
Static Safety Guarantees for a Low-level Multithreaded
Language with Regions

Prodromos Gerakiosa, Nikolaos Papaspyroua, Konstantinos Sagonasa,b

aSchool of Electrical and Computer Engineering
National Technical University of Athens, Greece

bDepartment of Information Technology
Uppsala University, Sweeden

Abstract

We present the design of a formal low-level multithreaded language with advanced
region-based memory management and thread synchronization primitives, where
well-typed programs are memory safe and race free. In our language, regions and
locks are combined in a single hierarchy and are subject to uniform ownership
constraints imposed by this hierarchical structure: deallocating a region causes its
sub-regions to be deallocated. Similarly, when a region is read/write-protected,
then its sub-regions inherit the same access rights. We discuss aspects of the
integration and implementation of the formal language within Cyclone and eval-
uate the performance of code produced by the modified Cyclone compiler against
highly optimized C programs using pthreads. Our results show that the perfor-
mance overhead for guaranteed race freedom and memory safety is in most cases
acceptable.

Keywords: Safe multithreading, type and effect systems, region-based memory
management, Cyclone

1. Introduction

With the emergence of commodity multicore architectures, exploiting the per-
formance benefits of multithreaded execution has become increasingly important

Email addresses: pgerakios@softlab.ntua.gr (Prodromos Gerakios),
nickie@softlab.ntua.gr (Nikolaos Papaspyrou), kostis@softlab.ntua.gr (Konstantinos
Sagonas)

Preprint submitted to Elsevier July 25, 2012

to the extent that doing so is arguably a necessity these days. Programming lan-
guages that retain the transparency and control of memory, such as C, seem best-
suited to exploit the benefits of multicore machines, except for the fact that pro-
grams written in these languages often compromise memory safety by allowing
invalid memory accesses, buffer overruns, space leaks, etc., and are susceptible to
data races. Thus, a challenge for programming language research is to design and
implement multithreaded low-level languages that provide static guarantees for
memory safety and data race freedom and, at the same time, allow for a relatively
smooth conversion of legacy C code to its safe multithreaded counterpart.

Towards this challenge, we present the design of a formal low-level concur-
rent language that employs advanced region-based management and hierarchical
lock-based synchronization primitives. Similar to other approaches, our mem-
ory regions are organized in a hierarchical manner where each region is physi-
cally allocated within a single parent region and may contain multiple child re-
gions. Our language allows deallocation of complete subtrees in the presence of
region sharing between threads and deallocation is allowed to occur at any pro-
gram point. Each region is associated with an implicit reader/writer lock. Thus,
locks also follow the hierarchical structure of regions and in this setting each re-
gion is read/write protected by its own lock as well as the reader/writer locks of all
its ancestors. As opposed to the majority of type systems and analyses that guar-
antee race freedom for lexically-scoped locking constructs [1, 2, 3], our language
employs non-lexically scoped locking primitives, which are more suitable for lan-
guages at the C level of abstraction. Furthermore, it allows regions and locks to
be safely aliased and to escape their lexical scope when passed to a new thread.
These features are invaluable for expressing numerous idioms of multithreaded
programming such as sharing, region ownership or lock ownership transfers, and
region migration.

More importantly, our formal language is not just a theoretical design with
some nice properties. As we will see, we have integrated our language constructs
into Cyclone [4], a strongly-typed dialect of C which preserves explicit control
and representation of memory without sacrificing memory safety. We opt for Cy-
clone because it is publicly available and it is more than a memory safe variant
of C. Cyclone is also a low-level language that offers modern programming lan-
guage features such as first-class polymorphism, exceptions, tuples, namespaces,
(extensible) algebraic data types, and region-based memory management. We will
discuss how these features interact with our language constructs and the additions
that were required to Cyclone’s implementation.

2

1.1. Contributions
This article combines ideas and material which we have presented in two

workshop papers [5, 6], but at the same time it significantly extends these works.
In particular, our work on the formalization of hierarchical region systems [5] has
laid the foundation for this article, albeit it did so with a type and effect system
that is quite complicated and has several drawbacks: it requires explicit effect an-
notations, restricts aliasing, and allows temporary leaks of regions. Some of these
drawbacks were lifted in the simpler and at the same time more refined type and
effect system we subsequently developed [6], but its effect annotation burden was
still quite high and made programming in Cyclone cumbersome. In addition, in
this later system [6] region aliasing requires the programmer to create new capa-
bilities, which entails a run-time overhead and makes programming less intuitive,
and to use explicit count annotations as well as information about the “parent-of”
relation, which limit polymorphism and result in code duplication.

In this article, we lift all these limitations. The type and effect system we
will develop requires annotations only at thread creation points (i.e., at uses of
the spawn operator) and all the remaining annotations are automatically inferred
and checked by the analysis. Moreover, there are no annotations regarding region
aliasing state (i.e., aliased and non-aliased regions). We also extend the formal
language with permissions for read-only accesses to hierarchies. Such a feature is
useful and increases concurrency when threads share regions without modifying
them. Of course, a region can alternate between read-only and read/write or “no-
access” states during its lifetime in a safe manner. The type system ensures this.

In short, the main features of the type system we present and the contributions
of this article are as follows:

Hierarchical regions and reader/writer locks. We develop a region-polymorphic
lambda calculus, where regions are organized in a hierarchy and are protected
with reader/writer locks. When a reader/writer lock of a region is acquired, then
its subregions atomically inherit the same access rights. In addition, read/write-
protected hierarchies can migrate or be shared with new threads.

Effect inference. Functions need not be annotated with explicit effects and the sys-
tem permits a higher degree of polymorphism as there are no explicit capabilities.

Formalisms and soundness. We provide an operational semantics for the pro-
posed language and a static semantics that guarantees absence of memory vio-
lations and freedom from data races. In addition, we state safety theorems and
provide proofs for the soundness of the core language.

3

Design and implementation. We discuss implementation issues related to static
analysis, code generation and additions to the run-time system that were required
in order to make the integration of the type system into Cyclone possible.

Performance evaluation. We show the effectiveness of our approach by running
benchmark programs.

1.2. Overview
The next section (Section 2) presents the design goals of our language and is

followed by a brief section (Section 3) showing its main features by example. We
then provide a description of the formal language, its operational semantics and
static semantics (Section 4), followed by a section (Section 5) where the main
theorems that guarantee the absence of memory violations and data races from
well-typed programs are stated and proved. After briefly reviewing the Cyclone
language (Section 6), we describe the integration of our language constructs into
Cyclone (Section 7), followed by a presentation of implementation (Section 8)
and performance (Section 9) aspects of this integration. The article ends by two
sections discussing related work and containing some concluding remarks.

2. Language design

We briefly outline the main design goals for our language, as well as some of
the main design decisions that we made to serve these goals.

Low-level and concurrent. The language should be at the C level of abstraction
and provide built-in constructs for concurrency similar to those currently used
in, e.g., C with the pthreads library (i.e., it should cater for non-lexically scoped
mutual exclusion of concurrent threads). In some application domains, for ex-
ample systems programming, embedded and time-critical applications, low-level
concurrent languages are heavily used. We believe that they will continue to be
used, both by programmers and by automatic optimization tools such as compiler
back-ends for higher-level languages.

Shared memory. The language should use shared memory as the means for intra-
process communication. This is useful both for efficiency reasons and because
shared memory communication can easily be integrated in the existing region
system of Cyclone, the language into which we will implement our constructs.

Backwards compatibility. Sequential (Cyclone) code should work as expected
with no modifications.

4

Static memory safety and thread safety guarantees. A static type and effect system
should guarantee the absence of memory access violations and data races in well-
typed programs, with minimal run-time overhead.

Safe and efficient region-based memory management. Traditional stack-based re-
gions [7] are limiting as they cannot be deallocated early. Furthermore, the stack-
based discipline fails to model region lifetimes in concurrent languages, where
the lifetime of a shared region depends on the lifetime of the longest-lived thread
accessing that region. In contrast, we want regions that can be deallocated early
and that can safely be shared between concurrent threads. We opt for a hierar-
chical region [8] organization: each region is physically allocated within a single
parent region and may contain multiple child regions. Early region deallocation in
our multi-level hierarchy automatically deallocates the subtree of a region without
having to manually deallocate each region of the subtree recursively. The hierar-
chical region structure imposes the constraint that a child region is live only when
its ancestors are live.

Race freedom. To prevent data races we use lock-based mutual exclusion. In-
stead of having a separate mechanism for locks, we opt for a uniform treatment
of regions and locks: locks are placed in the same hierarchy as regions and enjoy
similar properties. Each region is protected by its own private lock and the lock of
its ancestors. The semantics of region locking is that the entire subtree of a region
is atomically locked once the lock for that region has been acquired. Hierarchi-
cal locking can model complex synchronization strategies and lifts the burden of
having to deal with explicit acquisition of multiple locks. Although deadlocks
are possible, they can be avoided by acquiring a single lock for a group of re-
gions rather than acquiring multiple locks for each region separately or by more
involved mechanisms.1 Additionally, our language provides explicit locking prim-
itives, which in turn allow a higher degree of concurrency than lexically-scoped
locking, as some locks can be released early.

Region polymorphism and aliasing. Like Cyclone, our language should support
functions that are generic with respect to regions (region polymorphic). This kind
of polymorphism permits region aliasing as one actual region could be passed
in the place of two distinct formal region parameters. In the presence of mutual

1Including a deadlock avoidance mechanism is beyond the scope of this article. But we remark
that in a language similar to the one we describe here (i.e., in the presence of unstructured locking)
it is certainly possible to design an effective type and effect system that avoids deadlocks [9].

5

exclusion and early region deallocation, aliasing is dangerous. We want our lan-
guage to allow for safe region aliasing with minimal restrictions. The mechanisms
that we employ for this purpose also allow us to encode numerous useful idioms
of concurrent programming, such as region migration, lock ownership transfers,
region sharing, and thread-local regions.

3. Language features through examples

In our language, regions are lexically-scoped first-class citizens; they are ma-
nipulated via explicit handles. For instance, a region handle can be used for releas-
ing a region early, for allocating references and regions within it, or for locking
it. A type and effect system guarantees that regions and their contents are prop-
erly used. The details will be made clear in Section 4. In this section, we present
the main features of our language through examples. We try to avoid technical
issues as much as possible; however, some characteristics of the type and effect
system are revealed in this section and their presence is justified. The language
that we use for the examples in this section is essentially our extended version of
Cyclone that we describe in Section 7, with some stylistic deviations to simplify
the presentation.

We assume the existence of a global heap region ρH whose handle will be de-
noted by H. The heap is immortal (i.e., cannot be deallocated) and threads cannot
lock it or allocate references to it. Instead, the heap is used only for allocating
other regions into it.

Example 1 (Simple region usage) Our first example shows a typical use of re-
gions. New regions are allocated via the region construct. This construct re-
quires a handle to an existing region, the heap in this case, in which the new
region will be allocated, and introduces a type-level name (ρ) and a fresh handle
(h) for the new region. The handle h is then used to allocate a new integer in re-
gion ρ; a reference to this integer (z) is created. Finally, the region is deallocated
before the end of its lexical scope.

region<ρ> h @ H; // Live ρH

let z = rnew(h) 42; // Live ρH , Live ρ
. . .
∗z = ∗ z + 5 ; // Live ρH , Live ρ, R ρ, W ρ,
. . .
rfree(h); // Live ρH , Live ρ, R ρ, W ρ, Cap {ρ 7→ (−1, 0, 0)}
. . .

6

The comments on the right-hand side of the example’s code show the current
effect. Effects are ordered lists that abstract program behavior at each program
point. The effect at each program point is a prefix of the effect of the succeeding
program points. Therefore, we employ a causal type and effect system to achieve
absence of memory violations and data races.

Once region ρ is created, the constraint Live ρH is appended to the effect;
this means that the parent region of ρ, the heap region ρH, must be live at this
program point. The reference allocation operation appends a new constraint to the
effect, namely Live ρ, which requires that ρ is live, but not necessarily accessible
(i.e., protected by some lock). Both the region and reference allocation constructs
enable a higher degree of concurrency as threads need not acquire exclusive access
to a region to allocate some data within it.

The next command reads the value of the cell pointed by z, adds the value
five to it and stores the result back to the cell. The constraints generated for the
read and write operation are R ρ and W ρ respectively. Constraint R ρ requires that
region ρ is at least read-protected by some lock, whereas the second constraint W ρ
requires that this thread has exclusive access to ρ. At each program point, region ρ
is associated with a vector of three counters, representing its reference count, write
lock count and read lock count. The rfree operator appends Cap {ρ 7→ (−1, 0, 0))}
to the effect, which states that the vector (−1, 0, 0) is added to the current vector
of region ρ, i.e., the region count of ρ is decremented by one.

When the entire effect for ρ is gathered, then two actions are performed:

• The first action validates each constraint of the effect starting with the ini-
tial count (1, 1, 0): when ρ is created, it is live and the thread that created it
has exclusive/direct access to it, that is, ρ is thread-local. In our exam-
ple, starting with the effect Live ρH, Live ρ, R ρ, W ρ, Cap {ρ 7→ (−1, 0, 0)}
and the initial count of (1, 1, 0) for ρ, it is easy to see that all constraints
regarding ρ are satisfied and the resulting count of ρ is (0, 1, 0).

• The second action simplifies the current effect by removing the satisfied con-
straints regarding ρ and by translating any unsatisfied constraints to con-
straints regarding the ancestors of ρ. For instance, if constraint W ρ were
unsatisfied, then it would be translated to W ρH. This implies that if ρ it-
self is not write-protected, then at least one of its ancestors must be write-
protected.

Regions must definitely be released before the end of their lexical scope,
either by releasing them explicitly or by releasing one of their ancestors. If

7

the resulting count for ρ were not of the form (0, n1, n2), then it should be
the case that one of its ancestors has been released; therefore, the constraint
¬Live ρH would be appended during the translation (and, in this case, effect
validation would fail, as the heap region is immortal).

In our example, once both actions are completed, the resulting effect is Live ρH.

In the examples that follow, we simplify the presentation of effects by showing
the region counts at each step (e.g., ρ1,1,0) as opposed to showing the entire effect.

Example 2 (Hierarchical regions) In the previous example a trivial hierarchy
was created by allocating region ρ within the heap H. It is possible to construct
richer region hierarchies. As in the previous example, the code below allocates
a new region ρ1 within the heap. Other regions can be then allocated within ρ1,
e.g., ρ2; this can done by passing the handle of ρ1 to the region creation construct.
Similarly, regions ρ3 and ρ4 can be allocated within region ρ2.

region<ρ1> h1 @ H;
. . .
region<ρ2> h2 @ h1;

. . .
region<ρ3> h3 @ h2;
region<ρ4> h4 @ h2;

. . .

ρ1,0,0
H

ρ1,1,0
1

ρ1,1,0
2

. . .

ρ1,1,0
3 ρ1,1,0

4

. . .

Our language allows regions to be allocated at any level of the hierarchy. For
instance, it is possible to allocate more regions within region ρ1 in the lexical
scope of region ρ4.

Example 3 (Bulk region deallocation) In Example 1, a single region was deal-
located. That region was a leaf node in the hierarchy; it contained no sub-regions.
In the general case, when a region is deallocated, the entire subtree below that
region is also deallocated. This is what happens if, in the code of the previous
example, we deallocate region ρ2 within the innermost scope; regions ρ3 and ρ4

are also deallocated. They are all removed from the current effect and thus are no
longer accessible.

8

region<ρ1> h1 @ H;
. . .
region<ρ2> h2 @ h1;

. . .
region<ρ3> h3 @ h2;
region<ρ4> h4 @ h2;

. . .
rfree(h2);
. . .
// ρ2, ρ3 and ρ4 are no longer alive

ρ1,0,0
H

ρ1,1,0
1

ρ1,1,0
2

. . .

ρ1,1,0
3 ρ1,1,0

4

. . .

Example 4 (Region migration) A common multithreaded programming idiom
is to use thread-local data. At any time, only one thread will have access to such
data and therefore no locking is required. A thread can transfer thread-local data
to another thread but, doing so, it loses access to the data. This idiom is known
as migration. Our language encodes thread-local data and data migration. As we
have seen, newly created regions are thread-local; a capability for them is added
to the current effect. We support data migration by allowing such capabilities to
be transferred to other threads.

The following code illustrates region migration. A server thread is defined,
which executes an infinite loop. In each iteration, a new region is created and
is initialized with client data. The contents of the region are then processed and
transferred to a newly created (spawned) thread.

void server () {
while (true) {
region<ρ> h @ H; // ρ1,1,0

let z = wait data(h) ;
process(z); // ρ1,1,0

spawn (h, 1, 1, 0) output(h, z);
. . . // ρ0,0,0

// ρ cannot be accessed here!
}

}

In each iteration of the loop, the server thread allocates a new region ρ in the
heap and passes its handle h to function wait data, which fills the region ρ with
client data (z). Function process is then called and works on the data. Until
this point, region ρ is thread-local and only accessible to the server thread, so no
explicit locking is required. Now, let us assume that we want the processed data
to be output by a different thread, e.g., to avoid an unnecessary delay on the server
thread. A new thread output is spawned and receives the region handle h and

9

the reference z to the client data. The spawn operator is also passed the tuple
(h, 1, 1, 0), which denotes that thread output steals (1, 1, 0) counts from the server
thread. Therefore, the counts for ρ in the server thread once spawn is executed are
(0, 0, 0), which implies that ρ is no longer live nor accessible. In the output thread,
ρ is directly accessible and no further lock operations are required. Furthermore,
the output thread is now obliged to explicitly release ρ before it terminates.

Example 5 (Region sharing) Multithreaded programs often share data for com-
munication purposes. In this example, a server thread almost identical to that of
the previous example is defined. The programmer’s intention here, however, is to
process and display the data in parallel. Therefore, the output thread is spawned
first and then the server thread starts processing the data.

void server () {
while (true) {
region<ρ> h @ H; // ρ1,1,0

let z = wait data(h);
share(h); // ρ2,1,0

spawn(h, 1, 1, 0) output(h, z); // ρ1,0,0

wr lock(h); // ρ1,1,0

process(z);
wr unlock(h); // ρ1,0,0

. . .
}

}

Operator share increases the region count. Consequently, the original count for
ρ, namely (1, 1, 0) is transformed to (2, 1, 0). Thread output steals (1, 1, 0), thus
the counts remaining for ρ in the server thread are (1, 0, 0). Region ρ is now shared
between the two threads; however, the server thread does not have access to ρ. The
wr lock and wr unlock operators have to be used to explicitly lock and unlock
ρ, before accessing its contents. Notice, that we acquire exclusive (read and write)
access to region ρ.

Example 6 (Region and lock sharing) In the previous example, region ρ was
shared between two threads, but each of them had to acquire exclusive access
to ρ. This approach limits the degree of concurrency, especially in the case where
functions process and output do not modify the contents of ρ. Here, we extend
the previous example so that both threads have simultaneous read-only access to
ρ.

10

void server () {
while (true) {
region<ρ> h @ H; // ρ1,1,0

let z = wait data(h);
share(h); // ρ2,1,0

wr unlock(h); // ρ2,0,0

rd lock(h); // ρ2,0,1

rd lock(h); // ρ2,0,2

spawn(h, 1, 0, 1) output(h, z); // ρ1,0,1

process(z);
. . .

}

}

Operator share increases the region count, and then the next three instructions
release the write access permission to ρ and acquire two read access permissions
to ρ. Consequently, the original count for ρ, namely (1, 1, 0) is transformed to
(2, 0, 2). Thread output steals (1, 0, 1), thus the counts remaining for ρ in the
server thread are (1, 0, 1). Region ρ is now shared between the two threads and
both threads can concurrently read (only) the contents of ρ.

Example 7 (Hierarchical locking) In the previous example, locking and unlock-
ing was performed on a leaf region. In general, locking some region in the hier-
archy has the effect of atomically locking its subregions as well. A region is
accessible when it has been locked by the current thread or when at least one of
its ancestors has been locked. Hierarchical locking can be useful when a set of
locks needs to be acquired atomically. In the following code, we assume that two
hash tables (tbl1 and tbl2) are used. An object with a given key must be removed
from tbl1, which resides in region ρ1, and must be inserted in tbl2, which resides in
region ρ2. We can atomically acquire access to both regions ρ1 and ρ2, by locking
one of their common ancestors.

wr lock(h); // the handle of a common ancestor of ρ1 and ρ2
let obj = hash remove<ρ1>(tbl1, key);
hash insert<ρ2>(tbl2, key, obj);

wr unlock(h);

Example 8 (Reentrant locks) An expressive language with regions will have to
support region polymorphism. This invariably leads to region aliasing, which in-
troduces the need for reentrant locks. To see this, let us define a swapping function
that accepts two references in unlocked regions. For swapping their contents, the

11

function will have to acquire locks for the two regions (and release them, when
they are no longer needed).

// ρ1 and ρ2 are unlocked
void swap<ρ1, ρ2> (region<ρ1> h1, region<ρ2> h2, int ∗ ρ1 x, int ∗ ρ2 y) {
wr lock(h1);
let z = ∗x ; // OK: ρ1 is locked
wr lock(h2);
∗x = ∗y; // OK: ρ1 and ρ2 are locked
wr unlock(h1);
∗y = z; // OK: ρ2 is locked
wr unlock(h2); // all locks can be released

}

Suppose again that we are to instantiate ρ1 and ρ2 with the same region ρ.

swap<ρ, ρ>(h, h, a, b);

Note that to handle such calls the run-time system cannot use binary locks. If it
did, swap<ρ, ρ> would either come to a deadlock, waiting to obtain once more
the lock that it has already acquired, or — worse — it would release the lock
early (at wr unlock(h1)) and allow a data race to occur. To avoid unsoundness,
we insist that locks are reentrant: lock counts are important both for static typing
and for the run-time system. At run time, a lock with a positive lock count can
immediately be acquired again, if it is held by the same thread. Moreover, a lock
is released only when its lock count becomes zero.

Example 9 (Unsound sharing) In the code that follows, region ρ is shared with
a new thread that accesses the contents of ρ, namely reference z. Region ρ is
accessible in both the main and the new thread (the one executing function f).

region<ρ> h @ H; // ρ1,1,0

let z = rnew(h) 42; // ρ1,1,0

share(h); // ρ2,1,0

wr lock(h); // ρ2,2,0

spawn (h, 1, 1, 0) f(h, z); // ρ1,1,0

∗z = 17; // possible data race!

This program code will be rejected by our type system as spawn must consume
either none or all write locks of ρ.

Example 10 (Unsound aliasing) In the previous example the data race bug was
exposed in the main thread. However, data races may be introduced in nested

12

function calls as a result of region aliasing. Consider function bar, which accepts
a region handle h to region ρ1, and two integer references (x and y) in regions
ρ1 and ρ2, which are both locked. Then, region ρ1 migrates to a newly spawned
thread executing function f.
void bar<ρ1, ρ2> (region<ρ1> h, int ∗ρ1 x, int ∗ρ2 y) { // ρ1

1,1,0, ρ2
1,1,0

spawn (h, 1, 1, 0) f(x); // ρ2
1,1,0

∗y = 17; // ρ2
1,1,0

}

The region counts calculated by the type system are shown on the right-hand side.
As shown in the code below, if bar is invoked with the same reference z and
therefore ρ1 and ρ2 are aliases to the same region ρ, a data race may occur since
both threads (executing functions bar and f) will have write access to z.
region<ρ> h @ H; // ρ1,1,0

let z = rnew(h) 42; // ρ1,1,0

share(h); // ρ2,1,0

wr lock(h); // ρ2,2,0

bar<ρ, ρ>(h, z, z); // possible data race!

