
A Type System for Unstructured Locking that Guarantees
Deadlock Freedom without Imposing a Lock Ordering

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{pgerakios,nickie,kostis }@softlab.ntua.gr

Abstract

Deadlocks occur in multi-threaded programs as a consequence of cyclic resource acquisition be-
tween threads. In this paper we present a novel type system that guarantees deadlock freedom for a
language with references, unstructured locking primitives, and locks which are implicitly associated
with references. The proposed type system does not impose a strict lock acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. Twoor more threads are deadlocked when each
of them is waiting for a lock that is acquired by another thread. Several type systems have been pro-
posed [5, 2, 9, 10, 11] that prevent deadlocks by imposing a strict (non-cyclic) lock-acquisition order that
must be respected throughout the entire program. This approach greatly limits programming language
expressiveness as many correct programs are rejected unnecessarily. Boudol has recently proposed a
type system that avoids deadlocks and is more permissive than existing approaches [1]. However, his
system can only deal with programs that use lexically-scoped locking primitives.

In this paper we sketch a simple language with functions, mutable references, explicit (de-)allocation
constructs and unstructured (i.e., non lexically-scoped)locking primitives. To avoid deadlocks, we pro-
pose a type system for this language based on Boudol’s idea. We argue that the addition of unstructured
locking primitives makes Boudol’s system unsound and show that it is possible to regain soundness by
preserving more information about the order of events both statically and dynamically.

Our work is part of a more general effort to design a language for systems programming [6, 7] that
guarantees memory safety, race freedom and definite releaseof resources such as memory and locks.

2 Deadlock Freedom and Related Work

We start by providing a concrete definition of deadlocks and compare our work with existing static
approaches to deadlock freedom. According to Coffmanet al. [4], a set of threads reaches adeadlocked
statewhen the following conditions hold:

• Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
• Hold and wait: Threads already holding locks may request (and wait for) new locks.
• No preemption: Locks cannot be forcibly removed from threads; they must bereleased explicitly

by the thread that acquired them.
• Circular wait: Two or more threads form a circular chain, where each threadwaits for a lock held

by the next thread in the chain.

Therefore, deadlock freedom can be guaranteed by denying atleast one of the above conditionsbefore
or duringprogram execution. Coffman has identified three strategies that guarantee deadlock-freedom:

• Deadlock prevention: At each point of execution,ensurethat at least one of the above conditions
is not satisfied. Thus, programs that fall into this categoryare correct by design.
• Deadlock detection and recovery: A dedicated observer threaddetermineswhether the above con-

ditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their locks,
so that the remaining threads can make progress.

1

A Type System for Deadlock Freedom without Lock Ordering P. Gerakioset al.

• Deadlock avoidance: Using advance information regarding thread resource allocation,determine
whether granting a lock will bring the program to anunsafestate, i.e. a state which can result in
deadlock, and only grant locks that lead to safe states.

The majority of literature for language-based deadlock freedom falls under the first two strategies.
In the deadlock prevention category, one finds type and effect systems [5, 2, 9, 10, 11] that guarantee
deadlock freedom by statically enforcing a global lock-acquisition ordering that must be respected by all
threads. In this setting, starting with the work of Flanaganand Abadi [5], lock handles are associated
with type-level lock names via the use of singleton types. Thus, handlelkı is of typelk(ı). The same
applies to lock handle variables. The effect system tracks the order of lock operations on handles or
variables and determines whether all threads acquire locksin the same order.

Using a strict lock acquisition order is a constraint we wantto avoid. It is not hard to come up with
an example that shows that imposing a partial order on locks is too restrictive. The simplest of such
examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two different locks,x andy, in reverse order.
When trying to find a partial order≤ on locks for this program, the type system or static analysistool
will deduce thatx ≤ y must be true, because of the first thread, and thaty ≤ x must be true, because of
the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which requires
annotations [5] and in the system of Kobayashi which employsinference [9] as there is no single lock
order for both threads. Similar considerations apply to the more recent works of Suanaga [10] and
Vasconceloset al. [11] dealing with non lexically-scoped locks.

