
Dynamic Deadlock Avoidance in Systems Code
Using Statically Inferred Effects

Prodromos Gerakios 1 Nikolaos Papaspyrou 1 Konstantinos Sagonas 1,2 Panagiotis Vekris 1

1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
2 Department of Information Technology, Uppsala University, Sweden

{pgerakios, nickie, kostis, pvekris}@softlab.ntua.gr

Abstract
Deadlocks can have devastating effects in systems code. We have
developed a type and effect system that provably avoids them and
in this paper we present a tool that uses a sound static analysis
to instrument multithreaded C programs and then links these pro-
grams with a run-time system that avoids possible deadlocks. In
contrast to most other purely static tools for deadlock freedom, our
tool does not insist that programs adhere to a strict lock acquisi-
tion order or use lock primitives in a block-structured way, thus it
is appropriate for systems code and OS applications. We also re-
port some very promising benchmark results which show that all
possible deadlocks can automatically be avoided with only a small
run-time overhead. More importantly, this is done without having
to modify the original source program by altering the order of re-
source acquisition operations or by adding annotations.

1. Introduction
In shared memory concurrent programming, deadlocks typically
occur as a consequence of cyclic lock acquisition between threads.
Two or more threads are deadlocked when each of them is waiting
for a resource, typically a lock, that has been acquired and is held
by another thread. As deadlocks are a serious problem, several
methods to achieve deadlock freedom have so far been proposed.
In particular, approaches stemming from programming language
research aim for static deadlock freedom guarantees by employing
type systems that prevent deadlocks (e.g., [6, 15, 17]). Most such
works often impose a strict (non-cyclic) lock acquisition order that
must be respected throughout the entire program and/or require
that locking is used in a block-structured way. The latter is not
compatible with existing practices in systems code, at least without
significant code rewrites (cf. Listing 1).

An alternative to deadlock prevention is to dynamically avoid
deadlocks, taking into account information about future lock usage.
We have recently developed a method to dynamically avoid dead-
locks guided by information about the order of explicit lock and
unlock operations collected statically by program analysis [9]. Our
static analysis is based on a type and effect system that is general
enough to be applicable regardless of how locking is used. One of
the benefits of our method is that valid programs have no dangling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLOS ’11 October 23, 2011, Cascais, Portugal.
Copyright c© 2011 ACM 978-1-4503-0979-0/11/10. . . $10.00

188 static int udf_readdir(struct file *filp, void *dirent,
filldir_t filldir)

189 {
190 struct inode *dir = filp->f_path.dentry->d_inode;
191 int result;
192

193 lock_kernel();
194

195 if (filp->f_pos == 0) {
196 if (filldir(dirent, ".", 1, ..., dir->i_ino, DT_DIR) < 0) {
197 unlock_kernel();
198 return 0;
199 }
200 filp->f_pos++;
201 }
202

203 result = do_udf_readdir(dir, filp, filldir, dirent);
204 unlock_kernel();
205 return result;
206 }

Listing 1. Code from linux-2.6-kdbg.git/fs/udf/dir.c

unlock operations, which may cause unspecified program behavior
and concurrency errors such as data races. Safe lock usage is not ad-
dressed in other tools (e.g., [10]) which can only prevent data races
given the assumption that there are no dangling unlock operations.

Building upon the technique formally developed in our previous
work [9], in this paper we outline an extended implementation that
can support locks residing in dynamically allocated data structures
in a context-sensitive and field-sensitive manner, stack-allocated
data structures containing lock handles, and several optimizations
that minimize the run time overhead of deadlock avoidance.

We start by a brief overview that describes informally how our
approach manages to avoid deadlocks when unstructured locking
is used (Sect. 2). We then describe our analysis and its current im-
plementation (Sect. 3), and evaluate its performance (Sect. 4). The
paper ends with a brief review of related approaches to deadlock
freedom (Sect. 5) and some concluding remarks.

2. Overview of our Approach
The key idea of our technique is that granting a lock cannot lead to
a deadlock when both the requested lock and its future lockset are
available. The future lockset of a lock operation is the set of locks
acquired between the lock and its matching unlock operation.

