies are live and its region capability is not zero.

Therefore, if there exists no abstraction over dependencies, the entire region hierarchy up to the root

region must be passed to the new thread. Of course, this implies that there exist only sharable regions,

and thread functions must accept all possible regions.

13

To preserve soundness, certain restrictions are imposed, e.g. the abstracted dependencies must be

live at the beginning and the end of the function scope (region invariant). As mentioned earlier, a region

can be locked when its children are locked. When a region temporarily abstracts parent dependencies

within a certain scope, it is able to break that invariant and unlock itself before its abstracted parent

is unlocked. However, before returning to the original environment, function output checks that the

regions “breaking” the invariant in γout lock themselves, so that the lock invariant is restored.

The typing rules for reference creation (T-NR), dereference (T-D) and assignment (T-A) are stan-

dard, except for the judgement accessible(γ, r) which appears as a premise. This judgement ensures

that region r is live (i.e. all of its dependencies are live and its region capability is greater than zero) and

locked or thread-local.

The rule for typing a new region construct (T-NRG) checks that expressions e1 and e2 are of type

rgn(r1) and τ , respectively, and that τ does not contain any occurrences of the fresh region variable ρ.

The body expression e2 is typechecked in a context extended with the fresh region ρ and a new effect

element is added to the input effect list of e2 (ρ1,⊥ ⊲ r1), which states that there exists a new region

ρ with region capability of 1, lock capability ⊥ (thread-local) and its parent region is the same as the

region name tagged in the type of expression e1. From the output effect list of expression e2, we notice

that e2 must have released both the region and lock capability, either by delegating the deallocation

responsibility to another thread or by explicitly decrementing its capabilities. We also check that r1 is

live in the input effect of expression e2 (we denote this by live(γ, r1)), as it is unsound to allocate a fresh

region within a deallocated parent region.

Rule T-CP ensures that when we attempt to modify the state of an effect, the region of that ef-

fect is live and we are allowed to change its capability. This is achieved with the partial function

modcap(γ, ψ, η, r), which modifies by η the capability of kind ψ for region r in the effect list γ and,

upon success, returns the modified effect list. Several restrictions are imposed. For instance, a capability

cannot be decremented below zero and a region capability which has reached the value zero cannot be

incremented again. Function modcap again checks the resulting output effect list against the lock and

region invariants described above, to ensure soundness.

The typing rule for packing bounded existential values (T-EP) requires that the abstracted region be

an element of ǫ. The rule for opening an existential package in the scope of an expression e′ adds the

effect r⊤ ⊲ ǫ to the input effect list of e′. This kind of effect differs from effects with explicit capabilities

in that r here is an abstracted region. Its state is always ⊤ and r is an element of the dependency list ǫ.
This form of bounded quantification allows a finer control of region abstraction. Using such effects may

be restrictive as all regions in ǫ must be accessible (i.e. live and locked), in order to access a memory

location of region r.

5 Type Safety

In this section we discuss the fundamental theorems that prove type safety of our language. Our formula-

tion of type safety is based on proving the preservation and progress theorems. Informally, our language

is defined as safe when each evaluation step is well-typed and not stuck. A program configuration is not

stuck when all threads are not stuck, that is, if all threads can make evaluation steps. As we discussed in

Section 3, a thread can become stuck if it tries to access a region that is not live, if it tries to dereference

or assign to a location residing in a region that is not accessible by the thread. (These are obviously the

interesting cases in our concurrent setting. Of course a thread can become stuck if it tries to perform an

operation that does not respect standard types.)

Definition 1 (Threads Typing) Let T be a collection of threads. Let R;M ;∆; Γ be a global typing

context. Let δ be a mapping from thread identifiers to effect lists; for each thread n : e in T we take δ(n)
to be the input effect list that corresponds to the evaluation of expression e. Then, T is well-typed with

14

respect to R;M ;∆; Γ; δ when each thread n : e in T is well-typed with respect to R;M ;∆; Γ, the input

effect list δ(n), and when there exist no live regions at the corresponding output effect list.

R;M ;∆; Γ; δ ⊢T ∅

R;M ;∆; Γ ⊢ e : 〈〉 & (δ(n);γ) R;M ;∆; Γ; δ ⊢T T
linear(γ) ≡ ∅

R;M ;∆; Γ; δ ⊢T n : e, T

Definition 2 (Store Consistency) A store S is consistent with respect to an effect mapping δ when the

following conditions hold:

• The set of region names occurring in the co-domain of δ is a subset of the set of region names in

S.

• Each region that appears in δ (and all of its parents) is live in S. Furthermore, the sum of all region

capabilities (for all different threads) for a region in δ is equal to the region’s reference count in S.

• All regions that appear in S but not in the co-domain of δ are deallocated (zero region and lock

count).

• For each region that appears in δ, at most one thread in δ may have a lock capability that is non-

zero. In this case, the lock capability of the region is either positive or ⊥ and it is equal to the lock

count of the region in S (⊥ is represented as −1).

Definition 3 (Store Typing) A store S is well-typed with respect toR;M ; δ (we denote this byR;M ; δ ⊢str
S) when

• S is consistent with respect to δ,

• the set of region names in S is equal to R,

• the set of locations in M is equal to the set of locations in S, and

• each value v stored in a location ℓ of S is closed and has type M(ℓ) with empty effect lists

(R;M ; ∅; ∅ ⊢ v : M(ℓ) & (∅;∅)).

A configuration S;T is well-typed with respect to R;M ;∆; Γ; δ when the collection of threads T is

well-typed with respect to R;M ;∆; Γ; δ and the store S is well-typed with respect to R;M ; δ.

Definition 4 (Configuration Typing)

R;M ;∆; Γ; δ ⊢T T R;M ; δ ⊢str S

R;M ;∆; Γ; δ ⊢C S;T

Definition 5 (Not stuck) A configuration S;T is not stuck if all threads in T can take one of the evalu-

ation steps in Figure 5 (E-S , E-T or E-SN).

Given these definitions, we can now present the main results of this paper. The progress and preser-

vation lemmata are first formalized at the program level, i.e. for all concurrently executed threads. Proof

sketches for all lemmata and the final type safety theorem are given in the Appendix.

Lemma 1 (Progress – Program) Let S;T be a closed well-typed configuration with R;M ; ∅; ∅; δ ⊢C
S;T . Then S;T is not stuck.

15

Lemma 2 (Preservation – Program) Let S;T be a well-typed configuration with R;M ;∆; Γ; δ ⊢C
S;T . If the operational semantics takes a step S;T P S′;T ′, then there exist R′ ⊇ R, M ′ ⊇ M and

δ′ such that the resulting configuration is well-typed with R′;M ′;∆; Γ; δ′ ⊢C S
′;T ′.

A thread-local version for each of these two lemmata is required, in order to prove the above. At the

expression level, progress and preservation are defined as follows.

Lemma 3 (Progress – Expression) Let S be a well-typed store with R;M ; δ ⊢str S and let e be a

closed well-typed expression with R;M ; ∅; ∅ ⊢ e : τ & (δ(n);γ). Then exactly one of the following is

true:

• e is a value, or

• e is of the form E[((λx. e as τ) v)par], or

• e is of the form E[e′] and there exist S′ and e′′ such that S; e′ →P
n S

′; e′′.

Lemma 4 (Preservation – Expression) Let e be a well-typed expression withR;M ;∆; Γ ⊢ e : τ & (δ(n);γ)
and let S be a well-typed store with R;M ; δ ⊢str S. If the operational semantics takes a step S; e →P

n

S′; e′, then there exist R′ ⊇ R, M ′ ⊇M and γ′ such that the resulting expression and the resulting store

are well-typed with R′;M ′;∆; Γ ⊢ e′ : τ & (γ′;γ) and R;M ; δ[n 7→ γ′] ⊢str S
′.

In the preservation lemma, we typecheck the expression e with the input effect list δ(n) that corre-

sponds to thread n in the configuration. We require that the store S be well-typed with respect to the

same R, M and δ. The input effect γ′ of the resulting expression e′ is placed back in the global mapping

δ and we denote this by δ[n 7→ γ′]: a mapping which is identical to δ, only it maps n to γ′. The resulting

store S′ must be well-typed in this updated mapping.

Finally, the type safety theorem is a direct consequence of Lemmata 1 and 2. It states that when

the original program P contains a main function of the appropriate type and main is invoked with

the program’s heap region name and handle, every step of the thread evaluation relation results in a

configuration which is not stuck. More specifically, let H be the region name that corresponds to the

program heap and let R0 ≡ ∅,H . Let δ0 be such that it only maps thread 1 to the input effect list

H1,⊥ ⊲ ∅, in other words, the heap region has reference count equal to 1 and is initially thread-local.

Let I0 ≡ (H, 1,−1, 0) be the region header for the heap and let S0 ≡ ∅, I0 : (∅, ∅) be the initial store,

in other words, the heap is initially empty. Also, let T0 ≡ ∅, 1 : e0 be the initial thread list, where

e0 ≡ (main [H] rgnH)seq.

Theorem 1 (Type Safety) If the initial configuration is well-typed withR0; ∅; ∅; ∅; δ0 ⊢C S0;T0 and the

operational semantics takes any number of steps S0;T0
P ∗
S;T , then the resulting configuration S;T

is not stuck.

The empty (except for the heapH) contexts that are used when typechecking the initial configuration

S0;T0 guarantee that all functions in the program are closed and that no explicit region values (rgnı) or

location values (locℓ) are used in the source of the original program.

6 Related Work

In this paper, we have presented a low-level language with lexically-scoped hierarchical regions and a

type system which allows for safe early region deallocation in a multithreaded setting. We feel that our

language is a promising point in the programming language design space but, quite naturally, it has many

features in common with other languages having similar aims and adopts several ideas and concepts from

the literature.

16

Languages employing region-based memory management In their seminal work, Tofte and Talpin

[1994, 1997] proposed a new memory management scheme for higher-order, typed languages, as an

alternative to manual (i.e., malloc/free in C) and automatic (i.e., garbage collection) memory man-

agement. The main idea is to introduce a block-structured construct (letregion ρ in e), which allocates

a new region of memory for storing objects created during the evaluation of e, and automatically deallo-

cates this region upon e’s termination. Although the basic Tofte-Talpin framework imposes a strict LIFO

order on region lifetimes, a number of extensions have emerged that relax this constraint. For exam-

ple, Aiken et al. [1995] provide an analysis to free some regions early and Walker and Watkins [2001]

propose systems for freeing regions based on linear types. In the same track, Fluet et al. [2006] have

designed a very powerful substructural type system for the safe deallocation of non-LIFO regions, based

on linear region capabilities. More recently, Boudol [2008] has presented a higher-order language which

allows for safe region deallocation by using a type system with deallocation effects.

As reported by Tofte et al. [2004], region-based memory management allows the ML Kit compiler

to produce code that executes quite efficiently, without the support of a garbage collector. Furthermore,

memory management with statically scoped regions is provably safe. As a result, several language im-

plementations have adopted region-based memory management to obtain memory safety while avoiding

(totally or partly) the cost of garbage collection. For instance, Cyclone [Grossman et al., 2002] uses

static regions to achieve these goals. In addition to static regions, other languages, such as RC [Gay

and Aiken, 2001], also provide more flexible dynamic regions which employ reference counting and

programmer-supplied annotations. This however is error-prone and sacrifices static safety guarantees.

Other languages for low-level applications, such as Vault [Fahndrich and DeLine, 2002], employ a type

system that restricts aliases and two mechanisms, termed adoption and focus, which allow to statically

track stateful properties about data without knowing all aliases of this data.

Safe multithreaded low-level languages All the above works rely crucially on the absence of con-

current accesses and are not safe in the presence of multithreading. For example, in the actual imple-

mentation of Cyclone, the let alias construct allows temporary aliasing of capabilities within the

scope of that construct. If an aliased capability is passed to another thread, then the linearity of that

capability is violated once the let alias construct terminates. To extend Cyclone with threads and

locks and overcome problems with data races breaking type safety, Grossman [2003] introduced a type

system where each pointer and lock type is explicitly annotated with a lock name. This system has

scoped locks and does not allow for early lock release and region deallocation. Moreover, it has several

drawbacks as it has a non-uniform interaction with lock polymorphism and a complicated kind system

for reference sharabilities. In our system, locks do not have to be scoped and we provide lock polymor-

phism through effect subtyping. Furthermore, there is no need for a complicated kind system, as the lock

state of a region may switch from thread-local to shared. We also treat locks as an operating system re-

source, which must be released when a region is deallocated, and completely eliminate the use of hidden

run-time reference counts so as to gain control over the run-time system in a type-safe manner. On the

downside, our language offers less fine-grained locking than Grossman’s extension of Cyclone. To al-

low safety over reference counts, we employed fractional capabilities inspired from Boyland’s work on

fractional permissions. However, unlike the work of Boyland [2003], we provide fractional capabilities

in a multithreaded setting and also a type safety proof.

7 Concluding Remarks

In this paper, we have presented a first-order region-polymorphic calculus which allows for safe early

deallocation of regions in a multithreaded setting and prevents data races. The main novelty of our type

system is that it employs a tree-like hierarchy of regions and locks. We also allow safe capability aliasing

in the presence of threads, explicit capability consumption and polymorphism. Our type system provides

support for capability fork and join operations. We also provide additional abstraction mechanisms such

17

as capability subtyping, hierarchy abstraction and bounded existential types. Our system supports region

migration and sharing. In contrast to other type systems, we allow regions to switch state from thread-

local to sharable.

References

A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: Improving region-based

analysis of higher-order languages. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 174–185, New York, NY, USA, June 1995. ACM

Press.

G. Boudol. Typing safe deallocation. In S. Drossopoulou, editor, Programming Language and Systems:

Proceedings of the European Symposium on Programming, volume 4960 of LNCS, pages 116–130.

Springer, Apr. 2008.

C. Boyapati, A. Salcianu, W. S. Beebee, and M. Rinard. Ownership types for safe region-based memory

management in real-time Java. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 324–337, New York, NY, USA, June 2003. ACM Press.

J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis:

Proceedings of the 10th International Symposium, volume 2694 of LNCS, pages 55–72. Springer,

June 2003.

M. Fahndrich and R. DeLine. Adoption and focus: practical linear types for imperative pro-

gramming. In Proceedings of the ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 13–24, New York, NY, USA, June 2002. ACM Press. doi:

http://doi.acm.org/10.1145/543552.512532.

C. Flanagan and M. Abadi. Object types against races. In J. C. M. Baeten and S. Mauw, editors,

Concurrency Theory: Proceedings of the 10th International Conference, volume 1664 of LNCS, pages

288–303. Springer, 1999.

C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static checking and inference

for Java. ACM Trans. Prog. Lang. Syst., 30(4), July 2008.

M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In P. Sestoft, editor, Programming

Language and Systems: Proceedings of the European Symposium on Programming, volume 3924 of

LNCS, pages 7–21. Springer, Mar. 2006.

D. Gay and A. Aiken. Language support for regions. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 70–80, New York, NY, USA, May

2001. ACM Press.

D. Grossman. Type-safe multithreading in Cyclone. In Proceedings of the ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation, pages 13–25, New York, NY, USA,

Jan. 2003. ACM Press.

D. Grossman, G. Morrisett, Y. Wang, T. Jim, M. Hicks, and J. Cheney. Formal type soundness for

Cyclone’s region system. Technical Report TR2001-1856, Cornell University, 2001.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory man-

agement in Cyclone. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 282–293, New York, NY, USA, June 2002. ACM Press.

18

M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic sections. In Proceedings of the

First ACM SIGPLAN Workshop on Languages Compilers, and Hardware Support for Transactional

Computing, June 2006.

B. McCloskey, F. Zhou, D. Gay, and E. A. Brewer. Autolocker: Synchronization inference for atomic

sections. In Conference Record of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 346–358. ACM Press, Jan. 2006.