Recently, Boudol developed a type and effect system for deadlock freedom [1], which is based on
deadlock avoidance. The effect system calculates for each expression the set of acquired locks and
annotates lock operations with the “future” lockset. The run-time system utilizes the inserted annotations
so that each lock operation can only proceed when its “future” lockset is unlocked. The main advantage
of Boudol’s type system is that it allows a larger class of programs to type check and thus increases the
programming language expressiveness as well as concurrency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only lock
operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in general, allows locks to be acquired inany
order. At run-time, the first lock operation of the first thread must ensure thaty has not been acquired
by the second (or any other) thread, before grantingx (and symmetrically for the second thread). The
second lock operations need not ensure anything special, asthe “future” locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped. As
it will be shown, his type and effect system cannot guarantee deadlock freedom for unscoped locking
operations. In the section that follows, we discuss a novel type system for a simple language with
mutable references, that is intended to guard against deadlocks and, taking advantage of our previous
work [6], against race conditions and memory violations as well.

3 Type System Overview

In this section, we sketch a type system that guarantees absence of deadlocks in a language supporting
non lexically-scoped locking operations. As mentioned earlier, Boudol’s proposal does not support un-
structured locking; even if his language hadlock/unlock constructs, instead oflock . . .in . . ., Boudol’s

2

A Type System for Deadlock Freedom without Lock Ordering P. Gerakioset al.

let f = λ x.λy.λz. lock{y} x; x := x+1;
lock{z} y; y := y+ x;
unlock x;
lock∅ z; z := z+y;
unlock z;
unlock y

in f a a b

(a)

lock{a} a; a := a+1;
lock{b} a; a := a+a;
unlock a;
lock∅ b; b := b+a;
unlock b;
unlock a

(b)

Figure 1: An example program, which is well typed before substitution (a) but not well typed after
substitution (b).

type system is not sufficient to guarantee deadlock freedom. The example program inFigure 1(a) will
help us see why: It updates the values of three shared variables,x, y andz, making sure at each step that
only the strictly necessary locks are held.

In our naı̈vely extended (and broken, as will be shown) version of Boudol’s type and effect system, the
program in Figure 1(a) will type check. The “future” locksetannotations of the three locking operations
in the body of f are {y}, {z} and ∅, respectively. (This can be easily verified by observing thelock
operations between a specificlock andunlock pair.) Now, function f is used by instantiating both
x and y with the same variablea, and instantiatingz with a different variableb. The result of this
substitution is shown in Figure 1(b). The first thing to notice is that, if we want this program to work in
this case, locks have to bere-entrant. This roughly means that if a thread holds some lock, it can try to
acquire the same lock again; this will immediately succeed,but then the thread will have to release the
lock twice, before it is actually released.

Even with re-entrant locks, however, it is easy to see that the program in Figure 1(b) does not type
check with the present annotations. The firstlock for a now matches with thelast (and not the first)
unlock; this means thata will remain locked during the whole execution of the program. In the mean-
time b is locked, so the “future” lockset annotation of the firstlock should containb, but it does not.
(The annotation of the secondlock containsb, but blocking there if lockb is not available does not
prevent a possible deadlock; locka has already been acquired.) So, the technical failure of ournaı̈vely
extended language is that the preservation lemma breaks. From a more pragmatic point of view, if a
thread running in parallel already holdsb and, before releasing it, is about to acquirea, a deadlock can
occur. The naı̈ve extension also fails for another reason: Boudol’s system is based on the assumption
that calling a function cannot affect the set of locks that are held. This is obviously not true,if non
lexically-scoped locking operations are to be supported.

The type and effect system proposed in this paper supports unstructured locking, by preserving more
information at the effect level. Instead of calculating an unordered set of locks,the type system precisely
tracks the order oflock andunlock operations, without enforcing a strict lock-acquisition order. As in
Boudol’s system,lock operations are annotated with the “future” effect (our “ordered future” lockset).
Function application terms are explicitly annotated with acontinuation effect, representing the effect of
the code succeeding the application term. At run-time, whena function application redex is evaluated, its
annotation is pushed on the stack. When alock operation is evaluated, the “future” lockset is calculated
by inspecting the annotation and (if necessary) the lookup proceeds with the continuation effects of the
enclosing context that are found on the stack. Thelock operation succeeds only when both the lock and
the “future” lockset are available.

Figure 2 illustrates the same program as in Figure 1, except that locking operations are now annotated
with the “ordered future” lockset. For example, the annotation [y+, x−, z+, z−, y−] at the firstlock
operation means that in the future (i.e., after this lock operation) y will be acquired, thenx will be
released, and so on. Ifx and y were different, the run-time system would deduce that between this

3

A Type System for Deadlock Freedom without Lock Ordering P. Gerakioset al.

let f = λ x.λy.λz. lock[y+, x−,z+,z−,y−] x; x := x+1;
lock[x−,z+,z−,y−] y; y := y+ x;
unlock x;
lock[z−,y−] z; z := z+y;
unlock z;
unlock y

in f a a b

(a)

lock[a+,a−,b+,b−,a−] a; a := a+1;
lock[a−,b+,b−,a−] a; a := a+a;
unlock a;
lock[b−,a−] b; b := b+a;
unlock b;
unlock a

(b)

Figure 2: The example program of Figure 1, with “ordered future” lockset annotations, now well typed
both before (a) and after substitution (b).