Let’s see the analysis on an example. The analysis tracks simple
effects, i.e., (possibly empty) sequences of lock and unlock events
(e.g., z+ or z−). A continuation effect of an expression represents
the effect of the code following that expression. Our analysis au-
tomatically annotates lock operations and function calls with their
continuation effect. Even though lock operations are ordinary func-

void f() { g()[z+];
lock(z)[]; }

void g() { lock(x)[y+, y−];

lock(y)[y−];
unlock(y); }

void main() { f()[z−, x−];
unlock(z);
unlock(x); }

Stack

z+
z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y,z }

Figure 1. An example program where lock and unlock operations
are not in the same scope (left) and the run-time state of this
program when the boxed term is executed (right).

tion calls in C programs, we treat them as distinct operations. Fig. 1
illustrates a program where lock operations and function calls are
annotated with their continuation effect. Notice that lock and un-
lock operations reside in different scopes in this program. For in-
stance, x is locked in function g, but it is unlocked in function main.

In contrast to continuation effects that are computed statically,
the computation of future locksets is deferred until run time. At
each function call, the associated continuation effect is pushed on
the stack for the duration of the call. Figure 1 shows the run-time
state of the program when control reaches the lock operation on x:
the run-time stack (which grows upwards in the figure) contains
the continuation effects of the f and g calls. The future lockset
computation algorithm is straightforward given the continuation
effect of x and the run-time stack: the algorithm starts with an
empty future lockset and traverses the continuation effect until the
matching x− is found. While traversing the effect, other locations
being locked are added to the future lockset. For instance, in Fig. 1
the algorithm adds y to the future lockset of x and then considers
the continuation effects on the stack, from top to bottom. Thus, z
is added to the future lockset and the matching unlock operation
is found on the next element of the stack. The resulting lockset is
{y, z}. During program execution the lock operation unblocks when
lockset {x, y, z} is available. Notice that we grant only a single lock
for each lock operation (only x in this case) as opposed to acquiring
prematurely the entire lockset with it ({y, z}), which would damage
the program’s degree of parallelism.

Having seen the idea, let’s see the core ingredients of the analy-
sis and how it deals with various programming language constructs.

Effects. Our static analysis is based on effects. Simple effects are
sequences of lock and unlock events. A continuation effect of an ex-
pression represents the effect of the function code following that ex-
pression (i.e., our continuation effects are intra-procedural, in con-
trast to those of Hicks et al. [10] which are inter-procedural). Lock
operations are automatically annotated with their continuation ef-
fect. As mentioned, the computation of future locksets is deferred
until run time, allowing the calculation of future locksets to oc-
cur in a context-sensitive manner. More conservative (i.e., larger)
locksets could be statically computed, but this approach would re-
duce parallelism by increasing the blocking time at lock operations.
Within a single function, the future lockset computation algorithm
is straightforward given the continuation effect of a lock acquisition
operation for some lock l. We start with an empty future lockset and
traverse the continuation effect until the matching unlock operation
on l is found. The locations being locked while searching for the
matching unlock operations are added to the future lockset. Notice
that our algorithm deals with re-entrant locks so the search will only
stop at the matching unlock operation rather than the first unlock
operation. The runtime system utilizes the dynamically computed
future locksets so that each lock operation can only proceed when
its future lockset is available to the requesting thread.

Function calls. As mentioned, our continuation effects are intra-
procedural. Therefore, the matching unlock operation of some lock
may not be located in a function’s effect. Our static analysis re-
solves this issue, by automatically annotating function calls with
their continuation effect. At run time, when a function call is en-
countered, its continuation effect is pushed on a stack of continua-
tion effects for the duration of the function call. When the matching
unlock operation is not found in the continuation effect, the lockset
computation algorithm proceeds with the remaining continuation
effects on the run-time stack. Because the static analysis guaran-
tees that for each lock there exists a matching unlock operation, the
lockset computation algorithm will find it and therefore terminate.

Conditionals. A shortcoming of representing effects as ordered
events is that, when typing conditional expressions/statements, it is
too restrictive to require that both branches have the same effect.

lock(x);
if (condition) {
lock(y); data[i] = j; unlock(y);

}

unlock(x);

In this example, the “then” branch contains a lock operation on y
followed by an unlock operation on y, whereas the “else” branch is
empty. Requiring that both branches have the same effect, would
unnecessarily reject common multithreaded C programs such as
the above. Our analysis overcomes this issue by keeping track of
the effects in both branches and the lockset calculation algorithm
computes the lockset of the two branches separately. The resulting
lockset is formulated by joining the two locksets. However, for
each lock, the only restriction we impose is that the number of
unmatched lock/unlock operations must be equal in both branches.

