A Type System for Unstructured Locking that Guarantees
Deadlock Freedom without Imposing a Lock Ordering

Prodromos Gerakios Nikolaos Papaspyrou Konstantinosridago
School of Electrical and Computer Engineering, Nationalhifécal University of Athens, Greece
{pgerakios,nickie,kostis}@softlab.ntua.gr

Abstract

Deadlocks occur in multi-threaded programs as a conseguacyclic resource acquisition be-
tween threads. In this paper we present a novel type systangtiarantees deadlock freedom for a
language with references, unstructured locking primétiand locks which are implicitly associated
with references. The proposed type system does not impdsietdack acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. dwaore threads are deadlocked when each
of them is waiting for a lock that is acquired by another tdre&everal type systems have been pro-
posed([b 219,10, 11] that prevent deadlocks by imposinga gon-cyclic) lock-acquisition order that
must be respected throughout the entire program. This apprgreatly limits programming language
expressiveness as many correct programs are rejectedessaety. Boudol has recently proposed a
type system that avoids deadlocks and is more permissiveekiating approache§l[1]. However, his
system can only deal with programs that use lexically-sddpeking primitives.

In this paper we sketch a simple language with functionsabilatreferences, explicit (de-)allocation
constructs and unstructured (i.e., non lexically-scopecRing primitives. To avoid deadlocks, we pro-
pose a type system for this language based on Boudol's idearie that the addition of unstructured
locking primitives makes Boudol's system unsound and sh@w it is possible to regain soundness by
preserving more information about the order of events biatfically and dynamically.

Our work is part of a more generaffert to design a language for systems programmiin@l[6, 7] that
guarantees memory safety, race freedom and definite redfassources such as memory and locks.

2 Deadlock Freedom and Related Wor k

We start by providing a concrete definition of deadlocks aoochgare our work with existing static
approaches to deadlock freedom. According téf@anet al. [4], a set of threads reachesleadlocked
statewhen the following conditions hold:

Mutual exclusion Threads claim exclusive control of the locks that they aequ

Hold and wait Threads already holding locks may request (and wait fonr) loeks.

No preemptionLocks cannot be forcibly removed from threads; they musteieased explicitly
by the thread that acquired them.

Circular wait: Two or more threads form a circular chain, where each thvesits for a lock held
by the next thread in the chain.

Therefore, deadlock freedom can be guaranteed by denyiegstione of the above conditiobsfore
or during program execution. Gbman has identified three strategies that guarantee deafiltmkom:

e Deadlock preventianAt each point of executiorgnsurethat at least one of the above conditions
is not satisfied. Thus, programs that fall into this categoeycorrect by design.

e Deadlock detection and recover dedicated observer threagterminesvhether the above con-
ditions are satisfied and preempts some of the deadlockeddyrreleasing (some of) their locks,
so that the remaining threads can make progress.

A Type System for Deadlock Freedom without Lock Ordering exaRioset al.

e Deadlock avoidanceUsing advance information regarding thread resourcedaiion, determine
whether granting a lock will bring the program to ansafestate, i.e. a state which can result in
deadlock, and only grant locks that lead to safe states.

The majority of literature for language-based deadlockdmn falls under the first two strategies.
In the deadlock prevention category, one finds type dfetesystems 9,12 9,110, 111] that guarantee
deadlock freedom by statically enforcing a global lock+asigion ordering that must be respected by all
threads. In this setting, starting with the work of Flanagad Abadi [%], lock handles are associated
with type-level lock names via the use of singleton typesusttandldk, is of type1k(:). The same
applies to lock handle variables. Thffext system tracks the order of lock operations on handles or
variables and determines whether all threads acquire lodke same order.

Using a strict lock acquisition order is a constraint we wardavoid. It is not hard to come up with
an example that shows that imposing a partial order on logked restrictive. The simplest of such
examples can be reduced to program fragments of the form:

(lock xin ... lockyin...) || (lockyin ... lock Xin ...)

In a few words, there are two parallel threads which acqwicedifferent locksx andy, in reverse order.
When trying to find a partial ordet on locks for this program, the type system or static analiymis
will deduce thatx <y must be true, because of the first thread, andyhak must be true, because of
the second. Thus, the program will be rejected, both in teteay of Flanagan and Abadi which requires
annotations[]5] and in the system of Kobayashi which empinference [[9] as there is no single lock
order for both threads. Similar considerations apply to the more recemksvof Suanagal[10] and
Vasconcelot al. [L1] dealing with non lexically-scoped locks.