F. Smith, D. Walker, and G. Morrisett. Alias types. In G. Smolka, editor, Programming Language and

Systems: Proceedings of the European Symposium on Programming, volume 1782 of LNCS, pages

366–381. Springer, Mar./Apr. 2000.

M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation, 132(2):

109–176, Feb. 1997.

M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value λ-calculus using a stack of regions.

In Conference Record of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 188–201, New York, NY, USA, Jan. 1994. ACM Press.

M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-based memory manage-

ment. Higher-Order and Symbolic Computation, 17(3):245–265, 2004.

D. Walker and K. Watkins. On regions and linear types. In Proceedings of the ACM SIGPLAN Inter-

national Conference on Functional Programming, pages 181–192, New York, NY, USA, Oct. 2001.

ACM Press.

D. Walker, K. Crary, and G. Morrisett. Typed memory management via static capabilities. ACM Trans.

Prog. Lang. Syst., 22(4):701–771, July 2000.

19

Appendix

Language Syntax

Value v ::= f | n | (v, . . . , v) | rgnı | locl | pack r, v as τ

Expressions e ::= x | n | (e, . . . , e) | prjn e | newrgn ρ, x at e in e | rgnı | cap
ψ
η e

| new e at e | deref e | e := e | locl | f | (e e)ξ | e[r] | pack r, e as τ
| open e as ρ, x in e

Capability kind ψ ::= rg | lk

Capability op η ::= + | −

Region r ::= ρ | ı

Region list ǫ ::= ∅ | ǫ, r

Capability κ ::= n | n | ⊥ | ∗

Effect list γ ::= ∅ | γ, rκ,κ ⊲ ǫ | γ, r⊤ ⊲ ǫ

Type τ ::= int | rgn(r) | 〈τ × . . .× τ〉 | ref(τ, r)

| τ
γ→γ
−→ τ | ∀ρ. τ | ∃ρ[ǫ]. τ

Function f ::= λx. e as τ
γ→γ
−→ τ | Λρ. f

Operation ξ ::= seq | par

Program P ::= def x = f ; | def x = f ;P

Substitution Relation

Definition 1 (Variable Substitution)

x1 [v/x] = v x1 ≡ x
| x1 otherwise

Definition 2 (Region substitution)

r1 [r/ρ] = r r1 ≡ ρ
| r1 otherwise

Definition 3 (Expression Substitution - Term Variable)

e[v/x] = x[v/x] | n
| (e1[v/x], . . . , en[v/x]) | prjn e1[v/x] | rgnı | cap

ψ
η e1[v/x]

| new e1[v/x] at e2[v/x] | deref e1[v/x] | e1[v/x] := e2[v/x] | locl | f | (e1[v/x] e2[v/x])
ξ | (e1[v/x])[r

| pack r, e1[v/x] as τ | open e1[v/x] as ρ, y in e2[v/x] y 6≡ x
| newrgn ρ, y at e1[v/x] in e2[v/x] y 6≡ x

Definition 4 (Expression Substitution - Type Variable)

f = λx. e[r/ρ] as τ1[r/ρ]
γ1[r/ρ]→γ2[r/ρ]

−→ τ2[r/ρ] | Λρ′. f [r/ρ] ρ′ 6≡ ρ

e[r/ρ] = x | n | (e1[r/ρ], . . . , en[r/ρ]) | prjn e1[r/ρ] | rgnı | cap
ψ
η e1[r/ρ]

| new e1[r/ρ] at e2[r/ρ] | deref e1[r/ρ] | e1[r/ρ] := e2[r/ρ] | locl | f [r/ρ] | (e1[r/ρ] e2[r/ρ])
ξ | (e1[r/ρ

| pack r1, e1[r/ρ] as τ [r/ρ] | open e1[r/ρ] as ρ
′, x in e1[r/ρ] ρ′ 6≡ ρ

| newrgn ρ′, x at e1[r/ρ] in e1[r/ρ] ρ′ 6≡ ρ

Definition 5 (Type Substitution)

τ [r1/ρ] = int | rgn(r[r1/ρ]) | 〈τ1[r1/ρ] × . . .× τn[r1/ρ]〉 | ref(τ [r1/ρ], r[r1/ρ])

| τ1[r1/ρ]
γ1[r1/ρ]→γ2[r1/ρ]

−→ τ2[r1/ρ]
| ∀ρ′. τ [r1/ρ] ρ′ 6≡ ρ
| ∃ρ′[ǫ[r1/ρ]]. τ [r1/ρ] ρ′ 6≡ ρ

20

Definition 6 (Γ Substitution - Type Variable)

Γ [r/ρ] = ∅ | Γ1[r/ρ], x : τ [r/ρ]

Definition 7 (γ Substitution)

γ[r1/ρ] = ∅ | γ1[r1/ρ], r[r1/ρ]
κ,κ ⊲ ǫ2[r1/ρ]

| γ1[r1/ρ], r[r1/ρ]
⊤ ⊲ ǫ2[r1/ρ]

Definition 8 (ǫ Substitution)

ǫ[r1/ρ] = ∅ | ǫ1[r1/ρ], r[r1/ρ]

Operational Semantics

Helper Judgements and Abbreviations

Definition 9 (Region header-related functions)

Obtain region count rc: rc((ı, n1, n2, n3)) ≡ n1

Obtain lock count lc: lc((ı, n1, n2, n3)) ≡ n2

Obtain region name rn: rn((ı, n1, n2, n3)) ≡ ı

Obtain lock name ln: ln(ı, n1, n2, n3)) ≡ n3

Modify region count mrc: mrc(I, k) ≡ (rn(I), rc(I) + k, lc(I), ln(I)) where rc(I) + k ≥ 0 and rc(I) > 0

Modify lock count mrc: mlc(I, k) ≡ (rn(I), rc(I), lc(I) + k, ln(I)) where lc(I) + k ≥ 0 and lc(I) > 0

Modify lock name mln: mln(I, k) ≡ (rn(I), rc(I), lc(I), k) where k ≥ 0

Acquire/Release lock ar: ar((ı, n1, n2, n3), nA, k) ≡

8

>

>

>

>

<

>

>

>

>

:

(ı, n1, n2 + k, nA) if n3 ≡ nA 6≡ 0, n2 + k ≥ 1
(ı, n1, 0, 0) if n3 ≡ nA 6≡ 0, n2 + k = 0

(ı, n1, n2 + k, nA) if n3 ≡ 0, nA 6≡ 0, n2 ≡ 0, k ≥ 1
(ı, n1, n2, n3) if n3 6≡ nA, n2 ∗ n3 > 0

(ı, n1, 0, 0) if n3 ≡ 0, n2 ≡ −1, k ≡ −1

Definition 10 (Store-related Functions and Invariants)

domI(S) ≡ {ı | (ı, n1, n2, n3) : (H,S1) ∈ S ∨ ı ∈ domI(S1)}

domℓ(S) ≡ {ℓ | (I : (H,S1) ∈ S ∧ ℓ 7→ v ∈ H) ∨ ℓ ∈ domℓ(S1)}

domH(S) ≡ {ℓ 7→ v | (I : (H,S1) ∈ S ∧ ℓ 7→ v ∈ H) ∨ ℓ 7→ v ∈ domH(S1)}

children(S, ı) ≡ {I1 | I : (H,S1) ∈ S ∧ ((rn(I) ≡ ı ∧ I1 ∈ domI(S1)) ∨ I1 ∈ children(S1, ı))}

parents(S, ı) ≡ {I | I ∈ domI(S) ∧ ı ∈ {rn(I) | children(S, rn(I))}}

live(S, ı) ≡ ∀I ∈ parents(S, ı).rc(I) > 0 ∧ ∃I ∈ domI(S).rn(I) ≡ ı ∧ rc(I) > 0

Definition 11 (Search and Update region in s)

rn(I) ≡ rn(I ′) ⊢= S1 = S′, I ′ : (H ′, S′
2) ⊢= S3 = S′, I : (H,S2)

S1; I;H;S2 ⊢su S3; I
′;H ′;S′

2

⊢= S1 = ∅, I1 : (H1, Sa1), . . . , Ik : (Hk, Sak)
rn(I1), . . . , rn(Ik); rn(I) ⊢∈ false

Sa1, . . . , Sz, . . . , Sak; I;H;S2 ⊢su Sa1, . . . , S
′
z, . . . , Sak

⊢= S3 = ∅, I1 : (H1, Sa1), . . . , Iz : (Hz, Sz), . . . , Ik : (

S1; I;H;S2 ⊢su S3; I
′;H ′;S′

2

Definition 12 (Capability cap)

21

S; I ′;H;S′′ ⊢su S
′′′; I;H;S′ rn(I) ≡ ı live(S, ı)

∀I ∈ children(S, ı).rc(I) = 0 mrc(I,−1) ≡ I ′ rc(I) ≡ 1

updcapna
(ı, S, rg,−1) ≡ S′′′

∃I ∈ children(S, ı).rc(I) 6= 0
∃I ∈ dom(S).rn(I) ≡ ı ∧ rc(I) = 1

live(S, ı)

updcapna
(ı, S, rg,−1) ≡ S

S; I ′;H;S′′ ⊢su S
′′′; I;H;S′ rn(I) ≡ ı

I ′ ≡ mrc(I, η) rc(I ′) > 0 rc(I) > 0 live(S, ı)

updcapna
(ı, S, rg, η) ≡ S′′′

S; I2;H;S1 ⊢su S2; I1;H;S1 rn(I2) ≡ ı ar(I1, na, η) ≡ I2
live(S, ı)

updcapna
(ı, S, lk, η) ≡ S2

Definition 13 (Abbreviations)

newrgn(, S) ≡ (k, S′′) if k /∈ {rn(I) | domI(S)} ∧ live(S, ) ∧ S; I ′;H ′;S′, (k, 1,−1, 0) : (∅, ∅) ⊢su S
′′; I ′;H ′;S′ ∧ rn(I ′) ≡ 

updcapı(, S, ψ, η) ≡ S′ if updcapı(, S, ψ, η) ≡ S′

alloc(, S, v) ≡ (ℓ, S′) if ℓ /∈ domℓ(S) ∧ live(S, ) ∧ S; I;H, ℓ 7→ v;S′ ⊢su S
′′; I;H;S′ ∧ rn(I) ≡ κ

xupdateı(S, ℓ, v) ≡ (S′′, v1) if S; I;H ′, ℓ 7→ v;S′ ⊢su S
′′; I;H ′, ℓ 7→ v1;S

′ ∧ live(S, rn(I)) ∧ lc(I) 6≡ −1 ⇒ ln(I) ≡ ı ∧ lc(I) > 0

lookupı(S, ℓ) ≡ v1 if (S′, v1) ≡ xupdate(S, ℓ, v)

updateı(S, ℓ, v) ≡ S′ if (S′, v1) ≡ xupdate(S, ℓ, v)

threadid(T) ≡ {ı | ı : e ∈ T}

Operational Semantics

Definition 14 (Operational Semantics Syntax)

Contents H ::= ∅ | H, ℓ 7→ v

Run-time region I ::= (ı, n1, n2, n3)

Region list S ::= ∅ | S, I : (H,S)

Threads T ::= ∅ | T, n : e

Configuration C ::= S;T

Definition 15 (Operational Semantics - Evaluation Context)

E ::= � | (v, . . . , E, . . . , e) | prjı E | (E e)ξ | (v E)ξ | E [r] | newrgn ρ, x at E in e | capψη E

| new E at e | new v at E | deref E | E := e | v := E | pack r, E as τ | open E as ρ, x in e

Definition 16 (Operational Semantics - Thread and Expression Reduction relation)

S; e→P
ı S

′; e′

S;T1, ı :E[e], T2
P S′;T1, ı :E[e′], T2

(E-S)
S;T1, ı : (), T2

P S;T1, T2

(E-T)

 is a fresh thread identifier

S;T1, ı :E[((λx. e as τ) v)par], T2
P S;T1, ı :E[()], T2,  : e[v/x]

(E-SN)
1 ≤ i ≤ n

S; prji (v1, . . . , vn) →P
ı S; vi

(E-P)

(def x = f) ∈ P

S;x→P
ı S; f

(E-F)
S; ((λx. e as τ) v)seq →P

ı S; e[v/x]
(E-A)

S; (Λρ. f)[r] →P
ı S; f [r/ρ]

(E-RP)

(ℓ, S′) = alloc(, S, v)

S; new v at rgn →
P
ı S

′; locℓ
(E-NRF)

v = lookupı(S, ℓ)

S; deref locℓ →
P
ı S; v

(E-D)
S′ = updateı(S, ℓ, v)

S; locℓ := v →P
ı S

′; ()
(E-AS)

(k, S′) = newrgn(, S)

S; newrgn ρ, x at rgn in e→
P
ı S

′; e[k/ρ][rgnk/x]
(E-NR)

S′ = updcapı(, S, ψ, η)

S; capψη rgn →
P
ı S

′; ()
(E-C)

updcapı(, S, ψ, η) = S

S; capψη rgn →
P
ı S; capψη rgn

(E-CB)
S; open (pack , v as τ) as ρ, x in e→P

ı S; e[/ρ][v/x]
(E-OR)

22

Table 1: Capability conversion – Function out(ψ, ξ, κ1, κ2, κ3)
ψ ξ κ1 κ2 κin out(κin , ψ, ξ, κ1, κ2) constraints

any seq n1 n2 n1 n2

any seq n1 n2 n3 n2 + n3 − n1 n1 ≤ n3

any seq n1 n2 n3 n2 + n3 − n1 n1 ≤ n3

any seq ∗ ∗ n3 n3 0 < n3

any seq ∗ ∗ n3 n3 0 < n3

any seq ∗ ∗ ∗ ∗

lk seq ⊥ ⊥ ⊥ ⊥

lk seq ⊥ 0 ⊥ 0

lk seq ∗ ∗ ⊥ ⊥

rg par n1 0 n2 n1 − n2 0 ≤ n1 ≤ n2

rg par n1 0 n2 n1 − n2 0 ≤ n1 ≤ n2

lk par 0 0 n1 n1

lk par 0 0 n1 n1

lk par ⊥ 0 ⊥ 0

Static Semantics

Static Semantics Helper Judgements and Abbreviations

Definition 17 (Abbreviations)

dom(γ) ≡ {r | rκ1,κ2 ⊲ ǫ1 ∈ γ} ∪ {r | r⊤ ⊲ ǫ1 ∈ γ}

select(γ, r1) ≡ {rκ1,κ2 ⊲ ǫ1 | rκ1,κ2 ⊲ ǫ1 ∈ γ ∧ r ≡ r1} ∪ {r⊤ ⊲ ǫ1 | r⊤ ⊲ ǫ1 ∈ γ ∧ r ≡ r1}

linear(γ) ≡ {rκ1,κ2 ⊲ ǫ1 | rκ1,κ2 ⊲ ǫ1 ∈ γ}

dom(Γ) ≡ {x | x : τ ∈ Γ}

dom(M) ≡ {ℓ | ℓ 7→ (τ, ı) ∈M}

dom(P) ≡ {x | def x = f ∈ P}

dom(δ) ≡ {ı |  7→ γ ∈ δ ∧ γ 6≡ ∅ ∧ ı ∈ dom(γ)}

domt(δ) ≡ { |  7→ γ ∈ δ ∧ γ 6≡ ∅}

parents(γ, r) ≡ {r1 | ((rκ1,κ2 ⊲ ǫ ∈ γ ∨ r⊤ ⊲ ǫ ∈ γ) ∧ r1 ∈ ǫ) ∨ r1 ∈
S

r2∈ǫ
parents(γ, r2)}

children(γ, r) ≡ {r1 | r1 ∈ dom(γ) ∧ r ∈ parents(γ, r1)}

live(γ, ǫ) ≡ ǫ 6≡ ∅ ∧ ∀r ∈ ǫ.∀r1 ∈ ({r} ∪ parents(γ, r)).rκ1,κ2

1 ⊲ ǫ ∈ linear(γ) ⇒ κ1 6≡ 0 ∧ κ1 6≡ 0̄

accessible(γ, ǫ) ≡ live(γ, ǫ) ∧ ∀r ∈ ǫ.(rκ1,κ2 ⊲ ǫ1 ∈ γ ∧ κ2 6≡ 0 ∧ κ2 6≡ 0̄) ∨ (r⊤ ⊲ ǫ1 ∈ γ ∧ accessible(γ, ǫ1))