Expression e ::= x | c | f | (e e)ξ | (e) [ρ] | e := e
| deref e | let ρ, x = ref ein e
| sharee | releasee | lockγ e
| unlocke | ()

Function f ::= λx.eas τ
γ
−→τ | Λρ. f

Type τ ::= b | 〈〉 | τ
γ
−→τ | ∀ρ.τ | ref(τ,ρ)

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ,ρκ

Figure 3: Language syntax.

lock operation onx and the correspondingunlock operation, onlyy is locked, so the future lockset in
Boudol’s sense would be{y}. On the other hand, ifx andy are instantiated with the samea, the annotation
becomes [a+, a−, b+, b−, a−] and the future lockset that is calculated is now the correct{a,b}. In a real
implementation, there are several optimizations that can be performed (e.g., pre-calculation of effects)
but we do not deal with them in this paper.

4 Formalism

The syntax of our language is illustrated in Figure 3, wherex andρ range over term and “region” vari-
ables, respectively. Similarly to our previous work [6, 7],a region is thought of as a memory unit that
can be shared between threads and whose contents can be atomically locked. In this paper, we make
the simplistic assumption that there is a one-to-one correspondence between regions and memory cells,
but this is of course not necessary. The language supports explicit region polymorphism. Monomorphic
functions must be annotated with their type, which carries their overall effect. Application is annotated
with a calling modewhich differentiates normal (sequential) application from parallelapplication, i.e.,
the spawning of a new thread. Sequential application is further annotated with thecontinuation effect,
as mentioned earlier. The constructlet ρ, x = ref e1 in e2 allocates a fresh cell, initializes it toe1,
and associates it with variablesρ and x within expressione2. As in other approaches, we useρ as the
type-level representation of the new cell. The type of reference variablesx is the singleton typeref(ρ,τ),
whereτ is the type of the cell’s contents. This allows the type system to connectx andρ and thus to
statically track uses of the new cell. Assignment and dereference operators are standard.

At any given program point, each cell is associated with acapability, which roughly consists of two
natural numbers: thecapability counts. The first number is thecell referencecount (n1), which denotes
whether the cell is live, and the second is thecell lock count (n2), which denotes whether the cell has
been locked by the current thread. (We use natural numbers, instead of booleans, to support sharing
and re-entrant locks.) Furthermore, a capability can beimpure (denoted byn1,n2), which allows for
cell aliasing in the same spirit as in fractional permissions [3]. This aliasing information is required to
determine whether it is safe to pass lock capabilities to newthreads. The remaining language constructs
operate on a cell reference and modify its capability:share andrelease increase and decreasen1,

4

A Type System for Deadlock Freedom without Lock Ordering P. Gerakioset al.

∆;Γ ⊢ e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ⊢ γa γ2 = γ⊕γa

∆;Γ ⊢ e2 : τ1 &(γ2;γ3) ξ = seq(γ)∨ (ξ = par∧τ2 = 〈〉)

∆;Γ ⊢ (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

∆;Γ ⊢ e1 : ref(τ,ρ)&(γ1;γ′)
∆;Γ ⊢ e2 : τ&(γ;γ1) γ(ρ) ≥ (1,1)

∆;Γ ⊢ e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

∆;Γ ⊢ e1 : τ1 &(γ2 \ρ;γ′) γ1 = γ2,ρ
1,1

∆ ⊢ τ ∆,ρ;Γ, x : ref(τ1,ρ) ⊢ e2 : τ&(γ,ρ0,0;γ1)

∆;Γ ⊢ let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

∆;Γ ⊢ e : ref(τ,ρ)&(γ, rκ−(0,1);γ′)
κ ≥ (1,1) γ(ρ) = κ

∆;Γ ⊢ lockγ e : 〈〉&(γ;γ′)
(T-LK)

Figure 4: Selected typing rules.

respectively, whereaslock andunlock do the same forn2. As mentioned in the previous section, the
run-time system inspects the annotation onlock to determine whether it is safe to lock a cell.