Recently, Boudol developed a type arfteet system for deadlock freedoi [1], which is based on
deadlock avoidance The dfect system calculates for each expression the set of adglaicks and
annotates lock operations with the “future” lockset. Thetime system utilizes the inserted annotations
so that each lock operation can only proceed when its “filfoekset is unlocked. The main advantage
of Boudol's type system is that it allows a larger class ofgpams to type check and thus increases the
programming language expressiveness as well as concyigratlowing arbitrary locking schemes.

The previous example can be rewritten in Boudol's languagelbows, assuming that the only lock
operations in the two threads are those visible:

(lockyy xin ... lockg yin ...) || (lockyy yin ... locky Xin ...)

This program is accepted by Boudol's type system which, imega, allows locks to be acquired amy
order. At run-time, the first lock operation of the first thleaust ensure that has not been acquired
by the second (or any other) thread, before grankirfignd symmetrically for the second thread). The
second lock operations need not ensure anything specidle dgiture” locksets are empty.

The main disadvantage of Boudol’s work is that locking opers have to be lexically-scoped. As
it will be shown, his type andffect system cannot guarantee deadlock freedom for unscopkithg
operations. In the section that follows, we discuss a noyat tsystem for a simple language with
mutable references, that is intended to guard against algednd, taking advantage of our previous
work [6], against race conditions and memory violations af.w

3 Type System Overview
In this section, we sketch a type system that guarantees@d®é deadlocks in a language supporting

non lexically-scoped locking operations. As mentionedi@aiBoudol’s proposal does not support un-
structured locking; even if his language hiagtk/unlock constructs, instead dfock...in..., Boudol's

2

A Type System for Deadlock Freedom without Lock Ordering exaRioset al.

let f=axady.dz locky X X:=X+1; locky @, a:=a+1,;
locky Vs yi=y+X lockyy a; a:=a+a;
unlock X; unlock a;
locky z Z:=27+Y, locky b; b:=b+aq;
unlock z unlock b;
unlocky unlock a

in faab

(a) (b)

Figure 1. An example program, which is well typed before situtfon (a) but not well typed after
substitution (b).

type system is not sficient to guarantee deadlock freedom. The example prografigimre[1(a) will
help us see why: It updates the values of three shared wesiably andz, making sure at each step that
only the strictly necessary locks are held.

In our naively extended (and broken, as will be shown) varsi Boudol's type andféect system, the
program in Figur&ll(a) will type check. The “future” locksetnotations of the three locking operations
in the body off are{y}, {z} and 0, respectively. (This can be easily verified by observing Itk
operations between a specifiock andunlock pair.) Now, functionf is used by instantiating both
x andy with the same variabl@, and instantiatingz with a different variableb. The result of this
substitution is shown in Figuid 1(b). The first thing to netis that, if we want this program to work in
this case, locks have to be-entrant This roughly means that if a thread holds some lock, it canar
acquire the same lock again; this will immediately succéed then the thread will have to release the
lock twice before it is actually released.

Even with re-entrant locks, however, it is easy to see thaptiogram in Figurgl1(b) does not type
check with the present annotations. The firstk for a now matches with théast (and not the first)
unlock; this means thaa will remain locked during the whole execution of the progrdmthe mean-
time b is locked, so the “future” lockset annotation of the fitsick should contairb, but it does not.
(The annotation of the secoriebck containsb, but blocking there if lockb is not available does not
prevent a possible deadlock; loakhas already been acquired.) So, the technical failure ohaiwely
extended language is that the preservation lemma breaksn &more pragmatic point of view, if a
thread running in parallel already holdsand, before releasing it, is about to acquarex deadlock can
occur. The naive extension also fails for another reasaudBl's system is based on the assumption
that calling a function cannotfizct the set of locks that are held. This is obviously not tifi@on
lexically-scoped locking operations are to be supported.

The type and #ect system proposed in this paper supports unstructur&ohindoy preserving more
information at the ffect level. Instead of calculating an unordered set of loitlestype system precisely
tracks the order ofock andunlock operations, without enforcing a strict lock-acquisitiamler. As in
Boudol’s systemlock operations are annotated with the “futurdfeet (our “ordered future” lockset).
Function application terms are explicitly annotated wittoatinuation gect, representing thefkect of
the code succeeding the application term. At run-time, vahgmction application redex is evaluated, its
annotation is pushed on the stack. Wheak operation is evaluated, the “future” lockset is calculated
by inspecting the annotation and (if necessary) the lookopgeds with the continuatiorffects of the
enclosing context that are found on the stack. Itk operation succeeds only when both the lock and
the “future” lockset are available.