Definition 18 (Effect summarization judgement sum)

add(κ1, κ2, n3) ≡

8

>

>

<

>

>

:

n1 + n2;n3 if κ1 ≡ n1 ∧ κ2 ≡ n2

n1 + (1 − n3); 1 if κ1 ≡ n1 ∧ κ2 ≡ ∗

n1 + (1 − n3); 1 if κ2 ≡ n1 ∧ κ1 ≡ ∗

(1 − n3); 1 if κ1 ≡ ∗ ∧ κ2 ≡ ∗

sum(γ, n1, n2) ≡

8

<

:

∅ if γ ≡ ∅
∅, rκ1,κ2 ⊲ ǫ if γ ≡ ∅, rκ1,κ2 ⊲ ǫ

sum(γ′ ∪ rκ5,κ6 ⊲ ǫ1 ∩ ǫ2, n3, n4) if γ ≡ γ′, rκ1,κ2 ⊲ ǫ1, r
κ3,κ4 ⊲ ǫ2 ∧ add(κ1, κ3, n1) ≡ (κ5, n3) ∧ add(κ2, κ4, n2) ≡

notzero(ρκ1,κ2 ⊲ ǫ) ≡



ρκ1,κ2 ⊲ ǫ if κ1 6≡ 0 ∨ κ1 6≡ 0̄
∅ otherwise

sumt(γ) ≡ (
S

r∈dom(linear(γ)) sum(select(linear(γ), r), 0, 0)) ∪ (γ \ (linear(γ) ∪ {ı⊤ ⊲ ǫ | ı⊤ ⊲ ǫ ∈ γ}))

γ ≡
S

x∈sumt(γ) notzero(x)

23

Definition 19 (Output constraint judgement out)

out(ξ, ψ, κ1, κ3, κ5) ≡ see Table 1

tout(ξ, γ1, γ2, γ3) ≡

8

>

>

>

>

<

>

>

>

>

:

(∅, ∅) if γ3 ≡ γ2 ≡ ∅
(y ∪ r⊤ ⊲ ǫ, z) if (y, z) ≡ tout(ξ, γ1 \ x, γ2 \ x, γ3 \ x) ∧ x ≡ r⊤ ⊲ ǫ ∧ x ∈ γ1 ∩ γ2 ∩ γ3

(y ∪ a, z ∪ (ǫ \ ǫ1)) if (y, z) ≡ tout(ξ, γ′
1, γ

′
2, γ

′
3) ∧ γ1 = γ′

1, r
κ1,κ2 ⊲ ǫ1 ∧ γ2 = γ′

2, r
κ3,κ4 ⊲ ǫ1 ∧ γ3 = γ′

3, r
κ5,κ6 ⊲

ǫ1 ⊆ ǫ ∧ κ7 ≡ out(rg, ψ, κ1, κ3, κ5) ∧ κ8 ≡ out(lk, ψ, κ2, κ4, κ6)∧
(κ1 6≡ 0 ∨ κ1 6≡ 0̄) ∧ a ≡ notzero(rκ7,κ8 ⊲ ǫ) ∧ ξ;κ6 ≡ par;⊥ ⇒ κ5 ≡ n ≡ κ1

Definition 20 (Invariant judgement)

iszero(κ1, κ2) ≡ (κ1κ2 ≡ 00 ∨ κ1κ2 ≡ 0̄0̄)

locked(κ1) ≡ κ1 6≡ 0 ∧ κ1 6≡ 0̄

invrg(γ1) ≡ ∀r ∈ rκ1,κ2 ⊲ ǫ ∈ linear(γ1).(iszero(κ1, κ2) ⇒ ∀rκ3,κ4

1 ⊲ ǫ1 ∈ linear(children(γ1, r)).iszero(κ3, κ4)) ∧ (¬iszero(κ1, κ2) ⇒

invlk(γ1) ≡ ∀r ∈ rκ1,κ2 ⊲ ǫ ∈ linear(γ1).(locked(κ2) ⇒ ∀rκ3,κ4

1 ⊲ ǫ1 ∈ linear(children(γ1, r)).locked(κ3, κ4))

inv(γ1) ≡ invrg(γ1) ∧ invlk(γ2)

Definition 21 (Environment output constraint judgement)

output(γin , ξ, γ1, γ2) ≡ γout if (γout, ǫ1) ≡ tout(ξ, sumt(γ1), sumt(γ2), γin) ∧ live(γin, ǫ1) ∧ live(γout, ǫ1) ∧ inv(γout)

Definition 22 (Capability mod)

modη(κ) ≡

8

<

:

n2 + η if κ ≡ n ∧ n+ η ≥ 0
n2 + η if κ ≡ n̄ ∧ n+ η ≥ 0
0 if κη ≡ −1,⊥

modcap(γ′, ψ, η, r) ≡

8

>

>

<

>

>

:

γ2 if ψ ≡ rg ∧ x ≡ rκ1,κ2 ⊲ ǫ1 ∧ x ∈ γ1 ∧ κ
′
1 ≡ modη(κ1) ∧ γ2 ≡ γ1[r

κ′

1
,κ2 ⊲ ǫ1/x] ∧ inv(γ2) ∧ live(γ1, {r})

κ′
1 ≡ 0 ⇒ κ2 ≡ 0 ∧ κ′

1 ≡ 0̄ ⇒ κ2 ≡ 0

γ2 if ψ ≡ lk ∧ x ≡ rκ1,κ2 ⊲ ǫ1 ∧ x ∈ γ1 ∧ κ
′
2 ≡ modη(κ2) ∧ γ2 ≡ γ1[r

κ1,κ
′

2 ⊲ ǫ1/x] ∧ inv(γ2) ∧ live(γ1, {r})
η;κ2 ≡ −1;⊥ ⇒ κ1 ≡ n

Static Semantics Syntax

Region List R ::= ∅ | R, ı

Type variable list ∆ ::= ∅ | ∆, ρ

Memory List M ::= ∅ | M, ℓ 7→ (τ, ı)

Variable list Γ ::= ∅ | Γ, x : τ

Typing Context Well-formedness Judgements

Well − formednessJudgement

Region Well-formedness Effect Well-formedness

R; ∆, ρ ⊢R ρ R, ı; ∆ ⊢R ı R; ∆ ⊢ǫ ∅

R; ∆ ⊢ǫ ǫ1 R; ∆ ⊢R r

R; ∆ ⊢ǫ ǫ1 , r

Constraint Well-formedness
R; ∆ ⊢γ ∅

R; ∆ ⊢γ γ1 R; ∆ ⊢R r
R; ∆ ⊢ǫ ǫ κ1 6≡ ⊥

R; ∆ ⊢γ γ1, r
κ1,κ2 ⊲ ǫ

R; ∆ ⊢γ γ1 R; ∆ ⊢R r
R; ∆ ⊢ǫ ǫ

R; ∆ ⊢γ γ1, r
⊤ ⊲ ǫ

Type Well-formedness
R; ∆ ⊢ int

R; ∆ ⊢R r

R; ∆ ⊢ rgn(r)

∀ı ∈ [0, n− 1].R; ∆ ⊢ τı

R; ∆ ⊢ (τ0, . . . , τn−1)

R; ∆, ρ ⊢ τ

R; ∆ ⊢ ∀ρ. τ

24

R; ∆ ⊢ τ R; ∆ ⊢R r

R; ∆ ⊢ ref(τ, r)

R; ∆ ⊢ τ1 R; ∆ ⊢γ γ1

R; ∆ ⊢ τ2 R; ∆ ⊢γ γ2

R; ∆ ⊢ τ1
γ1→γ2−→ τ2

R; ∆, ρ ⊢ τ R; ∆ ⊢ǫ ǫ1

R; ∆ ⊢ ∃ρ[ǫ1]. τ R; ∆ ⊢ 〈〉

Variable Context Well-formedness
R; ∆ ⊢Γ ∅

R; ∆ ⊢Γ Γ1 R; ∆ ⊢ τ1 x /∈ dom(Γ1)

R; ∆ ⊢Γ Γ1, x : τ1

Memory Location Well-formedness
R ⊢M ∅

R ⊢M M1 R; ∅ ⊢T ref(τ1, ı) ℓ /∈ dom(M1)

R ⊢M M1, ℓ 7→ (τ1, ı)

Program Typing Context Well-formedness

R ⊢M M R; ∆ ⊢Γ Γ R; ∆ ⊢γ γ dom(γ′) ⊆ dom(γ)
¶ ⊢P Γ0 dom(Γ0) ∩ dom(Γ) ≡ ∅

⊢D R;M ; ∆; Γ; γ; γ′;P

Program Well-formedness
dom(P) = dom(Γ0) ∀def x = f ∈ P.∅; ∅; ∅; ∅ ⊢ f : Γ0(x) & (∅;∅)

P ⊢P Γ0

Expression Typing Judgements

(x 7→ τ) ∈ Γ,Γ0 ⊢D R;M ; ∆; Γ; γ; γ;P P ⊢ Γ0

R;M ; ∆; Γ ⊢ x : τ & (γ;γ)
(T-V)

⊢D R;M ; ∆; Γ; γ; γ;P

R;M ; ∆; Γ ⊢ n : int & (γ;γ)
(T-I)

⊢D R;M ; ∆; Γ; γ; γ;P

R;M ; ∆; Γ ⊢ () : 〈〉 & (γ;γ)
(T-U)

⊢D R;M ; ∆; Γ; γ; γ;P
R; ∆ ⊢R ı

R;M ; ∆; Γ ⊢ rgnı : rgn(ı) & (γ;γ)
(T-R)

⊢D R;M ; ∆; Γ; γ; γ;P
(ℓ 7→ (τ, ı)) ∈M

R;M ; ∆; Γ ⊢ locl : ref(τ, ı) & (γ;γ)

⊢D R;M ; ∆; Γ; γ; γ;P R; ∆ ⊢ τ

τ ≡ τ1
γ1→γ2−→ τ2 R;M ; ∆; Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)

R;M ; ∆; Γ ⊢ λx. e as τ : τ & (γ;γ)
(T-F)

R;M ; ∆, ρ; Γ ⊢ f : τ & (γ;γ)

R;M ; ∆; Γ ⊢ Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

R;M ; ∆; Γ ⊢ ei : τi & (γi;γi+1) forall 0 ≤ i < n

R;M ; ∆; Γ ⊢ (e0, . . . , en−1) : 〈τ0 × . . .× τn−1〉 & (γ0;γn)
(T-Tu)

0 ≤ i < n
R;M ; ∆; Γ ⊢ e : 〈τ0 × . . .× τn−1〉 & (γ;γ′)

R;M ; ∆; Γ ⊢ prji e : τi & (γ;γ′)
(T-Proj)

R;M ; ∆; Γ ⊢ e1 : τ1
γ1→γ2−→ τ2 & (γ;γ′)

R;M ; ∆; Γ ⊢ e2 : τ1 & (γ′;γin)
if ξ ≡ par then τ2 ≡ 〈〉 γout = output(γin , ξ, γ1, γ2)

R;M ; ∆; Γ ⊢ (e1 e2)
ξ : τ2 & (γ;γout)

(T-App)

R; ∆ ⊢R r
R;M ; ∆; Γ ⊢ e : ∀ρ. τ & (γ;γ′)

R;M ; ∆; Γ ⊢ e [r] : τ [r/ρ] & (γ;γ′)
(T-RApp)

R;M ; ∆; Γ ⊢ e1 : τ & (γ;γ′)
R;M ; ∆; Γ ⊢ e2 : rgn(r) & (γ′;γ′′) accessible(γ′′, {r})

R;M ; ∆; Γ ⊢ new e1 at e2 : ref(τ, r) & (γ;γ′′)
(T-NR)

R;M ; ∆; Γ ⊢ e : ref(τ, r) & (γ;γ′) accessible(γ′, {r})

R;M ; ∆; Γ ⊢ deref e : τ & (γ;γ′)

R;M ; ∆; Γ ⊢ e1 : ref(τ, r) & (γ;γ′) R;M ; ∆; Γ ⊢ e2 : τ & (γ′;γ′′) accessible(γ′′, {r})

R;M ; ∆; Γ ⊢ e1 := e2 : 〈〉 & (γ;γ′′)
(T-A)

R;M ; ∆; Γ ⊢ e1 : rgn(r) & (γ;γ′) live(γ′, {r}) R; ∆ ⊢ τ
R;M ; ∆, ρ; Γ, x : rgn(ρ) ⊢ e2 : τ & (γ′, ρ1,⊥ ⊲ r;γ′′) ρ 6∈ dom(γ′′)

R;M ; ∆; Γ ⊢ newrgn ρ, x at e1 in e2 : τ & (γ;γ′′)
(T-NRG)

R;M ; ∆; Γ ⊢ e1 : rgn(r) & (γ;γ′)
γ′′ = modcap(γ′, ψ, η, r)

R;M ; ∆; Γ ⊢ capψη e1 : 〈〉 & (γ;γ′′)
(T-CP)

R; ∆ ⊢ τ τ ≡ ∃ρ[ǫ]. τ ′ R; ∆ ⊢R r r ∈ ǫ
R;M ; ∆; Γ ⊢ e : τ ′[r/ρ] & (γ;γ′)

R;M ; ∆; Γ ⊢ pack r, e as τ : τ & (γ;γ′)
(T-EP)

R; ∆ ⊢ τ ′ R;M ; ∆; Γ ⊢ e : ∃ρ[ǫ]. τ & (γ;γ′)
R;M ; ∆, ρ′; Γ, x : τ [ρ′/ρ] ⊢ e′ : τ ′ & (γ′, ρ′⊤ ⊲ ǫ;γ′′, ρ′⊤ ⊲ ǫ)

R;M ; ∆; Γ ⊢ open e as ρ′, x in e′ : τ ′ & (γ;γ′′)
(T-EO)

25

Type Safety

Type Safety Syntax

Definition 23 (Program Effect)

Program Effect δ ::= ∅ | δ, n 7→ γ

Type Safety Helper Judgements and Abbreviations

Definition 24 (Abbreviations)

rgcap(δ,m, ı) ≡



n1 if ın1,κ2 ⊲ ǫ ∈ δ(m)
0 otherwise

rsum(γ, ı) ≡
X

m∈domt(δ)

rgcap(δ,m, ı)

q(δ, ı) =
S

m∈domt(δ)
{m 7→ ∅, ıκ1,κ2 ⊲ ǫ | ıκ1,κ2 ⊲ ǫ ∈ δ(m)}

Q0(δ) ≡ ∀m ∈ domt(δ).∀ı ∈ dom(δ(m)).ın1,κ2 ⊲ ǫ ∈ δ(m) ∧ n1 ∈ IN∗ ∧ ∃n2 ∈ IN.κ2 ≡ n2 ∨ κ2 ≡ ⊥

Q1(δ) ≡ ∀m ∈ domt(δ).∀ı ∈ dom(δ(m)).ıκ1,0 ⊲ ǫ ∈ δ(m)

Q2(k, ı,m, S) ≡ (ı, n1, x, n2) ∈ domI(S) ∧ (k, n2, x) ∈ {(⊥, 0,−1), (0, 0, 0)} ∪ {(y,m, y) | y ∈ IN∗} ∧ n1 ∈ IN∗

Q3(S, δ) ≡ ∀ı ∈ dom(δ). live(S, ı) ∧ ∃(ı, n, x, n1) ∈ domI(S).rsum(δ, ı) ≡ n ∈ IN∗

Q4(S, δ) ≡ ∀I ∈ domI(S). rn(I) /∈ dom(δ) ⇒ I ≡ (rn(I), 0, 0, 0)

Q5(δ, ı, S) ≡ Q1(q(δ, ı)) ∧Q2(0, ı, 0, S)

Q6(δ, ı) ≡ q(δ, ı) = δ1 ⊎m 7→ ∅, ın1,κ2 ⊲  ∧ Q1(δ1) ∧ Q2(κ2, ı,m, S) ∧ (κ2 ≡ ⊥ ⇒ δ1 ≡ ∅)

Type Safety Helper Judgements

Definition 25 (Store Consistency)

Q0(δ) Q3(S, δ) Q4(S, δ) ∀ı ∈ dom(δ).Q5(δ, ı, S) ∨Q6(δ, ı, S)

δ ⊢cns S

Definition 26 (Store Typing)

δ ⊢cns S R = {rn(I) | I ∈ domI(S)} domℓ(S) = dom(M) ∀ℓ ∈ dom(M).R;M ; ∅; ∅ ⊢ (domH(S))(ℓ) : M(ℓ) & (∅;∅)

R;M ; δ ⊢str S

Definition 27 (Threads Typing)

R;M ; ∆; Γ; δ ⊢T ∅

R;M ; ∆; Γ ⊢ e : 〈〉 & (δ(n);γ) R;M ; ∆; Γ; δ ⊢T T linear(γ) ≡ ∅

R;M ; ∆; Γ; δ ⊢T n : e, T

Definition 28 (Configuration Typing)

R;M ; ∆; Γ; δ ⊢T T R;M ; δ ⊢str S

R;M ; ∆; Γ; δ ⊢C S;T

Definition 29 (Not stuck)

⊢ns S; ·

∀ S′;T ′. S;T P S′;T ′

⊢ns S;T

26

Proof

Lemma 1 (Progress - Program) Let S;T be a closed well-typed configuration with R;M ; ∅; ∅; δ ⊢C S;T . Then S;T is not

stuck.