As mentioned in Example 1, the type system gathers the effect corresponding to
the scope of a new region construct and then performs effect translation/validation.
When type checking a function call, the formal regions of the function effect are
substituted for the actual regions that instantiate the function. However, no check-
ing is performed at the function call site. Therefore, region substitution and the
deferred effect validation reduce invalid programs resulting from region aliasing
to invalid programs resulting from invalid lock usage. As in the previous example,
the type system will reject the above program as some but not all locks of ρ are
passed to the new thread.

Example 11 (Negative constraints) As explained in Example 9, programs that
grant region access to more than one thread are susceptible to data races and are
rejected by our type system. A region can also be protected by its own lock or
the locks of its ancestors. Here we illustrate a program that is susceptible to data
races as a result of hierarchical locking.
region<ρ1> h1 @ H; // ρ1

1,1,0

region<ρ2> h2 @ h2; // ρ1
1,1,0, ρ2

1,1,0

let z = rnew(h2) 42; // ρ1
1,1,0, ρ2

1,1,0

share(h1); // ρ1
2,1,0, ρ2

1,1,0

share(h2); // ρ1
2,1,0, ρ2

2,1,0

spawn {(h1, 1, 1, 0) (h2, 1, 0, 0)} f(z); // ρ1
1,0,0, ρ2

1,1,0

∗z = 17; // possible data race!

13

Expression e ::= x | f | () | true | false | e e | e [r] | if e then e else e
| newrgn ρ, x @ e in e | new e @ e | e := e | deref e | capη e
| spawnξ e | loc` | rgnı

Function f ::= λx. e | Λρ. f | fix x. f

Value v ::= f | () | true | false | loc` | rgnı
Region r ::= ρ | ı

Count vector η ::= (n, n, n)

Spawn effect ξ ::= ∅ | ξ, r 7→ η

Figure 1: Syntax.

The main thread allocates a new region ρ1 in the heap region and another region
ρ2 in region ρ1. It then shares ρ1 and ρ2, by invoking the operation share on ρ1

and ρ2 respectively, and spawns a new thread f that has the lock for ρ1 but not ρ2.
The main thread retains the lock for region ρ2.

Due to the hierarchical relation of ρ1 and ρ2, the latter region is accessible in
the new thread. Therefore, this program is susceptible to data races. The type
system rejects such programs by introducing negative constraints. In particular,
¬RW ρ1 is added in the effect of the new thread as its child region ρ2 is accessible
in the main thread. This constraint implies that neither ρ1 nor its ancestors must
be initially accessible in the new thread. Of course, this constraint is not satisfied
and the program is rejected.

4. Formal language

In this section we formalize the main aspects of the language presented in
the previous section using an extension of lambda calculus (see Figure 1). The
core language includes variables (x), constants (true, false and () — the unit
value), functions (f), function application (e1 e2), and conditional expressions
(if e then e1 else e2). Functions can be monomorphic (λx. e), polymorphic
(Λρ. f) where ρ is a region variable, and recursive (fix x. f). The application
of region polymorphic functions is explicit (e [r]) where r is a metavariable rang-
ing over region variables ρ and region constants ı. We assume the existence of a
special region constant denoted by ⊥, which corresponds to the whole memory
that is available to the program. This region cannot be manipulated (e.g., locked,
released, etc.) by the program and only serves as the root of the region hierarchy.

The construct newrgn ρ, x @ e1 in e2 allocates a fresh region ρ, residing

14

inside the region indicated by handle e1, and binds x to the handle of ρ. Both
ρ and x are lexically bound to the scope of e2. Each region is associated with a
count vector η, consisting of three non-negative numbers (n1, n2, n3) that we call
capability counts:

• the reference count (n1), which tells us whether the region is live in the
current thread;

• the write lock count (n2), which provides exclusive access to the region and
tells us whether the current thread can assign values to locations in it; and

• the read lock count (n3), which provides non-exclusive access to the region
and tells us whether the current thread can read values from locations in it.

Locks are represented by counters instead of boolean values to support re-entrant
locks and region aliasing, as explained in Section 3. Notice that the write lock (n2)
takes priority over the read lock (n3): if n2 > 0 then a thread has exclusive access
to a region and is capable of writing and reading, otherwise if n3 > 0 then a thread
has non-exclusive access to a region and is only capable of reading, otherwise (if
n2 = n3 = 0) a thread has no access to a region, i.e., it cannot write nor read. When
first allocated, a region starts with (1, 1, 0), meaning that it is live and exclusively
locked by the current thread, so that it can be read or written directly with no
additional overhead. This is our equivalent of a thread-local region.

The constructs for manipulating references are standard. A new memory cell
is allocated by new e1 @ e2, where e1 is an initializer expression for the new cell’s
contents and e2 is a handle indicating the region in which the new cell will be al-
located; the result is a reference to the newly allocated cell. Standard assignment
(e1 := e2) and dereference (deref e) complete the picture. As we explained, ca-
pability counts determine the validity of operations on regions and references. All
memory-related operations require that the involved regions are live. Assignment
can be performed only when the corresponding region is live and write-protected,
whereas dereference can be performed when the region is live and at least read-
protected.

The construct capη e formalizes the concept of incrementing or decrementing
the counts for a region (i.e., acquiring or releasing capabilities). It requires a
region handle e and a three-element vector η that denotes the relative counts to be
added to the current counts of that region. In this vector η, if a count is negative
then the current count is to be decreased. Incrementing a lock count (n2 or n3)
from zero to a positive value amounts to acquiring a region lock and may have

15

Hierarchy θ ::= ∅ | θ, ı 7→ (η, ı)

Heap H ::= ∅ | H, ` 7→ v

Store S ::= ∅ | S , ı 7→ H

Threads T ::= ∅ | T, 〈θ; e〉

Configuration C ::= S ; T

Stack E ::= � | E[F]

Frame F ::= � e | v � | � [r] | if � then e else e | newrgn ρ, x @ � in e
| new �@ e | new v @ � | � := e | v := � | deref � | capη �

Figure 2: Auxiliary syntax for the operational semantics.

to block the current thread, if the lock is held by another thread. On the other
hand, decrementing lock counts never blocks the current thread. Decrementing a
region count (n1) from a positive value to zero amounts to releasing the region;
it may cause the region’s contents (including any subregions residing in it) to be
deallocated. The construct capη e is the formal counterpart of the constructs with
the more descriptive names that were used in Section 3; for instance, share is
syntactic sugar for cap(1,0,0), rfree for cap(−1,0,0), and wr lock for cap(0,1,0).

New threads can be created with the spawnξ e construct, which starts evaluat-
ing expression e in parallel with the remaining computation in the current thread.
It is annotated with a spawn effect ξ, which contains the list of regions that will
be passed to the new thread and the exact counts that will be consumed. To sum
up, the counts of a region can be altered either by using the cap construct, or by
transferring some to a newly spawned thread.

The two remaining constructs rgnı and loc` correspond to explicit region
and location handles (the metavariables ı and ` range over region and location
constants, respectively). They are not considered part of the source language,
except for the special case rgn⊥ which is the handle of the total memory and
can be used to create new regions therein. With this exception, both constructs
must not be used in the source program: they are only introduced during program
evaluation, as discussed further in Section 4.1.

4.1. Operational semantics
We define a small-step operational semantics for our language in Figures 2

and 3. The thread evaluation relation C { C′ transforms configurations. A con-

16

figuration C consists of an abstract store S and a thread list T .2 A store S maps
region identifiers (ı) to heaps (H), which in turn map memory locations to val-
ues. Each thread in T is a pair containing a thread-local region hierarchy θ and
an expression e to be evaluated. The hierarchy θ is a map indexed by region iden-
tifiers; for each region, this map gives us its thread-local count vector η and its
parent region. A frame F is an expression with a hole, represented as �. The hole
indicates the position where the next reduction step can take place. Our notion
of thread evaluation context is defined as a stack of nested frames E, imposing a
call-by-value evaluation strategy to our language. Subexpressions are evaluated
in a left-to-right order. We assume that concurrent reduction events can be to-
tally ordered [10]. Our evaluation rules are non-deterministic: the order in which
different threads evaluate their expressions is not specified.

Threads that have been reduced to unit values are removed from the active
thread list, as long as they have released all regions used by them (rule E-T). This
is established by the premise live(θ) = ∅. Function live returns the set of all regions
in θ that are live, i.e., their reference count as well as those of all their ancestors
are positive. The formal definition of function live is given in Figure 4, together
with the definitions of other auxiliary functions and predicates that are used in the
operational semantics.

When a spawn redex is detected within a thread evaluation context, a new
thread is created (rule E-SP). The redex is replaced with a unit value in the cur-
rently executed thread and a new thread is created to evaluate the given expression.
The premise merge(ξ) ` θ = θ′⊕θ′′ splits the hierarchy of the current thread θ into
θ′ and θ′′, corresponding to the hierarchy that will remain in the current thread and
the hierarchy that will be passed to the new thread, respectively. The annotation
ξ drives the splitting process by defining the counts that should be passed to the
new thread. Function merge takes care of region aliasing, by merging the counts
of entries in ξ that correspond to the same region. On the other hand, the premise
dom(θ′′) ⊆ live(θ) ensures that all regions passed to the new thread are live.

The rules for evaluating the application of monomorphic functions (E-A),
polymorphic functions (E-RP) and recursive functions (E-FX) are standard, as
well as the rules for evaluating conditionals (E-IT and E-IF).

Rule E-NR requires that the parent region is live or has the value ⊥. The
rule adds a fresh and empty region ı (i.e ı does not belong in the regions of S)

2The order of elements in comma-separated lists, e.g., in a store S or in a list of threads T , is
unimportant; we consider all list permutations as equivalent.

17

live(θ) = ∅

S ; T, 〈θ; ()〉 { S ; T
(E-T)

merge(ξ) ` θ = θ′ ⊕ θ′′ dom(θ′′) ⊆ live(θ)

S ; T, 〈θ; E[spawnξ e]〉 { S ; T, 〈θ′; E[()]〉, 〈θ′′;�[e]〉
(E-SP)

f ≡ λx. e

S ; T, 〈θ; E[f v]〉 { S ; T, 〈θ; E[e[v/x]]〉
(E-A)

f ≡ Λρ. f ′

S ; T, 〈θ; E[f [ı]]〉 { S ; T, 〈θ; E[f ′[ı/ρ]]〉
(E-RP)

f ≡ fix x. f ′

S ; T, 〈θ; E[f v]〉 { S ; T, 〈θ; E[f ′[f /x] v]〉
(E-FX)

S ; T, 〈θ; E[if true then e1 else e2]〉 { S ; T, 〈θ; E[e1]〉
(E-IT)

S ; T, 〈θ; E[if false then e1 else e2]〉 { S ; T, 〈θ; E[e2]〉
(E-IF)

 ∈ live(θ) ∪ {⊥} fresh ı θ′ = θ, ı 7→ ((1, 1, 0),)

S ; T, 〈θ; E[newrgn ρ, x @ rgn in e]〉 { S , ı 7→ ∅; T, 〈θ′; E[e[ı/ρ][rgnı/x]]〉
(E-NR)

ı ∈ live(θ) fresh `
S ; T, 〈θ; E[new v @ rgnı]〉 { S [ı 7→ (S (ı), ` 7→ v)]; T, 〈θ; E[loc`]〉

(E-NL)

` 7→ v′ ∈ S (ı) ı ∈ wlocked(θ) ı < rwlocked(T)
S ; T, 〈θ; E[loc` := v]〉 { S [ı 7→ S (ı)[` 7→ v]]; T, 〈θ; E[()]〉

(E-AS)

` 7→ v ∈ S (ı) ı ∈ rwlocked(θ) ı < wlocked(T)
S ; T, 〈θ; E[deref loc`]〉 { S ; T, 〈θ; E[v]〉

(E-D)

ı ∈ live(θ) θ′ = θ, ı 7→ (η + η′,) mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T })

S ; T, 〈θ, ı 7→ (η,); E[capη′ rgnı]〉 { S ; T, 〈θ′; E[()]〉
(E-CP)

Figure 3: Evaluation relation C { C′.

18

merge(∅) = ∅

merge(ξ, r 7→ η) = merge(ξ), r 7→ η if r < {r′ | r′ 7→ η′ ∈ ξ}
merge(ξ, r 7→ η, r 7→ η′) = merge(ξ, r 7→ (η + η′))

ok(n1, n2, n3) = n1 ≥ 0 ∧ n2 ≥ 0 ∧ n3 ≥ 0

(c1,w1, z1) ⊕ (c2,w2, z2) = (c1 + c2,w1 + w2, z1 + z2) if ok(c1,w1, z1) ∧ ok(c2,w2, z2) ∧
(w1 = 0 ∨ w2 = 0) ∧ (c2 > 0) ∧
(c1 = 0 =⇒ w1 = z1 = 0) ∧
(w1 > 0 =⇒ z2 = 0) ∧
(w2 > 0 =⇒ z1 = 0)

ancestors(θ,⊥) = ∅

ancestors(θ, ı) = {ı} ∪ ancestors(θ′,) if θ = θ′, ı 7→ (η,)

ok(θ) = ∀ı 7→ (η,) ∈ θ. ok(η) ∧ ancestors(θ, ı) defined

live(θ) = {ı | ∀ ∈ ancestors(θ, ı). ∃ 7→ (η, ′) ∈ θ. ok(η − (1, 0, 0))}

wlocked(θ) = {ı | ı ∈ live(θ)∧ ∃ 7→ (η, ′) ∈ θ. ∈ ancestors(θ, ı)∧ ok(η− (0, 1, 0))}
rlocked(θ) = {ı | ı ∈ live(θ)∧ ∃ 7→ (η, ′) ∈ θ. ∈ ancestors(θ, ı)∧ ok(η− (0, 0, 1))}
rwlocked(θ) = rlocked(θ) ∪ wlocked(θ)

wlocked(T) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ wlocked(θ)}
rwlocked(T) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ rwlocked(θ)}

mutex({θ1, . . . , θn}) = ∀ı , . rwlocked(θı) ∩ wlocked(θ) = wlocked(θı) ∩ rwlocked(θ) = ∅

hierarchy ok(θ1; θ2) = ∀ı 7→ (η,) ∈ θ1. ∃ ı 7→ (η′, ′) ∈ θ2. (= ′ ∨ (= ⊥ ∧ ′ < dom(θ1)))

∅ ` θ = θ ⊕ ∅

η = η1 ⊕ η2 ξ ` θ = θ1 ⊕ θ2
∀ı′ ∈ dom(ξ). ı < ancestors(θ, ı′) ′ = if ∈ dom(ξ) then else ⊥

ξ, ı 7→ η2 ` θ, ı 7→ (η,) = θ1, ı 7→ (η1,) ⊕ θ2, ı 7→ (η2,
′)

∅ − ∅ = ∅

η1 ≥ η2 θ1 − θ2 = θ′

θ1, r 7→ η1 − θ2 7→ η2 = θ′, r 7→ η1 − η2

Figure 4: Auxiliary functions and predicates.

19

to the store and associates it with the pair, ((1, 1, 0),) in the local hierarchy θ.
Therefore, the new region is initially live and the current thread has exclusive
access to it. Rule E-NL requires that region ı is live in θ and updates the heap of
ı with a fresh location ` (i.e ` does not belong in the locations of S) mapping to
value v. Notice, that ı need not be protected.

Rule E-AS requires that location ` exists in some region ı of the global store S
and requires that ı is exclusively owned by the current thread. This is established
by ı ∈ wlocked(θ) and ı < rwlocked(T). Function wlocked returns the set of
live regions that can be write-accessed by the current thread, whereas function
rwlocked returns the set of live regions that can be read or written by the remaining
threads in T . If the current thread has no write-access to ı or any other thread has
read or write access to ı, then the evaluation will get stuck.

In contrast to the rule for assignment, rule E-D is more permissive as it admits
simultaneous read-only access to region ı by more than one threads. It requires
that the current thread has (possibly) non-exclusive access to region ı and that no
other thread in T has exclusive access to it. Evaluation will get stuck if any of
these two are violated.

Consequently, memory cells can be accessed only when there is an appropriate
level of protection by the current thread and other threads do not violate mutual
exclusion for write-locks. Our approach differs from related work, e.g., the work
of Grossman [2], where a special kind of value junkv is often used as an inter-
mediate step when assigning a value v to a location, before the real assignment
takes place, and type safety guarantees that no junk values are ever read. Our type
safety results (see Section 5) guarantee that no thread can get stuck by violating
mutual exclusion.

Rule E-CP requires that region ı is live in θ and adds the relative count vector
η′ to the current vector η for ı. It is possible that the resulting hierarchy θ′ does not
preserve mutual exclusion with respect to the other hierarchies in T . For instance,
suppose that ı is exclusively locked by some other thread in T and that the current
thread tries to acquire a lock by incrementing its lock count. In this case, the
current thread should block until the lock is released by the other thread. This is
established by the premise mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T }), which requires that
the mutual exclusion invariant holds between all threads once θ is modified to θ′.

4.2. Static semantics
We now present the type and effect system that we use to enforce memory

safety and race freedom. The syntax of types and effects is given in Figure 5.
Basic types consist of the unit type and the type of boolean values. Monomor-

20

Type τ ::= unit | bool | τ
γ
−→ τ | ∀ρ. τ | Ref(τ, r) | Rgn(r)

Constraint δ ::= R | W | ¬RW | ¬W | Live | ¬Live

Event ζ ::= Cap ξ | δ r | Spawn ξ γ | Join γ γ

Effect γ ::= ∅ | ζ :: γ

Type context Γ ::= ∅ | Γ, x : τ

Region context ∆ ::= ∅ | ∆, ρ

Heap context M ::= ∅ | M, ` 7→ (τ, ı)

Store context R ::= ∅ | R, ı

Figure 5: Syntax for types, effects and contexts.

phic function types (τ
γ
−→ τ) are annotated with the function’s effect γ; effects are

the most important aspect of this system and will be explained in detail in the
rest of this section. Although this is not apparent in Figure 5, polymorphic types
(∀ρ. τ) are restricted to functions. Region handle types Rgn(r) and reference types
Ref(τ, r) are associated with a type-level region r; the former is essentially a sin-
gleton type, the latter corresponds to the type of memory cells that reside in region
r and whose contents have type τ.

Effects (γ) are used to statically track region state and accesses. They are
ordered sequences of events (ζ) which correspond to behaviors that arise when
evaluating expressions. Preserving the order of events during type-checking is
crucial for the correctness of our type system. Although in Figure 5 operator ::
denotes the “cons” operation on effects, prepending an event to an effect, we will
often abuse notation and use :: as an associative operator for appending effects,
with ∅ as a zero element. We will also silently treat events as effects of length one.

There are four kinds of events. An event of the form Cap ξ roughly corre-
sponds to the evaluation of one or more capη r expressions: it means that for each
r 7→ η in ξ, the count vector of region r is incremented by η. On the other hand, an
event of the form δ r is meant to impose a constraint δ on region r. There are sev-
eral types of constraints, requiring that a region is readable (R), writable (W), not
readable nor writable (¬RW), not writable (¬W), live (Live), and not live (¬Live).
Events of the form Cap ξ and δ r are commonly called atomic events. On the other
hand, we have two kinds of composite events. A spawn event Spawn ξ γ means
that a new thread is spawned, where ξ denotes the set of regions and correspond-
ing count vectors that are passed to the new thread, and γ is the effect of the new
thread’s body. A conditional event Join γ1 γ2 means that control flow branches

21

and the effects of the two alternatives are γ1 and γ2.3

The typing relation, is denoted by R; M; ∆; Γ ` e : τ& γ which means that
expression e has type τ and produces effect γ. It is defined in Figure 6 and uses
four typing contexts (defined in Figure 5 on page 21): a set of region constants (R),
a mapping of locations to types and regions (M), a set of region variables (∆), and
a mapping of term variables to types (Γ). For brevity, we have omitted from our
presentation in this section the definitions of several judgements referring either
to the well-formedness of types, regions, etc., with respect to the typing contexts,
or to the well formedness of the typing contexts themselves.

The typing rules T-V , T-U , T-TR , T-FL , T-R , T-L , T-F , T-A , T-RF , and T-RP ,
are more or less standard. Notice that the effects produced by values are always
empty. The typing rule for function abstraction (T-F) annotates the function’s
type with the effect of the function’s body. Moreover, the typing rule for function
application (T-A) simply concatenates the effects of e1 and e2 (γ1 and γ2, respec-
tively) and the effect of the function’s body (γ). This concatenation of effects is
typical for several more constructs: the effects produced by subexpressions are
first concatenated in the same order in which these subexpressions are evaluated
(left to right), then (possibly) some effect that reflects the construct’s behavior is
appended. In the case of rule T-A , the additional effect is γ — the effect of the
function’s body. In the descriptions that follow, we will focus on the additional
effects and ignore the effects that are propagated from the subexpressions.

For conditional expressions, the type system records the effects of the two
branches without unifying them (rule T-IF), by adding the effect Join γ1 γ2 which
represents the two possible paths that will be executed at run-time. Similarly, the
typing rule for thread creation (T-SP) adds the effect Spawn ξ γ representing the
spawn operation, where γ is the effect produced by the expression that will be
evaluated in the new thread. Notice that the domains of ξ and γ should coin-
cide: for all regions in the effect of the new thread, the spawn construct should
determine the exact count vectors that will be passed from the current thread. Al-
though, to simplify the type system, ξ is given as an annotation of the spawn con-
struct, an implementation will be able to infer most of it. Because of the premise
dom(ξ) = dom(γ), after type checking the spawned expression, the domain of ξ
can be found. In general, it is not possible to infer unambiguously the lock counts
of regions in ξ, however, it would be much simpler for programmers if they only

3The “append” operator distributes over “join.” Semantically, the effects γ :: Join γ1 γ2 :: γ′

and Join (γ :: γ1 :: γ′) (γ :: γ2 :: γ′) are equivalent.