Loops and recursion. Additional problems need to be addressed
when dealing with recursive function definitions (loops can be
treated similarly). In this case, the effect of a recursive function
name must equal the effect of its body. However, this is impossible,
as the two effects cannot be structurally equivalent: the effect of a
function name is contained in the effect of its body, due to the re-
cursive call. To overcome this issue, our analysis assigns function
names a summary of the effect of their bodies. Although in this pa-
per we do not formally define what function summary does (see [9]
for its definition), a possible (but conservative) choice here would
be to “flatten” or merge all branches of the effect corresponding
to the body of a recursive function, by placing all matched opera-
tions in a single “atomic” effect. Unmatched unlock and lock effects
are placed at the end and the beginning of the summarized effect
respectively. We have shown formally the soundness of our sum-
mary [9], which is a conservative approximation of the actual effect
of recursive functions. Intuitively, the summary function guarantees
that all lock operations included in a recursive function f will be in-
cluded in the future lockset of a lock operation preceding the call
of f . In fact, summaries are conservative as all unmatched unlock
operations are placed at the end of the summarized effect.

3. Deadlock Avoidance Analysis
Our analysis is performed in two phases. The first phase takes
place at compile-time and performs a field-sensitive and context-
sensitive pointer analysis followed by continuation effect inference,
and source code instrumentation with effects; finally, the instru-
mented program is linked with the runtime system. The second
phase is purely dynamic and takes place when the original program
requests a lock. The future lockset of the requested lock is com-
puted by utilizing the inserted effects and the lock is only granted
when both the lock and its future lockset are available. In this pa-
per, we extend the implementation of our analysis so that it can

handle locks residing in data structures allocated in the heap or the
stack and introduce new optimizations that reduce the size of ef-
fects, thereby reducing the size of future locksets and the blocking
time of lock operations.

3.1 Static Analysis
The analysis takes as input the program’s abstract syntax tree and
constructs a call graph, which is visited bottom-up. There are four
main stages involved in the analysis of function declarations (i.e.,
nodes of the call graph) described in the following paragraphs.

Pointer analysis. First, a standard, off-the-shelf field-sensitive
intra-procedural pointer analysis based on symbolic execution [18]
is employed so as to formulate an abstract heap and stack state
at each program point. We have customized the analysis so that
it treats heap allocation in a context-sensitive manner. At the end
of the first stage, we obtain a mapping for each expression to a
set of abstract locations. Each abstract location r can be a formal
parameter, a global variable or a heap-allocated location.

Effect inference. The effect for each function is computed by run-
ning a standard forward data flow algorithm on the function’s con-
trol flow graph. Each node in the control flow graph is associated
with an input, a current and an output effect. The input effect of
a node is formulated by joining effects flowing from all its front
edges. For instance, a node associated with effects γ1 . . . γk, will be
assigned an input effect γ1 ? . . . ? γk, which denotes a choice be-
tween the alternative effects γ1 . . . γk. A distinction is made when
encountering back edges; we defer the discussion regarding the
treatment of back edges until the next paragraph.

The current effect of a node can be r+ or r−, when a lock or
unlock operation is found, respectively. It can be malloc ρ, when
a new reference is allocated dynamically and bound to the variable
ρ. It can also be call r (r1, . . . , rn) : r′ when a function is called,
where r is a reference to the function, r1 . . . rn are references to
the function’s arguments, and r′ is a reference that corresponds to
the function’s result. In this case, if our standard points-to analysis
cannot determine a unique target for r (e.g., if a function is called
indirectly through a pointer), then the original effect is replaced by
a joined effect consisting of several alternative branches of the form
call fi (r1, . . . , rn) : r′i , for each alternative target function fi.

The output effect is computed by appending the current effect
to the input effect and is propagated to a node’s successors until a
fixed point is reached. A function’s effect is computed by joining
the output effects of nodes having no successors.