Proof. By case analysis on ı :E[u]

Case ı :�[()] then proof is immediate by rule E-T .

Case ı :E[(λx. e as τ v)par]): Immediate by rule E-SN .

Case ı :E[e] By applying inversion twice to the configuration typing judgement we have thatR;M ; ∅; ∅ ⊢ E[e] : τ&(δ(ı), γB).

The application of Lemma 3 to the latter fact and the store typing assumption (M ;R; δ ⊢str S) yields ∃E[e] ≡
E′[u]∧ S1, e1.S;u→P

ı S1; e1 or E[e] ≡ v or E[e] ≡ E′[(λx. e as τ v)par]. The latter two cases cannot hold as they

have been dealt with in earlier cases. Thus, the first case holds, and can be used to perform a single step by rule E-S .

Lemma 2 (Preservation - Program) Let S;T be a well-typed configuration with R;M ; ∆; Γ; δ ⊢C S;T . If the operational

semantics takes a step S;T P S′;T ′, then there exist R′ ⊇ R, M ′ ⊇ M and δ′ such that the resulting configuration is

well-typed with R′;M ′; ∆; Γ; δ′ ⊢C S′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : By inversion of configuration typing assumption we obtain the thread typing derivation. By inversion of R;M;

∆; Γ; δ ⊢T T1, ı :�[()], T2, we get that R;M ; ∆; Γ; δ ⊢T T1 and R;M ; ∆; Γ; δ ⊢T T2. By observation of the thread

typing relation it is obvious that we require a δ such that there exists a mapping for each thread identifier. We use the

latter facts in conjuction with the fact that ı /∈ threadid(T1, T2) to deduce that R;M ; ∆; Γ; δ[ı 7→ ∅] ⊢T T1, T2. The

output store is identical to the input store, thus it is well-typed by the store typing assumption.

Case E-S : By applying inversion to the configuration typing judgement twice we obtain thatR;M ; ∆; Γ ⊢ E[e] : 〈〉, (δ(ı), γ2).

By applying Lemma 7 we obtain that R;M ; ∆; Γ ⊢ e : τ, (δ(ı), γB). By applying Lemma 4 to the typing derivation

of e, the assumption (obtained from E-S rule) S; e →P
ı S′; e′, and M ;R; δ ⊢str S (assumption) we obtain that

∃R ⊆ R2,M ⊆ M2. R2;M2; ∆; Γ ⊢ e′ : τ, (γC , γB) and M2;R2; δ[ı 7→ γC] ⊢str S
′. By applying Lemma 15

and 14 to the typing derivations of e, E[e], and the premises of the store typing assumption of the thread list T1, T2

in order to substitute R with R2, we have R2;M2; ∆; Γ ⊢ E[e] : 〈〉, (δ(ı), γ2), R2;M2; ∆; Γ ⊢ e : τ, (δ(ı), γB),

and R2;M2; ∆; Γ; δ ⊢T T1, T2. By Lemma 8 we can replace e′ for e in the evaluation context E (all well-typed in

R2;M2) to obtain R2;M2; ∆; Γ ⊢ E[e′] : 〈〉, (γC , γ2). We can combine the latter fact with the typing of threads

T1, T2 in context R2;M2, and the fact that linear(γ2) ≡ ∅ (obtained from the typing assumption of thread ı) to derive

R2;M2; ∆; Γ; δ[ı 7→ γC] ⊢T T1, ı :E[e′], T2. We have shown that M2;R2; δ[ı 7→ γC] ⊢str S
′, thus the latter two

facts imply that the configuration S′;T1, ı :E[e′], T2 is well-typed.

Case E-SN : By performing inversion on the configuration typing judgment twice we obtain that (thread ı)E[(λx. e as τ v)par]
is well-typed. By lemma 7 we have that (λx. e as τ v)par

is well-typed. A well-typed unit value is then constructed

by using the ⊢D R;M ; ∆; Γ; γB ; γB , which is an immediate result of ⊢D R;M ; ∆; Γ; δ(ı); γB (obtained by the ap-

plication of lemma 5 on the typing derivation of (λx. e as τ v)par
). By applying lemma 8 to the typing derivations of

the above facts we have E[()] is well-typed. We also have that R;M ; ∆; Γ; δ ⊢ T1, T2 from the thread typing deriva-

tion. Let δ′ ≡ δ[ı 7→ γB] then by ı /∈ threadid(T1, T2) and the definition of threads typing judgement we have that

R;M ; ∆; Γ; δ′ ⊢ T1, ı :E[()], T2.

We have established that the application term is well-typed: R;M ; ∆; Γ ⊢ (λx. e as τ v)par : ()&(δ(ı), γB). By

inverting the application term derivation twice we have that τ ≡ τ1
γ1→γ2−→ (), R;M ; ∆; Γ, x : τ1 ⊢ e : τ2&(γ̄1; γ̄2),

R;M ; ∆; Γ ⊢ v : τ1&(δ(ı), δ(ı)), and γB ≡ output(δ(ı), ξ, γ1, γ2)

To complete the proof for this case, it suffices that the entire thread list (i.e.,T1, ı :E[()], T2,  : e[v/x]) and the output

store are well-typed. We have established that R;M ; ∆; Γ; δ′ ⊢ T1, ı :E[()], T2. Thus, to show that the thread list is

well-typed it suffices to prove that e[v/x] is well-typed and linear(γ2) ≡ ∅ By applying lemma 20 to the established

fact γB ≡ output(δ(ı), ξ, γ1, γ2) it can be deduced that linear(γ2) ≡ ∅.

By the application of lemma 18 to the typing derivation of v (see above) we have that R;M ; ∅; ∅ ⊢ v : τ1&(∅, ∅). We

substitute v in the body of e by using lemma 11 to obtain R;M ; ∆; Γ ⊢ e[v/x] : τ2, (γ̄1; γ̄2). Thus, there exists a

 /∈ threadid(T1, T2) ∪ {ı} such that R;M ; ∆; Γ; δ′[ 7→ γ̄1] ⊢ T1, ı :E[()], T2,  : e[v/x].

By applying lemma 18 to the typing derivation of the function abstraction we have that the abstraction is well-typed

under an empty ∆ and Γ. Therefore, there exist no elements of the form ρ in the domain of γ1 ∪ γ2. By inversion of the

strengthened typing derivation we have that the function type is well-formed in an empty ∆. Thus, by the definition of

γ̄, which excludes elements of the form ı⊤ ⊲ ǫ, we have that linear(γ̄1) = γ̄1. By applying lemma 25 to the latter fact,

the store typing assumption, and γB ≡ output(δ(ı), ξ, γ1, γ2) we obtain that M ;R; δ[ı 7→ γB ,  7→ γ̄1] ⊢str S and 
is a fresh thread identifier.

27

Lemma 3 (Progress - Thread-local) Let S be a well-typed store withR;M ; δ ⊢str S and let e be a closed well-typed expres-

sion with R;M ; ∅; ∅ ⊢ e : τ & (δ(n);γ). Then exactly one of the following is true:

Case e is a value, or

Case e is of the form E[((λx. e as τ) v)par], or

Case e is of the form E[e′] and there exist S′ and e′′ such that S; e′ →P
n S

′; e′′.

Proof. By induction on the expression typing derivation. It is worth noting that by expression-redex lemma and the fact that e
is well-typed there exists a redex u and an evaluation context E such that E[u] = e. Thus, this proves the first part of the third

term of the conclusion. Therefore, we do not deal with inductive cases in the proof as all redexes are composed of values.

Case T-I , T-U , T-F , T-L , T-R , T-EP , T-Tu, T-PRF : the proof is immediate as u is a value

Case T-Proj , T-App , T-RApp , T-EO , T-V : the proof is a straightforward application of canonical forms lemma and the

operational rules E-P , E-A , E-RP , E-OR , and E-F respectively. In the case of T-App we may have that u is equal to a

parallel application term. In that case the second case of the conclusion holds.

Case T-NRG : The application of lemma 6 to the typing derivation of v1, which is obtained by inverting T-NRG , yields that

v1 ≡ rgnk. It suffices to show that the premise of E-NR , namely (, S1) = newrgn(k, S) is satisfied. This can

be shown by applying lemma 27 to store typing derivation M ;R; δ ⊢str S, which is obtained by the assumption of

progress theorem, and live(δ(ı), {k}), which is obtained by inversion of T-NRG .

Case T-NR : The application of lemma 6 to the typing derivation of v2, which is obtained by inverting T-NR , yields that

v1 ≡ rgnk. To perform a single step, we need to prove that E-NRF applies. We already have that the term has the

appropriate form, thus it suffices to prove the premise of E-NRG , which is (ℓ, S1) = alloc(, S, v1). By inversion of

T-NR we have that R;M ; ∅; ∅ ⊢ v1 : τ&(δ(ı); δ(ı)), and accessible(δ(ı), {}). By applying lemma lemma 18 on

the derivation of v1 we obtain R;M ; ∅; ∅ ⊢ v1 : τ&(∅; ∅). By applying lemma 26 to the latter derivation as well as

accessible(δ(ı), {}) and the store typing M ;R; δ ⊢str S we have that (ℓ, S1) = alloc(, S, v1).

Case T-CP : The application of lemma 6 to the typing derivation of v1, which is obtained by inverting T-NR , yields that v1 ≡
rgnk. To perform a single step, we need to prove that E-C or E-CB can be applied. We have already established that the

term has the appropriate form. Both operational rules share the same premise so it suffices to prove updcapı(k, S, ψ, η)
is defined. If updcap returns an identical store then rule E-CB applies otherwise E-C can be used. By applying

lemma 24 to modcap(γ, ψ, η, ı) , which is obtained by inverting T-CP , and the store typing derivation, which is

obtained from the progress theorem assumption, we have that updcapk(ı, S, ψ, η) is defined.

Case T-D : The application of lemma 6 to the typing derivation of v, which is obtained by inverting T-D , yields v ≡ locℓ. Fur-

ther, inversion of the typing derivation of locℓ yields that ℓ ∈ dom(M) and ⊢D R;M ; ∅; ∅; δ(ı); δ(ı). The latter deriva-

tion can be used to construct a typing derivation of a dummy value v of typeM(ℓ): R;M ; ∅; ∅ ⊢ v : M(ℓ)&(δ(ı); δ(ı)).

By applying lemma 28 on the derivation for the dummy value v, live(δ(ı), {}), which is obtained by inversion of T-D ,

the fact that ℓ ∈ dom(M), and the store typing assumption, we have that (S′, v1) ≡ xupdateı(S, ℓ, v). This implies

v1 ≡ lookupı(S, ℓ). Therefore, rule E-D can be applied to perform a single step.

Case T-A : Similar to the proof of T-D (i.e., use lemma 28 to prove premise of E-AS).

Lemma 4 (Preservation - Thread-local) Let e be a well-typed expression with R;M ; ∆; Γ ⊢ e : τ & (δ(n);γ) and let S be

a well-typed store with R;M ; δ ⊢str S. If the operational semantics takes a step S; e →P
n S′; e′, then there exist R′ ⊇ R,

M ′ ⊇M and γ′ such that the resulting expression and the resulting store are well-typed with R′;M ′; ∆; Γ ⊢ e′ : τ & (γ′;γ)
and R;M ; δ[n 7→ γ′] ⊢str S

′.

Proof. By induction on the typing derivation. It is worth noting that e is a redex, which is immediate by the definition of

evaluation relation. Henceforth, we use u where e should be used to stress that u is a redex.

Case T-I , T-U , T-F , T-L , T-R , T-EP , T-Tu, T-PRF : the proof is immediate as u is a value and the assumption that we perform

a single operational step does not hold.

Case T-Proj : Immediate by observing that the tuple is well-typed, so its th premise will also be well-typed. Further, the

resulting store is the same as the original, hence the store typing assumption gives us that it is also well-typed.

Case T-RApp: Immediate once the region substitution lemma (10) is applied to the premise of this typing derivation.

28

Case T-V : By inversion of T-V , we have that x : τ ∈ Γ0,Γ. Γ0 is a list of program function names mapped to their types. The

premise of T-V P ⊢ Γ0 in conjuction with the premise of rule E-F , namely defx=f ∈ P , imply that ∅; ∅; ∅; ∅ ⊢ f :
τ&(∅; ∅). By applying lemmas 14 (∅ ⊆ R), 15 (∅ ⊆ M), 16 (∅ ⊆ ∆), 17 (∅ ⊆ Γ) and 13 (R; ∆ ⊢ δ(n),by 5 lemma

on typing derivation of T-V) on the typing derivation of function f we have that: R;M ; ∆; Γ ⊢ f : τ&(δ(n); δ(n)).

Therefore, typing is preserved. The output store S′ is identical to the input store, thus it is well-typed by the store typing

assumption.

Case T-CP : There exist two operational rules which apply for this case. If rule E-CB applies then the proof is immediate

as the resulting configuration is identical to the initial configuration. If rule E-C applies then the typing preservation is

immediate as this rule returns a unit value, which is typeable under any well-formed typing context (by lemma 5 and

the definition of T-U). In particular, R;M ; ∆; Γ ⊢ () : 〈〉&(δ(n); δ(n)).

We have established that typing is preserved. To complete the proof it suffices to show that store typing is preserved

for rule E-C as the output store S′ differs in respect to the input store S. Inversion of the T-CP derivation yields

γ′ ≡ modcap(δ(n), ψ, η, k). By applying lemma 24 to the store typing assumption and the modcap fact, we have

that S 6≡ S′ ⇒ M ;R; δ[n 7→ γ′] ⊢str S
′. We have established that S′ 6≡ S, thus the new store S′ is well-typed:

M ;R; δ[n 7→ γ′] ⊢str S
′.