22

x : τ ∈ Γ ` R; M; ∆; Γ

R; M; ∆; Γ ` x : τ& ∅
(T-V)

` R; M; ∆; Γ

R; M; ∆; Γ ` () : unit& ∅
(T-U)

` R; M; ∆; Γ

R; M; ∆; Γ ` true : bool& ∅
(T-TR)

` R; M; ∆; Γ

R; M; ∆; Γ ` false : bool& ∅
(T-FL)

ı ∈ R ∪ {⊥} ` R; M; ∆; Γ

R; M; ∆; Γ ` rgnı : Rgn(ı) & ∅
(T-R)

` 7→ (τ, ı) ∈ M ` R; M; ∆; Γ

R; M; ∆; Γ ` loc` : Ref(τ, ı) & ∅
(T-L)

R; M; ∆; Γ, x : τ1 ` e : τ2 & γ

R; M; ∆; Γ ` λx. e : τ1
γ
−→ τ2 & ∅

(T-F)

R; M; ∆; Γ ` e1 : τ1
γ
−→ τ2 & γ1 R; M; ∆; Γ ` e2 : τ1 & γ2

R; M; ∆; Γ ` e1 e2 : τ2 & γ1 :: γ2 :: γ
(T-A)

R; ∆ ` Γ R; M; ∆, ρ; Γ ` f : τ& ∅

R; M; ∆; Γ ` Λρ. f : ∀ρ. τ& ∅
(T-RF)

R; M; ∆; Γ ` e : ∀ρ. τ& γ R; ∆ ` r r , ⊥

R; M; ∆; Γ ` e [r] : τ[r/ρ] & γ
(T-RP)

R; M; ∆; Γ ` e : bool& γ R; M; ∆; Γ ` e1 : τ& γ1 R; M; ∆; Γ ` e2 : τ& γ2

R; M; ∆; Γ ` if e then e1 else e2 : τ& γ :: Join γ1 γ2
(T-IF)

R; ∆ ` ξ R; M; ∆; Γ ` e : unit& γ dom(ξ) = dom(γ)
R; M; ∆; Γ ` spawnξ e : unit& Spawn ξ γ

(T-SP)

γL = {Live r | r ∈ dom(φ(∅))} γs = summary(φ(γL))

R; M; ∆; Γ, x : τ1
γs
−→ τ2 ` f : τ1

φ(γs)
−→ τ2 & ∅

R; M; ∆; Γ ` fix x. f : τ1
γs
−→ τ2 & ∅

(T-FX)

R; M; ∆; Γ ` e : Rgn(r) & γ r , ⊥

R; M; ∆; Γ ` capη e : unit& γ :: Cap {r 7→ η}
(T-CP)

R; M; ∆; Γ ` e1 : Ref(τ, r) & γ1 R; M; ∆; Γ ` e2 : τ& γ2 r , ⊥

R; M; ∆; Γ ` e1 := e2 : unit& γ1 :: γ2 :: W r
(T-AS)

R; M; ∆; Γ ` e : Ref(τ, r) & γ r , ⊥

R; M; ∆; Γ ` deref e : τ& γ :: R r
(T-D)

R; M; ∆; Γ ` e1 : τ& γ1 R; M; ∆; Γ ` e2 : Rgn(r) & γ2 r , ⊥

R; M; ∆; Γ ` new e1 @ e2 : Ref(τ, r) & γ1 :: γ2 :: Live r
(T-NL)

R; M; ∆; Γ ` e1 : Rgn(r) & γ1 R; M; ∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ& γ2
R; ∆ ` τ translate(γ2, ρ, (1, 1, 0), r) = γ′2

R; M; ∆; Γ ` newrgn ρ, x @ e1 in e2 : τ& γ1 :: Live r :: γ′2
(T-NR)

Figure 6: Typing rules.

23

had to annotate the spawn construct with the locks that are passed to the new
thread.

If we ignore the effects on the function types, the rule for typing recursive
functions (T-FX) is the standard one. However, in recursive functions it may be
impossible to assign the recursive function x the same effect as the function’s body
f . Suppose that γs is the effect of the recursive function x. Then, the effect of the
function’s body may properly contain γs if there are recursive calls to x. In fact,
the effect of the function’s body is of the form φ(γs), where φ is a “compositional”
function on events, i.e., a function that can only use its parameter as a sub-effect
of the result. Our type system chooses an appropriate γs by using the function
summary. We postpone the discussion on summaries and the restrictions that we
impose on recursive functions until Section 4.3.

The typing rule for the capability manipulation construct (T-CP) adds the ef-
fect Cap {r 7→ η}, representing change in the count vector of region r, whose han-
dle is given by expression e and which must not be the special region⊥. Similarly,
the typing rules for assignment and dereference (T-AS and T-D) add an effect with
a constraint of type W and R, respectively. The typing rule for reference allocation
(T-NL) is more relaxed, adding an effect with the constraint Live.

The most complicated typing rule is the one for creating new regions (T-NR).
This is where the actual effect checking takes place, based on the events and con-
straints that have been added by the other rules. Assuming that e1 is a handle for
the parent region r, expression e2 is type checked in an extended typing context
that contains ρ and x. The type τ of e2 should not mention ρ, i.e., the new re-
gion cannot escape in the result of e2. The resulting effect contains the constraint
that the parent region must be live. Furthermore, it contains γ′2, a modified ver-
sion of γ2 (the effect produced by e2) which is computed with the partial function
translate defined in Figure 7.

Function translate(γ, ρ, η, r) performs two tasks: (a) it validates the effect γ
with respect to the specific region ρ, which starts with a count vector η and whose
parent is r; and (b) if validation is successful, it produces a transformed effect
in which all events mentioning ρ have either been removed, or replaced by ap-
propriate events mentioning r (the parent of ρ). Validation keeps track of events
modifying ρ’s vector count and checks that all constraints are satisfied. Moreover,
it checks that region ρ has been properly released at the end of effect γ. Transfor-
mation makes sure that ρ is not mentioned in the resulting effect.

Let us see this process with two simple examples. First, consider the effect
γ = Live ρ :: W ρ :: Cap {ρ 7→ (0,−1, 0)} :: R ρ :: Cap {ρ 7→ (−1, 0, 0)} that could
have been produced by the second line in the following program segment, which

24

rg(n1, n2, n3) = n1
wr(n1, n2, n3) = n2
rd(n1, n2, n3) = n3

bot(δ,⊥) = ∅ if δ < {R, W}
bot(δ, r) = δ r if r , ⊥

solve(R, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) > 0
solve(R, r, η) = bot(R, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) = 0
solve(W, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) > 0
solve(W, r, η) = bot(W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(¬RW, r, η) = bot(¬RW, r) if ok(η − (1, 0, 0)) ∧ wr(η) = rd(η) = 0
solve(¬W, r, η) = bot(¬W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(Live, r, η) = bot(Live, r) if ok(η − (1, 0, 0))
solve(¬Live, r, η) = ∅ if ok(η) ∧ rg(η) = 0
solve(¬Live, r, η) = ¬Live r if ok(η − (1, 0, 0)) ∧ r , ⊥

p-constraint(r, η) = bot(¬RW, r) if wr(η) > 0
p-constraint(r, η) = bot(¬W, r) if wr(η) = 0 ∧ rd(η) > 0
p-constraint(r, η) = ∅ if wr(η) = rd(η) = 0

solve(¬Live, r′, η) = γ

translate(∅, r, η, r′) = γ
(TR-E)

r < dom(ξ) translate(γ, r, η, r′) = γ′

translate(Cap ξ :: γ, r, η, r′) = Cap ξ :: γ′
(TR-CN)

merge(ξ) = ξ′, r 7→ η′ γs = solve(Live, r′, η) :: Cap ξ′

translate(γ, r, η + η′, r′) = γ′ ok(η + η′)

translate(Cap ξ :: γ, r, η, r′) = γs :: γ′
(TR-CT)

r1 , r2 translate(γ, r2, η, r′) = γ′

translate(δ r1 :: γ, r2, η, r′) = δ r1 :: γ′
(TR-DN)

solve(δ, r′, η) = γs translate(γ, r, η, r′) = γ′

translate(δ r :: γ, r, η, r′) = γs :: γ′
(TR-DT)

translate(γ1 :: γ, r, η, r′) = γ′1 translate(γ2 :: γ, r, η, r′) = γ′2

translate(Join γ1 γ2 :: γ, r, η, r′) = Join γ′1 γ
′
2

(TR-J)

r < dom(ξ) translate(γ, r, η, r′) = γ′

translate(Spawn ξ γs :: γ, r, η, r′) = Spawn ξ γs :: γ′
(TR-SN)

merge(ξ) = ξ′, r 7→ ηs η = ηr ⊕ ηs rs = if r′ ∈ dom(ξ) then r′ else ⊥
p-constraint(rs, ηr) = γ′s translate(γs, r, ηs, rs) = γ′′s

p-constraint(r′, ηs) = γ′r translate(γ, r, ηr, r′) = γ′′r γ0 = solve(Live, r′, η)

translate(Spawn ξ γs :: γ, r, η, r′) = γ0 :: Spawn ξ′ (γ′s :: γ′′s) :: γ′r :: γ′′r
(TR-ST)

Figure 7: Effect validation and transformation.

25

may be erroneous because it tries to dereference z after it has been unlocked:

region<ρ> h @ hr;
let z = rnew(h) 42; ∗ z = 17; wr unlock(h); print(∗z); rfree(h)

Starting with a count vector of η = (1, 1, 0), the validation phase for γ first checks
that the constraint Live ρ is satisfied and then checks that the constraint W ρ is sat-
isfied. It then proceeds by decrementing the write lock count by 1, thus obtaining
a count vector of (1, 0, 0) for ρ. Subsequently, it checks if the constraint R ρ is
satisfied and finds that it is not, as ρ is now not protected for reading. It therefore
generates a constraint R r for the parent region; if the parent is locked for read-
ing, then it is safe to access the contents of ρ as well. Validation will fail when
translate is invoked for the parent region r, if this is not the case.

Let us now suppose that effect validation succeeded, either because we fixed
the program (e.g., by removing the unlock operation or by moving the read oper-
ation before it), or because the parent region was indeed locked for reading. The
resulting effect passes validation as all constraints are now satisfied and also, when
we reach the end of the effect, region ρ has been released (its reference count is
zero). The transformation phase translates all events that mention ρ to Live r.
The intuition behind this is that, after validation was successful as far as ρ is con-
cerned, it is only necessary to know that when ρ is mentioned its parent r is live.
In this way, it is possible to reject erroneous programs such as the following:

region<ρ> h @ hr;
let z = rnew(h) 42; ∗ z = 17; rfree(hr); print(∗z); rfree(h)

where the effect for the second line is γ = Live ρ :: W ρ :: Cap {r 7→ (0,−1, 0)} ::
R ρ :: Cap {ρ 7→ (−1, 0, 0)}. In this case, with respect to ρ, validation succeeds
and the transformed effect is γ′ = Live r :: Live r :: Cap {r 7→ (0,−1, 0)} ::
Live r :: Live r. Notice that the event mentioning r in γ is not affected by the
transformation. Now, when later this effect will be validated with respect to r,
assuming that the initial reference count is equal to one, validation will fail.

In Figure 7, the definition of translate uses the partial function solve, which
checks whether the atomic effect denoted by the first argument is valid with re-
spect to a region that has a vector count given by the third argument. If this cannot
be established unconditionally, the result is a constraint on the parent of this region
that is given by the second argument. The definition of solve is straightforward.
In the cases for R and W, if the constraint is found to be satisfied by the given count
vector then the only requirement is that the parent region is live (except when the
parent region is ⊥ which is always considered live). Otherwise, the constraint is

26

propagated to the parent region, e.g., if a region is not write-protected, a W con-
straint can only be satisfied if the same constraint is satisfied for its parent. A
Live constraint for the parent is also generated in the case of Live. On the other
hand, the negative constraints ¬RW and ¬W always propagate to the parent. The
same happens with ¬Live, unless the region’s reference count is zero.

The partial function translate(γ, r, η, r′) is defined with a case analysis on the
first event in γ. If γ is empty, rule TR-E requires that region r is not live; this
rule enforces the invariant that r must have been released by the end of its lexical
scope. Rules TR-CN and TR-DN handle the case of atomic events that refer
to regions other than r; these remain unaffected. On the other hand, rules TR-CT
and TR-DT use solve to validate and translate an atomic effect referring to r. Rule
TR-J handles the case of “join” events: the two branches are translated separately,
prepended to the rest of the effect, and the results are joined.

Rules TR-SN and TR-ST handle “spawn” events. The former is used when
region r is not passed to the new thread. The latter is quite complicated. It deter-
mines the count vector ηs that is passed to the new thread and the count vector ηr

that is left to the current thread, as well as rs, the parent of r as seen by the new
thread (it is r′, if r′ is also passed to the new thread, otherwise it is ⊥). It then
translates the effects of the new thread and the current thread with the appropriate
count vectors and parents. Finally, it prepends appropriate constraints, generated
by the function p-constraint, which guarantee mutual exclusion between the new
thread and the current thread.

Let us suppose that a region r is shared between two threads, the first thread
sees r′ as the parent of r and the second thread sees η as the vector count for
r. The purpose of p-constraint(r′, η) is to determine the constraints on r′ that
must be satisfied by the first thread to guarantee mutual exclusion. If η has a
positive write-lock count (in the second thread), then the region’s parent r′ must
not be read- or write-protected (in the first thread). Otherwise, if η has a positive
read-lock count (in the second thread), then the region’s parent r′ must not be
write-protected (in the first thread). Otherwise, if both lock counts are zero in η,
no additional constraints are imposed on r′. Notice that p-constraint is used twice
in rule TR-ST , symmetrically.

4.3. Effects for recursive functions
Although the basics of how to type check recursive functions were explained

in the previous section, we have not explained how to find the effect γs in rule
T-FX . This is done with the partial function summary, defined in Figure 8, which
imposes some restrictions on recursive functions and calculates the summarized

27

ξ1 − ξ2 = {r 7→ ξ1(r) − ξ2(r)} where ξ(r) = η if r 7→ η ∈ ξ and ξ(r) = (0, 0, 0) otherwise
ok(ξ) = ∀ı 7→ η ∈ ξ. ok(η)

ok(ξ)

recursive(ξ; ∅) = ξ
(R-E)

δ < {¬RW,¬W,¬Live} recursive(ξ; γ) = ξ′

recursive(ξ; δ r :: γ) = ξ′
(R-D)

ok(ξ) recursive(ξ − ξ′; γ) = ξ′′

recursive(ξ; Cap ξ′ :: γ) = ξ′′
(R-C)

ok(ξ) ξr = ξ − ξs
∀r 7→ η ∈ ξs. rd(η) = wr(η) = 0 recursive(ξr; γ) = ξ′r

recursive(ξ; Spawn ξs γs :: γ) = ξ′r
(R-S)

recursive(ξ; γ1) = ξ′ recursive(ξ; γ2) = ξ′ recursive(ξ′; γ) = ξ′′

recursive(ξ; Join γ1 γ2 :: γ) = ξ′′
(R-J)

recursive(ξ1; γ) = ξ1
ξ1 = {r 7→ (1, 0, 0) | r ∈ dom(γ)} ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(γ)}

summary(γ) = Cap ξ1 :: Spawn ξ1 (γ :: Cap ξ2)
(SUM)

Figure 8: Summarized effects of recursive functions.

effect. The restrictions imposed are the following and they apply to “external”
regions, i.e., regions that exist before a recursive function is called (in contrast to
regions that are created in a recursive function’s body):

• When a recursive function returns, the counts of all external regions must
be equal to the counts when the function was called. This is ensured by the
premise recursive(ξ1; γ) = ξ1 in the rule SUM . It implies that a recursive
function cannot deallocate any external regions.

• If a recursive function spawns new threads, it cannot pass to them any locks
to external regions. This is ensured by the rule R-S.

• A recursive function cannot presume any existing locks on external regions.
This is ensured by the definition of ξ1 and the spawn event in the rule SUM .

After all this, we can now return to the explanation of rule T-FX on page 23. If
φ is the compositional function on effects that corresponds to the recursive func-
tion’s body, then φ(∅) is the effect that one gets by completely ignoring the recur-
sive calls. We just use this effect to identify the external regions that a recursive
function uses and to construct the effect γL, which contains Live constraints for
all those regions. Then we take the effect φ(γL) as the basis for our summarization.

28

To summarize an effect, as shown in rule SUM , we essentially check that
the constraints stated above are satisfied. The first two constraints are directly
enforced by the partial function recursive, whose definition is straightforward.
Then, the effect γ to be summarized is isolated inside a Spawn effect, which en-
forces the third constraint.

5. Type safety

In this section we discuss the fundamental theorems that prove type safety of
our language.4 The type safety formulation is based on proving the preservation
and progress lemmata. Informally, a program written in our language is safe when
for each thread of execution an evaluation step can be performed or that thread
is waiting for a lock (blocked). As discussed in Section 4.1, a thread may also
become stuck when it accesses a region that is not live or accessible — these are
obviously the interesting cases in our concurrent setting; of course a thread may
become stuck when it performs a non well-typed operation. Blocked threads and
deadlocked threads are not considered to be stuck.

Definition 1 (Constraint validity) Predicate cvalid(δ; ı; θ) is true when the con-
straint δ on ı is consistent with the run-time hierarchy θ. It is defined as follows:

cvalid(Live;⊥; θ)
(C-T)

θ = θ′, ı 7→ (η,) solve(δ, , η) = ∅

cvalid(δ; ı; θ)
(C-B)

θ = θ′, ı 7→ (η,) solve(δ, , η) = δ′ cvalid(δ′; ; θ′)
cvalid(δ; ı; θ)

(C-R)

Function solve is used in rules C-B and C-R to enable the validation of hierarchi-
cal constraints.

Definition 2 (Validity for count modification) The partial function xvalid(ξ; θ)
is defined as follows. We have xvalid(ξ; θ) = θ′ when it is valid to apply the count
modifications defined by ξ to the hierarchy θ and the result is θ′.

xvalid(∅; θ) = θ
(X-E)

ok(η + η′) cvalid(Live ; ı; θ, ı 7→ (η,))
xvalid(ξ; θ, ı 7→ (η + η′,)) = θ′

xvalid(ξ, ı 7→ η′; θ, ı 7→ (η,)) = θ′
(X-S)

4Full proofs and a full formalization of our language are given in the Appendix.

29

Definition 3 (Effect validity) The partial functions evalid(ζ; θ) and gvalid(γ; θ),
as well as the predicate valid(γ; θ) are defined with the following rules. We have
evalid(ζ; θ) = θ′ when the event ζ is valid in hierarchy θ and the result is θ′.
Similarly, we have gvalid(γ; θ) = θ′ when the effect γ is valid in hierarchy θ and
the result is θ′. Finally, valid(γ; θ) is true when the effect γ is valid in hierarchy θ
and the result is a hierarchy with no live regions.

cvalid(δ; ı; θ)
evalid(δ ı; θ) = θ

(V-D)
xvalid(merge(ξ); θ) = θ′

evalid(Cap ξ; θ) = θ′
(V-C)

gvalid(γ1; θ) = θ′ gvalid(γ2; θ) = θ′

evalid(Join γ1 γ2; θ) = θ′
(V-J)

∀ı ∈ dom(θs). cvalid(Live ; ı; θ)
merge(ξ) ` θ = θr ⊕ θs valid(γs; θs) mutex({θs, θr})

evalid(Spawn ξ γs; θ) = θr
(V-S)

ok(θ)
gvalid(∅; θ) = θ

(V-E)
ok(θ1) evalid(ζ; θ1) = θ2 gvalid(γ; θ2) = θ3

gvalid(ζ :: γ; θ1) = θ3
(V-K)

gvalid(γ; θ) = θ′ live(θ′) = ∅

valid(γ; θ)
(V-V)

For the definition of evalid, the most interesting cases are rules V-J and V-S. In
the former, a “join” effect is valid when both branches are valid and produce the
same result. In the latter, for the validation of a “spawn” effect, θ is split into θs

and θr, according to merge(ξ), and the lock counts of these two hierarchies must
satisfy the mutual exclusion criteria; then, θs is the hierarchy of the new thread
and γs must be valid for it, whereas θr is the hierarchy of the main thread and
therefore the result.

Definition 4 (Thread typing) Let T be a collection of threads and R; M be a
global typing context. The relation R; M ` T is defined as follows:

R; M ` ∅

R; M ` T R; M; ∅; ∅ ` e : unit& γ valid(γ; θ)
∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}

R; M ` T, 〈θ; e〉

For each thread 〈θ, e〉 in T , the effect γ produced by the closed expression e must
be valid under θ, the regions contained in θ must be a subset of R, and their parents
must be contained in R or ⊥.

Definition 5 (Store typing) Let S be a store and R; M be a global typing context.
The relation R; M ` S is defined as follows:

30

R = {ı | ı 7→ H ∈ S } {(`, ı) | ` 7→ (τ, ı) ∈ M} = {(`, ı) | ` 7→ v ∈ H ∧ ı 7→ H ∈ S }
∀` 7→ (τ, ı) ∈ M. R; M; ∅; ∅ ` S (ı)(`) : τ& ∅

R; M ` S

The set of region names in S must be equal to R. The set of locations in M must
be equal to the set of locations in all the heaps in S , and the regions in which these
locations reside must coincide. Finally, for each location `, the value stored in this
location must be closed, must have the type mentioned by M and must produce
an empty effect.

Definition 6 (Configuration typing) Let S ; T be a configuration and R; M be a
global typing context. The relation R; M ` S ; T is defined as follows:

R; M ` T R; M ` S mutex({θ | 〈θ; e〉 ∈ T })
R; M ` S ; T

A configuration S ; T is well-typed with respect to R; M when both the collection
of threads T and the store S are well-typed with respect to R; M. In addition the
hierarchies of all threads in T must adhere to the mutual exclusion criteria (see
predicate mutex in Figure 4 on page 19).

Definition 7 (Running) Let 〈θ; e〉 be a thread, T be the remaining threads, and S
be a store. The predicate running(S ; T ; 〈θ; e〉) is defined as follows:

S ; T, 〈θ; e〉 { S ′; T ′ T ⊆ T ′

running(S ; T, 〈θ; e〉; 〈θ; e〉)

A thread is running when it can take one of the evaluation steps in Figure 3.

Definition 8 (Blocked) Let 〈θ; e〉 be a thread and T be the remaining threads. The
predicate blocked(T ; 〈θ; e〉) is defined as follows:

ı ∈ live(θ, ı 7→ (η,)) mutex({θ, ı 7→ (η,)} ∪ {θ′ | 〈θ′; e′〉 ∈ T })
¬mutex({θ, ı 7→ (η + η′,)} ∪ {θ′ | 〈θ′; e′〉 ∈ T })

blocked(T ; 〈θ, ı 7→ (η,); E[capη′ rgnı]〉)

A thread is blocked when it attempts to acquire the lock of a live region that is
locked by another thread.

Definition 9 (Not stuck) Let S ; T be a configuration. The relation ` S ; T is de-
fined as follows:

∀〈θ; e〉 ∈ T. running(S ; T ; 〈θ; e〉) ∨ blocked(T ; 〈θ; e〉)
` S ; T

31

A configuration S ; T is not stuck when each thread in T is either running or
blocked by some other thread.

Given these definitions, we can now present the main results of this article.

Lemma 1 (Progress) Let R; M be a global typing context and S ; T be a well-
typed configuration with R; M ` S ; T . Then ` S ; T , in other words S ; T is not
stuck.

Proof sketch. By induction on the evaluation relation. Most cases can be trivially
shown by using the invariants provided by predicate valid, which is obtained by
inversion of the well formedness hypothesis for T .

Lemma 2 (Preservation) Let R; M be a global typing context and S ; T be a well-
typed configuration with R; M ` S ; T . If the operational semantics takes a step
S ; T { S ′; T ′, then there exist R′ ⊇ R and M′ ⊇ M such that the resulting
configuration is well-typed with R′; M′ ` S ′; T ′.

Proof sketch. By induction on the evaluation relation. Most cases can be trivially
shown by using the invariants provided by predicate valid, which is obtained by
inversion of the well formedness hypothesis for T . The most interesting cases
are E-NR , where it is must be shown that function translate entails effect validity,
and E-FX , where it must be shown that function summary entails effect validity.
These two are established by Lemmata 3 and 4, respectively.

Lemma 3 (Translate implies valid) If valid(translate(γ, ı, η,); θ) for some re-
gion ı such that ı < dom(θ), then valid(γ; θ, ı 7→ (η,)).