Figurel2 illustrates the same program as in Fifilire 1, exbaptdcking operations are now annotated
with the “ordered future” lockset. For example, the annotafy+, x—, z+, z—, y—] at the firstlock
operation means that in the future (i.e., after this lockrafien) y will be acquired, therx will be
released, and so on. ¥ andy were diferent, the run-time system would deduce that between this

3

A Type System for Deadlock Freedom without Lock Ordering exaRioset al.

let f=ax1y.1z lockyy x—,z+.z-y-] X X:=X+1; lockiat,a-b+,b-a] & a:=a+l,
lockx-,z+,z-,y-1 Vi yi=y+X; lockfa- b+,b-,a-] & a.=a+aq
unlock X; unlock a;
lockz-y Z Z:=27+Y, lockpp- a b; b:=b+a;
unlock z unlock b;
unlocky unlock a

in faab

() (b)

Figure 2: The example program of Figlide 1, with “ordered rfeitdockset annotations, now well typed
both before (a) and after substitution (b).

Expresson e = x|c|f|(eef|@[]|e=¢e Type T iz b Q|15 | Yo.1 | ref(n,p)
| derefe|letp,X=refeine Calling mode & u= seq(y) | par
| sharee| releasee| lock,e Capabilit . —
| unlocke| () apability Kk = nn|nn
Effect = 0] y.p"
Function f 5= Axeast—ot | Ap. f 7 R

Figure 3: Language syntax.

lock operation onx and the correspondingnlock operation, onlyy is locked, so the future lockset in
Boudol’s sense would bg}. On the other hand, i andy are instantiated with the samagthe annotation
becomesd+, a—, b+, b—, a—] and the future lockset that is calculated is now the corfadi}. In a real
implementation, there are several optimizations that eapdsformed (e.g., pre-calculation dfects)
but we do not deal with them in this paper.

4 Formalism

The syntax of our language is illustrated in Figlle 3, wheamdp range over term and “region” vari-
ables, respectively. Similarly to our previous waork[[6, &]region is thought of as a memory unit that
can be shared between threads and whose contents can beadlipfocked. In this paper, we make
the simplistic assumption that there is a one-to-one cpomdence between regions and memory cells,
but this is of course not necessary. The language suppglieieregion polymorphism. Monomorphic
functions must be annotated with their type, which carriesrtoverall éfect. Application is annotated
with a calling modewhich differentiates normal (sequential) application from parafmlication, i.e.,
the spawning of a new thread. Sequential application i©déurannotated with theontinuation gect

as mentioned earlier. The constrdett p,x = ref e in &, allocates a fresh cell, initializes it &,
and associates it with variablesand x within expressiore,. As in other approaches, we us&s the
type-level representation of the new cell. The type of egiee variableg is the singleton typee£f(p, 7),
wherert is the type of the cell’s contents. This allows the type syste connectx andp and thus to
statically track uses of the new cell. Assignment and dezefee operators are standard.

At any given program point, each cell is associated witlajability, which roughly consists of two
natural numbers: theapability counts The first number is theell referencecount), which denotes
whether the cell is live, and the second is t&dl lock count 1), which denotes whether the cell has
been locked by the current thread. (We use natural numbesteaid of booleans, to support sharing
and re-entrant locks.) Furthermore, a capability carniyeure (denoted byn;,ny), which allows for
cell aliasing in the same spirit as in fractional permissifii. This aliasing information is required to
determine whether it is safe to pass lock capabilities to theaads. The remaining language constructs
operate on a cell reference and modify its capabiléiare andrelease increase and decrease,

4

A Type System for Deadlock Freedom without Lock Ordering exaRioset al.

Ya ’ . . s
ATre it1—12&(y3Y) érya v2=7®7a AT+ ep i ref(r,p)&(y1;Y')
ATre: & ; =se V(E=parATy = ATrHe 7&(y; > (1,1
&2:11&(y2573) €=seq(y)V(E=parnt2 =) (T-A) &:7&(yiy1) v(p) /() (T-AS)
AT+ (e &) :12&(yY) ATre i=e: 0&(rY)
AT+er:111&(y2\p3Y) y1=72.p" AT+ e: ref(r,p) &(y, @Dy
Ak A, p:T,X:ref(r1,0) F & 1 7&(y,p%0; > (1,1 =
T Ap (1 p). &1 7&(y.p""r1) (T-NG) k= (11) vp) =« (T-LK)
AT+ letp,x=refe;ine : 7&(yyy) ATk lock,e: (O &(y;y')

Figure 4: Selected typing rules.

respectively, whereakock andunlock do the same fon,. As mentioned in the previous section, the
run-time system inspects the annotationlork to determine whether it is safe to lock a cell.