Case T-NRG : It suffices to prove that the body of new regionas well as the resulting store are well-typed :

Store: The premise of S;newrgn ρ, x at rgn in e2 → P
ı S1; e2[k/ρ][k/x] yields (k, S1) ≡ newrgn(, S).

Finally, the inversion of the typing derivation of newrgn construct yields that live(δ(n), ) holds. The application of

lemma 21 to the latter two facts and the store typing assumption yields M ;R, k; δ[k 7→ δ(n), ı1,⊥ ⊲ ] ⊢str S1.

Typing derivation: The typing derivation of store S1 implies that k /∈ R.

By inversion of the typing derivation of newrgn we have that R;M ; ∆, ρ; Γ, x : rgn(ρ) ⊢ e2 : τ&(γ1, γ2),

where γ1 ≡ δ(n), ρ1,⊥ ⊲  and ρ /∈ dom(γ2).

The application of lemma 14 to the typing derivation of e2 and the fact that k /∈ R yields R, k;M ; ∆, ρ; Γ, x :
rgn(ρ) ⊢ e2 : τ&(γ1, γ2). We then apply lemma 10 on the latter fact andR, k ⊢ k (immediate) to obtainR, k;M ; ∆; Γ[k/ρ], x :
rgn([k/ρ]) ⊢ e2[k/ρ] : τ [k/ρ]&(γ1[k/ρ], γ2[k/ρ]). By lemma 5 of the original typing derivation of newrgn con-

struct we have that the typing the context is not defined in terms of ρ (i.e. ρ is fresh). Further, the premise of newrgn
derivation suggests that τ is also independent of ρ (i.e. R; ∆ ⊢ τ). Hence, by the above facts and the definition of the

substitution relation, the typing derivation of e2 becomes R, k;M ; ∆; Γ, x : rgn(k) ⊢ e2[k/ρ] : τ&(γ3, γ2), where

γ3 ≡ δ(ı), k1,⊥ ⊲ .

The inversion of the typing derivation of newrgn construct yieldsR;M ; ∆; Γ ⊢ rgnk : rgn(k)&(δ(n); δ(n)).

By lemma 14 and the fact that k /∈ R we have that R, k;M ; ∆; Γ ⊢ rgnk : rgn(k)&(δ(n); δ(n)). The application of

lemma 18 to the latter derivation yieldsR, k;M ; ∅; ∅ ⊢ rgnk : rgn(k)&(∅; ∅). By applying lemma 11 to the last deriva-

tion and the fact that R, k;M ; ∆; Γ, x : rgn(k) ⊢ e2[k/ρ] : τ&(γ3, γ2) we obtain R, k;M ; ∆; Γ ⊢ e2[k/ρ][rgnk/x] :
τ&(γ3, γ2).

Case T-D : The store typing assumption yields that R;M ; ∅; ∅ ⊢ v : M(ℓ)&(∅; ∅). By performing inversion twice on the

typing derivation of deref v construct, we have that M(ℓ) ≡ τ . Hence, the type is preserved: R;M ; ∅; ∅ ⊢ v :
τ&(∅; ∅). Well-formedness lemma 5 of the typing derivation of deref v is ⊢D R;M ; ∆; Γ; δ(n); δ(n). We can use

well-formedness to construct a new derivation for v: R;M ; ∆; Γ ⊢ v : τ&(δ(n); δ(n)). The output store is identical

to the input store hence it is also well-typed.

Case T-A : The proof for the typing preservation is similar to the proof for rule T-D . The store preservation proof is as

follows:

The inversion of the typing derivation of the assignment construct yields R;M ; ∆; Γ ⊢ v : M(ℓ)&(δ(n); δ(n)) and

accessible(δ(n), ), and ref(M(ℓ), ) is the type of the location locℓ at the left hand side of the assignment construct.

The premise of the operational rule E-AS implies that (S′, v1) ≡ xupdaten(S, ℓ, v). We can apply lemma 22 to the

above facts and the store typing assumption to obtain that the new store S1 is well-typed (M ;R; δ ⊢str S1).

Case T-NR : The proof for the typing preservation is similar to the proof for rule T-D . It suffices to prove that S′ is well-typed.

The inversion of the typing derivation of the memory allocation construct yields live(δ(n), {}) holds. The premise of

the operational rule E-NRF gives (ℓ, S′) ≡ alloc(, S, v). We can apply lemma 23 to the above facts to obtain that the

new store S′ is well-typed (M, ℓ 7→ (τ, );R; δ ⊢str S
′). It should be noted that τ is the type of the initialization value

v of the allocation construct.

Case T-EO : By performing a similar proof to T-NRG case, we obtain R;M ; ∆; Γ ⊢ e[ı/ρ][v1/x] : τ&(γ3, γ4), where

γ3 ≡ δ(n), ı⊤ ⊲ ǫ[ı/ρ], γ4 ≡ γ5, ı
⊤ ⊲ ǫ[ı/ρ] and γ5 is the output effect of the entire construct, and v1 is the value hidden

in the existential package. By applying lemma 19 to the above typing derivation we have R;M ; ∆; Γ ⊢ e[ı/ρ][v1/x] :
τ&(δ(n), γ5). The resulting store is identical to the input store, hence it is well-typed by the preservation assumption.

Case T-App: The store preservation proof is immediate as the output store is identical to the input store. The proof for

the typing preservation is similar to the previous proofs. Briefly, the function application typing derivation is inverted

twice, so as to obtain R;M ; ∆; Γ, x : τ1 ⊢ e : τ2(γ1; γ2). By inversion of the application derivation we have that

R;M ; ∆; Γ ⊢ v : τ1&(δ(n); δ(n)) and γ3 ≡ output(δ(n), seq, γ1, γ2) The application lemma 18 to the typing

derivation of v yields: R;M ; ∅; ∅ ⊢ v : τ1&(∅; ∅). Now lemma 11 is applied to the typing derivation of v and e to

obtain: R;M ; ∆; Γ ⊢ e[v/x] : τ2&(γ1; γ2). Finally, lemma 12 is applied to R;M ; ∆; Γ ⊢ e[v/x] : τ2&(γ1; γ2) and

γ3 ≡ output(δ(n), seq, γ1, γ2) to obtain R;M ; ∆; Γ ⊢ e[v/x] : τ2((δ(n); γ3).

29

Theorem 1 (Type safety) Let R0, δ0, S0 and T0 be defined as in page 9. If the initial configuration S0;T0 is well-typed

with R0; ∅; ∅; ∅; δ0 ⊢C S0;T0 and the operational semantics takes any number of steps S0;T0
P ∗
Sn;Tn, then the resulting

configuration Sn;Tn is not stuck.

Proof. The proof is trivial. Assume that we perform n steps, where n ∈ IN . We obtain that Sn;Tn is well typed, in

with respect to some Rn, Mn and δn, by applying n times lemma 2, starting from S0;T0. Then, we apply lemma 1

to prove that Sn;Tn is not stuck.

Lemma 5 (Well-Formedness) R;M ; ∆; Γ ⊢ e : τ & (γ1;γ2) ⇒⊢WF R;M ; ∆; Γ; γ1; γ2

Proof. Straightforward proof by induction on the expression typing derivation.

Lemma 6 (Cannonical Forms) R;M ; ∆; Γ ⊢ v : τ & (γ1;γ2) ⇒
τ ≡ 〈〉 ⇒ v ≡ () ∧
τ ≡ (τ1, . . . , τn) ⇒ v ≡ (v1, . . . , vn) ∧
τ ≡ rgn(ı) ⇒ (v ≡ rgnı ∧ ı ∈ R) ∧
τ ≡ ref(τ, ı) ⇒ (v ≡ locℓ ∧ ℓ 7→ (τ, ı) ∈M) ∧
τ ≡ int ⇒ v ≡ n ∧
τ ≡ τ1

γ1→γ2−→ τ2 ⇒ v ≡ λx. e as τ1
γ1→γ2−→ τ2 ∧

τ ≡ ∀ρ. τ ⇒ v ≡ Λρ. f ∧
τ ≡ ∃ρ[ǫ]. τ ⇒ v ≡ pack r, v as τ

Proof. Straightforward proof by observation of the value typing derivations.

Lemma 7 (Inversion) R;M ; ∆; Γ ⊢ E[e] : τ1 & (γ1;γ2) ⇒ ∃γ3, τ, R;M ; ∆; Γ ⊢ e : τ & (γ1;γ3)

Proof. By straightforward induction on the shape of the evaluation context.

Case �[e] then proof is immediate.

Case (prj E)[e]: The assumption implies that R;M ; ∆; Γ ⊢ (prj E)[e] : τ1 & (γ1;γ2) or equivalently R;M ; ∆; Γ ⊢
prj E[e] : τ1 & (γ1;γ2). By inverting the latter derivation we obtain thatR;M ; ∆; Γ ⊢ E[e] : (τ1×, . . . ,×τn) & (γ1;γ2).

By induction hypothesis ∃γ3, τ.R;M ; ∆; Γ ⊢ e : τ & (γ1;γ3).

Case ((v1, . . . , E, . . . en))[e]: Similar to the above proof structure.

Case ((E e2)
ξ)[e]: Similar to the above proof structure.

Case (((v1) E)ξ)[e]: Similar to the above proof structure.

Case (capψηE)[e]: Similar to the above proof structure.

Case (E[r])[e]: Similar to the above proof structure.

Case (newrgn ρ, x at E in e2)[e]: Similar to the above proof structure.

Case (derefE)[e]: Similar to the above proof structure.

Case (E := e2)[e]: Similar to the above proof structure.

Case (locℓ := E)[e]: Similar to the above proof structure.

Case (new E at e2)[e]: Similar to the above proof structure.

Case (new v at E)[e]: Similar to the above proof structure.

Case (pack r, E as τ)[e]: Similar to the above proof structure.

Lemma 8 (Replacement) R;M ; ∆; Γ ⊢ E[e1] : τ1 & (γ1;γ2) ∧ R;M ; ∆; Γ ⊢ e1 : τ2 & (γ1;γ3) ∧ R;M ; ∆; Γ ⊢ e2 :
τ2 & (γ4;γ3) ⇒ R;M ; ∆; Γ ⊢ E[e2] : τ1 & (γ4;γ2)

Proof. By straightforward induction on the shape of the evaluation context. The intuition behind this proof is that the substitu-

tion of e2 for e1 in the evaluation context E will not surpise its environment as both e1 and e2 yield the same output effect. In

regards to the input effect, we know that the environment will not be surprised as the expressions preceding e1 will definately

be values and can be given any effect provided that their input and output effects are the same (lemma 13).

30

Case �[e] then proof is immediate.

Case (prj E)[e1]: The assumption implies thatR;M ; ∆; Γ ⊢ (prj E)[e1] : τ1 & (γ1;γ2) or equivalentlyR;M ; ∆; Γ ⊢
prj E[e1] : τ1 & (γ1;γ2). By inverting the latter derivation we obtain thatR;M ; ∆; Γ ⊢ E[e1] : (τ1×, . . . ,×τn) & (γ1;γ2).

The application of the induction hypothesis on the latter derivation and the assumption on the typing derivation of e2
yields R;M ; ∆; Γ ⊢ E[e2] : τ & (γ4;γ2). Now, T-Proj can be applied to obtain R;M ; ∆; Γ ⊢ prj E[e2] :
τ & (γ4;γ2) or equivalently R;M ; ∆; Γ ⊢ (prj E)[e2] : τ & (γ4;γ2).

Case (new v at E)[e]: By inversion of the typing derivation of the memory allocation construct we have that R;M ; ∆; Γ ⊢
v : τ1&(γ1, γ1). The application of lemma 13 on the latter judgement and the fact thatR; ∆ ⊢ γ4 (obtained by applying

lemma 5 to the derivation of e2) yieldsR;M ; ∆; Γ ⊢ v : τ1&(γ4, γ4). The inversion of the memory allocation construct

also yields γ3 ⊢abl r and R;M ; ∆; Γ ⊢ E[e] : rgnr&(γ1, γ2). The application of the induction hypothesis on the

derivation of E[e] as well as the derivation of e2 (assumption) yields R;M ; ∆; Γ ⊢ E[e2] : τ & (γ4;γ2). Now,

T-NR can be applied to the latter judgment, the new derivation of v, and the accessibility judgement of r (abl) to

obtain R;M ; ∆; Γ ⊢ new v at E[e2] : ref(τ1, r) & (γ4;γ2) or equivalently R;M ; ∆; Γ ⊢ (new v at E)[e2] :
ref(τ1, r) & (γ4;γ2) .

Case ((v1, . . . , E, . . . en))[e]: Similar to the above proof structure.

Case ((E e2)
ξ)[e]: Similar to the above proof structure.

Case (((v1) E)ξ)[e]: Similar to the above proof structure.

Case (capψηE)[e]: Similar to the above proof structure.

Case (E[r])[e]: Similar to the above proof structure.

Case (newrgn ρ, x at E in e2)[e]: Similar to the above proof structure.

Case (derefE)[e]: Similar to the above proof structure.

Case (E := e2)[e]: Similar to the above proof structure.

Case (locℓ := E)[e]: Similar to the above proof structure.

Case (new E at e2)[e]: Similar to the above proof structure.

Case (pack r, E as τ)[e]: Similar to the above proof structure.

Lemma 9 (Expression-Redex) R;M ; ∆; Γ ⊢ e : τ1 & (γ1;γ2) ∧ e 6≡ v1 ⇒ ∃E[u].E[u] ≡ e ∧ u 6≡ v2

Proof. Straightforward proof by induction on the typing derivation.

Case T-I , T-U , T-F , T-L , T-R , T-PRF then the proof is immediate as e is not a value.

Case T-V : Immediate as it holds for E ≡ � and u ≡ x 6≡ v.

Case T-Proj : By observing the shape of the expression of T-Proj typing derivation, e ≡ prj e1. If e1 is a value then

the proof is immediate (E ≡ � and u ≡ prj e1). Otherwise, the application of the induction hypothesis on the

typing derivation of e1 (obtained from T-Proj inversion) yields that ∃E[u].E[u] ≡ e1 ∧ u 6≡ v2. Consequently,

∃E.prj E[u] ≡ e ∧ u 6≡ v2 or equivalently, ∃E.(prj E)[u] ≡ e ∧ u 6≡ v2.

Case T-NR : By observing the shape of the expression of T-NR typing derivation, e ≡ new e1 at e2. If e1 and e2 are both a

values then the proof is immediate (E ≡ � and u ≡ new e1 at e2). Otherwise, if e1 is not a value the application of the

induction hypothesis on the typing derivation of e1 (obtained from T-NR inversion) yields that ∃E[u].E[u] ≡ e1 ∧ u 6≡
v2. Consequently, ∃E.new E[u] at e2 ≡ e ∧ u 6≡ v2 or equivalently, ∃E.(new E at e2)[u] ≡ e ∧ u 6≡ v2. The

last case is that e1 is a value and e2 is not. By applying similar reasoning we can prove that ∃E.(new e1 at E)[u] ≡
e ∧ u 6≡ v2.

Case T-App , T-RApp , T-V ,T-EO , T-NRG , T-CP , T-D , T-A , T-EP , T-Tu: We can perform similar reasoning to prove the

remaining cases.

Lemma 10 (Region Substitution) R;M ; ∆, ρ; Γ ⊢ e : τ1 & (γ1;γ2) ∧ R; ∆ ⊢ r ⇒ R;M ; ∆; Γ[r/ρ] ⊢ e[r/ρ] :
τ1[r/ρ] & (γ1[r/ρ];γ2[r/ρ])

Proof. By induction on the typing derivation for expressions.