Proof sketch. By induction on the structure of γ. The most interesting case is
when γ is of the form Spawn ξs γs :: γ′, merge(ξs) = ξ′s, ı 7→ ηs and η = ηr ⊕ ηs;
it must be shown that if mutex holds for the hierarchies of the child and parent
thread, θs and θr respectively, then mutex also holds when ı is added in the two
hierarchies with counts ηs and ηr respectively. We employ the definitions of func-
tion p-constraint and η = ηr ⊕ ηs to show that when one of the threads has write
access to ı, then the other thread does not have access to ı and vice versa.

Lemma 4 (Recursion implies valid) If γL = {Live r | r ∈ dom(φ(∅))}, γs =

summary(φ(γL)), and valid(γs :: γ; θ), then valid(φ(γs) :: γ; θ).

32

Proof sketch. Using a series of intermediate lemmata, the proof is reduced to
showing that if gvalid(γs; θ0) = θ0, hierarchy ok(θ1; θ0), and gvalid(φ(γL); θ1) =

θ2, then gvalid(φ(γs); θ1) = θ2. This can be achieved by induction on the structure
of the compositional function φ.

Now, assume that e is the expression that represents the initial program. Let
S 0 = ∅ be the initial empty store and T0 = ∅, 〈∅; e〉 be the initial set of threads,
consisting of just e with an empty region hierarchy. We are interested only in
programs that are closed, well typed and whose effect is consistent with the initial
empty region hierarchy. Our type safety theorem shows that such programs cannot
become stuck.

Theorem 1 (Type safety) Let e be such that ∅; ∅; ∅; ∅ ` e : unit& ∅. If the oper-
ational semantics takes any number of steps S 0; T0 {

n S n; Tn, then the resulting
configuration S n; Tn is not stuck.

Proof. Let R0 = ∅ and M0 = ∅. Using the assumptions it is easy to establish that
R0; M0 ` S 0; T0. Then, by induction on the number of steps n and using Lemma 2,
we show that there exist Rn ⊇ R0 and Mn ⊇ M0 such that Rn; Mn ` S n; Tn. Finally,
Lemma 1 implies that S n; Tn is not stuck.

The empty contexts that are used when typechecking the initial program e
guarantee that no explicit region values (rgnı) or location values (loc`) are used
in the source of the initial program.

6. Cyclone: a memory-safe dialect of C

To make this article self-contained, in this section we provide a brief overview
of Cyclone before our additions. In particular, we first discuss memory man-
agement aspects of Cyclone: we describe how regions are used in Cyclone (in
Section 7 we will refer to Cyclone’s existing regions as “traditional”) and iden-
tify some shortcomings that are alleviated by adopting the kind of regions that
we proposed in this article (we will refer to these regions as “extended”). We
also show, through several examples, that Cyclone’s memory safety guarantees
only hold for sequential programs. (All code excerpts are henceforth shown using
Cyclone syntax.) In Section 7 we will present how the language additions we pro-
pose can be smoothly integrated into Cyclone and provide safety in the presence
of multithreading.

33

6.1. Memory management in Cyclone
Cyclone employs a uniform treatment of different memory segments such as

the main heap, the stack and individual regions. More specifically, memory seg-
ments are mapped into logical memory partitions. Each data object is allocated
in a single memory segment, but references to objects may refer to multiple seg-
ments. Hereon, we overload the term “region” to mean a type-level logical mem-
ory partition, a run-time entity that enables fast allocation and bulk deallocation
of objects, or a memory segment such as the heap and the stack.

For instance, a stack frame is treated as a region holding the values of variables
declared in a lexical block. As another example, the main heap is an immortal
region that contains all global variables. The type system of Cyclone tracks the
set of live regions at each program point and verifies that the regions associated
with each accessed object are indeed a subset of the live regions.

{ region<‘r> r; // live regions: {‘r}
int ∗ ‘r z = rnew(r) 42; // {‘r}

. . . // {‘r}
} // { }

The above example illustrates how a scoped region can be created and used in
Cyclone: the first statement allocates a fresh memory segment, and associates this
segment with a fresh type-level region (i.e., ‘r). Following Cyclone’s terminology,
we use a leading backquote for type-level names, e.g., ‘r. (We will use the same
name without the backquote for the corresponding region handle, which here is
explicitly named r.) The comments on the right-hand side of the example’s code
show the live region set (i.e., the effect) at each program point.

The new region can be accessed via its region handle (r), which is given the
singleton type region<‘r>. The second statement uses r to allocate memory for
a single integer and initializes it to the value 42. The type of the fresh reference is
annotated with region ‘r (i.e., int ∗ ‘r). The type system ensures that the reference
can only be accessed when ‘r is in the current effect.

In Cyclone, the uniform treatment of memory allows for polymorphism over
different kinds of memory segments.

void swap (int ∗ ‘r1 x , int ∗ ‘r2 y);

For instance, the above line of code declares a function that swaps the contents of
the variables x and y located at regions ‘r1 and ‘r2 respectively. Both ‘r1 and ‘r2 are
polymorphic and can be instantiated with any region. The following line of code
invokes swap by explicitly instantiating both ‘r1 and ‘r2 to the same region ‘r.

34

{ region<‘r>r;
int ∗ ‘r z = rnew(r) 42;
int ∗ ‘r y = rnew(r) 54;
swap(z, y); // effect of swap: {‘r, ‘r}
}

As shown in the comment, type-level regions can be freely aliased in a effect (e.g.,
{‘r, ‘r}). The downside of allowing unrestricted aliasing is that scoped regions can
only be deallocated implicitly by the run-time system when a region’s scope ends.

To ameliorate the situation, Cyclone’s region system has been extended with
three powerful features, namely tracked types, the notion of borrowing tracked
types and existential types. Tracked types, which are closely related to linear
types, disallow aliasing of tracked references. Borrowing can be used to con-
vert a tracked reference to an aliasable reference within a particular scope. The
aliasable reference is accessible within the scope, whereas the tracked reference
becomes inaccessible for the duration of the scope. Finally, existential types serve
as the means for overcoming lexically scoped region names, by permitting the
on-demand concealment and disclosure of region names. Cyclone allows access
and deallocation of non-lexically scoped (i.e., dynamically scoped) regions as fol-
lows:

• A request is made to the run-time system to allocate a fresh dynamic region.

• The run-time system returns an existential package containing some region
name ‘r and a key (i.e., a tracked reference) to the handle of the fresh region.
The handle is also annotated with ‘r.

• The existential package is unpacked and ‘r is brought into scope as well as
the key.

• The program can immediately deallocate the new region by deallocating
the key, or it may temporarily yield access to the key by allowing it to be
borrowed within a scope. When this happens, ‘r is added to the effect and
the region referred by the key is usable.

The following example illustrates a similar scenario. It should be noted that a
dynamic region cannot be deallocated as long as key has been borrowed.

35

void access and deallocate (NewDynRgn pr) {
let NewDynRgn{<‘r> key} = pr; // open existential
{ region r = open(key); // borrow key for this scope
let x = rnew(r) 42;
. . . // region ‘r cannot be deallocated here

}

. . . // do some work
free ukey(key); // deallocate region ‘r

}

Additionally, Cyclone allows tracked references to leak and thus allows dy-
namic regions to leak as well. This would be the case, for instance, in the program
above if the programmer had not called free ukey. To tackle this issue, an intra-
procedural analysis can be used to report tracked reference leaks as warnings. In
practice, this analysis produces a large number of false positives [11]. For in-
stance, when a function call takes place between the allocation and deallocation
point of a tracked reference, the analysis must report that the tracked reference
may leak as an uncaught exception may be thrown during the call. For a detailed
discussion about memory management aspects of Cyclone we refer the reader to
the work of Swamy et al. [11].

6.2. Concurrency in Cyclone
Besides our work, the only attempt to add safe multithreading to Cyclone has

been the work of Grossman [2]. However, Grossman’s proposal was never imple-
mented and consequently the Cyclone implementation does not come with built-in
support for concurrency. Instead, it provides an interface to the pthreads library,
which allows programmers to spawn new threads and use numerous synchroniza-
tion primitives to control the interaction between threads. The interface to the
pthreads library ensures that the run-time data structures are correctly initialized
before a new thread runs.

To preserve memory safety (e.g., absence of dangling pointers), Cyclone re-
quires that all memory regions passed to a new thread must live at least as long as
the immortal (main) heap. This implies that threads can interact with other threads
via dynamically allocated references that reside in the heap or in global variables.
This restriction diminishes the explicit memory management benefits of Cyclone;
in concurrent programs, aliasable heap references can only be garbage collected.
The following definition has been extracted from Cyclone’s interface to pthreads
library:

int pthread create (pthread t@, const pthread attr t ∗,
‘a(@‘H)(‘b), ‘b arg : regions(‘b) ≤ ‘H)

36

The most interesting part of this definition is regions(‘b) ≤ ‘H, which says that
all region names occurring in the type that will instantiate the type variable ‘b must
be live for at least as long as the immortal heap (‘H). Tracked pointers cannot be
passed to threads.

But the memory safety guarantees that Cyclone aims for can be compromised
in other ways in the presence of multithreading. Here we will only mention a few
such cases.

Firstly, the data flow analysis performed for identifying where to insert dy-
namic checks (e.g., null pointer and array bounds checks) is unsound in a concur-
rent setting. Consider the following code fragment:

void foo (int ∗ ‘r ∗ ‘r x) {
if (x != NULL && ∗x != NULL) ∗∗x = 42;

}

Assuming that x is a shared possibly null reference, then the analysis will deduce
that ∗∗x can be accessed within the conditional statement as x and ∗x are definitely
not null. This property does not hold for concurrent programs that share x, but do
not synchronize their accesses to it.

Secondly, some features of Cyclone such as pattern matching, accesses to wide
references (i.e., fat pointers) and swap operations between tracked references must
be performed atomically. The lack of atomicity in swap operations and wide
references can trivially compromise memory safety and cause dangling pointer
dereferences and double deallocations.

Last but not least, Cyclone’s type system does not guard against data races.
The absence of data races gives additional guarantees to the programmer and al-
lows a thread-aware compiler to perform certain kinds of optimizations that should
only be applied to sequential programs. As will be shown in the next two sections,
we have solved some of these issues by implementing an adjusted version of our
type system and operational semantics in Cyclone. We have also re-engineered
the run-time system of Cyclone so that it is non-blocking and thread-safe.

7. Interaction with Cyclone

In this section, we provide an in-depth description of the interaction between
our system and Cyclone.

7.1. Extended regions and kind system
In contrast with Cyclone’s traditional lexically scoped regions, which are al-

located in a LIFO manner, our extended regions can be allocated at any extended

37

region ancestor or under the main heap. We consider the main heap (‘H) as the
root of our region hierarchy (it coincides with ⊥ in the hierarchy of extended re-
gions). We have already shown a number of examples using extended regions
in Section 3. This form of allocation generalizes the stack-based region orga-
nization to a tree-based organization and enables finer-grained control of region
lifetimes.

Traditional lexically scoped regions cannot be shared safely. For instance,
stack frames are treated as traditional regions and sharing the stack in a safe man-
ner would have a severe impact on concurrency between threads. Nonetheless,
traditional regions must be preserved for backwards compatibility. Our imple-
mentation draws a line between our extended regions and traditional Cyclone re-
gions. In this way, we are able to restrict what kinds of regions can be shared.
The type system of Cyclone uses kinds to group types. We therefore use two dif-
ferent kinds of region type variables: one for traditional regions that cannot be
shared among threads, and one for extended regions that are sharable. Notice
that extended regions start as thread-local, i.e., the thread that creates them can
immediately access their contents without locking.

In contrast with traditional dynamic regions that may leak, as we saw in Sec-
tion 6.1, our extended regions can never leak as each well-typed thread must ex-
plicitly release its extended regions. Our effect analysis employs negative liveness
constraints (¬Live) to verify definite release of regions. Of course, it is possible
to safely release extended regions in bulk by releasing their common ancestor. Fi-
nally, less effort is required to write programs that explicitly manage the lifetime
of extended regions as there is no distinction between linear and aliased regions.

7.2. Operating on capabilities
The cap operator of the formal semantics is available as is in our extension

of Cyclone and can be used in programs. However, since this operator is quite
low-level and not particularly user-friendly, our implementation also comes with
various built-in defines, using the macro preprocessor of Cyclone, that provide
mnemonic aliases as those used in the examples of Section 3 for most common
operations. Two of these defines are shown below.

#define rfree(h) cap (h,−1, 0, 0)
#define wr unlock(h) cap (h, 0,−1, 0)

In the code excerpts shown in the rest of the article, we will assume that these
defines are available.

38

7.3. Exceptions
Having static guarantees about the control flow of a program plays a crucial

role in manual memory management. As mentioned in Section 6, in Cyclone the
memory of tracked objects (e.g., dynamic regions) can only be safely reclaimed
by the garbage collector.

Since we aim for a low-level language (cf. Section 2), we decided that the
programmer should always be able to reclaim extended regions manually. To-
wards this goal, we have made it possible for the programmer to annotate Cy-
clone function declarations with uncaught exception names that may be thrown
from a function’s body.5 In addition, exact knowledge of a function’s control-flow
graph is required to guarantee soundness. There exist three kinds of annotations
for exceptions:

1. @throws(. . .) enumerates all exceptions that may be thrown from a func-
tion body;

2. @nothrow is an abbreviation for @throws(); and
3. @throwsany acts as a wildcard for any exception that may be thrown.

(This annotation is often useful for legacy library prototypes and code.)

The default annotation for functions is @throwsany. Exceptions may be thrown
explicitly by the programmer or implicitly by the run-time system. Implicit excep-
tions arise in situations where:

• a null pointer is dereferenced;

• an out of bounds array access is performed;

• the run-time system has insufficient memory to fulfill an allocation request;

• a value cannot be matched against any of the available patterns.

The exception analysis takes into consideration both explicit and implicit excep-
tions.

5We have noticed that the implementation of Cyclone actually had a @throws clause but it is
undocumented and not functioning.

39

7.4. Reentrant and extended region functions
Global data is implicitly shared by all threads and this may cause data races.

To preserve race freedom, we have constrained our language so that only extended
regions can be shared between threads. (However, we allow reading global vari-
ables that are declared as constant.) Traditional Cyclone regions (or references)
cannot be passed to threads.

To enforce, this policy we require that each explicitly spawned thread is de-
clared as @re entrant. A function annotated as @re entrant cannot ac-
cess global variables, the immortal heap, tracked objects and it can only invoke
@re entrant functions. Function main is not @re entrant. Global data and
tracked objects can still be directly accessed by any non reentrant function invoked
directly or indirectly by main. Therefore, sequential programs have full access
to global data. Relaxing type checking so that tracked objects can be passed to
threads, provided that these objects are consumed from the environment perform-
ing a spawn operation, is left for future work.

To speed up the compilation process, we require that functions that modify
or access in any way extended regions must be explicitly declared as @xrgn. In
summary, the use of @re entrant implies that a function does not use existing
traditional regions (i.e., the heap, global data and tracked objects), whereas the
absence of @xrgn implies that a function does not create or use extended regions.
The two annotations can be used independently.

7.5. Thread creation
Threads can be explicitly created by means of the spawn operator. This oper-

ator takes two expressions e1 and e2, i.e., spawn (e1) e2, and spawns a new thread.
The first expression is a list of tuples of the form (h, n1, n2, n3), where h is a region
handle, and n1, n2 and n3 represent the region counts passed to the new thread.
The second expression e2 must be a function call and the function must be an-
notated as @re entrant@nothrow. Furthermore, the traditional Cyclone effect
must be empty so that unsharable regions cannot be used in the new thread. Both
expressions e1 and e2 are evaluated from left to right. The spawning thread does
not block and returns immediately.

7.6. Type polymorphism
Cyclone effects are not polymorphic. To allow the invocation of functions,

which have polymorphic arguments (e.g., ‘a), Cyclone programmers use the op-
erator regions(‘a). Its purpose is to defer effect checking until the function call

40

is performed, where the calling environment must prove that all regions occurring
in the type that instantiates ‘a are present in the environment’s effect:

void foo(‘a ; regions(‘a));

In terms of extended regions, the regions operator would require that all regions
occurring in ‘a are live and accessible for the scope of the function call. However,
this is beyond the scope of our type system. Furthermore, we cannot provably
guarantee memory safety if this construct is used in the way described above.
Therefore, the type checker disallows invalid uses of the regions operator.

This limitation could be improved in future work, but as a workaround we
allow extended regions to interoperate with traditional regions. We explain this
feature in the following subsection.

7.7. Interoperability with traditional regions
The distinction between traditional and extended regions may be limiting for

programs that require both kinds of regions. To ameliorate the situation we intro-
duce a language construct, which is similar to the alias and open constructs of
Cyclone, that borrows a part (or a fraction) of an accessible extended region for a
certain scope. Consider the following example:

region child @ parent;
{ region h = xopen(child); // consume one write-lock capability

. . .
} // restore write-lock capability
rfree(child);

The xopen construct borrows exactly one lock capability from the extended re-
gion ‘child for the scope of the xopen construct. The type system requires that
region ‘child is live by the end of the xopen scope and creates a fresh logical re-
gion ‘h, which can be used as a traditional Cyclone region. It should be noted that
‘child is still live and possibly accessible (if it had more than one lock capability)
during the scope of xopen. On the downside, region ‘child must remain locked
for the scope of xopen.

7.8. Memory consistency
Our formal language semantics assumes a sequentially consistent memory

model [10], which implies that concurrent read and write operations are viewed as
an interleaving of atomic steps. Modern processors are implemented with much

41

weaker memory consistency specifications, because sequential consistency re-
stricts common compiler and hardware optimizations. Research on relaxed mem-
ory models [12, 13] has shown that race-free programs (i.e., programs where read
and write operations to shared memory locations only occur within memory syn-
chronization primitives) running on relaxed memory systems have a sequentially
consistent view of memory operations.

Assuming that the compilation process preserves the original Cyclone code
semantics, we obtain race-free native code with sequential consistency guaran-
tees. At the implementation level, we must guarantee that memory operations to
extended regions cannot escape the scope of a “lock/unlock” primitive as locking
operations synchronize memory. This situation may arise as a result of compiler
optimizations such as register promotion [14]. We have taken the most conserva-
tive approach and require that extended region data objects are compiled down to
C as volatile. According to the manual of GCC, which is invoked by the Cy-
clone compiler to generate native code, “an implementation is free to reorder and
combine volatile accesses which occur between sequence points, but cannot do so
for accesses across a sequence point” [15, Section 6.40, page 357]. Our locking
primitives introduce sequence points and thus the compilation process will not
reorder volatile accesses in an unsafe manner.

8. Implementation

8.1. Compiler
We have implemented extended region checking as a separate compiler pass in

Cyclone. First, the type well-formedness of our annotations (effects, exceptions,
types) is checked. During type checking, we disregard control-flow and verify
that the extended regions being accessed exist in a function’s scope. This allows
us to catch common errors early. Once type checking is finished, the compiler
enters the static analysis stage where it performs data- and control-flow analyses
and determines candidate program locations for the insertion of dynamic checks
(e.g., array bound checks).

The compiler may eliminate some candidate locations, by utilizing checks in-
serted by the programmer (e.g, if (i < len) a[i] = 42;). As illustrated in Section 6,
some optimizations may be unsound. Ideally, the data-flow analysis should dis-
card programmer-inserted assertions for memory accesses at some region r, when
they are followed by an unlock operation on r. Our current implementation, is
highly conservative and only allows dynamic check elimination for trivial cases
of shared memory accesses.

42

The exception analysis considers compiler-inserted checks as implicit excep-
tions and performs a control-flow sensitive analysis to verify that uncaught ex-
ceptions that may be thrown from a function body are included in the @throws
specification.

Finally, a control-flow sensitive effect analysis is performed. The analysis
propagates effects through the control-flow graph and appends new effects when
appropriate. As in the type-checking rules, effect translation is performed when
the entire effect of a region has been gathered.

It is worth noting that iteration and exception handling are treated conserva-
tively. In particular, iterative statements are treated similarly to recursive functions
(i.e., their effects are computed using the rules of Figure 8). It is entirely possi-
ble to spawn a new thread, which consumes some locks or regions, in one of the
branches of a conditional statement and not in the other as our effect system main-
tains the effects of both branches. This analysis also utilizes function attributes,
when checking function calls. For instance, effects are not propagated from func-
tion calls that never return to the calling context (i.e., attribute((noreturn))).

The formal analysis does permit higher-order functions whose parameters
have non-empty effects. In the actual implementation, function pointers can be
used as parameters but their effect must be empty. However, it would be possible
to perform a points-to analysis for function pointers, which would infer for each
pointer the set of functions that it may refer to and their corresponding effects
{ f1 : γ1, ..., fn : γn}. The effect of a indirect function call could then be formulated
as a joint effect Join γ1 (. . . (Join γn−1 γn) . . .).

8.2. Error reporting
During region checking, it is possible that effect validation fails. In this case,

an error message is reported and our implementation tries to associate it with the
offending statement. This is not always an easy task, as the offending statement
in general contributes some constraint to the effect and this constraint is found not
to be satisfied at a later time, possibly in the context of a different function. The
example in Figure 9 illustrates this. This program is rejected, as function f assigns
to a reference in region h that is not write-locked. The error message issued by
the compiler points to line 4 of the source code, where the actual assignment takes
place, but also reports the path of function calls that led to this error (line 11).

COMPILER OUTPUT:
t0.cyc:4: Could not solve: Read(‘h) for region ‘h. XCap: (1, 0, 0).

Path: t0.cyc:11
COMPILATION FAILED!

43

1: #include <core.h>
2:

3: void f (region t<‘r :: X> h, int@ ‘r0 :: X ref) @xrgn {
4: let tmp = ∗ref ;
5: }

6:

7: int main () {
8: region h @Core :: heap region;
9: wr unlock(h); // defined as cap(h, 0,−1, 0)

10: let ref = rnew(h) 30;
11: f(h, ref);
12: rfree(h); // defined as cap(h,−1, 0, 0)
13: return 0;
14: }

Figure 9: A program with an error illustrating how errors are reported in our implementation.

8.3. Code generation
We have altered the code generation pass so that we can perform the following:

• Translate spawn statements to low-level primitives, packing and unpacking
function arguments and placing the actual call in a wrapper function, which
acts as a glue between the call and the thread that will execute it.

• Generate specialized code for allocating extended regions and references.

8.4. Run-time system
In order to maintain a local view of the global hierarchy, the run-time system

performs the following tasks:

• It registers new allocated regions to the appropriate local thread hierarchy.

• When a subtree has to be deallocated, the appropriate region counts of the
local hierarchy are updated. Notice that all remaining region locks are re-
leased during the deallocation phase.

• The implementation of spawn uses a similar process based on the region
count annotations of the spawn operation to construct the subtree passed to
the new thread and makes this tree accessible to the new thread.

44

• Region locking is implemented in a straightforward manner by traversing
the local hierarchy. To avoid deadlocks, subtrees are always locked in a
top-down left-to-right manner.

• The region allocation subsystem has been re-engineered so that it can serve
concurrent allocation requests in a non-blocking manner (i.e., using atomic
operations).