Loops. Effects flowing from back edges must be equivalent (with
respect to the lock counts) to the input effect of the same node.
This restriction allows us to soundly encode loop effects: a loop
may have any number of lock or unlock operations provided that
upon exit of a loop the counts of each lock match the counts before
the loop was executed. Assuming that the effect of the loop body
is γ, then we take (γ ? ∅), (γ ? ∅) as the effect of the entire loop.
The empty effect on both branches compensates for the case where
a loop is not executed. The duplication of (γ ? ∅) is required so
that lock operations can match between successive loop iterations.
In cases where a loop effect does not contain unmatched lock
operations, this duplication may be optimized away.

Effect optimizations. While computing effects, several optimiza-
tions are performed so as to compact/elide effects and in general
minimize the repetitions of the identical effect segments in a func-
tion’s effect. One of the optimizations for compacting an effect
computes the common prefix and suffix of the effects included in
a join operator, to decrease the size of branches. Another kind of
optimization is to flatten effects that consist of nested join opera-
tors. For example, an effect of the form (γ1 ? γ2) ? (γ3 ? γ4) can be

reduced to γ1 ? γ2 ? γ3 ? γ4. In addition, multiple occurrences of the
empty effect in alternative effects γ1 . . . γn are substituted with a sin-
gle empty effect. These two optimizations are run alternately until
a fixed point is reached in the size of the effect.

Call effects are substituted by a summary of the effect corre-
sponding to the function being called. In summarized effects mul-
tiple lock/unlock pairs for the same reference are redundant. The
intuition behind this optimization is that the future lockset that will
be computed dynamically will be the same, regardless of the num-
ber of times that a lock operation occurs.

Another important optimization attempts to minimize the size
of the run-time effect stack, so that the future lockset calculation
algorithm visits as few stack frames as possible. One way to achieve
this is by disabling code instrumentation for functions that do not
directly perform any lock operations and do not contain calls to
functions that will visit their effect frame at run time. Finally, we
invoke the data flow algorithm, which is CPU-intensive, only for
functions that are known to contain lock operations (by performing
an in-advance linear search), to avoid additional overheads.

3.2 Code Generation
Our main goal was to minimize the overhead induced by “effect
accounting”. A naı̈ve implementation of the technique informally
described earlier would simply allocate and initialize effect frames
for each function call or lock operation, which would be unaccept-
able in terms of performance. The code generation phase statically
creates a single block of initialization code for the effect of each
function and inserts effect index update instructions (i.e., a sin-
gle assignment) before each call and lock operation. Therefore, the
overhead imposed for such operations is minimal. Each function is
also instrumented with instructions for pushing and popping effects
from the run-time stack at function entry and exit points respec-
tively. This imposes a constant overhead to function calls.

Finally, mappings for stack and heap pointers are generated at
run time as such locations cannot be known statically. A mapping
binds an abstract location to a run-time address. An inverse map-
ping is also maintained for abstract heap locations. When a deallo-
cation operation is performed such as free, the inverse mapping is
searched using the physical address to be deallocated and the bind-
ing between the abstract heap location and the physical address is
removed from the heap mapping. In this way, our analysis is able to
deal with locks that are dynamically deallocated and thereby avoid
invalid accesses to deallocated locks.

3.3 Current Limitations
Non C code. Our analysis can strictly handle the C language.
Library code cannot be analyzed as it is not C code. We have
assumed that by default library functions have an empty effect.
However, it is possible to provide user-defined effect annotations
for library functions. The analysis cannot deal with non-local jumps
(including signals) and inline assembly.

Pointer analysis. The off-the-shelf pointer analysis module fails
when encountering programs with pointer arithmetic involving
locks (including arrays) and recursive data structures that contain
or point to locks. Even though our analysis extends the standard
pointer analysis with context-sensitive tracking of fresh heap loca-
tions, it fails to track heap allocation (for data structures containing
or pointing to locks) at recursive functions and loops. This limita-
tion is dual to the aforementioned limitation regarding unbounded
data structures. In addition, expressions passed in lock functions
must be assigned a unique abstract location. Finally, we require
that lock pointers are mutated only before they are shared between
threads, and that locks referenced with at least two levels of indi-
rection (e.g., via double pointers) are not aliased at function calls.