We now briefly discuss the most interesting parts of our type and effect system. Effects are used to
statically track cell capabilities. An effect is anordered listof elements of the formρκ and represents
a sequence of operations that affect the capabilities of various cells. The typing relation is denoted by
∆;Γ ⊢ e : τ&(γ;γ′), where∆ andΓ form the typing context,γ is the input effect, andγ′ is the output
effect. The reader should bear in mind two deviations from standard practice in type and effect systems.
First, as each lock operation must be annotated with the “future” lockset,effects flow backwardsthrough
typing: the input effect to expressione represents the operations that follow aftere is evaluated, and the
output effect is the combined effect of the expressionand its future. Second, as effects must reflect the
exact order of cell operations, typing rules do not update effects, but rather append to them. Therefore,
the input effect isalwaysa prefix of the output effect.

A few selected typing rules are given in Figure 4. The typing rule for function application (T-A)
joins the input effectγ and the function’s effectγa, which contains the entire history of events occurring
in the function body. In the case of parallel application, the function’s return type must be unit, whereas
in sequential application the annotation is checked against the input effect. The premiseξ ⊢ γa enforces
a number of soundness restrictions, e.g., that pure capabilities are not aliased. In the rule for assignment
(T-AS), the premises ensure that the referenced cell has positivereference and lock counts; in other
words, thatρ is live and locked after the evaluation ofe1 ande2. The rule for thelock operator (T-LK)
checks that the annotation matches the input effect. It also checks that the cell is lockedafter thelock
operation and makes sure to remove one from the lock count, inthe output effect. Finally, the rule for
creating new cells (T-NG) checks that the new cell is properly released (and unlocked) in the input effect,
and makes sure to initialize the new cell with capability (1,1), before the evaluation ofe2 starts.

For well typed programs, the safety theorem in our system guarantees three things:memory safety
(and definite release of memory resources),race freedom(and definite release of locks), anddeadlock
freedom. A full formalization for our language, containing the operational semantics and a proof sketch,
are given in the companion technical report [8].

References

[1] G. Boudol. A deadlock-free semantics for shared memory concurrency. InProc. of the International Collo-
quium on Theoretical Aspects of Computing, vol. 5684 ofLNCS, pp. 140–154. Springer, 2009.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races and dead-
locks. InProc. of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pp. 211–230, Nov. 2002. ACM Press.

[3] J. Boyland. Checking interference with fractional permissions. InStatic Analysis: Proc. of the 10th Interna-
tional Symposium, vol. 2694 ofLNCS, pp. 55–72. Springer, 2003.

[4] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.ACM Comput. Surv., 3(2):67–78, 1971.

5

A Type System for Deadlock Freedom without Lock Ordering P. Gerakioset al.

[5] C. Flanagan and M. Abadi. Object types against races. InConcurrency Theory: Proc. of the 10th Interna-
tional Conference, vol. 1664 ofLNCS, pp. 288–303. Springer, 1999.

[6] P. Gerakios, N. Papaspyrou, and K. Sagonas. A concurrentlanguage with a uniform treatment of regions and
locks. InProc. of the Workshop on Programming Language Approaches toConcurrency and Communication-
cEntric Software, 2009. Extended version will appear inEPTCS, 2010.

[7] P. Gerakios, N. Papaspyrou, and K. Sagonas. Race-free and memory-safe multithreading: Design and imple-
mentation in Cyclone. InProc. of the ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation, pp .15–26, 2010. ACM Press.

[8] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type systemfor unstructured locking that guarantees deadlock
freedom without imposing a lock ordering. Technical report, National Technical University of Athens, 2010.

[9] N. Kobayashi. A new type system for deadlock-free processes. InCONCUR 2006, vol. 4137 ofLNCS,
pp. 233–247. Springer, 2006.

[10] K. Suenaga. Type-based deadlock-freedom verificationfor non-block-structured lock primitives and mutable
references. InProc. of the Asian Symposium on Programming Languages and Systems, vol. 5356 ofLNCS,
pp. 155–170. Springer, 2008.

[11] V. Vasconcelos, F. Martin, and T. Cogumbreiro. Type inference for deadlock detection in a multithreaded
polymorphic typed assembly language. InProc. of the Workshop on Programming Language Approaches to
Concurrency and Communication-cEntric Software, 2009. Extended version will appear inEPTCS, 2010.

6

	Introduction
	Deadlock Freedom and Related Work
	Type System Overview
	Formalism