9. Performance evaluation

We evaluated our implementation on concurrent benchmark programs taken
from “The Computer Language Benchmarks Game.”6 As a basis for our evalua-
tion we tried to use the fastest version of the programs in C, which we translated
by hand to extended Cyclone as directly as possible. In case this was not possible
(e.g., the programs could not be translated) we either used a slower version in C
or (if no such version was available from the shootout) we picked a concurrent
solution written in a different language (e.g., C#) and translated it both to C and
to our language as directly as possible. In all cases, the two programs that we are
comparing implement the same algorithm. The seven benchmark programs we
used were:7

binary-trees: a program that allocates, traverses and deallocates binary trees.
The original program (#7) uses GCC’s OpenMP library and, for efficiency,
memory pools as implemented in the Apache Portable Runtime Library.

chameneos-redux: a program that simulates the interaction of a number of crea-
tures, using symmetrical thread rendez-vous. Our basis for the comparison
is the second fastest version in C (#2); it uses pthreads and mutex locks. The
fastest version in C (#5) uses the processor’s “compare and swap” instruc-
tion, instead of locks, and explicitly schedules threads to processor cores;
it cannot be translated directly to our language. Besides, on our testing
machine, it only produced the correct result when compiled with -O2.

fannkuch-redux: a program that performs indexed access to small sequences of
integer numbers. The original program (#2) uses pthreads. However, on our

6In June 2011, its URL is http://shootout.alioth.debian.org/u32q/.
7Our implementation and the benchmark programs we used in this section are available from

the URL: http://www.softlab.ntua.gr/˜pgerakios/cycinfer.tgz.

45

http://shootout.alioth.debian.org/u32q/
http://www.softlab.ntua.gr/~pgerakios/cycinfer.tgz

testing machine, it only produced the correct result when compiled without
optimizations and, for fairness, we did the same for our program. Since
November 2009, this program has been removed from the shootout; there is
currently no multithreaded solution in C for fannkuch-redux.

mandelbrot: a program that plots a bitmap of the Mandelbrot set. The basis of
our comparison was the fastest C solution in November 2009 (#6); which
uses pthreads and special SSE2 128-bit floating-point instructions. How-
ever, because SSE2 operations are not available in Cyclone, for fairness, we
used the same algorithm but with normal double precision numbers. Since
November 2009, two faster C solutions have appeared in the shootout: they
both use atomic builtins for synchronization and the first (#4) uses OpenMP
while the second (#3) uses pthreads.

regex-dna: a program that records the frequencies of DNA patterns, expressed
as regular expressions. The input is provided by a file containing numerous
DNA sequences, which are placed in a read-only array. The patterns are dis-
tributed to worker threads, which simultaneously access the read-only array.
The basis of our comparison is the C# solution (#6). We should mention
that the fastest C solution (#1), using a different algorithm which distributes
workload dynamically, performed a bit slower than both translations of the
C# version (in C and in Cyclone) for our 50MB input test.

spectral-norm: a program that calculates the spectral norm of an infinite matrix.
The algorithm is based on iterative parallelism, where threads are synchro-
nized at each loop with the use of barriers. Two vectors are used for storing
intermediate results. At each loop iteration, the vectors become read-only
so that they can be simultaneously accessed by all threads involved in the
computation. The fastest C solution (#4) uses pthreads and special SSE2
128-bit floating-point instructions and, again, for fairness we used the same
algorithm but with normal double precision numbers.

thread-ring: a program that creates a large number of threads, organized in a
ring, and repeatedly passes a token from one thread to the next. The original
program (#1) uses pthreads and mutex locks. (We should mention that at the
time of this writing, the original C program performs very poorly, compared
to versions in other languages.)

The testing machine we used is a quad-core 2.5GHz Intel (Q8300), with 4GB
of RAM and 2x2MB of L2 cache, running a Linux 2.6.26-2 kernel. When running

46

benchmark lang CPU memory load per core (%) elapsed factor

binary-trees
c 13.281 100648 0 87 97 81 5.383 1.00

cyc 15.725 121880 80 78 85 85 4.966 0.92

chameneos-redux
c 28.774 560 76 73 52 89 12.946 1.00

cyc 241.679 720 88 87 78 85 73.199 5.65

fannkuch-redux
c 139.989 552 99 100 99 98 35.275 1.00

cyc 171.499 716 100 99 100 100 42.947 1.22

mandelbrot
c 37.914 31868 81 100 85 97 10.485 1.00

cyc 37.694 31924 99 83 84 99 10.354 0.99

regex-dna
c 6.500 832540 76 95 65 77 2.043 1.00

cyc 6.568 832576 69 75 93 72 2.112 1.03

spectral-norm
c 10.609 616 100 99 98 99 2.686 1.00

cyc 9.761 680 99 99 99 99 2.745 1.02

thread-ring
c 179.479 4520 8 42 5 40 121.565 1.00

cyc 350.778 4748 44 45 1 5 188.443 1.55

Table 1: Performance overhead, compared to GCC, for benchmarks taken from “The Computer
Language Benchmarks Game.” All times are in seconds and memory sizes in KB.

the benchmarks, the testing machine was in single-user mode and, besides the op-
erating system, the only program running was the “bencher” program, which we
took from the web site of the “Computer Language Benchmarks Game.” The
bencher program does repeated measurements (10 times) of program CPU time,
elapsed time, resident memory usage, CPU load while the benchmark is running,
and summarizes those measurements. Our implementation used GCC 4.3.2 as a
back end, which was also used to compile the C programs. We used -O3 (ex-
cept for fannkuch-redux, as explained above). In our Cyclone implementation we
disabled the use of Boehm’s garbage collector, which is only used for Cyclone’s
original regions and is not need for these benchmarks.

The results are summarized in Table 1. CPU and elapsed times are in seconds;
memory is in KB. As shown in the table the benchmark programs fall in two
categories. In the first category one finds Cyclone programs with approximately
the same performance as the original C program. Programs in this category are:
spectral-norm (2% slower), mandelbrot (1% faster), regex-dna (3% slower), and
binary-trees (8% faster). In the case of regex-dna and spectral-norm we managed
to achieve similar performance to the C/pthreads program by employing reader
locks for read-only arrays. The case of binary-trees is particularly interesting as

47

the two programs use the same algorithm and the original C program also uses a
region-based memory management scheme (memory pools, implemented by the
Apache Portable Runtime Library).

In the second category one finds programs that run slower in Cyclone com-
pared to the ones in C: fannkuch-redex (22% slower), thread-ring (55% slower)
and chameneos-redux (465% slower). In the former two benchmarks the overhead
can be attributed to the fact that our implementation of locks is not as optimized as
the pthreads library for lock-intensive applications. (Unfortunately, we could not
use the pthreads library for implementing our locks, as the pthreads specification
does not support lock transfers between threads.) There is a very heavy perfor-
mance penalty in chameneos-redux. The original program uses one lock for the
meeting place, where the creatures meet. In addition to this lock, our program also
uses a second lock for the entire array holding the creatures’ data. In our Cyclone
implementation, the array must be locked because it is not possible to convince
the type system that the creature waiting in the meeting room will never access its
data, but instead this data will be updated by its peer and therefore no data race
will occur. The creatures’ array must also be locked even when accessing certain
“thread-local” fields of the creature structure. The performance penalty is mainly
imposed by the second lock, which only allows one creature to make progress.

The overhead of the chameneos-redux program compared to the original C
program reveals an inherent limitation of the granularity of locking supported by
our type system. In Cyclone as well as in all region-based languages where re-
gions annotate types, each array must reside in a single region whose name is
present in the array’s type. Therefore one cannot have an array whose elements
reside in different regions. For our system, this means that concurrent access to
array elements is necessarily coarse: a thread has to acquire the lock correspond-
ing to the region, therefore locking the whole array for writing or reading. In
other words, it is impossible to have two different threads writing concurrently to
different parts of the same array. This limitation could be lifted by introducing
existential types over regions, but this is technically quite involved and is a topic
for future work.

In terms of memory consumption, our implementation uses more or less the
same amount of memory as the original programs. The only benchmark with
a noticeable difference in memory consumption is binary-trees. Notice however
that the implementation technology behind the two programs here is different: the
original program uses OpenMP, whereas our program uses pthreads. These two
implementation technologies cannot be directly compared.

48

benchmark total
(c)

total
(cyc)

statements
(cyc)

annotations
(cyc)

binary-trees 129 183 12 14
chameneos-redux 301 333 16 30
fannkuch-redux 173 257 7 19
mandelbrot 169 232 6 13
regex-dna 306 417 6 11
spectral-norm 238 307 10 29
thread-ring 75 103 9 12

Table 2: Total lines of code, extended Cyclone statements and annotations compared to C, for
benchmarks taken from “The Computer Language Benchmarks Game.”

Syntactic overhead. The safety guarantees provided by extended Cyclone’s hier-
archical region system with reader/writer locks require the use of new program-
ming constructs and annotations as discussed in Section 7. We have assessed the
syntactic overhead of writing programs in extended Cyclone compared to the cor-
responding C programs by counting the lines of code in each benchmark. For the
extended Cyclone programs, we have also measured the number of lines that con-
tain additional statements required by our type system (e.g., region sharing and
locking primitives, etc.) or type annotations (e.g., when spawning new threads).
The results are summarized in Table 2. Extended Cyclone programs have 34%
more lines of code compared to C programs. However, only a small percentage
of the additional lines of code is due to extended Cyclone features. In particular,
the lines corresponding to additional statements and annotations account for 7.6%
and 4.3% of the additional lines of code respectively.

10. Related work

Regions. The first statically checked stack-based region system was developed
by Tofte and Talpin [7]. Since then, several memory-safe systems that enable
early region deallocation for a sequential language have been proposed [16, 17,
18, 19]. RC [8] and Cyclone [4] were the first imperative languages to allow safe
region-based memory management with explicit constructs. Both allowed early
region deallocation and RC also introduced the notion of multi-level region hierar-
chies. RC programs may throw region-related exceptions, whereas our approach
is purely static. Both Cyclone and RC make no claims of memory safety or race
freedom in the presence of multithreading. To overcome such limitations, Gross-

49

man proposed a type system for safe multithreading in Cyclone [2]. Race freedom
is guaranteed by statically tracking locksets within lexically-scoped synchroniza-
tion constructs. Grossman’s proposal, which was never implemented, allows for
fine-grained locking, but does not enable early release of regions and locks and
provides no support for data migration or lock transfers. In contrast, we provide
such support and also support bulk region deallocation and hierarchical locking
via read/write locks, as opposed to just primitive locking. Moreover, we also offer
a complete implementation of our ideas.

Type systems for objects. Statically checked region systems have also been pro-
posed for real-time Java to eliminate the dynamic checks imposed by its specifica-
tion. Boyapati et al. have introduced hierarchical regions in ownership types [20],
but the approach suffers from similar disadvantages as Grossman’s work. Addi-
tionally, their type system only allows sub-regions for shared regions, whereas
we do not have this limitation. In previous work, Boyapati et al. also proposed
an ownership-based type system that prevents deadlocks and data races [3]. In
contrast to that system, we support locking of arbitrary nodes in the region hier-
archy. Static region hierarchies (depth-wise) have been used by Zhao et al. [21].
Their main advantage is that programs require fewer annotations as compared to
programs with explicit region constructs. In the same track, Zhao et al. proposed
implicit ownership annotations for regions [22]. Thus, classes that have no ex-
plicit owner can be allocated in any static region. This is a form of existential
ownership. None of the above approaches allow full ownership abstraction for
region subtrees.

Cunningham et al. proposed a universe type system to guarantee race freedom
in a calculus of objects [23]. Similarly to our system, object hierarchies can be
atomically locked at any level. Unlike our system, they do not support early lock
releases and lock ownership transfers between threads.

More recently, Bocchino et al. proposed a type and effect system for DPJ (De-
terministic Parallel Java [24]) that partitions the heap into hierarchical regions and
uses those regions to disambiguate accesses to distinct objects. Their type system
ensures non-interference by enforcing the invariant that concurrent accesses are
read-only or they must refer to disjoint locations for write operations. The region
disjointness invariant places significant constraints on region aliasing, which is not
permitted at the level of types. In contrast, in our system region aliasing is possi-
ble at all times. In order to allow race-free writes and reads, the work on DJP was
recently extended with non deterministic constructs such as atomic, which pro-
vides strong isolation guarantees [25]. The “read-only” and “read-write” region

50

capabilities of our system can encode the non-interference constraints as well as
the ability to mutate shared data without introducing data races. (However, our re-
gion locking operations have blocking semantics.) Moreover, low-level languages
such as the one we are proposing, often constitute the target language of high-level
languages like Java and DPJ. In this respect, our type system is not bound to any
specific programming paradigm, but instead it is applicable to any language at its
implementation level.

Matsakis and Gross recently proposed another variant of Java with static race
freedom guarantees using the notion of intervals [26]. Intervals are first-class ob-
jects representing time spans in which a certain piece of code executes. Intervals
can be partially ordered and/or hierarchically nested. Similarly to our regions,
hierarchically nested intervals inherit access rights to data from their ancestor in-
tervals. Concurrent read operations that happen after write operations to shared
data as well as concurrent write operations to shared data protected by a lock are
permitted. However, to guarantee type safety, the type system requires explicit
lock specifications as well as happens-before annotations. Locks are also first-
class objects but are never acquired explicitly. Instead, the run-time system uses
lock specifications of methods to implicitly acquire locks required by an interval.

Safer variants of C. Many systems aim to make C code safer. Among them we
mention Safe-C [27], CCured [28] and Deputy [29]. Some of these systems do
not guarantee soundness, drop the explicit memory representation of C programs
which make them inappropriate for certain kinds of low-level programming, or
provide no guarantees when concurrency enters the picture. There are also nu-
merous languages at the C level of abstraction with explicit concurrency features
(notably Cilk [30], nesC [31] and Pillar [32]) but to the best of our knowledge
none of them provides both memory safety and race freedom guarantees like our
language.

11. Concluding remarks

In this article we presented the design and implementation of a formal low-
level language, employing region-based memory management and locking prim-
itives, that provides memory safety and race freedom guarantees for well-typed
programs. We discussed the integration of our formal language within Cyclone,
argued about the decisions that we have made in order to guarantee memory safety
and race freedom at the implementation level, and evaluated the performance of
programs written in our language against highly optimized C programs, showing

51

performance overheads that are acceptable given the static safety guarantees in the
presence of multithreading.

Our language is the first variant of Cyclone that has been implemented with
these properties, and one of the very few programming languages at this level of
abstraction that has been designed and implemented with this goal in mind.

Acknowledgement

This research is partially funded by the programme for supporting basic re-
search (ΠEBE 2010) of the National Technical University of Athens under a
project titled “Safety properties for concurrent programming languages.”

References

[1] C. Flanagan, M. Abadi, Object types against races, in: J. C. M. Baeten,
S. Mauw (Eds.), International Conference on Concurrency Theory, volume
1664 of LNCS, Springer, 1999, pp. 288–303.

[2] D. Grossman, Type-safe multithreading in Cyclone, in: Proceedings of the
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, ACM Press, New York, NY, USA, 2003, pp. 13–25.

[3] C. Boyapati, R. Lee, M. Rinard, Ownership types for safe programming:
Preventing data races and deadlocks, in: Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM Press, New York, NY, USA, 2002, pp. 211–230.

[4] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, J. Cheney, Region-
based memory management in Cyclone, in: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
ACM Press, New York, NY, USA, 2002, pp. 282–293.

[5] P. Gerakios, N. Papaspyrou, K. Sagonas, A concurrent language with a uni-
form treatment of regions and locks, in: A. R. Beresford, S. Gay (Eds.), Pro-
ceedings of the Workshop on Programming Language Approaches to Con-
currency and Communication-cEntric Software, volume 17 of EPTCS, pp.
79–93.

52

[6] P. Gerakios, N. Papaspyrou, K. Sagonas, Race-free and memory-safe mul-
tithreading: Design and implementation in Cyclone, in: Proceedings of the
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, ACM Press, New York, NY, USA, 2010, pp. 15–26.

[7] M. Tofte, J.-P. Talpin, Implementation of the typed call-by-value λ-calculus
using a stack of regions, in: Conference Record of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM
Press, New York, NY, USA, 1994, pp. 188–201.

[8] D. Gay, A. Aiken, Language support for regions, in: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ACM Press, New York, NY, USA, 2001, pp. 70–80.

[9] P. Gerakios, N. Papaspyrou, K. Sagonas, A type and effect system for dead-
lock avoidance in low-level languages, in: Proceedings of the ACM SIG-
PLAN International Workshop on Types in Languages Design and Imple-
mentation, ACM Press, New York, NY, USA, 2011, pp. 15–28.

[10] L. Lamport, A new approach to proving the correctness of multiprocess
programs, ACM Trans. Progr. Lang. Syst. 1 (1979) 84–97.

[11] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, T. Jim, Safe manual mem-
ory management in Cyclone, Science of Computer Programming 62 (2006)
122–144.

[12] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy,
Memory consistency and event ordering in scalable shared-memory mul-
tiprocessors, in: Proceedings of the Annual International Symposium on
Computer Architecture, ACM Press, New York, NY, USA, 1990, pp. 15–26.

[13] S. V. Adve, M. D. Hill, Weak ordering – a new definition, in: Proceedings
of the Annual International Symposium on Computer Architecture, ACM,
New York, NY, USA, 1990, pp. 2–14.

[14] H.-J. Boehm, Threads cannot be implemented as a library, in: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM Press, New York, NY, USA, 2005, pp. 261–268.

[15] R. M. Stallman, the GCC Developer Community, Using the GNU Compiler
Collection, 2011. http://gcc.gnu.org/onlinedocs/ (version 4.6.0).

53

http://gcc.gnu.org/onlinedocs/

[16] A. Aiken, M. Fähndrich, R. Levien, Better static memory management:
Improving region-based analysis of higher-order languages., in: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM Press, New York, NY, USA, 1995, pp. 174–185.

[17] F. Henglein, H. Makholm, H. Niss, A direct approach to control-flow sensi-
tive region-based memory management, in: Proceedings of the International
Conference on Principles and Practice of Declarative Programming, ACM,
New York, NY, USA, 2001, pp. 175–186.

[18] D. Walker, K. Watkins, On regions and linear types, in: Proceedings of
the ACM SIGPLAN International Conference on Functional Programming,
ACM Press, New York, NY, USA, 2001, pp. 181–192.

[19] M. Fluet, G. Morrisett, A. Ahmed, Linear regions are all you need, in:
P. Sestoft (Ed.), Programming Language and Systems: Proceedings of the
European Symposium on Programming, volume 3924 of LNCS, Springer,
2006, pp. 7–21.

[20] C. Boyapati, A. Salcianu, W. S. Beebee, M. Rinard, Ownership types for
safe region-based memory management in real-time Java, in: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM Press, New York, NY, USA, 2003, pp. 324–337.

[21] T. Zhao, J. Noble, J. Vitek, Scoped types for real-time Java, in: Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium, IEEE
Computer Society, 2004, pp. 241–251.

[22] T. Zhao, J. Baker, J. Hunt, J. Noble, J. Vitek, Implicit ownership types for
memory management, Science of Computer Programming 71 (2008) 213–
241.

[23] D. Cunningham, S. Drossopoulou, S. Eisenbach, Universes for race safety,
in: Proceedings of the Workshop on Verification and Analysis of Multi-
threaded Java-like Programs, pp. 20–51.

[24] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Ko-
muravelli, J. Overbey, P. Simmons, H. Sung, M. Vakilian, A type and effect
system for deterministic parallel Java, in: Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM, New York, NY, USA, 2009, pp. 97–116.

54

[25] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve,
A. Welc, T. Shpeisman, Safe nondeterminism in a deterministic-by-default
parallel language, in: Conference Record of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM, New York,
NY, USA, 2011, pp. 535–548.

[26] N. D. Matsakis, T. R. Gross, A time-aware type system for data-race pro-
tection and guaranteed initialization, in: Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM, New York, NY, USA, 2010, pp. 634–651.

[27] T. M. Austin, S. E. Breach, G. S. Sohi, Efficient detection of all pointer and
array access errors, in: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM, New York, NY,
USA, 1994, pp. 290–301.

[28] G. C. Necula, J. Condit, M. Harren, S. McPeak, W. Weimer, CCured: Type-
safe retrofitting of legacy software, ACM Trans. Progr. Lang. Syst. 27 (2005)
477–526.

[29] J. Condit, M. Harren, Z. R. Anderson, D. Gay, G. C. Necula, Dependent
types for low-level programming, in: R. De Nicola (Ed.), Programming
Language and Systems: Proceedings of the European Symposium on Pro-
gramming, volume 4421 of LNCS, Springer, 2007, pp. 520–535.

[30] M. Frigo, C. E. Leiserson, K. H. Randall, The implementation of the Cilk-5
multithreaded language, in: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, ACM Press, New
York, NY, USA, 1998, pp. 212–223.

[31] D. Gay, P. Levis, J. R. von Behren, M. Welsh, E. A. Brewer, D. E. Culler, The
nesC language: A holistic approach to networked embedded systems, in:
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, New York, NY, USA, 2003, pp. 1–11.

[32] T. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Petersen,
M. Rajagopalan, J. M. Stichnoth, G. Wu, D. Zhang, Pillar: A parallel im-
plementation language, in: Proceedings of the International Workshop on
Languages and Compilers for Parallel Computing, volume 5234 of LNCS,
Springer, 2008, pp. 141–155.

55

Appendix: Formalization and proof
In this appendix, we provide the complete formalization of our type and effect
system, as well as the proof of type safety. Although a lot of material (e.g., the
language syntax, the operational semantics, the typing rules) is duplicated in the
paper, we opted to make this appendix self contained, to facilitate the task of
the reviewers. It is up to the editor to decide if this appendix (or a version with
duplicated elements removed) will be part of the article or not, should the article
finally be accepted for publication.