Conditional execution. The analysis also currently rejects pro-
grams in which lock and their matching unlock operations are con-
ditionally executed in distinct conditional statements having equiv-
alent guards. For instance, the following program is rejected:

if (condition) lock(z);
if (condition) unlock(z);

3.4 Runtime System
The runtime system overrides the standard implementation of lock-
ing functions such as the pthreads functions pthread mutex lock
and pthread cond wait.1 If a lock is already held by the request-
ing thread then the lock’s count is simply incremented. (This occurs
only when re-entrant locks are used; however, re-entrant locks are
needed in languages that support unrestricted lock aliasing.) Other-
wise, the runtime system performs two steps: it computes the future
lockset of the requested lock and verifies that all locks in the future
lockset are available when the lock is acquired.

The future lockset calculation algorithm uses the effect index
inserted by the instrumentation phase to calculate the future lockset
of the requested lock. When the matching unlock operation is not
found in the function’s effect, the algorithm visits the effects on the
run-time stack. Locks held by the requesting thread are excluded
from the lockset. Effect traversal is performed efficiently as the
majority of effects are represented by arrays. Each atomic effect
is represented by two machine words.

The next step is to acquire the lock provided that all locks in its
future lockset are available. We have implemented three different
strategies for dealing with unavailable locks. The first one employs
futexes [7], which in general allow a thread to wait in the kernel
for an event. The remaining two strategies employ busy waiting
or yield control to other threads. As the performance of futexes
was clearly superior in almost all benchmarks, we quickly focused
on this strategy and used it exclusively for all the results that we
present in the next section.

Our algorithm initially checks if all locks in the future lockset
are available. If some lock is unavailable, we perform a wait oper-
ation on it (using one of the above strategies) and retry. If all locks
in the future lockset are available, we tentatively acquire the re-
quested lock. Then, we check again the future lockset. If any lock
in the future lockset is unavailable, we release the acquired lock,
we perform a wait operation on the unavailable lock and repeat all
the steps from the beginning. Otherwise, the lock acquisition op-
eration is considered successful. This approach allows our locking
algorithm to be more permissive compared to versioning schemes
that check future locksets atomically and thereby yields a higher
degree of concurrency for instrumented programs.

4. Performance Evaluation
We describe some experimental results, aiming to demonstrate that
our approach can achieve deadlock freedom with low run-time
overhead. The experiments were performed on a machine with four
Intel Xeon E7340 CPUs (2.40 GHz), having a total of 16 cores and
16 GB of RAM, running Linux 2.6.26-2-amd64 and GCC 4.3.2.

We used a total of six benchmark programs, which are real
applications whose source code is publicly available. Some of these
programs use language features that could not be handled by the
preliminary implementation of our system [9]. The performance
results are shown in Table 1; the presentation order is alphabetical.

1 Currently our tool has built-in support only for overriding the functions
of the pthreads library, but it can easily be extended to support other locks.
Its implementation and the set of benchmarks we used are available from
http://www.softlab.ntua.gr/˜pgerakios/deadlocks/.

benchmark run in user system elapsed ratio

curlftpfs
C 0.002 0.758 33.450 0.982

C+da 0.000 0.680 32.862

flam3
C 63.660 3.910 49.050 1.003

C+da 67.860 3.640 49.200

migrate-n
C 5545.311 4631.341 4138.070 1.118

C+da 5334.921 5020.346 4625.670

ngorca
C 124.846 0.126 8.270 0.996

C+da 124.467 0.126 8.240

sshfs-fuse
C 0.000 0.890 20.880 1.000

C+da 0.000 0.950 20.880

tgrep
C 13.238 11.639 5.190 1.191

C+da 14.801 11.655 6.180

Table 1. Performance of C vs. C+da (C plus deadlock avoidance).

curlftpfs [3] and sshfs-fuse [14]: are file system clients that access
hosts via the FTP and SSH network protocol respectively. Both
applications create threads on demand so as to serve concur-
rent read and write requests to the file systems, using two and
three distinct locks respectively to synchronize data structures,
logging and access to non thread-safe functions. In our experi-
ments, we mount a remote directory over the corresponding file
system and start a fixed number of concurrent threads, each of
which is trying to download a number of large files. The to-
tal volume of data that is copied over the file systems is linear
w.r.t. to the number of threads. In both cases, the instrumented
program has almost identical performance to the original pro-
gram. Both programs have approximately zero user time as they
mainly invoke the kernel-space API of FUSE [8].