We now briefly discuss the most interesting parts of our typ efect system. Eects are used to
statically track cell capabilities. Anfiect is anordered listof elements of the form* and represents
a sequence of operations thditegt the capabilities of various cells. The typing relatierdenoted by
AT +e:1&(vyy'), whereA andT form the typing contexty is the input éect, andy’ is the output
effect. The reader should bear in mind two deviations from stathgractice in type andiect systems.
First, as each lock operation must be annotated with theréliiockset,effects flow backwarddrough
typing: the input &ect to expressior represents the operations that follow afés evaluated, and the
output dfect is the combinedfiect of the expressioand its future. Second, adfects must reflect the
exact order of cell operations, typing rules do not updd#ieces, but rather append to them. Therefore,
the input d€fect isalwaysa prefix of the outputféect.

A few selected typing rules are given in Figlile 4. The typinlg for function application T-A)
joins the input &ecty and the function’s ecty,, which contains the entire history of events occurring
in the function body. In the case of parallel applicatiorg filinction’s return type must be unit, whereas
in sequential application the annotation is checked ag#iesinput €fect. The premisé + v, enforces
a number of soundness restrictions, e.g., that pure cégbare not aliased. In the rule for assignment
(T-AS), the premises ensure that the referenced cell has pos#fieeence and lock counts; in other
words, thajp is live and locked after the evaluation @f ande,. The rule for thelock operator [-LK)
checks that the annotation matches the ingigoe. It also checks that the cell is lockafter the lock
operation and makes sure to remove one from the lock coutheioutput &ect. Finally, the rule for
creating new cellsT-NG) checks that the new cell is properly released (and unlgdketie input d€fect,
and makes sure to initialize the new cell with capabilitylj] before the evaluation @ starts.

For well typed programs, the safety theorem in our systemagui@es three thinggnemory safety
(and definite release of memory resourceage freedom(and definite release of locks), adéadlock
freedom A full formalization for our language, containing the ogonal semantics and a proof sketch,
are given in the companion technical repéit [8].

References

[1] G. Boudol. A deadlock-free semantics for shared memoncarrency. IrProc. of the International Collo-
quium on Theoretical Aspects of Computingl. 5684 ofLNCS pp. 140-154. Springer, 2009.

[2] C.Boyapati, R. Lee, and M. Rinard. Ownership types fde ggogramming: Preventing data races and dead-
locks. InProc. of the ACM SIGPLAN Conference on Object-Oriented Rnogning, Systems, Languages,
and Applicationspp. 211-230, Nov. 2002. ACM Press.

[3] J. Boyland. Checking interference with fractional p&sions. InStatic Analysis: Proc. of the 10th Interna-
tional Symposiunvol. 2694 ofLNCS pp. 55-72. Springer, 2003.

[4] E. G. Cdfman, M. Elphick, and A. Shoshani. System deadlo&GM Comput. Sury3(2):67—-78, 1971.

5

A Type System for Deadlock Freedom without Lock Ordering exaRioset al.

[5]
[6]

[7]

(8]
9]

[10]

[11]

C. Flanagan and M. Abadi. Object types against racesCdncurrency Theory: Proc. of the 10th Interna-
tional Conferencgvol. 1664 ofLNCS pp. 288-303. Springer, 1999.

P. Gerakios, N. Papaspyrou, and K. Sagonas. A concuaegtiage with a uniform treatment of regions and
locks. InProc. of the Workshop on Programming Language Approach@siurrency and Communication-
cEntric Software2009. Extended version will appearPTCS 2010.

P. Gerakios, N. Papaspyrou, and K. Sagonas. Race-feemamory-safe multithreading: Design and imple-
mentation in Cyclone. IRroc. of the ACM SIGPLAN International Workshop on Typesinduages Design
and Implementatiorpp .15-26, 2010. ACM Press.

P. Gerakios, N. Papaspyrou, and K. Sagonas. A type syfsteunstructured locking that guarantees deadlock
freedom without imposing a lock ordering. Technical repNgtional Technical University of Athens, 2010.
N. Kobayashi. A new type system for deadlock-free preess INCONCUR 2006vol. 4137 ofLNCS

pp. 233—-247. Springer, 2006.

K. Suenaga. Type-based deadlock-freedom verificdtionon-block-structured lock primitives and mutable
references. IfProc. of the Asian Symposium on Programming Languages astér8gvol. 5356 ofLNCS

pp. 155-170. Springer, 2008.

V. Vasconcelos, F. Martin, and T. Cogumbreiro. Typeeneihce for deadlock detection in a multithreaded
polymorphic typed assembly language.Froc. of the Workshop on Programming Language Approaches to
Concurrency and Communication-cEntric Softwé2@09. Extended version will appeariEPTCS 2010.

	Introduction
	Deadlock Freedom and Related Work
	Type System Overview
	Formalism