Appendix A. Language syntax
Expression e ::= x | f | () | true | false | e e | e [r] | if e then e else e

| newrgn ρ, x @ e in e | new e @ e | e := e | deref e | capη e
| spawnξ e | loc` | rgnı

Function f ::= λx. e | Λρ. f | fix x. f

Value v ::= f | () | true | false | loc` | rgnı
Region r ::= ρ | ı

Count vector η ::= (n, n, n)

Spawn effect ξ ::= ∅ | ξ, r 7→ η

Appendix B. Operational semantics

Auxiliary syntax for operational semantics

Hierarchy θ ::= ∅ | θ, ı 7→ (η, ı)

Heap H ::= ∅ | H, ` 7→ v

Store S ::= ∅ | S , ı 7→ H

Threads T ::= ∅ | T, 〈θ; e〉

Configuration C ::= S ; T

Stack E ::= � | E[F]

Frame F ::= � e | v � | � [r] | if � then e else e | newrgn ρ, x @ � in e
| new �@ e | new v @ � | � := e | v := � | deref � | capη �

Redex u ::= (λx. e) v | capη rgnı | deref loc` | loc` := v | new v @ rgnı
| newrgn ρ, x @ rgnı in e2 | (Λρ. f) [r] | spawnξ e1 | (fix x. f) v
| if true then e1 else e2 | if false then e1 else e2

56

Evaluation relation C { C′

live(θ) = ∅

S ; T, 〈θ; ()〉 { S ; T
(E-T)

merge(ξ) ` θ = θ′ ⊕ θ′′ dom(θ′′) ⊆ live(θ)

S ; T, 〈θ; E[spawnξ e]〉 { S ; T, 〈θ′; E[()]〉, 〈θ′′;�[e]〉
(E-SP)

f ≡ λx. e

S ; T, 〈θ; E[f v]〉 { S ; T, 〈θ; E[e[v/x]]〉
(E-A)

f ≡ Λρ. f ′

S ; T, 〈θ; E[f [ı]]〉 { S ; T, 〈θ; E[f ′[ı/ρ]]〉
(E-RP)

f ≡ fix x. f ′

S ; T, 〈θ; E[f v]〉 { S ; T, 〈θ; E[f ′[f /x] v]〉
(E-FX)

S ; T, 〈θ; E[if true then e1 else e2]〉 { S ; T, 〈θ; E[e1]〉
(E-IT)

S ; T, 〈θ; E[if false then e1 else e2]〉 { S ; T, 〈θ; E[e2]〉
(E-IF)

 ∈ live(θ) ∪ {⊥} fresh ı θ′ = θ, ı 7→ ((1, 1, 0),)

S ; T, 〈θ; E[newrgn ρ, x @ rgn in e]〉 { S , ı 7→ ∅; T, 〈θ′; E[e[ı/ρ][rgnı/x]]〉
(E-NR)

ı ∈ live(θ) fresh `
S ; T, 〈θ; E[new v @ rgnı]〉 { S [ı 7→ S (ı), ` 7→ v]; T, 〈θ; E[loc`]〉

(E-NL)

` 7→ v′ ∈ S (ı) ı ∈ wlocked(θ) ı < rwlocked(T)
S ; T, 〈θ; E[loc` := v]〉 { S [ı 7→ S (ı)[` 7→ v]]; T, 〈θ; E[()]〉

(E-AS)

` 7→ v ∈ S (ı) ı ∈ rwlocked(θ) ı < wlocked(T)
S ; T, 〈θ; E[deref loc`]〉 { S ; T, 〈θ; E[v]〉

(E-D)

ı ∈ live(θ) θ′ = θ, ı 7→ (η + η′,) mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T })

S ; T, 〈θ, ı 7→ (η,); E[capη′ rgnı]〉 { S ; T, 〈θ′; E[()]〉
(E-CP)

Auxiliary functions and predicates

merge(∅) = ∅

merge(ξ, r 7→ η) = merge(ξ), r 7→ η if r < {r′ | r′ 7→ η′ ∈ ξ}
merge(ξ, r 7→ η, r 7→ η′) = merge(ξ, r 7→ (η1 + η2))

57

ok(n1, n2, n3) = n1 ≥ 0 ∧ n2 ≥ 0 ∧ n3 ≥ 0

(c1,w1, z1) ⊕ (c2,w2, z2) = (c1 + c2,w1 + w2, z1 + z2) if ok(c1,w1, z1) ∧ ok(c2,w2, z2) ∧
(w1 = 0 ∨ w2 = 0) ∧ (c2 > 0) ∧
(c1 = 0 =⇒ w1 = z1 = 0) ∧
(w1 > 0 =⇒ z2 = 0) ∧
(w2 > 0 =⇒ z1 = 0)

ancestors(θ,⊥) = ∅

ancestors(θ, ı) = {ı} ∪ ancestors(θ′,) if θ = θ′, ı 7→ (η,)

live(θ) = {ı | ∀ ∈ ancestors(θ, ı). ∃ 7→ (η, ′) ∈ θ. ok(η − (1, 0, 0))}

wlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ. ∈ ancestors(θ, ı) ∧ ok(η − (0, 1, 0))}
rlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ. ∈ ancestors(θ, ı) ∧ ok(η − (0, 0, 1))}
rwlocked(θ) = rlocked(θ) ∪ wlocked(θ)

wlocked(T) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ wlocked(θ)}
rwlocked(T) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ rwlocked(θ)}

mutex({θ1, . . . , θn}) = ∀ı , . rwlocked(θı) ∩ wlocked(θ) = wlocked(θı) ∩ rwlocked(θ) = ∅

∅ ` θ = θ ⊕ ∅

η = η1 ⊕ η2 ξ ` θ = θ1 ⊕ θ2
∀ı′ ∈ dom(ξ). ı < ancestors(θ, ı′) ′ = if ∈ dom(ξ) then else ⊥

ξ, ı 7→ η2 ` θ, ı 7→ (η,) = θ1, ı 7→ (η1,) ⊕ θ2, ı 7→ (η2,
′)

Appendix C. Static Semantics

Syntax for types, effects and contexts

Type τ ::= unit | bool | τ
γ
−→ τ | ∀ρ. τ | Ref(τ, r) | Rgn(r)

Constraint δ ::= R | W | ¬RW | ¬W | Live | ¬Live

Event ζ ::= Cap ξ | δ r | Spawn ξ γ | Join γ γ

Effect γ ::= ∅ | ζ :: γ

Type context Γ ::= ∅ | Γ, x : τ

Region context ∆ ::= ∅ | ∆, ρ

Heap context M ::= ∅ | M, ` 7→ (τ, ı)

Store context R ::= ∅ | R, ı

Variable list substitution Γ[r/ρ] ::= ∅ | Γ1[r/ρ], x : τ[r/ρ]

Typing rules

x : τ ∈ Γ ` R; M; ∆; Γ

R; M; ∆; Γ ` x : τ& ∅
(T-V)

` R; M; ∆; Γ

R; M; ∆; Γ ` () : unit& ∅
(T-U)

58

` R; M; ∆; Γ

R; M; ∆; Γ ` true : bool& ∅
(T-TR)

` R; M; ∆; Γ

R; M; ∆; Γ ` false : bool& ∅
(T-FL)

ı ∈ R ∪ {⊥} ` R; M; ∆; Γ

R; M; ∆; Γ ` rgnı : Rgn(ı) & ∅
(T-R)

` 7→ (τ, ı) ∈ M ` R; M; ∆; Γ

R; M; ∆; Γ ` loc` : Ref(τ, ı) & ∅
(T-L)

R; M; ∆; Γ, x : τ1 ` e : τ2 & γ

R; M; ∆; Γ ` λx. e : τ1
γ
−→ τ2 & ∅

(T-F)

R; M; ∆; Γ ` e1 : τ1
γ
−→ τ2 & γ1 R; M; ∆; Γ ` e2 : τ1 & γ2

R; M; ∆; Γ ` e1 e2 : τ2 & γ1 :: γ2 :: γ
(T-A)

R; ∆ ` Γ R; M; ∆, ρ; Γ ` f : τ& ∅

R; M; ∆; Γ ` Λρ. f : ∀ρ. τ& ∅
(T-RF)

R; M; ∆; Γ ` e : ∀ρ. τ& γ R; ∆ ` r r , ⊥

R; M; ∆; Γ ` e [r] : τ[r/ρ] & γ
(T-RP)

R; M; ∆; Γ ` e : bool& γ R; M; ∆; Γ ` e1 : τ& γ1 R; M; ∆; Γ ` e2 : τ& γ2

R; M; ∆; Γ ` if e then e1 else e2 : τ& γ :: Join γ1 γ2
(T-IF)

R; ∆ ` ξ R; M; ∆; Γ ` e : unit& γ dom(ξ) = dom(γ)
R; M; ∆; Γ ` spawnξ e : unit& Spawn ξ γ

(T-SP)

γL = {Live r | r ∈ dom(φ(∅))} γs = summary(φ(γL))

R; M; ∆; Γ, x : τ1
γs
−→ τ2 ` f : τ1

φ(γs)
−→ τ2 & ∅

R; M; ∆; Γ ` fix x. f : τ1
γs
−→ τ2 & ∅

(T-FX)

R; M; ∆; Γ ` e : Rgn(r) & γ r , ⊥

R; M; ∆; Γ ` capη e : unit& γ :: Cap {r 7→ η}
(T-CP)

R; M; ∆; Γ ` e1 : Ref(τ, r) & γ1 R; M; ∆; Γ ` e2 : τ& γ2 r , ⊥

R; M; ∆; Γ ` e1 := e2 : unit& γ1 :: γ2 :: W r
(T-AS)

R; M; ∆; Γ ` e : Ref(τ, r) & γ r , ⊥

R; M; ∆; Γ ` deref e : τ& γ :: R r
(T-D)

R; M; ∆; Γ ` e1 : τ& γ1 R; M; ∆; Γ ` e2 : Rgn(r) & γ2 r , ⊥

R; M; ∆; Γ ` new e1 @ e2 : Ref(τ, r) & γ1 :: γ2 :: Live r
(T-NL)

59

R; M; ∆; Γ ` e1 : Rgn(r) & γ1 R; M; ∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ& γ2
R; ∆ ` τ translate(γ2, ρ, (1, 1, 0), r) = γ′2

R; M; ∆; Γ ` newrgn ρ, x @ e1 in e2 : τ& γ1 :: Live r :: γ′2
(T-NR)

Auxiliary functions and predicates

ξ1 − ξ2 = {r 7→ ξ1(r) − ξ2(r)} where ξ(r) = η if r 7→ η ∈ ξ and ξ(r) = (0, 0, 0) otherwise
ok(ξ) = ∀ı 7→ η ∈ ξ. ok(η)
ok(θ) = ∀ı 7→ (η,) ∈ θ. ok(η) ∧ ancestors(θ, ı) defined
hierarchy ok(θ1; θ2) = ∀ı 7→ (η,) ∈ θ1.∃

′. ı 7→ (η′, ′) ∈ θ2∧(= ′∨(= ⊥∧ ′ < dom(θ1)))

Summary

ok(ξ)

recursive(ξ; ∅) = ξ
(R-E)

δ < {¬RW,¬W,¬Live} recursive(ξ; γ) = ξ′

recursive(ξ; δ r :: γ) = ξ′
(R-D)

ok(ξ) recursive(ξ − ξ′; γ) = ξ′′

recursive(ξ; Cap ξ′ :: γ) = ξ′′
(R-C)

ok(ξ) ξr = ξ − ξs
∀r 7→ η ∈ ξs. rd(η) = wr(η) = 0 recursive(ξr; γ) = ξ′r

recursive(ξ; Spawn ξs γs :: γ) = ξ′r
(R-S)

recursive(ξ; γ1) = ξ′ recursive(ξ; γ2) = ξ′ recursive(ξ′; γ) = ξ′′

recursive(ξ; Join γ1 γ2 :: γ) = ξ′′
(R-J)

recursive(ξ1; γ) = ξ1
ξ1 = {r 7→ (1, 0, 0) | r ∈ dom(γ)} ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(γ)}

summary(γ) = Cap ξ1 :: Spawn ξ1 (γ :: Cap ξ2)
(SUM)

Effect validation and transformation

wr(n1, n2, n3) = n2
rd(n1, n2, n3) = n3
rg(n1, n2, n3) = n1
bot(δ,⊥) = ∅ if δ < {R, W}
bot(δ, r) = δ r if r , ⊥

solve(R, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) > 0
solve(R, r, η) = bot(R, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) = 0
solve(W, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) > 0
solve(W, r, η) = bot(W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(¬RW, r, η) = bot(¬RW, r) if ok(η − (1, 0, 0)) ∧ wr(η) = rd(η) = 0
solve(¬W, r, η) = bot(¬W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0

60

solve(Live, r, η) = bot(Live, r) if ok(η − (1, 0, 0))
solve(¬Live, r, η) = ∅ if ok(η) ∧ rg(η) = 0
solve(¬Live, r, η) = ¬Live r if ok(η − (1, 0, 0)) ∧ r , ⊥

p-constraint(r, η) = bot(¬RW, r) if wr(η) > 0
p-constraint(r, η) = bot(¬W, r) if wr(η) = 0 ∧ rd(η) > 0
p-constraint(r, η) = ∅ if wr(η) = rd(η) = 0

solve(¬Live, r′, η) = γ

translate(∅, r, η, r′) = γ
(TR-E)

r < dom(ξ) translate(γ, r, η, r′) = γ′

translate(Cap ξ :: γ, r, η, r′) = Cap ξ :: γ′
(TR-CN)

merge(ξ) = ξ′, r 7→ η′ γs = solve(Live, r′, η) :: Cap ξ′

translate(γ, r, η + η′, r′) = γ′ ok(η + η′)

translate(Cap ξ :: γ, r, η, r′) = γs :: γ′
(TR-CT)

r1 , r2 translate(γ, r2, η, r′) = γ′

translate(δ r1 :: γ, r2, η, r′) = δ r1 :: γ′
(TR-DN)

solve(δ, r′, η) = γs translate(γ, r, η, r′) = γ′

translate(δ r :: γ, r, η, r′) = γs :: γ′
(TR-DT)

translate(γ1 :: γ, r, η, r′) = γ′1 translate(γ2 :: γ, r, η, r′) = γ′2

translate(Join γ1 γ2 :: γ, r, η, r′) = Join γ′1 γ
′
2

(TR-J)

r < dom(ξ) translate(γ, r, η, r′) = γ′

translate(Spawn ξ γs :: γ, r, η, r′) = Spawn ξ γs :: γ′
(TR-SN)

merge(ξ) = ξ′, r 7→ ηs η = ηr ⊕ ηs rs = if r′ ∈ dom(ξ) then r′ else ⊥
p-constraint(rs, ηr) = γ′s translate(γs, r, ηs, rs) = γ′′s

p-constraint(r′, ηs) = γ′r translate(γ, r, ηr, r′) = γ′′r γ′′′r = bot(Live, r′)

translate(Spawn ξ γs :: γ, r, η, r′) = γ′′′r :: Spawn ξ′ (γ′s :: γ′′s) :: γ′r :: γ′′r
(TR-ST)

Type well-formedness

Region well-formedness
r ∈ ∆ ∪ R ∪ {⊥}

R; ∆ ` r
Constraint well-formedness

R; ∆ ` ∅

R; ∆ ` r R; ∆ ` γ

R; ∆ ` δ r :: γ

∀(r, η) ∈ ξ.ok(η) ∧ R; ∆ ` r
R; ∆ ` γ1 R; ∆ ` γ2

R; ∆ ` Spawn ξ γ1 :: γ2

61

R; ∆ ` γ1 R; ∆ ` γ2 R; ∆ ` γ3

R; ∆ ` Join γ1 γ2 :: γ3

∀r ∈ dom(ξ).R; ∆ ` r R; ∆ ` γ1

R; ∆ ` Cap ξ :: γ1

Type well-formedness

R; ∆ ` r
R; ∆ ` Rgn(r)

R; ∆, ρ ` τ

R; ∆ ` ∀ρ. τ

R; ∆ ` τ R; ∆ ` r
R; ∆ ` Ref(τ, r)

R; ∆ ` τ1 R; ∆ ` γ1 R; ∆ ` τ2

R; ∆ ` τ1
γ1
−→ τ2

R; ∆ ` unit R; ∆ ` bool

Context well-formedness
R ` M R; ∆ ` Γ ⊥ < R

` R; M; ∆; Γ

Γ well-formedness

R; ∆ ` ∅

R; ∆ ` τ x < dom(Γ) R; ∆ ` Γ

R; ∆ ` Γ, x : τ

M Well-formedness

R ` ∅
R ` M ` < dom(M) ı ∈ R R; ∅ ` τ

R ` M, ` 7→ (τ, ı)

Appendix D. Type safety

Type Safety: Evaluation Context Typing

` R; M; ∆; Γ R; ∆ ` τ

R; M; ∆; Γ ` � : τ −→ τ& ∅
(E0)

R; M; ∆; Γ ` E : τ2 −→ τ3 & γ2
R; M; ∆; Γ ` F : τ1 −→ τ2 & γ1

R; M; ∆; Γ ` E[F] : τ1 −→ τ3 & γ1 :: γ2
(E1)

τ ≡ τ1
γa
−→ τ2 R; ∆ ` τ

R; M; ∆; Γ ` e2 : τ1 & γ1

R; M; ∆; Γ ` � e2 : τ −→ τ2 & γ1 :: γa
(F1)

τ ≡ τ1
γa
−→ τ2

R; M; ∆; Γ ` v1 : τ& ∅
R; M; ∆; Γ ` v1 � : τ1 −→ τ2 & γa

(F2)

R; M; ∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ& γ1 R; ∆ ` r
R; ∆ ` τ Live r :: translate(γ1, ρ, (1, 1, 0), r) = γ2

R; M; ∆; Γ ` newrgn ρ, x @ � in e2 : Rgn(r) −→ τ& γ2
(F3)

` R; M; ∆; Γ R; ∆ ` ∀ρ. τ R; ∆ ` r r , ⊥

R; M; ∆; Γ ` � [r] : ∀ρ. τ −→ τ[r/ρ] & ∅
(F4)

R; M; ∆; Γ ` e2 : Rgn(r) & γ2 R; ∆ ` τ r , ⊥

R; M; ∆; Γ ` new �@ e2 : τ −→ Ref(τ, r) & γ2 :: Live r
(F5)

62

R; ∆ ` r R; M; ∆; Γ ` v : τ& ∅ r , ⊥
R; M; ∆; Γ ` new v @ � : Rgn(r) −→ Ref(τ, r) & Live r

(F6)

R; ∆ ` r R; M; ∆; Γ ` e2 : τ& γ1 r , ⊥

R; M; ∆; Γ ` � := e2 : Ref(τ, r) −→ unit& γ1 :: W r
(F7)

R; M; ∆; Γ ` loc` : Ref(τ, ı) & ∅ ı , ⊥

R; M; ∆; Γ ` loc` := � : τ −→ unit& W ı
(F8)

` R; M; ∆; Γ R; ∆ ` Ref(τ, r) r , ⊥
R; M; ∆; Γ ` deref � : Ref(τ, r) −→ τ& R r

(F9)

` R; M; ∆; Γ R; ∆ ` Rgn(r) r , ⊥
R; M; ∆; Γ ` capη � : Rgn(r) −→ unit& Cap {r 7→ η}

(F10)

R; M; ∆; Γ ` e1 : τ& γ2 R; M; ∆; Γ ` e2 : τ& γ3

R; M; ∆; Γ ` if � then e1 else e2 : bool −→ τ& Join γ2 γ3
(F11)

Predicate “cvalid”

cvalid(Live;⊥; θ)
(C-T)

θ = θ′, ı 7→ (η,) solve(δ, , η) = ∅

cvalid(δ; ı; θ)
(C-B)

θ = θ′, ı 7→ (η,) solve(δ, , η) = δ′ cvalid(δ′; ; θ′)
cvalid(δ; ı; θ)

(C-R)

Predicate “valid”

xvalid(∅; θ) = θ
(X-E)

ok(η + η′) cvalid(Live ; ı; θ, ı 7→ (η,))
xvalid(ξ; θ, ı 7→ (η + η′,)) = θ′

xvalid(ξ, ı 7→ η′; θ, ı 7→ (η,)) = θ′
(X-S)

ok(θ)
gvalid(∅; θ) = θ

(V-E)
ok(θ1) evalid(ζ; θ1) = θ2 gvalid(γ; θ2) = θ3

gvalid(ζ :: γ; θ1) = θ3
(V-K)

cvalid(δ; ı; θ)
evalid(δ ı; θ) = θ

(V-D)
xvalid(merge(ξ); θ) = θ′

evalid(Cap ξ; θ) = θ′
(V-C)

gvalid(γ1; θ) = θ′ gvalid(γ2; θ) = θ′

evalid(Join γ1 γ2; θ) = θ′
(V-J)

63

∀ı ∈ dom(θs). cvalid(Live ; ı; θ)
merge(ξ) ` θ = θr ⊕ θs valid(γs; θs) mutex({θs, θr})

evalid(Spawn ξ γs; θ) = θr
(V-S)

gvalid(γ; θ) = θ′ live(θ′) = ∅

valid(γ; θ)
(V-V)

Configuration typing

R; M ` ∅

R; M ` T R; M; ∅; ∅ ` e : unit& γ valid(γ; θ)
∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}

R; M ` T, 〈θ; e〉

R = {ı | ı 7→ H ∈ S } {(`, ı) | ` 7→ (τ, ı) ∈ M} = {(`, ı) | ` 7→ v ∈ H ∧ ı 7→ H ∈ S }
∀` 7→ (τ, ı) ∈ M. R; M; ∅; ∅ ` S (ı)(`) : τ& ∅

R; M ` S

R; M ` T R; M ` S mutex({θ | 〈θ; e〉 ∈ T })
R; M ` S ; T

Predicate “Not stuck”

S ; T, 〈θ; e〉 { S ′; T ′ T ⊆ T ′

running(S ; T, 〈θ; e〉; 〈θ; e〉)

ı ∈ live(θ, ı 7→ (η,)) mutex({θ, ı 7→ (η,)} ∪ {θ′ | 〈θ′; e′〉 ∈ T })
¬mutex({θ, ı 7→ (η + η′,)} ∪ {θ′ | 〈θ′; e′〉 ∈ T })

blocked(T ; 〈θ, ı 7→ (η,); E[capη′ rgnı]〉)

∀〈θ; e〉 ∈ T. running(S ; T ; 〈θ; e〉) ∨ blocked(T ; 〈θ; e〉)
` S ; T

Multi-step evaluation

S ; T {0 S ; T
(EM-1)

S ; T {n S n; Tn S n; Tn { S n+1; Tn+1

S ; T {n+1 S n+1; Tn+1
(EM-2)

Other predicates

∅ − ∅ = ∅
(DF-0)

η1 ≥ η2 θ1 − θ2 = θ′

θ1, r 7→ η1 − θ2 7→ η2 = θ′, r 7→ η1 − η2
(DF-1)

64

Appendix E. Proof

Assume that e is the expression that represents the initial program. Let S 0 = ∅

be the initial empty store and T0 = ∅, 〈∅; e〉 be the initial set of threads, consisting
of just e with an empty region hierarchy. We are interested only in programs that
are closed, well typed and whose effect is consistent with the initial empty region
hierarchy.

Theorem 2 (Type Safety)
Let e be such that ∅; ∅; ∅; ∅ ` e : unit& ∅. If the operational semantics takes any
number of steps S 0; T0 {

n S n; Tn, then the resulting configuration S n; Tn is not
stuck.

Proof. Given ∅; ∅; ∅; ∅ ` e : unit& ∅, S 0 = T0 = ∅ and the definitions of store
typing and thread typing it is immediate that ∅; ∅ ` ∅; ∅, 〈∅; e〉 holds (i.e, the initial
configuration is well-typed). The application of Lemma 5 to the assumption im-
plies that Rn; Mn ` S n; Tn. Therefore, S n; Tn is well-typed for some Rn; Mn. The
application of Lemma 31 to Rn; Mn ` S n; Tn implies S n; Tn is not stuck.

Lemma 5 (Multi-step Program Preservation)
Let S 0; T0 be a well-typed configuration for some R0; M0 and assume that S 0; T0

evaluates to S n; Tn in n steps. Then Rn; Mn ` S n; Tn holds.

Proof. Proof by induction on the number of steps n. When no steps are per-
formed (i.e., n = 0) the proof is immediate from the assumption. When some
steps are performed (i.e., n > 0), we have that S 0; T0 {

n S n; Tn or S 0; T0 {
n−1

S n−1; Tn−1 and S n−1; Tn−1 { S n; Tn. By applying the induction hypothesis on the
fact that S 0; T0 is well-typed and that n − 1 steps are performed we obtain that
Rn−1; Mn−1 ` S n−1; Tn−1. The application of Lemma 6 to Rn−1; Mn−1 ` S n−1; Tn−1

and Rn−1; S n−1; Tn−1 { S n; Tn. implies that Rn; Mn ` S n; Tn. Therefore, Rn; Mn `

S n; Tn.