flam3: a multithreaded program which creates “cosmic recursive
fractal flames”, i.e., (animations consisting of) algorithmically
generated images based on fractals [5]. A single lock is used to
synchronize access to a shared bucket accumulator that merges
computations of distinct threads. We measured the time re-
quired to generate a long sequence of fractal images. The re-
sults again were almost identical for the original and the instru-
mented version of flam3.

migrate-n: estimates population parameters, effective population
sizes and migration rates of n populations using genetic data [12].
The program maintains a work list of Markov chains and uses a
thread pool to execute tasks until the work list becomes empty.
Two locks are employed for implementing the thread pool and
for accessing shared variables. It is worth mentioning that locks
in this program are dynamically allocated and several billion
lock operations were executed during the program run. The
instrumented program ran 11% slower than the original.

ngorca: a multithreaded password recovery tool using exhaustive
key search for DES-encrypted passwords in Oracle databases
[13]. The program achieves speedup by splitting the search
space of each encrypted password across threads, using mul-
tiple locks for implementing logging, counters and condition
variables. The results again were almost identical for the origi-
nal and the instrumented version of ngorca.

tgrep: a multithreaded version of the utility program grep which
is part of the SUNWdev suite of Solaris 10 [16]. The program
achieves speedup by splitting the search space across threads,
using multiple locks for implementing thread-safe queues, log-
ging and counters. In our experiment, we looked for an occur-
rence of a six-letter word in a directory tree containing 100,000
files. The instrumented program is 19% slower than the orig-
inal program. This is due to the fact that tgrep is not only

http://www.softlab.ntua.gr/~pgerakios/deadlocks/

lock-intensive (about 1.5 million lock operations were executed
in our test run), but also it is by far the benchmark with the
longest effects that we could find. The maximum effect size
for a function is 54 and the average effect size is 19.5, which
are both about five times higher than the second next bench-
mark (ngorca). Furthermore, the program employs seven dis-
tinct global locks; the dynamically calculated future lockset had
a maximum size of five elements and an average size of 1.3,
again about five times higher than the second next benchmark.

5. Deadlock Freedom and Related Work
Deadlock freedom can be obtained by either of the following three
strategies. The first, deadlock prevention, ensures that programs are
correct by design and can never have circular lock dependencies.
In the deadlock prevention literature, one finds type and effect sys-
tems [2, 4, 6, 11, 15, 17] that guarantee deadlock freedom by stat-
ically enforcing a global lock-acquisition ordering, which must be
respected by all threads. Second, deadlock detection and recovery
strategies dynamically detect deadlocks and preempt some of the
deadlocked threads, releasing (some of) their locks, so that the re-
maining threads can make progress. Third, type systems for dead-
lock avoidance (e.g., [1]) grant access to resources that cannot lead
to deadlocked states. To achieve deadlock freedom, such systems
employ run-time resource monitoring and utilize static information
regarding thread resource allocation. The main advantage of sys-
tems based on deadlock avoidance is that a larger class of programs
is accepted by the static analysis without requiring the insertion of
manual annotations or changing the original program structure.

From approaches that combine static and dynamic techniques,
a tool that is quite similar to ours is Gadara [19]. Gadara employs
whole program analysis to model programs and discrete control
theory to synthesize a concurrent logic that avoids deadlocks at
run time. Gadara targets C/pthreads programs and claims to avoid
deadlocks quite efficiently because it performs the majority of its
deadlock avoidance computations offline. (The tool is not publicly
available.) Similarly to our future locksets, Gadara uses the notion
of control places to decide whether it is safe to admit a lock
acquisition. More precisely, a lock acquisition can only proceed
when all the control places associated with the lock are available.
The mostly static approach followed by Gadara, as well as the lack
of alias analysis, results in an over-approximation of the set of run-
time locks associated with a control place.