31

Case T-I , T-U , T-L , T-R : These derivations have a single premise: ⊢D R;M ; ∆, ρ; Γ; γ1; γ1. We shall only discuss about the

assumptions of the well-formedness derivation that will be affected by the substitution of r for ρ, namely R; ∆, ρ ⊢ Γ
and R; ∆, ρ ⊢ γ1. The substitution of each occurence of ρ in Γ and γ1 allow us to conclude that R; ∆ ⊢ Γ[r/ρ]
and R; ∆ ⊢ γ1[r/ρ] (this can be shown by an easy induction on the structure of the above derivations). Therefore,

by combining the above derivations with the premises of well-formedness that do not get affected by the substitu-

tion we have that: ⊢D R;M ; ∆; Γ[r/ρ]; γ1[r/ρ]; γ1[r/ρ]. Hence it is possible to construct a derivation of the form

R;M ; ∆; Γ[r/ρ] ⊢ v : τ&(γ1[r/ρ]; γ1[r/ρ]), where v is an integer, a unit value, a region handle or a run-time location.

It should be noted that the type τ does not get affected by the region substitution as in the case of T-R the type is of the

form rgn(ı) and ı ∈ R. The same applies to T-L as well-formedness suggests that R ⊢ M (i.e. M is independent of

∆). The types of T-I and T-U are constant so they also do not get affected.

Case T-F : By weakening the well-formedness assumption as we did in the previous case we have that: ⊢D R;M ; ∆; Γ[r/ρ]; γ1[r/ρ]; γ1[r/ρ]
. By applying the induction hypothesis on the derivation of the function body e we have that R;M ; ∆; Γ[r/ρ], x :
τ [r/ρ] ⊢ e[r/ρ] : τ2[r/ρ]&(γ3[r/ρ], γ4; [r/ρ]γ5[r/ρ] γ4)[r/ρ]. The proof that γ1 ⊢out γ3; γ4 implies γ1[r/ρ] ⊢out
γ3[r/ρ]; γ4[r/ρ] is trivial. Therefore, we can safely deduce thatR;M ; ∆; Γ[r/ρ] ⊢ (λx. e as τ)[r/ρ] : τ [r/ρ]&(γ1[r/ρ]; γ1[r/ρ].

Case T-V : By weakening the well-formedness assumption as we did in the previous case we have that: ⊢D R;M ; ∆; Γ[r/ρ]; γ1[r/ρ]; γ1[r/ρ]
. After substitution of ρ, the premise (x 7→ τ [r/ρ] ∈ (Γ0,Γ)[r/ρ] still holds as the domain of Γ0,Γ is that same before

and after substitution. Hence the proof we can derive that R;M ; ∆; Γ[r/ρ] ⊢ x : τ [r/ρ]&(γ1[r/ρ]; γ1[r/ρ])

Case T-App: We apply the induction hypothesis on both subexpressions e1 and e2 to obtain that R;M ; ∆; Γ[r/ρ] ⊢ e1 :

(τ1
γa→γb−→ τ2)[r/ρ]&(γ1[r/ρ]; γ2[r/ρ]) and R;M ; ∆; Γ[r/ρ] ⊢ e2 : τ1[r/ρ]&(γ3[r/ρ]; γ4[r/ρ]). The proof that γ5 ≡

output(γ4, ξ, γa, γb) implies γ5[r/ρ] ≡ output(γ4[r/ρ], ξ, γa[r/ρ], γb[r/ρ]) is trivial and has not been included here.

Therefore, we may conclude that R;M ; ∆; Γ[r/ρ] ⊢ (e1 e2)
ξ : τ2[r/ρ]&(γ1[r/ρ]; γ5[r/ρ]).

Case T-CP , T-EP , T-Tu, T-PRF , T-Proj , T-RApp , T-NRG , T-NR , T-D ,T-EO T-A : We can perform similar reasoning to

prove the remaining cases.

Lemma 11 (Variable Substitution) R;M ; ∆; Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2)∧R;M ; ∅; ∅ ⊢ v : τ1 & (∅;∅) ⇒ R;M ; ∆; Γ ⊢
e[v/x] : τ2 & (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma 12 (Context Weakening) R;M ; ∆; Γ ⊢ e : τ1 & (γ5;γ6) ∧ γ8 ≡ output(γ5, seq, γ6, γ7) ⇒ R;M ; ∆; Γ ⊢ e :
τ1 & (γ7;γ8)

Proof. This lemma can be directly derived by applying lemma 29 to the assumptions of this lemma. The application yields

∃γ9.R; ∆ ⊢ γ9 ∧ γ9 ≡ output(γ5, seq, γ6, γ7) ∧ γ8 ≡ output(γ6, seq, γ6, γ9) ∧ R;M ; ∆; Γ ⊢ e : τ1&(γ7; γ9).

By observing γ9 ≡ output(γ6, seq, γ6, γ8) it is immediate that γ9 ≡ γ8. Thus, R;M ; ∆; Γ ⊢ e : τ1&(γ7; γ8)

Lemma 13 (Value-Effect) R;M ; ∆; Γ ⊢ v : τ1 & (γ1;γ1) ∧R; ∆ ⊢ γ3 ⇒ R;M ; ∆; Γ ⊢ v : τ1 & (γ3;γ3)

Proof. By case analysis on value typing derivations. The proof is trivial but we provide the key steps behind the proof. By

applying inversion in any of the value typing derivations we obtain the well-formedness derivation : ⊢D R;M ; ∆; Γ; γ1; γ1.

By observing the premises of this derivation we have R; ∆ ⊢ γ1. It is possible to replace R; ∆ ⊢ γ1 with the the assumption

derivation, namely R; ∆ ⊢ γ3 to obtain ⊢D R;M ; ∆; Γ; γ3; γ3. Now we may use the remaining premises of value typ-

ing, which remain intact, along with the modified well-formedness derivation to formulate the new value typing derivation:

R;M ; ∆; Γ ⊢ v : τ1 & (γ3;γ3).

Lemma 14 (Region Context Weakening) R ⊆ R1 ∧ R;M ; ∆; Γ ⊢ e : τ & (γ1;γ1) ⇒ R1;M ; ∆; Γ ⊢ e : τ & (γ1;γ1)

Proof. Straightforward induction on the expression typing derivation.

The base case is to weaken the well-formedness judgement of value typing derivations so that ⊢D R;M ; ∆; Γ; γ1; γ1

becomes ⊢D R1;M ; ∆; Γ; γ1; γ1. The well-formdness weakening can be shown by performing a trivial induction on its

premises. As in the previous lemma lemma 13, we can combine the weakened well-formedness derivation with the remaning

premises of value typing derivations to obtainR1;M ; ∆; Γ ⊢ v : τ & (γ1;γ1). In the case of T-R we need to show that ı ∈ R1

but this is immediate as ı ∈ R and R ⊆ R1.

The inductive step is to prove that for each non-value typing derivation it is possible to perform R weakening. This can

be shown by applying the induction hypothesis on its subexpression typing derivations and re-writing the derivation using the

the weakened typing premises. In some derivations we also need to prove that if R; ∆ ⊢R r or R; ∆ ⊢T τ then R1; ∆ ⊢R r
and R1; ∆ ⊢T τ respectively. Again, both proofs are immediate by observing their structure and using facts from the well-

formedness weakening (i.e. ∀r ∈ R.R1; ∆ ⊢ r suffices to prove both).

32

Lemma 15 (Memory Context Weakening) M ⊆M1 ∧ R;M ; ∆; Γ ⊢ e : τ & (γ1;γ1) ⇒ R;M1; ∆; Γ ⊢ e : τ & (γ1;γ1)

Proof. Similar to the previous proof.

Lemma 16 (Type Variable Context Weakening) ∆ ⊆ ∆1 ∧ R;M ; ∆; Γ ⊢ e : τ & (γ1;γ1) ⇒ R;M ; ∆1; ⊢ e :
τ & (γ1;γ1)

Proof. Similar to the previous proof.

Lemma 17 (Variable Context Weakening) Γ ⊆ Γ1 ∧ R; ∆ ⊢ Γ1 ∧ R;M ; ∆; Γ ⊢ e : τ & (γ1;γ1) ⇒ R;M ; ∆; Γ1 ⊢ e :
τ & (γ1;γ1)

Proof. Similar to the previous proof. It is worth mentioning that in the base case the well-formedness weakening is immediate

by the second assumption, namely R; ∆ ⊢ Γ1.

Lemma 18 (Value Strengthening) R;M ; ∆; Γ ⊢ v : τ & (γ1;γ1) ⇒ R;M ; ∅; ∅ ⊢ v : τ & (∅;∅)

Proof. By case analysis on value typing derivations. The proof is trivial as it suffices to prove well-formedness effect strenghen-

ing, which is immediate from the definition of well-formedness: ⊢D R;M ; ∆; Γ; γ1; γ1 can be immediately be strengthened to

⊢D R;M ; ∆; Γ; ∅; ∅. We can then combine the strengthened well-formedness derivation with the remaining premises of each

value derivation, which remain intact, to obtain R;M ; ∅; ∅ ⊢ v : τ & (∅;∅).

Lemma 19 (Alias Strengthening) R;M ; ∆; Γ ⊢ e : τ & (γ1, ı
⊤ ⊲ ǫ, ı;γ2, ı

⊤ ⊲ ǫ, ı) ⇒ R;M ; ∆; Γ ⊢ e : τ & (γ1;γ2)

Proof. By induction on the expression typing derivations.

Case T-I , T-U , T-F , T-L , T-R , , T-PRF , T-V : The proof for values is immediate as we only need to strengthen the well-

formedness derivation. Assume that the well-formedness premise, which is common for all values, is of the form

⊢D R;M ; ∆; Γ; γ1, ı
⊤ ⊲ ǫ, ı; γ1, ı

⊤ ⊲ ǫ, ı then by its definition it is possible to remove effect elements provided that

the input and output effects are the same (values do not modify effects): ⊢D R;M ; ∆; Γ; γ1; γ1. The strengthened

well-formedness derivation along with the unaffected premises of the value derivations yield: R;M ; ∆; Γ ⊢ v :
τ & (γ1;γ1).

Case T-Proj , T-RApp , T-Tu, T-EP , T-EO : These derivations have no effect checking or modification judgements at their

premises hence it suffices to apply the induction hypothesis on the subexpression typing premises and re-write the

typing derivation by using the strengthened typing premises.

Case T-App: As above, we can apply the induction hypothesis on the subexpression derivations, which are the premises of

T-App , to obtain R;M ; ∆; Γ ⊢ e1 : τ1
γa→γb−→ τ2&(γ1, γ3), R;M ; ∆; Γ ⊢ e2 : τ1&(γ3, γ4), and γ4; ξ ⊢ γa; γb; γ2.

The first two derivations hold by the induction hypothesis. The latter derivation holds even though ı⊤ ⊲ ǫ, ı has been

removed from the environment input (γ4, ı
⊤ ⊲ ǫ, ı) and output (γ2, ı

⊤ ⊲ ǫ, ı) effect. This is immediate by observing that

this judgement ignores elements of the form ı⊤ ⊲ ǫ1.

Case T-CP : In this case, the proof can be performed in two steps. Firstly, the induction hypothesis is applied to the typing

derivation of the sub-expression e1. This yields R;M ; ∆; Γ ⊢ e1 : rgn(r)&(γ1, γ2). The second step requires to

prove that γ2, ı
⊤ ⊲ ǫ, ı;ψ; η; r ⊢tcap γ3, ı

⊤ ⊲ ǫ, ı implies γ2;ψ; η; r ⊢tcap γ3. This is immediate by observing that tcap
judgement make use of linear capabilities only. Therefore, we can safely ignore non-linear capabilities.

Case T-NRG : Similarly, we apply the induction hypothesis on the sub-expression derivations e1 and e2. Now, we have to

prove that γ2, ı
⊤ ⊲ ǫ, ı; r1 ⊢liv γz implies γ2; r1 ⊢liv γz . This can be proven by a straightforward observation of liv

relation: elements of the form ⊤ ⊲ ǫ′ are ignored when encountered in γ. Therefore, it is possible to remove ı⊤ ⊲ ǫ from

γ2, ı
⊤ ⊲ ǫ, ı and still obtain the same outcome γ2; r1 ⊢liv γz .

Case T-NR : Similar to the proof for T-NRG .

Case T-D , T-A : Similarly, we apply the induction hypothesis on the sub-expression derivations to remove ı⊤ ⊲ ǫ, ı from the

input and output effects. We also have to prove that γ2, ı
⊤ ⊲ ǫ, ı ⊢abl r1 implies γ2 ⊢abl r1. The proof is the same as

for liv (see T −NRG).

Lemma 20 (Spawn-Deallocate) output(γ1, par, γ2, γ3) ≡ γ4 ⇒ linear(γ2) ≡ ∅

33

Proof. output(γ1, par, γ2, γ3) ≡ γ4 implies ∃ǫ.(γ4, ǫ) ≡ tout(par, sumt(γ2), sumt(γ3), γ1). By the definition of γ2, γ2

consists of all effects of sumt(γ2) except the ones with a zero region capability. Thus, it suffices to show that all linear effects

in sumt(γ2) have a zero region capability.

By observing the premise of tout for effects, whose exponent is of the form κ1, κ2 (as mentioned earlier other kinds of

effects are not transformed), and given the fact that ξ ≡ par, the capability conversion table 1 yields that the region capability

κ′
1 of each transformed effect will be zero.

Lemma 21 (Preservation-Add Region) M ;R; δ ⊢str S ∧ live(δ(k), {}) ∧ (ı, S1) ≡ newrgn(, S) ∧ ı /∈ {rn(I) | I ∈
domI(S)} ⇒M ;R, k; δ[k 7→ δ(k), ı1,⊥ ⊲ ] ⊢str S1

Proof. To prove M ;R, k; δ[k 7→ δ(k), ı1,⊥ ⊲ ] ⊢str S1 it suffices to prove only two of is premises, namely δ[k 7→
δ(k), ı1,⊥ ⊲ ] ⊢cns S1 and R, ı = {rn(I) | I ∈ dom(S1)}, as the other premises are related to the consistency between

the store and the location typing context M and we are not adding new locations to the store S. Thefore, those premises, which

hold for S also hold for S1.

By inversion of the store typing derivation of S we have that R = {rn(I) | I ∈ dom(S)}. Thus, it is immediate that

R, ı = {rn(I) | I ∈ dom(S1)} as domI(S1) = dom(S), (ı, 1 − 1, 0).

To prove δ[k 7→ δ(k), ı1,⊥ ⊲ ] ⊢cns S1 then Q0(δ, k 7→ γ, ı1,⊥ ⊲ ), Q3(S1, δ, k 7→ γ, ı1,⊥ ⊲ ) , Q4(S1, δ, k 7→
γ, ı1,⊥ ⊲ ) ,and ∀ı ∈ dom(δ, k 7→ γ, ı1,⊥ ⊲ ). Q5(δ, k 7→ γ, ı1,⊥ ⊲ , ı, S1)∨Q6(δ, k 7→ γ, ı1,⊥ ⊲ , ı, S1) must hold. From

inversion of cns for store S we have that Q0(δ), Q4(S, δ), Q3(S, δ) , and ∀ı ∈ dom(δ). Q5(δ, ı, S) ∨Q6(δ, ı, S) hold.

- Q0(δ, k 7→ γ, ı1,⊥ ⊲ ) holds as Q0(δ) and the exponent of k 7→ γ, ı1,⊥ ⊲  has the appropriate form.

- Q3(S1, δ, k 7→ γ, ı1,⊥ ⊲ ) holds as Q3(S, δ) holds and rsum(δ, k 7→ γ, ı1,⊥ ⊲ , ı) = 1 (as ı /∈ dom(δ)) and

(ı, 1,−1, 0) ∈ domI(S1).

- Q4(S1, δ, k 7→ γ, ı1,⊥ ⊲ ) holds as Q4(S, δ), (ı, 1,−1, 0) ∈ S1, and ı ∈ dom(δ, k 7→ γ, ı1,⊥ ⊲ ) hold.

- ı /∈ dom(δ) implies that q(δ, ı) = ∅ hence Q1(δ) holds.