Lemma 6 (Preservation)
Let R; M be a global typing context and S ; T be a well-typed configuration with
R; M ` S ; T . If the operational semantics takes a step S ; T { S ′; T ′, then there
exist R′ ⊇ R and M′ ⊇ M such that the resulting configuration is well-typed with
R′; M′ ` S ′; T ′.

Proof. By induction on the thread evaluation relation:

65

Case E-T : Rule E-T implies that θ; E[e] = θ;�[()], S ′ = S and T ′ = T , live(θ) =

∅. By inversion of the configuration typing assumption we have that:

- R; M ` T, 〈θ;�[()]〉: by inversion of this derivation we have R; M ` T .

- R; M ` S

- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ;�[()]}〉): implies that mutex({θ′ | 〈θ′; e′〉 ∈
T }).

Given the above facts, R; M ` S ; T holds.

Case E-A : Rule E-A implies that θ′ = θ, S ′ = S , T ′ = T, 〈θ; E[e1[v/x]]〉 and
u = (λx. e1) v.

By inversion of the configuration typing assumption we have that:

- R; M ` S

- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ; E[u]}〉): no new locks are acquired (θ′ = θ).
Thus, mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ; E[e1[v/x]]}〉) holds.

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to

the typing derivation of E[u] yields R; M; ∅; ∅ ` E : τ2 −→

unit& γb, R; M; ∅; ∅ ` u : τ2 & γa, where γ = γa :: γb. By in-
version of the latter derivation we have that R; M; ∅; ∅ ` v : τ1 & ∅,
R; M; ∅; ∅ ` λx. e1 : τ1

γa
−→ τ2 & ∅. By inversion of the function

typing derivation we obtain that R; M; ∅; ∅, x : τ1 ` e1 : τ2 & γa.
Lemma 16 implies that R; M; ∅; ∅ ` e1[v/x] : τ2 & γa holds. The
application of Lemma 26 yields R; M; ∅; ∅ ` E[e1[v/x]] : unit& γ.

Case E-FX : Rule E-FX implies S ; T, 〈θ; E[u]〉 { S ; T, 〈θ; E[u′]〉 holds, where
u = (fix x. f) v and u′ = f [fix x. f /x] v. By inversion of the configuration
typing assumption we have that:

- R; M ` S

- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ; E[u]}〉): no new locks are acquired. Thus,
mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ; E[u′]}〉) holds.

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we obtain

– R; M ` T and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.

66

– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to
the typing derivation of E[u] yields R; M; ∅; ∅ ` E : τ2 −→

unit& γc and R; M; ∅; ∅ ` u : τ2 & γa, where γ = γa :: γc. By
inversion of the latter derivation we have that R; M; ∅; ∅ ` v :
τ1 & ∅, and R; M; ∅; ∅ ` fix x. f : τ& ∅, where τ equals τ1

γa
−→ τ2.

By inversion of the typing derivation of fix x. f we obtain that
R; M; ∅; ∅, x : τ ` f : τ′& ∅, where γa = summary(γb) and
τ′ = τ1

γb
−→ τ2. Lemma 16 implies that R; M; ∅; ∅ ` f [fix x. f /x] :

τ′& ∅ holds. The typing derivation of f [fix x. f /x] and v and
rule T-A imply that R; M; ∅; ∅ ` (f [fix x. f /x]) v : τ2 & γb. The
application of Lemma 26 yields R; M; ∅; ∅ ` E[(f [fix x. f /x]) v] :
unit& γb :: γc holds.

– valid(γ; θ): it suffices to prove that valid(φ(γs) :: γc; θ) holds. The
assumptions imply that γ = summary(φ(γL)) :: γc and therefore
valid(summary(φ(γL)) :: γc; θ) holds. The application of Lemma 7
completes the proof.

Case E-SP : Rule E-SP implies that S ′ = S , T ′ = T, 〈θ′; E[()]〉, θ′′;�[e1], where
merge(ξ) ` θ = θ′ ⊕ θ′′ and u = spawnξ e1 hold.

By inversion of the configuration typing assumption we have that:

- R; M ` S

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ. The application of Lemma 27 to

the typing derivation of E[u] yields R; M; ∅; ∅ ` E : unit −→
unit& γb, R; M; ∅; ∅ ` spawnξ e1 : unit& γa, where γ1 is the
effect of expression e1, γa = Spawn ξ γ1 and γ = γa :: γb. The
typing derivation for the unit value can be obtained by establishing
that the typing context is well-formed (i.e., by the application of
Lemma 15 to the typing of derivation of u). The application of
Lemma 26 yields R; M; ∅; ∅ ` E[()] : unit& γb.

– R; M; ∅; ∅ ` e1 : unit& γ1. Then, by inversion of R; M; ∅; ∅ `
spawnγ1 e1 : unit& γa we obtain that R; M; ∅; ∅ ` e1 : unit& γ1.
The application of rules E0 and D0 implies that R; M; ∅; ∅ ` �[e1] :
unit& γ1.

67

– mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉): by inversion of valid(γ; θ) we
have that mutex({θ′, θ′′}) and merge(ξ) ` θ = θ′ ⊕ θ′′. Notice that
the above imply that rwlocked(θ′) ∪ rwlocked(θ′′) ⊆ rwlocked(θ).
Therefore, mutex({θ0 | 〈θ0; e0〉 ∈ T ′}) holds by the above facts and
the assumption mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉).

– valid(γ1; θ′′): immediate by inversion of valid(γ; θ).
– valid(γb; θ′): immediate by inversion of valid(γ; θ).

Case E-NR : Rule E-NR implies that ı is fresh (i.e., it does not belong in R),
θ′ = θ, ı 7→ ((1, 1, 0),) S ′ = S , ı 7→ ∅, ∈ live(θ) ∪ {⊥} holds, T ′ =

S ′; T, 〈θ′; E[e2[ı/ρ][rgnı/x]]〉, where u equals newrgn ρ, x @ rgn in e2.

By inversion of the configuration typing assumption we have that:

- R, ı; M ` S ′ is immediate from R; M ` S , the fact that ı is fresh and its
heap is empty.

- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉). Hence mutex({θ0 | 〈θ0; e0〉 ∈ T ′})
holds, as no other thread in T has ı in its local hierarchy (i.e., even if
one of ı’s ancestors is locked by a thread in T , ı is not locked by that
thread as it does not exist in its local hierarchy).

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to

the typing derivation of E[u] yields R; M; ∅; ∅ ` E : τ1 −→

unit& γb, R; M; ∅; ∅ ` u : τ1 & γa, where γa equals Live ::
translate(γ2, ρ, 1, 1, 0,) and γ = γa :: γb. By inversion of the
derivation of u we have R; ∅ ` τ1, R; M; ∅; ∅ ` rgn : Rgn() & ∅
and R; M; ∅, ρ; ∅, x : Rgn(ρ) ` e2 : τ1 & γ2. Lemma 20 implies
that R, ı; M; ∅, ρ; ∅, x : Rgn(ρ) ` e2 : τ1 & γ2. Lemmata 19 and 16
imply that R, ı; M; ∅; ∅ ` e2[ı/ρ][rgnı/x] : τ1 & γ2[ı/ρ] (notice that
R; ∅ ` τ1 implies that τ1[ı/ρ] = τ1). The application of Lemma 21
to the typing derivation of E implies that R, ı; M; ∅; ∅ ` E : τ1 −→

unit& γb. The application of Lemma 26 yields R, ı; M; ∅; ∅ ` E
[e2[ı/ρ][rgnı/x]] : unit& γ2[ı/ρ] :: γb holds.

– by inversion of valid(Live :: translate(γ2, ρ, (1, 1, 0),) :: γb; θ)
there exists a θ′′ such that live(θ′′) = ∅ and gvalid(translate(γ2; ρ;
(1, 1, 0);) :: γb; θ) = θ′′. Thus, valid (translate(γ2, ρ, (1, 1, 0),) ::

68

γb; θ) holds. Hence valid (translate (γ2[ı/ρ], ı, (1, 1, 0),) :: γb; θ)
holds. The translation function transforms effects containing ı.
Such effects only exist in γ2[ı/ρ] (this can be shown by lemma 18)
and not in γb. Thus, valid(translate(γ2[ı/ρ] :: γb, ı, (1, 1, 0),); θ)
also holds. Lemma 30 implies that valid(γ2[ı/ρ] :: γb; θ, ı 7→
((1, 1, 0),)).

Case E-CP : Rule E-CP implies that ı ∈ live(θ), θ = θ′′, ı 7→ (η,), θ′ = θ′′, ı 7→
(η + η0,), mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T }), S ′ = S , T ′ = T, 〈θ; E[()]〉, and
u = capη rgnı.

By inversion of the configuration typing assumption we have that:

- R; M ` S

- mutex({θ′}∪{θ′′ | 〈θ′′; e′〉 ∈ T }): immediate by the premises of rule E-CP .

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to

the typing derivation of E[u] yields R; M; ∅; ∅ ` E : unit −→
unit& γb, R; M; ∅; ∅ ` capη0 rgnı : unit& γa, where γa =

Cap {ı 7→ η0} and γ = γa :: γb. The typing derivation for the
unit value can be obtained by establishing that the typing con-
text is well-formed (i.e., by the application of Lemma 15 to the
typing of derivation of u). The application of Lemma 26 yields
R; M; ∅; ∅ ` E[()] : unit& γb.

– by inversion of valid(Cap {ı 7→ η0} :: γb; θ) we have that xvalid
(Cap {ı 7→ η0}; θ) = θ′, gvalid(γb; θ′) = θ′′ and live(θ′′) = ∅ for
some θ′′. Therefore, valid(γb; θ′) holds.

Case E-AS: Rule E-AS implies that θ′ = θ, S ′ = S [ı : S (ı)[` 7→ v]], ` 7→ v′ ∈ S (ı),
T ′ = T, 〈θ; E[()]〉, and u = loc` := v.

By inversion of the configuration typing assumption we have that:

- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉): as no new locks are acquired,
mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[()]}〉) trivially holds.

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.

69

– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to
the typing derivation of E[u] yields R; M; ∅; ∅ ` E : unit −→
unit& γb, R; M; ∅; ∅ ` locı := v : unit& γa, where γa = W ı
and γ = γa :: γb. The typing derivation for the unit value can
be obtained by establishing that the typing context is well-formed
(i.e., by the application of Lemma 15 to the typing of derivation
of u). The application of Lemma 26 yields R; M; ∅; ∅ ` E[()] :
unit& γb.

– by inversion of valid(γ; θ) and the fact that θ′ = θ it is immediate
that valid(γb; θ′) holds.

- R; M ` S : By inversion of R; M; ∅; ∅ ` locı := v : unit& γa we
obtain that R; M; ∅; ∅ ` v : τ& ∅ and R; M; ∅; ∅ ` loc` : Ref(τ, ı) & ∅
(i.e., ` 7→ (τ, ı) ∈ M). Given the above facts, the definition of S ′ and
R; M ` S we can conclude that R; M ` S ′ holds.

Case E-D: similar to the previous case.

Case E-NL : similar to the previous case.

Case E-RP : Rule E-RP implies that θ′ = θ, S ′ = S , T ′ = T, 〈θ; E[f [ı/ρ]]〉, where
u is equal to (Λρ. f) [ı].

By inversion of the configuration typing assumption we have that:

- R; M ` S

- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉): as no new locks are acquired,
mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[f [ı/ρ]]}〉) trivially holds.

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to

the typing derivation of E[u] yields R; M; ∅; ∅ ` E : τ[ı/ρ] −→
unit& γ, R; M; ∅; ∅ ` (Λρ. f) [ı] : τ[ı/ρ] & ∅. By inversion of the
latter derivation we obtain that R; M; ∅, ρ; ∅ ` f : τ& ∅ and R; ∅ `
ı. Lemma 19 implies that R; M; ∅; ∅ ` f [ı/ρ] : τ[ı/ρ] & ∅. The
application of Lemma 26 yields R; M; ∅; ∅ ` E[f [ı/ρ]] : unit& γ.

Case E-IT : Rule E-IT implies that θ′ = θ, S ′ = S , T ′ = T, 〈θ; E[e1]〉, where u is
equal to if true then e1 else e2.

By inversion of the configuration typing assumption we have that:

70

- R; M ` S

- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[u]}〉): as no new locks are acquired,
mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ; E[e1]}〉) trivially holds.

- R; M ` T, 〈θ; E[u]〉: by inversion of this derivation we have that:

– R; M ` T , valid(γ; θ) and ∀ı 7→ (η,) ∈ θ. ı ∈ R ∧ ∈ R ∪ {⊥}.
– R; M; ∅; ∅ ` E[u] : unit& γ: The application of Lemma 27 to the

typing derivation of E[u] yields R; M; ∅; ∅ ` E : τ −→ unit& γb

and R; M; ∅; ∅ ` if true then e1 else e2 : τ& γa, where γa =

Join γ1 γ2, and γ = γa :: γb. By inversion of the latter deriva-
tion we obtain the typing derivation for e1. The application of
Lemma 26 yields R; M; ∅; ∅ ` E[e1] : unit& γ1 :: γb.

– valid(γ1 :: γb; θ): immediate by inversion of valid(γ; θ).

Case E-IF : similar to the previous case.

Lemma 7 (Recursion preserves valid)
If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)), and valid(γs :: γ; θ), then
valid(φ(γs) :: γ; θ).

Proof. By inversion of the second assumption, we have recursive(ξ1; φ(γL)) = ξ1,
where ξ1 = {r 7→ (1, 0, 0) | r ∈ dom(φ(γL))}. Also, by inversion of the third as-
sumption, we have that gvalid(γs :: γ; θ) = θ′ for some θ′ such that live(θ′) = ∅,
and the former easily implies ok(θ). Lemma 9 implies that there exists a θ′′ such
that gvalid(γs; θ) = θ′′ and gvalid(γ; θ′′) = θ′. Lemma 10 implies that θ′′ = θ
and therefore gvalid(γs; θ) = θ. Lemma 11 then implies that there exists a θlive

such that live(θlive) ⊆ live(θ), gvalid(φ(γL); θlive) = θlive, hierarchy ok(θlive; θ), and
∀ı 7→ (η,) ∈ θlive. η = (1, 0, 0). By taking θr to be the same as θ but with all
region counts of the regions in the domain of θlive reduced by one, it is easy
to verify that θr = θ − θlive. We can now apply Lemma 12 and deduce that
there exists a θx such that gvalid(φ(γL); θ) = θx and θr = θx − θlive. By the
definition of hierarchy subtraction, it is easy to prove that θx = θ, and there-
fore gvalid(φ(γL); θ) = θ. Lemma 13 then easily yields gvalid(φ(γs); θ) = θ, and
Lemma 8 yields gvalid(φ(γs) :: γ; θ) = θ′. The proof is completed by rule V-V.

Lemma 8 (Composition of gvalid)
If gvalid(γ1; θ1) = θ2 and gvalid(γ2; θ2) = θ3, then gvalid(γ1 :: γ2; θ1) = θ3.

Proof. Simple proof by induction on γ1.

71

Lemma 9 (Decomposition of gvalid)
If gvalid(γ1 :: γ2; θ) = θ′, then there exists a θ′′ such that gvalid(γ1; θ) = θ′′ and
gvalid(γ2; θ′′) = θ′.

Proof. Simple proof by induction on γ1.

Lemma 10 (Summary preserves hierarchy)
If γs = summary(γ) and gvalid(γs; θ1) = θ2, then θ1 = θ2.

Proof. Using the definition of summary, it suffices to prove that if xvalid(ξ; θ1) =

θ′ and ξ ` θ′ = θ2 ⊕ θs then θ1 = θ2. This is easy by induction on the derivation of
ξ ` θ′ = θ2 ⊕ θs.

Lemma 11 (Summary preserves gvalid backwards)
If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)), and gvalid(γs; θ) =

θ, then there exists θ′ such that live(θ′) ⊆ live(θ), gvalid(φ(γL); θ′) = θ′,
hierarchy ok(θ′; θ), and ∀ı 7→ (η,) ∈ θ′. η = (1, 0, 0).

Proof. By inversion of the second assumption, we take that γs = Cap ξ1 ::
Spawn ξ1 (φ(γL) :: γn :: Cap ξ2) and recursive(ξ1; φ(γL)) = ξ1, where ξ1 = {r 7→
(1, 0, 0) | r ∈ dom(φ(γL))}, ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(φ(γL))},
and γn = {¬RW r | r ∈ dom(φ(γL))}. By a series of inversions on the
third assumption, there exists some θ′′ such that evalid(Cap ξ1; θ) = θ′′ and
evalid(Spawn ξ1 φ(γL) :: γn :: Cap ξ2; θ′′) = θ. By inversion of the latter, there ex-
ists a θs such that merge(ξ1) ` θ′′ = θ ⊕ θs and valid(φ(γL) :: γn :: Cap ξ2; θs). We
take θ′ = θs, which is basically equal to the hierarchy θ restricted to dom(φ(γL))
and with all counts equal to (1, 0, 0). It is easy to verify live(θ′) ⊆ live(θ),
hierarchy ok(θ′; θ), and ∀ı 7→ (η,) ∈ θ′. η = (1, 0, 0). Also, by inversion
of valid(φ(γL) :: γn :: Cap ξ2; θ′) and Lemma 9, there exists a θx such that
gvalid(φ(γL); θ′) = θx. We can deduce θx = θ′ and thus conclude our proof by
showing that, in general, if recursive(γ; ξ) = ξ and gvalid(γ; θ) = θ′ then θ = θ′.
This can easily be proved by induction on the derivation of the first assumption.

Lemma 12 (Preservation of gvalid for a greater θ)
If gvalid(γ; θ1) = θ2, recursive(ξ; γ) = ξ′, θ = θ3 − θ1, ok(θ3), and live(θ1) ⊆
live(θ3), then there exists a θ4 such that gvalid(γ; θ3) = θ4, θ = θ4 − θ2, ok(θ4) and
live(θ2) ⊆ live(θ4).

72

Proof. By induction on the length of γ. If γ is empty, then θ1 = θ2; we take
θ4 = θ3 and the proof is immediate. Otherwise, if γ is of the form ζ :: γ′, we know
from the first assumption that ok(θ1), evalid(ζ; θ1) = θ5, and gvalid(γ′; θ5) = θ2,
for some θ5. By a case analysis on ζ, we will show that there exists a θ6 such that
evalid(ζ; θ3) = θ6, θ = θ6 − θ5, ok(θ6) and live(θ5) ⊆ live(θ6).

Case Cap ξc: By inversion of evalid(ζ; θ1) = θ5 we have xvalid(merge(ξc); θ1) =

θ5, and therefore for each ı such that cvalid(Live ; ı; θ1), ı 7→ (η,) in θ1 and
ı 7→ η′ in merge(ξc), we know that ok(η+η′) and ı is live in θ1. Assuming that
ı 7→ (η′′,) exists in θ3, then θ = θ3−θ1 implies that η′′ ≥ η therefore ok(η′′+
η′). cvalid(Live ; ı; θ1) and live(θ1) ⊆ live(θ3) imply that cvalid(Live ; ı; θ3).
We take θ6 to be identical to θ3, except for the counts which are taken equal
to η′′ + η′. It follows easily that θ = θ6 − θ5, evalid(ζ; θ3) = θ6, ok(θ6) and
live(θ5) ⊆ live(θ6).

Case Spawn ξs γs: By inversion of evalid(ζ; θ1) = θ5 we obtain θs and θ′s, such that
gvalid(γs; θs) = θ′s, live(θ′s) = ∅, merge(ξs) ` θ1 = θ5 ⊕ θs (this implies that
θ5 = θ1 − θs), and mutex({θs, θ5}). From recursive(ξ; γ) = ξ′, as the spawn
event was an element of this γ, we know that ∀ı 7→ η ∈ ξs. rd(η) = wr(η) = 0.
We take θ6 to be identical to θ3, except for the counts which are incremented
by the respective η in ξs. It is easy to deduce that merge(ξs) ` θ3 = θ6 ⊕ θs,
(equivalently θ6 = θ3 − θs) and mutex({θs, θ6}). Therefore, θ = θ6 − θ5 and
evalid(ζ; θ3) = θ6, ok(θ6) and live(θ5) ⊆ live(θ6).

Case δ ı: By inversion of evalid(ζ; θ1) = θ5 we have θ1 = θ5 and cvalid(δ; ı; θ1).
Therefore, we take θ6 = θ3 and it easily follows that θ = θ6 − θ5, because of
θ = θ3 − θ1. It suffices to show cvalid(δ; ı; θ3). We proceed by performing
case analysis on δ. From recursive(ξ; γ) = ξ′, as the constraint event was an
element of this γ, we know that δ cannot be one of ¬Live, ¬RW, or ¬W. The
remaining cases for δ are R, W and Live, which are all satisfied with θ3, as
all counts of θ3 are greater than or equal to the counts of θ1 and live(θ1) ⊆
live(θ3).

Case Join γ1 γ2: By inversion of evalid(ζ; θ1) = θ5 we have that gvalid(γ1; θ1) =

θ5 and gvalid(γ2; θ1) = θ5. The application of the induction hypothesis on
these two yields gvalid(γ1; θ3) = θx1 and gvalid(γ2; θ3) = θx2, for some θx1

and θx2 such that θ = θx1 − θ5, θ = θx2 − θ5, ok(θx1), live(θ5) ⊆ live(θx1)
, ok(θx2) and live(θ5) ⊆ live(θx2) . It easily follows that θx1 = θx2 and we
take θ6 to be equal to these two. Therefore, evalid(ζ; θ3) = θ6, ok(θ6) and
live(θ5) ⊆ live(θ6).

73

We have now shown that there exists a θ6 such that evalid(ζ; θ3) = θ6, θ =

θ6 − θ5, ok(θ6) and live(θ5) ⊆ live(θ6). We also know that gvalid(γ′; θ5) = θ2. By
application of the induction hypothesis, there exists a θ4 such that gvalid(γ′; θ6) =

θ4 and θ = θ4 − θ2. The proof is completed by rule V-K .

Lemma 13 (Recursion preserves gvalid)
If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)), gvalid(γs; θ0) = θ0,
hierarchy ok(θ1; θ0), and gvalid(φ′(γL); θ1) = θ2, then gvalid(φ′(γs); θ1) = θ2.

Proof. We suppose that φ′ is a “compositional” function on effects, which can
use its parameter in a number of places to synthesize its result. We proceed by
induction on the structure of φ′.

Case φ′(γ) = ∅: Then φ′(γs) = φ′(γL) and the proof is immediate.

Case φ′(γ) = γ :: φ′′(γ): Lemma 9 implies that gvalid(γL; θ1) = θ1 (the resulting
hierarchy is necessarily equal to θ1, as γL contains only liveness constraints)
and gvalid(φ′′(γL); θ1) = θ2. gvalid(γL; θ1) = θ1 implies dom(γs) ⊆ live(θ1).
Lemma 14 implies that gvalid(γs; θ1) = θ1. The induction hypothesis yields
gvalid(φ′′(γs); θ1) = θ2. The application of Lemma 8 completes the proof.