6. Concluding Remarks
Deadlocks are an important problem especially for systems code
written in languages that employ non block-structured locking. In
this paper, we presented implementation aspects of a novel tool that
dynamically avoids deadlock states for multithreaded C programs.
The key idea is to utilize statically computed information regarding
lock usage at run time in order to avoid deadlocks. We described
the main aspects of our static analysis and its obvious limitations: it
is necessarily imprecise and cannot support unbounded data struc-
tures containing locks. However, we showed that our approach is
applicable to several multithreaded C programs containing systems
code and our evaluation results reveal that it imposes only a modest
run-time overhead, induced by the future lockset computation and
by blocking threads more often (i.e., when the requested lock is
available but something in its future lockset is not). Nevertheless,
we think that its run-time overhead is reasonable for guaranteed
deadlock avoidance.

Acknowledgement
This research is partially funded by the programme for supporting
basic research (ΠEBE 2010) of the National Technical University

of Athens under a project titled “Safety properties for concurrent
programming languages.”

References
[1] G. Boudol. A deadlock-free semantics for shared memory concur-

rency. In Proceedings of the International Colloquium on Theoret-
ical Aspects of Computing, volume 5684 of LNCS, pages 140–154.
Springer, 2009.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 211–230, New York, NY,
USA, Nov. 2002. ACM Press.

[3] A FTP filesystem based on cURL and FUSE. http://curlftpfs.
sourceforge.net/.

[4] D. Engler and K. Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. In Proceedings of ACM Symposium on
Operating Systems Principles, pages 237–252, New York, NY, USA,
2003. ACM.

[5] flam3.com. Cosmic recursive fractal flames. http://flam3.com/.
[6] C. Flanagan and M. Abadi. Types for safe locking. In Programming

Language and Systems: Proceedings of the European Symposium on
Programming, volume 1576 of LNCS, pages 91–108. Springer, 1999.

[7] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks:
Fast userlevel locking in Linux. In Proceedings of the Ottawa Linux
Summit, pages 479–495, 2002.

[8] A filesystem in userspace. http://fuse.sourceforge.net/.
[9] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type and effect system

for deadlock avoidance in low-level languages. In Proceedings of
the ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, pages 15–28, New York, NY, USA, 2011.
ACM Press.

[10] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic
sections. In Proceedings of the First ACM SIGPLAN Workshop on
Languages Compilers, and Hardware Support for Transactional Com-
puting, June 2006.

[11] N. Kobayashi. A new type system for deadlock-free processes. In
International Conference on Concurrency Theory, volume 4137 of
LNCS, pages 233–247. Springer, 2006.

[12] A tool that estimates population size and migration rate. http:
//popgen.sc.fsu.edu/Migrate/Migrate-n.html.

[13] A password recovery tool for Oracle Database. http://code.
google.com/p/ngorca/.

[14] SSH FileSystem. http://fuse.sourceforge.net/sshfs.html.
[15] K. Suenaga. Type-based deadlock-freedom verification for non-block-

structured lock primitives and mutable references. In Asian Sympo-
sium on Programming Languages and Systems, volume 5356 of LNCS,
pages 155–170. Springer, 2008.

[16] Multithreaded grep. Part of Sun Microsystems’ Multithreaded Pro-
gramming Guide, available at http://docs.sun.com/app/docs/
doc/806-5257.

[17] V. Vasconcelos, F. Martin, and T. Cogumbreiro. Type inference for
deadlock detection in a multithreaded polymorphic typed assembly
language. In Proceedings of the Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software,
volume 17 of EPTCS, pages 95–109, 2010.

[18] J. W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on
millions of lines of code. In Proceedings of the joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 205–
214, New York, NY, USA, 2007. ACM.

[19] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
Dynamic deadlock avoidance for multithreaded programs. In Proceed-
ings of the Symposium on Operating Systems Design and Implementa-
tion, pages 281–294. USENIX Association, 2008.

http://curlftpfs.sourceforge.net/
http://curlftpfs.sourceforge.net/
http://flam3.com/
http://fuse.sourceforge.net/
http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://code.google.com/p/ngorca/
http://code.google.com/p/ngorca/
http://fuse.sourceforge.net/sshfs.html
http://docs.sun.com/app/docs/doc/806-5257
http://docs.sun.com/app/docs/doc/806-5257

	Introduction
	Overview of our Approach
	Deadlock Avoidance Analysis
	Static Analysis
	Code Generation
	Current Limitations
	Runtime System

	Performance Evaluation
	Deadlock Freedom and Related Work
	Concluding Remarks