- Q2(⊥, ı, k) holds as (ı, 1,−1, 0) ∈ domI(S) and (⊥, 0,−1) belongs to the set of valid configurations (see defn

of Q2).

Therefore, δ, k 7→ γ, ı1,⊥ ⊲  ⊢cns S1 holds.

Lemma 22 (Preservation-Update Value) M ;R; δ ⊢str S ∧ accessible(δ(), {ı})∧ (S, v′) ≡ xupdate(S, ℓ, v)∧R;M ; ∆; Γ ⊢
v : M(ℓ) & (γ1;γ1) ⇒M ;R; δ ⊢str S1

Proof. By observation of the third assumption we deduce that domI(S) = domI(S1). Therefore, cns that holds for S also

holds for S1. Further, the above observation also implies that R = {rn(I) | I ∈ dom(S1)} holds as it does hold for S.

The third assumption also tells us that ℓ 7→ v1 ∈ domℓ(S). The first assumption implies that R;M ; ∅; ∅ ⊢ v1 :
M(ℓ)&(∅; ∅). It suffices to show R;M ; ∅; ∅ ⊢ v : M(ℓ)&(∅; ∅) as all other heap locations and their corresponding values of

S1 are identical to the ones of S. This is immediate by applying lemma 18 to the fourth assumption.

Lemma 23 (Preservation-Add Location) M ;R; δ ⊢str S ∧ R;M ; ∆; Γ ⊢ v : τ & (γ1;γ1) ∧ live(δ(k), {ı}) ∧ (ℓ, S1) ≡
alloc(ı, S, v) ⇒M, ℓ 7→ τ ;R; δ ⊢str S1

Proof. By observation of the third assumption we deduce that domI(S) = domI(S1). Therefore, cns that holds for S also

holds for S1. Further, the above observation also implies that R = {rn(I) | I ∈ dom(S1)} holds as it does hold for S.

The fifth assumption also tells us that ℓ /∈ {ℓ1 | ℓ1 7→ v1 ∈ domℓ(S)}. It suffices to show R;M, ℓ 7→ τ ; ∅; ∅ ⊢ v :
τ&(∅; ∅) as for all other heap locations and their corresponding values, which are identical to the ones of S, we have from str
assumption that ∀ℓ2 ∈ {ℓ1 | ℓ1 7→ v1 ∈ domℓ(S)}.R;M ; ∅; ∅ ⊢ v2 : M(ℓ2)&(∅; ∅). Thus by applying lemma 15 to each one

of them we have that: ∀ℓ2 ∈ {ℓ1 | ℓ1 7→ v1 ∈ domℓ(S)}.R;M, ℓ 7→ τ ; ∅; ∅ ⊢ v2 : M(ℓ2)&(∅; ∅). As mentioned earlier, these

locations are identical for S1 hence, ∀ℓ2 ∈ ({ℓ1 | ℓ1 7→ v1 ∈ domℓ(S1)} \ {ℓ}).R;M, ℓ 7→ τ ; ∅; ∅ ⊢ v2 : M(ℓ2)&(∅; ∅).

The proof is completed by applying lemma 15 and lemma 18 to the second assumption.

Lemma 24 (Preservation/Progress-Capability Modification) M ;R; δ ⊢str S ∧ γ′ ≡ modcap(γ, ψ, η, ı) ⇒ updcapk(ı, S, ψ, η) ≡
S1 ∧ (S1 6≡ S ⇒M ;R; δ[k 7→ γ′] ⊢str S1)

Proof. Prood by case analysis on ψ.

34

Case ψ ≡ R: Assume that δ(k) = γ1, ı
κ1,κ2 ⊲ ǫ, γ = γ1, ı

κ3,κ2 ⊲ ǫ. Then by inversion of the second assumption we have

that:

- κ3 ≡ modη(κ2)

- κ3 > 0 ∨ κ3 > 0̄.

The store typing (first) assumption implies δ ⊢cns S, which in turn implies Q0(δ). Q0 states that κ3 is of the form n1

(i.e., not of the form n̄1). Hence it holds that κ3 > 0.

case (η ≡ −1∧κ2 > 1)∨η ≡ 1: By inversion of cnswe also haveQ3(S, δ), which states the fact that ı belongs to

dom(δ) implies live(S, {ı}) and there exists some I ∈ domI(S) such that rn(I) = ı and rc(I) = n ∈ IN∗. From the

last two facts we can derive updcapk(ı, S, ψ, η) ≡ S1. S1 6≡ S hence the last step is to proveM ;R; δ[k 7→ γ] ⊢str S1.

It suffices to prove δ[k 7→ γ] ⊢cns S1 as the remaining premises of str hold for S1. This is a direct implication of the

fact that the remaining premises hold for S and the heap locations and their corresponding values and region names of

S are identical to the ones of S1. The following hold by inversion of δ ⊢cns S:

Q0(δ), Q4(S, δ), ∀ ∈ dom(δ). Q5(δ, , S) ∨Q6(δ, , S)

Q3(S, δ). The first group of invariants, namely Q0, Q4, Q5, Q6 also hold for S1 and δ[k 7→ γ]. This is

because δ[k 7→ γ] and δ differ only in κ3. Q0 holds as κ3 ∈ IN∗ . Q4 holds as dom(δ) = dom(δ[k 7→ γ]). Q5 and

Q6 are related to lock capabilities of each region in dom(δ[k 7→ γ]), which are identical to the ones of δ. Similarly,

the run-time lock counts of region headers of S are identical to the ones of S1. Therefore, Q5, Q6 hold for S1 and

δ[k 7→ γ]. It suffices to prove that Q3(S1, δ[k 7→ γ]) to complete the proof. Assume that δ′ = δ \ q(δ, ı) and

δ′′ = (δ[k 7→ γ]) \ q((δ[k 7→ γ]), ı) then δ′′ = δ as other region effects than ı are identical. Therefore, we can deduce

that Q3(δ
′, S1) by using the fact that Q3(δ

′, S) (directly derived from Q3(δ, S)) as well as the fact that regions of S1

othen than ı are identical as the ones of S. Therefore, we only need to prove Q3(S1, q((δ[k 7→ γ]), ı)).

- case η ≡ 1: Assume that I ∈ domI(S) and rn(I) = ı then fromQ3(S, q(δ, ı)) we have that rsum(q(δ, ı)) =
rc(I) ∈ IN∗ or rsum(δ[κ 7→ ∅], ı) = rc(I) − κ2. Therefore, rsum(δ[κ 7→ γ], ı) = rsum(δ[κ 7→ ∅], ı) + κ3 or

rsum(δ[κ 7→ γ], ı) = rc(I) − κ2 + κ3. By the fact that κ3 ≡ mod1(κ2) or κ3 = κ2 + 1 we can deduce that

rsum(δ[κ 7→ γ], ı) = rc(I) + 1. This holds as the new region header I ′ of store S1 has the following properties

rn(I ′) = ı and rc(I ′) = rc(I) + 1. Therefore, Q3(S1, q(δ[k 7→ γ], ı)

- case η ≡ −1 and κ2 > 1: Similar proof to the proof of the previous case.

- case η ≡ −1 ∧ κ2 ≡ 1: As in the previous case we have that live(S, {ı}) by inversion of cns and the fact

that ı ∈ dom(δ). If subregions of ı have a non-zero region count then cap will return an S1 such that S1 ≡ S. In

this case the proof is immediate as S1 6≡ S does not hold. If S1 6≡ S then it suffices to prove δ[k 7→ γ] ⊢cns S1

in order to prove str, as the region names of region names as well as the locations and their corresponding values are

identical to the ones of S. Therefore, the premises of str for S also hold for S1 (except for cns that will be proved

shortly). We have that ı /∈ dom(γ) by observing the definition of tcap and using the fact that κ3 ≡ 0. Further,

ı /∈ dom(δ \ {k 7→ γ, ıκ1,κ2 ⊲ ǫ}) as we have a single run-time reference count of ı and only one thread may have ı
in its context, namely thread k. By combining those two facts we have that δ[k 7→ γ] = δ \ {k 7→ γ, ıκ1,κ2 ⊲ ǫ}. Let

δ′ = δ \ {k 7→ γ, ıκ1,κ2 ⊲ ǫ} then the following hold by inversion of cns for S:

- Q0(δ) holds, hence Q0(δ
′) also holds as δ′ ⊆ δ.

- Q3(S, δ), ∀ ∈ dom(δ). Q5(δ, , S) ∨Q6(δ, , S) hold, hence Q3(S1, δ
′), ∀ ∈ dom(δ). Q5(δ

′, , S1)
∨Q6(δ

′, , S1) also hold as δ′ ⊆ δ, ∀I ∈ domI(S1). rn(I) 6≡ ı ⇒ I ∈ domI(S), and ∀ ∈ dom(δ′).live(S1, {})
hold. The last property holds as there exists no child region of ı in δ′. This can be deduced by observing rule cap: All

child regions must have a region count of zero before decrementing ı. Q0(δ, S) tells us that region counts of regions

that belong in δ must be non-zero. δ′ is a subset of δ so it also does not contain child regions of ı. As for remaning

regions, other than ı and its child regions, live(S1, {}) holds byQ3(S, δ) and the fact that δ′ ⊆ δ and ∀I ∈ domI(S1).
rn(I) 6≡ ı⇒ I ∈ domI(S).

- From tcap assumption we have κ2 = 0, otherwise tcap judgement would not hold. As mentioned earlier, ı
belongs only to thread k, and Q3(S, δ) gives us that the sum of lock counts of all threads must be equal to the run-time

lock count. We know that we have a single thread k that owns ı and k 7→ γ, ı1,0 ⊲ ǫ ∈ δ as κ2 = 0. Therefore, if

I ∈ domI(S) and I ′ ∈ domI(S1) and rn(I) = rn(I ′) = ı, then lc(I) = 0. I ′ differs in respect to I in that its region

count is zero therefore: I ′ = (ı, 0, 0, 0) (the last element of this tuple is zero as when a lock reaches the value zero, the

thread owner identifier becomes zero as well). Now, we have that Q4(S, δ), δ = δ′, k 7→ γ, ı1,0 ⊲ ǫ, ∀I ∈ domI(S1).
rn(I) 6≡ ı⇒ I ∈ domI(S), and I ′ = (ı, 0, 0, 0), thus Q4(S1, δ

′) holds.

Case ψ ≡ L: By inversion of the str assumption we have that ∀ ∈ dom(δ). Q5(δ, , S) ∨Q6(δ, , S) holds, hence

Q5(δ, ı, S) ∨Q6(δ, ı, S) also holds (tcap assumption implies that ı ∈ dom(δ)). We proceed by performing a case

analysis:

- Case Q5(δ, ı, S) holds then the lock count of ı is zero as well as its the thread owner. More formally, ∃I ∈
domI(S).rn(I) ≡ ı ∧ lc(I) ≡ 0 ∧ ln(I) ≡ 0. Q5 also gives us that each element of q(δ, ı) is of the form ıκ1,0 ⊲ ǫ.
Assumption tcap can only hold if η = 1. Therefore, ar(I, 1, k) is definable. To complete our proof that cap holds,

we need to live(S, {ı}). This can be obtained from Q3(S, δ). Thus, updcapk(ı, S, L, 1) ≡ S1 holds. Function ar
modifies I , hence S 6≡ S. Therefore, we need to prove that M ;R; δ[k 7→ γ] ⊢str S1 . As mentioned above, S1 differs

from S in respect to the region header I . Hence, all premises of str assumption (except for cns) that hold for S also

hold for S1. Let δ′ = δ[k 7→ γ] , then it is obvious that it suffices to prove δ′ ⊢cns S1 in order to complete our proof.

By observation of tcap it is obvious that only effect ı changes. Hence if δ(k) = γ1, ı
κ1,0 ⊲ ǫ then γ = γ1, ı

κ1,1 ⊲ ǫ.

35

- Q0(δ) holds, hence Q0(δ
′) also holds as δ′ ⊆ δ.

- Q3(S, δ), Q4(S, δ) hold by cns inversion and Q3(S1, δ
′), Q4(S1, δ

′) also hold as S1 differs from S at the

lock count of header I . The region counts remain intact so Q3 and Q4 hold for S1 and δ′.

- ∀ ∈ dom(δ). Q5(δ, , S) ∨Q6(δ, , S) hold by cns inversion, hence ∀ ∈ dom(δ′ \ q(δ′, ı)). Q5(δ
′, , S1)

∨Q6(δ
′, , S1) as S1 differs from S at the lock count of header I . To complete the proof it suffices to show that

Q6(q(δ
′, ı), ı, S1 holds. We mentioned earlier, that for each thread the lock capability of region ı, κ2 is zero. Now we

have a single lock capability for thread k. Thus, the run-time lock count of ı in S1 equals the single thread capability of

thread k. All other lock capabilities remain zero. Therefore, Q6(q(δ
′, ı), ı, S1) holds.

- Case Q6(δ, ı, S) holds then only one thread has a non-zero lock count. If that thread is not k then κ2 = 0 and

η = 1 by observation of the tcap assumption. Therefore, ar(I, 1, k) is definable and will return I intact as another

thread owns region ı. To complete our proof that cap holds, we need to live(S, {ı}). This can be obtained fromQ3(S, δ)
premise of δ ⊢cns S. We have that ar(I, 1, k) is definable as well as live(S, {ı}). Therefore, updcapk(ı, S, L, 1) ≡ S.

S is equal to S1 hence the proof is complete for the case thread k does not hold the lock. If k holds the lock then

assuming that δ′ = δ[k 7→ γ] , we only need to prove that Q6(δ
′, ı, S1) holds. The remaining premises of δ′ ⊢cns S1

hold as δ ⊢cns S holds and S1 differs from S in respect to the lock count of region ı. This can be shown by following

similar reasoning to the previous proof.

Lemma 25 (Preservation-Spawn-Capability Modification) M ;R; δ ⊢str S ∧ δ(ı); par ⊢ γ1; γ2 ⇒ γ3 ∧ γ̄1 = linear(γ1) ⇒
M ;R; δ[ 7→ γ̄1, ı 7→ γ3] ⊢str S

Proof. To prove M ;R; δ[ı 7→ γ3,  7→ γ4] ⊢str S, it suffices to show that δ[ı 7→ γ3,  7→ γ4] ⊢cns S as all premises of str
except for cns, do not take into account δ but only R;M . Further, we know that these premises hold by inversion of the first

assumption so we can use them to prove M ;R; δ[ı 7→ γ3,  7→ γ4] ⊢str S.

Let δ′ = δ[ı 7→ γ3,  7→ γ4], δ1 =
S

p∈dom(γ4[ 7→∅]) q(δ
′, p), and δ2 =

S

p/∈dom(γ4[ 7→∅])) q(δ
′, p).

By inversion of M ;R; δ ⊢str S we have that δ ⊢cns S. By applying inversion on cns we have that:

− Q0(δ) = Q0(δ[ 7→ δ()]) = Q0(δ[ 7→ ∅]) ⊎Q0( 7→ δ()).

− Q3(S, δ) = Q3(S, δ1) ⊎Q3(S, δ2).

− Q4(S, δ)

− ∀k ∈ dom(δ).Q5(δ, k, S)∨Q6(δ, k, S) ≡∀k ∈ dom(δ1).Q5(δ1, k, S)∨Q6(δ1, k, S)∧ ∀k ∈ dom(δ2).Q5(δ2, k, S)∨
Q6(δ2, k, S)

To complete our proof we need to show that the above premises hold for δ′.

− Q4(S, δ
′) holds as Q4 only examines the domain of δ′ and the second and third assumption imply that dom(δ′) =

dom(δ).

− Q0(δ()) by observing the derivation tree of the first assumption: To type-check a function input effect its region

capability (see function F3) must be n or n̄, while the environment input effect must also have a region capability of

the form n1 or n̄1 respectively. By Q0(δ) we can deduce that the environment input effect is of the form n1. Therefore,

the function input effects are also of the form n, and so is the summarized function input effects δ(). Hence, Q0(δ())
holds. We can combine this fact with an earlier fact, in particular Q0(⌈δ⌉) to prove that Q0(δ

′) holds.