Case φ′(γ) = ψ(γ) :: φ′′(γ), for some compositional function ψ producing events:
By inversion of gvalid(φ′(γL); θ1) = θ2, we know that there exists a θ3 such
that ok(θ1) holds, evalid(ψ(γL); θ1) = θ3, and gvalid(φ′′(γL); θ3) = θ2. From
evalid(ψ(γL); θ1) = θ3 and hierarchy ok(θ1; θ0) it is easy to deduce that
hierarchy ok(θ3; θ0). By applying the induction hypothesis, we have that
gvalid(φ′′(γs); θ3) = θ2 holds. To complete the proof it suffices to show that
evalid(ψ(γs); θ1) = θ3. We proceed by perfoming a case analysis on the
structure of ψ:

Case ψ(γ) = Cap ξ or ψ(γ) = δ ı: The proof is immediate, as ψ(γs) = ψ(γL).

Case ψ(γ) = Spawn ξ1 φ
′′′(γ): By inversion of evalid(ψ(γL); θ1) = θ3 we

obtain θs and θ′s such that merge(ξ1) ` θ1 = θ3⊕θs, gvalid(φ′′′(γL); θs) =

θ′s, live(θ′s) = ∅, and mutex({θs, θ3}). From merge(ξ1) ` θ1 = θ3 ⊕ θs

and hierarchy ok(θ1; θ0) we can easily deduce that hierarchy ok(θs; θ0).
The application of the induction hypothesis on gvalid(φ′′′(γL); θs) = θ′s
yields gvalid(φ′′′(γs); θs) = θ′s. It follows that evalid(ψ(γs); θ1) = θ3.

74

Case ψ(γ) = Join φ1(γ) φ2(γ): By inversion of evalid(ψ(γL); θ1) = θ3 we
have that gvalid(φ1(γL); θ1) = θ3 and gvalid(φ2(γL); θ1) = θ3. Applying
the induction hypothesis on these two, we have gvalid(φ1(γs); θ1) = θ3

and gvalid(φ2(γs); θ1) = θ3. It follows that evalid(ψ(γs); θ1) = θ3.

Lemma 14 (Preservation of gvalid for a smaller θ)
If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)), gvalid(γs; θ) = θ,
hierarchy ok(θ′; θ), ok(θ′), and dom(γs) ⊆ live(θ′), then gvalid(γs; θ′) = θ′.

Proof. Immediate by the definition of function summary and the validity of γs,
which only require all regions in γs are live in θ′ and that the ancestors of each
region in θ′ are identical to the ancestors of this region in θ. These requirements
are satisfied by the assumptions that dom(γs) ⊆ live(θ′) and hierarchy ok(θ′; θ).

Lemma 15 (Well-typed expressions have well-formed contexts)
If an expression e is well-typed in the typing context R; M; ∆; Γ then ` R; M; ∆; Γ

holds.

Proof. Straightforward proof by induction on the expression typing derivation.

Lemma 16 (Value substitution preserves typing)
If R; M; ∆; Γ, x : τ1 ` e : τ2 & γ1 and R; M; ∅; ∅ ` v : τ1 & ∅, then R; M; ∆; Γ `

e[v/x] : τ2 & γ1.

Proof. Straightforward induction on the expression typing derivation.

Lemma 17 (Well-typed expressions have well-formed types)
If R; M; ∆; Γ ` e : τ& γ then R; ∆ ` τ.

Proof. Straightforward induction on the typing rules.

Lemma 18 (Well-typed expressions have well-formed effects)
If R; M; ∆; Γ ` e : τ& γ then R; ∆ ` γ.

Proof. Straightforward induction on the typing rules.

Lemma 19 (Region substitution preserves typing)
If R, ı; M; ∆, ρ; Γ ` e : τ& γ, then R, ı; M; ∆; Γ[ı/ρ] ` e[ı/ρ] : τ[ı/ρ] & γ[ı/ρ].

Proof. Proof by induction on the typing derivation of e.

75

Lemma 20 (Region context expansion preserves expression typing)
If R; M; ∆; Γ ` e : τ& γ and ı < R ∪ {⊥}, then R, ı; M; ∆; Γ ` e : τ& γ.

Proof. Proof by induction on the typing derivation of e.

Lemma 21 (Region context expansion preserves evaluation context typing)
If R; M; ∆; Γ ` E : τ −→ τ′& γ and ı < R ∪ {⊥}, then R, ı; M; ∆; Γ ` E : τ −→
τ′& γ.

Proof. Proof by induction on the derivation of E. In the case of rule E1, where
E = E′[F], Lemma 22 is used.

Lemma 22 (Region context expansion preserves frame typing)
If R; M; ∆; Γ ` F : τ −→ τ′& γ and ı < R ∪ {⊥}, then R, ı; M; ∆; Γ ` F : τ −→
τ′& γ.

Proof. Proof by induction on the derivation of F.

Lemma 23 (Memory context expansion preserves expression typing)
If R; M; ∆; Γ ` e : τ& γ, ` < dom(M), ı ∈ R and R; ∆ ` τ, then R; M, ` 7→
(τ, ı); ∆; Γ ` e : τ& γ.

Proof. Proof by induction on the typing derivation of e.

Lemma 24 (Memory context expansion preserves evaluation context typing)
If R; M; ∆; Γ ` E : τ −→ τ′& γ, ` < dom(M), ı ∈ R and R; ∆ ` τ, then
R; M, ` 7→ (τ, ı); ∆; Γ ` E : τ −→ τ′& γ.

Proof. Proof by induction on the derivation of E. In the case of rule E1, where
E = E′[F], Lemma 25 is used.

Lemma 25 (Memory context expansion preserves frame typing)
If R; M; ∆; Γ ` F : τ −→ τ′& γ, ` < dom(M), ı ∈ R and R; ∆ ` τ, then R; M, ` 7→
(τ, ı); ∆; Γ ` F : τ −→ τ′& γ.

Proof. Proof by induction on the derivation of F.

Lemma 26 (Evaluation Context Composition — E)
If R; M; ∆; Γ ` e : τ& γa and R; M; ∆; Γ ` E : τ −→ τ′& γb, then R; M; ∆; Γ `

E[e] : τ′& γa :: γb.

76

Proof. Proof by induction on typing derivation of E. The base case is immediate
as �[e] = e. The inductive case where E = E′[F], the proof is immediate by
inversion of the derivation of E (rule E1) and the application of Lemma 28.

Lemma 27 (Evaluation Context Decomposition — E)
If R; M; ∆; Γ ` E[e] : τ′& γ, then there exists a γa,γb and τ such that R; M; ∆; Γ `

e : τ& γa and R; M; ∆; Γ ` E : τ −→ τ′& γb and γ = γa :: γb.

Proof. Proof by induction on the structure of E. The base case is immediate by
using the well-formedness derivation for the type and typing context of e (i.e.,
Lemmata 15 and 17) and the application rule E0 . The inductive case, where
E[e] = E′[F][e] is immediate by Lemma 29 and rule E1.

Lemma 28 (Evaluation Context Composition — F)
If R; M; ∆; Γ ` e : τ& γa and R; M; ∆; Γ ` F : τ −→ τ′& γb, then R; M; ∆; Γ `

F[e] : τ′& γa :: γb.

Proof. Proof by case analysis on typing derivation of F. The premises required to
construct the typing derivation of F[e] are given as premises of the typing deriva-
tion of F.

Lemma 29 (Evaluation Context Decomposition — F)
If R; M; ∆; Γ ` F[e] : τ′& γ, then there exists a γa,γb and τ such that R; M; ∆; Γ `

e : τ& γa and R; M; ∆; Γ ` F : τ −→ τ′& γ1 and γ = γa :: γb.

Proof. Proof by case analysis on the structure of F. The premises required for
each case (i.e., rules F1F11) are given by the premises of the typing derivation of
F[e].

Lemma 30 (Translate implies valid)
If valid(translate(γ, ı, η),); θ) and ı < dom(θ), then valid(γ; θ, ı 7→ (η,)).

Proof. Let θ′ be equal to θ, ı 7→ (η,). We proceed by induction on the structure
of γ.

Case γ = ∅: the assumption and the definition of function translate imply that
valid(translate(∅, ı, η,); θ) holds if and only if valid(γs; θ) holds, where γs =

solve(¬Live ; ; η). If γs is empty, then valid(∅; θ), ok(η) and rg(η) = 0 hold.
The former fact implies that live(θ) = ∅ and ok(θ). Therefore, live(θ′) = ∅

and ok(θ′) hold. Hence gvalid(∅; θ′) = θ′ and valid(∅; θ′) hold.

77

If γs is non-empty, then by the definition of solve, γs = ¬Live and thus,
valid(γs; θ) holds. By inversion of the latter derivation we have that ok(θ),
live(θ) = ∅ and cvalid(¬Live ; ; θ). Therefore, live(θ′) = ∅ and ok(θ′) hold.
Thus, valid(γs; θ′) holds.

Case γ = Join γ1 γ2 :: γ3: the assumption and the definition of translate im-
ply that valid(Join γa γb; θ), where γa = translate(γ1 :: γ3, ı, η,) and γa =

translate(γ2 :: γ3, ı, η,). By inversion of the derivation of valid(Join γa γb; θ)
we have gvalid(γa; θ) = θ′′, gvalid(γb; θ) = θ′′ and live(θ′′) = ∅. Therefore,
valid(γa; θ) and valid(γb; θ) hold. Using the induction hypothesis we obtain
that valid(γ1 :: γ3; θ′) and valid(γ2 :: γ3; θ′). Hence, valid(Join (γ1 :: γ3)
(γ2 :: γ3); θ′) .

Case γ = Cap ξ :: γa: let us assume that θ′′ equals θ, ı 7→ (η + η0,). The
assumption and the definition of translate imply that merge(ξ) = ξ′, ı 7→
η0, valid(γs :: γb; θ), where γs = solve(Live, , η) :: Cap ξ′ and γb =

translate(γa, ı, η + η0,). By inversion of the initial validity assumption
we have that ok(θ), xvalid(ξ′; θ), if is not ⊥ then evalid(Live ; θ) = θ,
gvalid(γa; θ) = θ0 and live(θ0) = ∅. The latter two facts yield valid(γa; θ) and
the application of the induction hypothesis implies valid(γa; θ′′). The defi-
nition of function translate implies that ok(η + η0) and the definition of γs

yields ok(η − (1, 0, 0)). Hence, ok(θ′′) holds by ok(η − (1, 0, 0)), ok(θ′′) and
ı < dom(θ). cvalid(Live ; ı; θ′′) holds by using the facts ok(η− (1, 0, 0)) (and
evalid(Live ; θ) = θ if , ⊥). Therefore valid(γ; θ′′) holds by the above
facts.

Case γ = δ ı :: γa: the assumption and the definition of translate imply that
valid(γs :: γb; θ), where γs = solve(δ , , η) and γb = translate(γa, ı, η,).
To complete the proof it suffices to show that cvalid(δ ; ı; θ′) and valid(γa; θ′)
hold. We proceed by a case analysis on γs. If γs is empty, then cvalid(δ; ı; θ′)
is immediate by using rule C-B and the definition of γs. Otherwise, γs is
non-empty and by the definition solve we have that, γs = δ′ . By inversion
of valid(γs :: γb; θ) we have that cvalid(δ′; ; θ). The application of rule C-R
to the latter fact and the definition of γs implies cvalid(δ; ı; θ′). valid(γa; θ′)
is immediate by applying the induction hypothesis to valid(γb; θ), which can
be derived from valid(γ; θ).

Case γ = Spawn ξ γs :: γa: the assumption and the definition of translate imply
that valid(γ′′′r :: Spawn ξ′ (γ′s :: γ′′s) :: (γ′r :: γ′′r)), where γ′′′r = bot(Live,),

78

merge(ξ) = ξ′, ı 7→ ηs, η = ηr ⊕ ηs, ′ = if ∈ dom(ξ) then else ⊥,
γ′s = p-constraint(′, ηr), γ′′s = translate(γs, ı, ηs,

′), γ′r = p-constraint(, ηs)
and γ′′r = translate(γa, ı, ηr,).

By inversion of valid(γ′′′r :: Spawn ξ′ (γ′s :: γ′′s) :: (γ′r :: γ′′r)) we have that
cvalid(Live ; ; θ) (if , ⊥), ∀ı′ ∈ dom(θs). cvalid(Live ; ı′; θ), merge(ξ′) `
θ = θr ⊕ θs, mutex({θr, θs}), valid(γ′s :: γ′′s ; θs) and valid(γ′r :: γ′′r ; θr). By
inversion of the latter two derivations, we have that gvalid(γ′s; θs) = θs,
gvalid(γ′′s ; θs) = θ′s, live(θ′s) = ∅, gvalid(γ′r; θr) = θr, gvalid(γ′′r ; θr) = θ′r
and live(θ′r) = ∅.

It suffices to prove the following obligations:

• ∀ı′ ∈ dom(θs, ı 7→ (ηs,
′)). cvalid(Live ; ı′; θ, ı 7→ (η,)): immediate

by the assumptions cvalid(Live ; ; θ) (if , ⊥), η = ηr ⊕ ηs and ∀ı′ ∈
dom(θs). cvalid(Live ; ı′; θ).

• merge(ξ) ` θ, ı 7→ (η,) = θr, ı 7→ (ηr,) ⊕ θs, ı 7→ (ηs,
′): merge(ξ) =

ξ′, ı 7→ ηs and the definition of function merge imply that merge(ξ′) =

ξ′. Therefore, merge(ξ′) ` θ = θr⊕θs can be rewritten as ξ′ ` θ = θr⊕θs.
The latter derivation, the definition of ′ and η = ηr ⊕ ηs complete the
proof for this case.

• mutex({(θr, ı 7→ (ηr,)), (θs, ı 7→ (ηs,
′))}): if at least one of the threads

has read or write capabilities on ı, then the mutex invariant may be vio-
lated once ı is added to the hierarchy of each thread. Assuming that the
new thread has read or write access to ı, then gvalid(γ′r; θr) = θr and η =

ηr⊕ηs imply that the main thread has no write or no read/write access to
ı and its ancestors ancestors respectively. Similarly, if the main thread
has read or write access to ı, then gvalid(γ′s; θs) = θs and η = ηr ⊕ ηs

imply that the new thread has no write or no read/write access to ı
and its ancestors respectively. We also have from the assumptions that
mutex({θr, θs}). Therefore, mutex({(θr, ı 7→ (ηr,)), (θs, ı 7→ (ηs,

′))})
holds.

• valid(γa; θr, ı 7→ (ηr,)): we have shown that valid(γ′r :: γ′′r ; θr) holds.
If γ′r is empty, then the proof is immediate by the application of the
induction hypothesis. If γ′r is non-empty, then the definition of p −
constraint implies that γ′r = δ . By inversion of the derivation of valid
(using rule V-K) valid(γ′′r ; θr) holds. The proof is completed by the
application of the induction hypothesis to the latter fact.

79

• valid(γs; θs, ı 7→ (ηs,
′)): similar to the previous case; here we use

valid(γ′s :: γ′′s ; θs).

Lemma 31 (Progress)
Let R; M be a global typing context and S ; T be a well-typed configuration with
R; M ` S ; T . Then ` S ; T , in other words S ; T is not stuck.

Proof. It suffices to show that for any thread in T , a step can be performed or block
predicate holds for it. Let e be an arbitrary thread in T such that T = T1, 〈θ; e〉 for
some T1. By inversion of the typing derivation of S ; T we have that R; M; ∅; ∅ `
e : unit& γ, valid(γ; θ), mutex({θ0 | 〈θ0; e0〉 ∈ T }), and R; M ` S .

If e is a value then e = () and γ = ∅ and valid(∅; θ), which implies live(θ) = ∅.
Thus, rule E-T can be applied.

If e is not a value then according to Lemma 36, there exists a redex u and an
evaluation context E such that e = E[u]. The application of Lemma 27 to the
typing derivation of E[u] yields R; M; ∅; ∅ ` u : τ& γa, R; M; ∅; ∅ ` E : τ −→
unit& γ′, where γ = γa :: γ′. Then, we proceed by perfoming a case analysis on
u:

Case (λx. e′) v: a step can be taken by rule E-A .

Case (Λρ. f) [ı]: a step can be taken by rule E-RP .

Case (fix x. f) v: a step can be taken by rule E-FX .

Case if true then e1 else e2: a step can be taken by rule E-IT .

Case if false then e1 else e2: a step can be taken by rule E-IF .

Case newrgn ρ, x @ rgn in e2: it suffices to prove ∈ live(θ) ∪ {⊥}. The typing
derivation of u implies γa = Live :: translate(γ2, ρ, (1, 1, 0),), where γ2

is the effect of e2. The application of Lemma 33 to valid(γa :: γ′; θ) implies
that ∈ live(θ) ∪ {⊥}. Rule E-NR can be applied to perform a step.

Case new v @ rgnı: identical to the previous case. Rule E-NL can be applied to
perform a step.

Case deref loc`: it suffices to prove ı ∈ rwlocked(θ), ` 7→ v ∈ S (ı) and ı <
wlocked(T). ` 7→ v ∈ S (ı) is immediate by R; M ` S and the fact that
` 7→ (τ, ı) belongs in M by the typing derivation of u. The typing derivation
of u also implies γa = R ı. Lemma 34 and valid(γa :: γ′; θ) imply that

80

ı ∈ rwlocked(θ). We also have the assumption that mutex({θ0 | 〈θ0; e0〉 ∈ T }),
which implies ı < wlocked(T) = ∅. Rule E-D can be applied to perform a
step.

Case locı := v: it suffices to prove ` 7→ v′ ∈ S (ı), ı ∈ wlocked(θ) and ı <
rwlocked(T). ` 7→ v′ ∈ S (ı) is immediate by R; M ` S and the fact that
` 7→ (τ, ı) belongs in M by the typing derivation of u. The typing deriva-
tion of u also implies γa = W ı. Lemma 35 and valid(γa :: γ′; θ) imply that
ı ∈ wlocked(θ). We also have the assumption that mutex({θ0 | 〈θ0; e0〉 ∈ T }),
which implies ı < rwlocked(T). Rule E-AS can be applied to perform a step.

Case capη′ rgnı: given that θ = θ1, ı 7→ (η′, r′) it suffices to prove θ′ = θ1, ı 7→

(η + η′, r′), ı ∈ live(θ) and mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T }) or blocked(T ; θ;
E[capη′ rgnı]). The typing derivation of u implies γa = Cap {ı 7→ η}. Then,
Lemma 33 and valid(γa :: γ′; θ) imply that ı ∈ live(θ). If mutex({θ′} ∪
{θ′′ | 〈θ′′; e′〉 ∈ T1}) holds, then rule E-CP can be used to perform a single
step. Otherwise, blocked(T ; θ; E[capη′ rgnı]) holds using the assumption
mutex({θ0 | 〈θ0; e0〉 ∈ T }).

Case spawnγ1 e1: it suffices to prove merge(ξ) ` θ = θ′ ⊕ θ′′ and dom(θ′′) ⊆
live(θ) hold. The typing derivation of u implies γa = Spawn ξ γ1. By in-
version of valid(γa :: γ′; θ) we have that merge(ξ) ` θ = θ′ ⊕ θ′′ and
∀ı ∈ dom(θ′′). cvalid(Live ; ı; θ) hold. The latter fact and Lemma 32 im-
ply that dom(θ′′) ⊆ live(θ). Rule E-SP can be applied to perform a single
step.

Lemma 32 (Cvalid implies live, wlocked and rwlocked)
If cvalid(δ, ı, θ) and δ , ¬Live then ı ∈ live(θ)∪ {⊥}, δ = W⇒ ı ∈ wlocked(θ) and
δ = R⇒ ı ∈ rwlocked(θ).

Proof. We perform case analysis on cvalid derivation:

Case C-T : the proof is immediate.

Case C-B then the following hold θ = θ′, ı 7→ (η,) and solve(δ, , η) = ∅ . We
have assumed that δ , ¬Live, therefore solve(δ, , η) = ∅ implies that = ⊥

and ok(η − (1, 0, 0)). Thus ı ∈ live(θ) holds. If δ = W, then solve also implies
that rw(η) > 0 hence ı ∈ wlocked(θ). If δ = R, then solve also implies that
rw(η) ≥ 0, rw(η) ≥ 0 and rw(η) + rw(η) > 0 hence ı ∈ rwlocked(θ).

81

Case C-R then θ = θ′, ı 7→ (η,), solve(δ, , η) = δ′ and cvalid(δ′; ; θ′) hold.
Function solve implies that δ′ , ¬Live and ok(η − (1, 0, 0)). In fact δ′ is
equal to Live if δ equals Live. If δ is equal to R, then δ′ can be either R and
rd(η) = 0 or Live when rd(η) > 0. If δ is equal to W, then δ′ can be either W
and rd(η) = wr(η) = 0 or Live and rw(η) ≥ 0, rw(η) ≥ 0 and rw(η) + rw(η) >
0. The application of the induction hypothesis to cvalid(δ′; ; θ′) yields ∈
live(θ) ∪ {⊥}, δ′ = W⇒ ∈ wlocked(θ) and δ′ = R⇒ ∈ rwlocked(θ).

ok(η − (1, 0, 0)) and ∈ live(θ) ∪ {⊥} imply that ı ∈ live(θ). If δ is Live the
proof is completed. Otherwise, if δ′ = δ = W, then ∈ wlocked(θ) implies
ı ∈ wlocked(θ) and the proof is completed. Otherwise, if δ′ = δ = R, then
 ∈ rwlocked(θ) implies ı ∈ rwlocked(θ) and the proof is completed. The
last case is δ′ = Live. This can only be the case when R or W are satisfied in
solve(δ, , η) and therefore the proof is immediate.

Lemma 33 (Valid implies live)
If valid(δ ı :: γ; θ) and δ , ¬Live then ı ∈ live(θ) ∪ {⊥}.

Proof. By inversion of valid we obtain cvalid(δ, ı, θ). The proof is immediate by
using Lemma 32.

Lemma 34 (Valid implies rwlocked)
If valid(R r :: γ; θ), then r ∈ rwlocked(θ).

Proof. By inversion of valid we obtain cvalid(R, ı, θ). The proof is immediate by
using Lemma 32.

Lemma 35 (Valid implies wlocked)
If valid(W r :: γ; θ), then r ∈ wlocked(θ).

Proof. By inversion of valid we obtain cvalid(W, ı, θ). The proof is immediate by
using Lemma 32.

Lemma 36 (Well-typed expressions contain a well-typed redexes)
If R; M; ∆; Γ ` e : τ& γ1 and e is not a value then R; M; ∆; Γ ` E′[u] : τ& γ1 such
that E′[u] = e.

Proof. By induction on the shape of e. The key idea is to convert typing deriva-
tions of e, when e is not a redex, to typing derivations of the form E′[e′] and apply
induction for e′.

82

	Introduction
	Contributions
	Overview

	Language design
	Language features through examples
	Formal language
	Operational semantics
	Static semantics
	Effects for recursive functions

	Type safety
	Cyclone: a memory-safe dialect of C
	Memory management in Cyclone
	Concurrency in Cyclone

	Interaction with Cyclone
	Extended regions and kind system
	Operating on capabilities
	Exceptions
	Reentrant and extended region functions
	Thread creation
	Type polymorphism
	Interoperability with traditional regions
	Memory consistency

	Implementation
	Compiler
	Error reporting
	Code generation
	Run-time system

	Performance evaluation
	Related work
	Concluding remarks
	Language syntax
	Operational semantics
	Static Semantics
	Type safety
	Proof