− As mentioned in the previous case, for each region k that belongs in dom(γ4) has a region capability of the form n,

then k belongs in dom(δ(ı)), and if k belongs to dom(γ3) then its region capability is n1 − n. Therefore, if k belongs

to dom(γ3) the overall region capability sum of γ3, γ4 for region k, (n1 − n) + n = n1. If k does not belong to

dom(γ3) then the overall region capabilty sum is n, but according to F3 in that case n1 = n. Thus, in both cases

the overall region capability sum is n1. We have from Q3(S, δ1) that I ∈ domI(S) ∧ rn(I) = k ⇒ rc(I) = n1,

therefore Q3(S, δ1) holds. Q3(S, δ2) also holds as it represents the all other regions than k that were not affected (so it

holds from Q3(S, δ \ q(δ, k)), which can be derived from cns of the first assumption). By combinding Q3(S, δ2) and

Q3(S, δ1) we have that Q3(S, δ
′).

− The proof for ∀k ∈ dom(δ′).Q5(δ
′, k, S) ∨Q6(δ

′, k, S) is similar to the earlier case . Briefly, if the lock capability of

some region k of γ3 is ⊥ then k will not exist in the output effect list γ4. If the lock capability of k in δ() is zero then

the proof for region k is immediate. Finally, if the lock capability is non-zero then the corresponding lock capability of

γ3 will have the same value whereas the lock capability in γ4 will be zero. It is obvious that in all cases the original

lock capability (i.e., ∀k ∈ dom(δ).Q5(δ, k, S) ∨Q6(δ, k, S)) is preserved.

Lemma 26 (Progress-Add Location) M ;R; δ ⊢str S ∧ R;M ; ∅; ∅ ⊢ v : τ & (∅;∅) ∧ live(δ(k), {ı}) ⇒ ∃S1, ℓ.(ℓ, S1) =
alloc(, S, v)ℓ /∈ dom(M)

36

Proof. By observation of ifℓ judgement it suffices to show that:

− live(S, {k}): This is immediate by inversion of the first assumption, which gives us that δ ⊢cns S. By the third

assumption we can deduce that k ∈ dom(δ). By combining those two facts we can deduce from cns premise Q3 that

live(S, {k}).

− Assume that I : (H,S2) is a subregion of S and rn(I) = k then ℓ 7→ v can be added to H. This is immediate as ℓ is

a fresh location. This fact implies in conjuction with the first premise that ℓ does not exist in the locations of the entire

store. Therefore, it can be added to H .

Lemma 27 (Progress-Add Region) M ;R; δ ⊢str S ∧ live(δ(ı), {k}) ⇒ ∃S1, .(, S1) ≡ newrgn(k, S) ∧  /∈ R

Proof. By observation of insS judgement it suffices to show that:

− live(S, {k}): This is immediate by inversion of the first assumption, which gives us that δ ⊢cns S. By the second

assumption we can deduce that k ∈ dom(δ). By combining those two facts we can deduce from cns premise Q3 that

live(S, {k}).

−  is a fresh region (third assumption). By inversion of the second assumption it is obvious that it does not exist in the

region names of S, thus it can be inserted.

Lemma 28 (Progress-Update Value) M ;R; δ ⊢str S ∧ accessible(δ(), {ı}) ∧ R;M ; ∆; Γ ⊢ v : τ & (γ1;γ1) ∧ ℓ ∈
dom(M) ⇒ ∃S′, v1.(S

′, v1) ≡ xupdate(S, ℓ, v)

Proof. By observation of the second assumption we have that  ∈ dom(δ). We can invert the first assumption to obtain

δ ⊢cns S. By inversion of cns and the fact that  ∈ dom(δ) we have Q5(δ, , S) ∨ Q6(δ, , S). We now perform a case

analysis on Q5 and Q6:

− Assume Q5(δ, , S) holds. This is a contradiction as the second assumption implies that thread  has a lock capability

for region ı but Q5 implies that for all threads the region capability of ı is zero. Hence Q5 cannot hold.

− It is obvious from the above that Q6((δ, , S) holds. Informally, Q6 implies that there exists exactly one thread whose

lock capability of region ı is non-zero. The second assumption tells us that this thread is . Let κ2 be the lock capability

of region ı of thread . We can deduce from Q6 that Q2(κ2, ı, , S) holds. Lock capability κ2 can have two possible

values:

IfQ2(⊥, ı, , S) κ2 = ⊥ holds then by the definition ofQ2 ∃I ∈ domI(S).rn(I) = ı∧lc(I) = −1∧ln(I) = 0.

If Q2(n, ı, , S) κ2 = ⊥ holds then by the definition of Q2 ∃I ∈ domI(S).rn(I) = ı ∧ lc(I) = n ∧ ln(I) = .

− By the first and fourth assumption we have that ℓ belongs to the locations of S

Therefore, all premises of updℓ are satisfied, thus ∃S′, v1.(S
′, v1) ≡ xupdate(S, ℓ, v)

Lemma 29 (Context Weakening Generalization) R;M ; ∆; Γ ⊢ e : τ&(γ1; γ3)∧R; ∆ ⊢ γ4∧R; ∆ ⊢ γ5∧output(γ4, seq, γ1, γ2) ≡
γ5 ⇒ ∃γ6.R; ∆ ⊢ γ6 ∧ output(γ4, seq, γ1, γ3) ≡ γ6 ∧ output(γ6, seq, γ3, γ2) ≡ γ5 ∧R;M ; ∆; Γ ⊢ e : τ&(γ4; γ6)

Proof. By induction on the expression typing derivation.

Case T-I , T-U , T-F , T-L , T-R , T-V ,T-PRF : In this case the typing derivation is of the form R;M ; ∆; Γ ⊢ v : τ&(γ1; γ1).

The application of lemma 5 to this derivation yields ⊢D R;M ; ∆; Γ; γ1; γ1. The assumptions R; ∆ ⊢ γ4 R; ∆ ⊢ γ5

and the well-formedness fact imply that ⊢D R;M ; ∆; Γ; γ5; γ5. We can then re-construct the value typing as follows:

R;M ; ∆; Γ ⊢ v : τ&(γ5; γ5).

Case T-Proj , T-RApp , T-EP : These typing derivations have a single typing sub-derivation hence the proof is immediate by

applying the induction hypothesis on the sub-derivations and re-constructing the typing derivation using the induction

hypothesis conclusions. The proof is trivial for one additional reason: there exist no capability checking or modification

predicates in their premises.

Case T-App: We can apply the induction hypothesis on the leftmost premise R;M ; ∆; Γ ⊢ e1 : τa
γa→γb−→ τb & (γ1;γ1a)

(along with the remaining assumptions of this lemma) to obtain that ∃γ6.R; ∆ ⊢ γ6 ∧ output(γ4, seq, γ1, γ1a) ≡

γ6 ∧ output(γ6, seq, γ1a, γ2) ≡ γ5 ∧R;M ; ∆; Γ ⊢ e1 : τa
γa→γb−→ τb & (γ4;γ6).

By performing the induction hypothesis onR;M ; ∆; Γ ⊢ e2 : τa & (γ1a;γ1b) and and using that output(γ6, seq, γ1a, γ2) ≡
γ5,R; ∆ ⊢ γ6, andR; ∆ ⊢ γ5 (from the previous application) we have that: ∃γ7.R; ∆ ⊢ γ7∧output(γ6, seq, γ1a, γ1b) ≡
γ7 ∧ output(γ7, seq, γ1b, γ3) ≡ γ5 ∧R;M ; ∆; Γ ⊢ e2 : τa & (γ6;γ7)

By applying lemma 30 on output(γ7, seq, γ1b, γ3) ≡ γ5 and the γ3 = output(γ1b, ξ, γa, γb) premise the application

typing derivation we have that γ5 = output(γ7, ξ, γa, γb). Therefore, R;M ; ∆; Γ ⊢ (e1 e2)
ξ : τb & (γ4;γ5)

37

Case T-EO , T-Tu: Similar to the T-App case.

Case T-NRG : Similar to the T-App case. In contrast with T-App , we have an additional obligatation. We need to prove that

given live(γ1b, {r}), live(γ7, {r}) holds. This is immediate by applying lemma 31.

Case T-CP : Similar to the T-Proj case. In contrast with T-Proj , we have an additional obligatation. We need to prove that

given live(γ1b, {r}), live(γ7, {r}) holds. This is immediate by applying lemma 33.

Case T-D ,T-NR , T-A : The first case is similar to T-Proj case, whereas the remaining two cases are similar to T-App . In all

three cases, we have an additional obligatation. We need to prove that given accessible(γ1b, {r}), accessible(γ7, {r})
holds. This is immediate by applying lemma 32.

Lemma 30 (“Implies”-Weakening) output(γ1, ξ, γ3, γ4) ≡ γ2∧output(γ5, seq, γ1, γ2) ≡ γ6 ⇒ output(γ5, ξ, γ3, γ4) ≡
γ6

Proof. To prove the conclusion we need to prove its premises. Therefore, we need to prove inv(γ6), live(γ5, ǫ3) and

live(γ6, ǫ3). The first obligation comes for free as it is a premise of ∃ǫ2.(γ6, ǫ2) ≡ tout(seq, sumt(γ1), sumt(γ2), γ5).

By observation of the tout relation and the above facts we have that ǫ3 ⊆ ǫ1 ∪ ǫ2. The above facts also imply that

live(γ5, ǫ2), and live(γ6, ǫ2). Hence to prove live(γ5, ǫ3) and live(γ6, ǫ3) it suffices to prove that live(γ5, ǫ1) and live(γ6, ǫ1).

The definition of tout implies that all effects of γ3 also exist in γ4 and the region capability κ2 of each output effect is

defined as κ2 ≡ out(rg, ψ, κ3, κ4, κ1), where κ3,κ4, and κ1 are the region capabilities of the corresponding effects of γ3,γ4,

and γ1 respectively. By the second assumption the same applies for γ5 and γ1.

By the definition of out it is immediate that when a region in γ3 is live then the corresponding region in γ1 must also be

live. The same applies for regions in γ4 and γ2. By the second assumption we also have the same constraints for γ1 and γ5,

and and γ2 and γ6. We also have from the first assumption that live(γ1, ǫ1) and live(γ2, ǫ1). By the above three facts we can

conclude that live(γ5, ǫ1) and live(γ6, ǫ1).

To complete the proof we need to prove the remaining premise of the conclusion, namely ∃ǫ1.(γ2, ǫ1) ≡ tout(seq, sumt(γ3), sumt(γ4), γ1)
(by the first assumption) and ∃ǫ2.(γ6, ǫ2) ≡ tout(seq, sumt(γ1), sumt(γ2), γ5) (by the second assumption) then ∃ǫ3.(γ6, ǫ3) ≡
tout(seq, sumt(γ3), sumt(γ4), γ5). Intuitively, all region and lock capabilities modified from the transition of γ5 to γ6 are

exactly the ones modified from the transition of γ1 to γ2 as a result of the transition of γ3 to γ5. Therefore, we can substitute

γ3 and γ5 for γ1 to γ2 in ∃ǫ2.(γ6, ǫ2) ≡ tout(seq, sumt(γ1), sumt(γ2), γ5) and obtain that the resulting output predicate

holds. Of course, the resulting ǫ in the exists clause will be sligtly larger but we have proven above that the live predicate will

still hold.

Lemma 31 (Live Region-Weakening) output(γ7, seq, γ1b, γ3) ≡ γ5 ∧ live(γ1b, {r}) ⇒ live(γ7, {r})

Proof. The second assumption implies that ∀r1 ∈ ({r} ∪ parents(γ1b, r)).r
κ1,κ2

1 ⊲ ǫ ∈ linear(γ1b) ⇒ κ1 6≡ 0 ∧ κ1 6≡ 0̄.

output(γ7, seq, γ1b, γ3) ≡ γ5. It sufficies to show that ∀r1 ∈ ({r} ∪ parents(γ7, r)).r
κ5,κ6

1 ⊲ ǫ ∈ linear(γ7) ⇒ κ5 6≡
0 ∧ κ1 6≡ 0̄.

The first assumption implies that ∃ǫ.(γ5, ǫ) ≡ tout(seq, sumt(γ1b), sumt(γ3), γ7). In turn the definition of tout implies

that all effects of γ1b also exist in γ7 and the region capability κ7 of each output effect is defined as κ7 ≡ out(rg, ψ, κ1, κ3, κ5),

where κ1,κ3, and κ5 are the region capabilities of the corresponding effects of γ1b,γ3, and γ7 respectively. By observation of

out relation we have that κ1 6≡ 0 ∧ κ1 6≡ 0̄ implies κ7 6≡ 0 ∧ κ1 6≡ 0̄. Therefore, ∀r1 ∈ ({r} ∪ parents(γ7, r)).r
κ5,κ6

1 ⊲ ǫ ∈
linear(γ7) ⇒ κ5 6≡ 0 ∧ κ1 6≡ 0̄ holds.

Lemma 32 (Accessible Region-Weakening) output(γ7, seq, γ1b, γ3) ≡ γ5 ∧ accessible(γ1b, {r}) ⇒ accessible(γ7, {r})

Proof. Similar reasoning to lemma 31.

Lemma 33 (Capability Modification-Weakening) output(γ7, seq, γ1b, γ3) ≡ γ5∧modcap(γ1b, ψ, η, r) ⇒ modcap(γ7, ψ, η, r)

Proof. By case analysis on ψ.

Case ψ ≡ rg then the second assumption implies that

x ≡ rκ1,κ2 ⊲ ǫ1 ∧ x ∈ γ1b ∧ κ
′
1 ≡ modη(κ1) ∧ γ2 ≡ γ1[r

κ′

1
,κ2 ⊲ ǫ1/x] ∧ inv(γ2) ∧ live(γ1b, {r}) ∧ κ

′
1 ≡ 0 ⇒

κ2 ≡ 0 ∧ κ′
1 ≡ 0̄ ⇒ κ2 ≡ 0. It suffices to prove that x ≡ rκ5,κ6 ⊲ ǫ1 ∧ x ∈ γ7 ∧ κ′

5 ≡ modη(κ5) ∧ γ5 ≡

γ1[r
κ′

5
,κ6 ⊲ ǫ1/x] ∧ inv(γ5) ∧ live(γ7, {r}) ∧ κ

′
5 ≡ 0 ⇒ κ6 ≡ 0 ∧ κ′

5 ≡ 0̄ ⇒ κ6 ≡ 0.

38

The first assumption implies that ∃ǫ.(γ5, ǫ) ≡ tout(seq, sumt(γ1b), sumt(γ3), γ7). In turn the definition of tout
implies that all effects of γ1b also exist in γ7 and the region capability κ7 of each output effect is defined as κ7 ≡
out(rg, ψ, κ1, κ3, κ5), where κ1, κ3, and κ5 are the region capabilities of the corresponding effects of γ1b,γ3, and γ7

respectively.

By observation of modη and out relation we have that modη(κ5) is defined. We also have that inv(γ7) for free by

the definition of output. live(γ7, {r}) holds by lemma 31. Finally, κ′
5 ≡ 0 ⇒ κ6 ≡ 0 ∧ κ′

5 ≡ 0̄ ⇒ κ6 ≡ 0 holds

by inv(γ7): Assume κ′
5 is equal to 0 or 0̄ whereas κ′

6 is non-zero. Then inv implies that that ¬iszero(κ′
5, κ

′
6) ⇒

live(γ7, {r}), where r is the region corresponding to these effects. However, the above does not hold is κ′
5 has a zero

value. This is a contradiction.

Case ψ ≡ lk Similar reasoning can be applied for this case as well.

39

