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Abstract

A challenge for programming language research is to design and implement multi-threaded low-level
languages providing static guarantees for memory safety and freedom from data races. Towards
this goal, we sketch a concurrent language employing safe region-based memory management and
hierarchical locking of regions. Both regions and locks are treated uniformly, and the language
supports ownership transfer, early deallocation of regions and early release of locks in a safe manner.

1 Introduction

Writing safe and robust code is a hard task; writing safe and robust multi-threaded low-level code is even
harder. In this paper we sketch a minimal, low-level concurrent language with advanced region-based
memory management and hierarchical lock-based synchronization primitives.

Region-based memory management achieves efficiency by bulk allocation and deallocation of objects
in segments of memory called regions. Similar to other approaches, our regions are organized in a
hierarchical manner such that each region is physically allocated within a single parent region and may
contain multiple children regions. This hierarchical structure imposes an ownership relation as well as
lifetime constraints over regions. Unlike other languages employing hierarchical regions, our language
allows early subtree deallocation in the presence of region sharing between threads. In addition, no
memory leaks are possible as each thread is obliged to release each region it owns by the end of its
scope.

Multi-threaded programs that interact through shared memory generate random execution interleav-
ings. A data race occurs in a multi-threaded program when there exists an interleaving such that some
thread accesses a memory location while some other thread attempts to write to it. So far, type systems
and analyses that guarantee race freedom [5] have mainly focused on lexically-scoped constructs. The
key idea in those systems is to statically track or infer the lockset held at each program point. In the
language presented in this paper, implicit re-entrant locks are used to protect regions from data races.
Our locking primitives are non-lexically scoped. Locks also follow the hierarchical structure of regions
so that each region is protected by its own lock as well as the locks of all its ancestors, in contrast with
ownership types [2].

Furthermore, our language allows regions and locks to be safely aliased, escape the lexical scope
when passed to a new thread, or become logically separated from the remaining hierarchy. These features
are invaluable for expressing numerous idioms of multi-threaded programming such as sharing, region
ownership or lock ownership transfers, thread-local regions and region migration.

2 Language Design

We briefly outline the main design goals for our language, as well as some of the main design decisions
that we made to serve these goals.

Low-level and concurrent. Our language must efficiently support systems programming. As such, it
should cater for memory management and concurrency. It also needs to be low-level: it is not intended
to be used by programmers but as the target language of higher-level systems programming languages.

Static safety guarantees. We define safety in terms of memory safety and absence of data races. A
static type system should guarantee that well-typed programs are safe, with minimal run-time overhead.
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Safe region-based memory management. Similarly to other languages for safe systems program-
ming (e.g. Cyclone) our language employs region-based memory management, which achieves efficiency
by bulk allocation and deallocation of objects in segments of memory (regions). Statically typed re-
gions [11, 12] guarantee the absence of dangling pointer dereferences, multiple release operations of the
same memory area, and memory leaks. Traditional stack-based regions [11] are limiting as they cannot
be deallocated early. Furthermore, the stack-based discipline fails to model region lifetimes in concur-
rent languages, where the lifetime of a shared region depends on the lifetime of the longest-lived thread
accessing that region. In contrast, we want regions that can be deallocated early and that can safely be
shared between concurrent threads.

We opt for a hierarchical region [7] organization: each region is physically allocated within a single
parent region and may contain multiple children regions. Early region deallocation in our multi-level
hierarchy automatically deallocates the immediate subtree of a region without having to deallocate each
region of the subtree recursively. The hierarchical region structure imposes the constraint that a child
region is accessible only when its ancestors are accessible. In order to allow a function to access a region
without having to pass all its ancestors explicitly, we allow its ancestors to be abstracted (i.e., our lan-
guage supports hierarchy abstraction) for the duration of the function call. To maintain the accessibility
invariant we require that the abstracted parents are accessible before and after the call. Regions whose
parent information has been abstracted cannot be passed to a new thread as this may be unsound.

Race freedom. To prevent data races we use lock-based mutual exclusion. Instead of having a separate
mechanism for locks, we opt for a uniform treatment of locks and regions: locks are placed in the same
hierarchy as regions and enjoy similar properties. Each region is protected by its own private lock and
by the locks of its ancestors. The semantics of region locking is that the entire subtree of a region
is atomically locked once the lock for that region has been acquired. Hierarchical locking can model
complex synchronization strategies and lifts the burden of having to deal with explicit acquisition of
multiple locks. Although deadlocks are possible, they can be avoided by acquiring a single lock for
a group of regions rather than acquiring multiple locks for each region separately. Additionally, our
language provides explicit locking primitives, which in turn allow a higher degree of concurrency than
lexically-scoped locking, as some locks can be released early.

Region polymorphism and aliasing. Our language supports region polymorphism: it is possible to
pass regions as parameters to functions or concurrent threads. This enables region aliasing: one actual
region could be passed in the place of two distinct formal region parameters. In the presence of mutual
exclusion and early region deallocation, aliasing is dangerous. Our language allows safe region aliasing
with minimal restrictions. The mechanism that we employ for this purpose also allows us to encode
numerous useful idioms of concurrent programming, such as region migration, lock ownership transfers,
region sharing, and thread-local regions.

3 Language Description

The syntax of the language is illustrated in Figure 1. We only present the subset of the language that is
related to regions and references. The language core comprises variables (x), constants (c), functions,
and function application. Functions can be region polymorphic (Λρ. f ) and region application is explicit
(e[ρ]). Monomorphic functions (λx.e) must be annotated with their type. The application of monomor-
phic functions is annotated with a calling mode (ξ), which is seq for normal (sequential) application and
par(ε) for spawning a new thread (parallel). Parallel application is annotated with the list of regions (ε)
that migrate to the spawned thread. This annotation can be automatically inferred by the type checker.
The constructs for manipulating references are standard. A newly allocated memory cell is returned by
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Function f ::= λx.e as τ
γ→γ
−→ τ | Λρ. f

Expression e ::= x | c | f | (e e)ξ | e[ρ] | new e at e | e := e
| deref e | newrgn ρ, x at e in e | capη e

Type τ ::= b | τ
γ→γ
−→ τ | ∀ρ.τ | ref(τ,ρ) | rgn(ρ)

Effect γ ::= ∅ | γ,ρκ.π

Calling mode ξ ::= seq | par(ε)

Capability op η ::= ψ+ | ψ−

Capability kind ψ ::= rg | lk

Capability κ ::= n,n | n,n

Region parent π ::= ρ | ⊥ | ?

Region list ε ::= ∅ | ε,ρ

Figure 1: Syntax.

new e1 at e2, where e1 is the value that will be placed in the cell and e2 is a handle of the region in which
the new cell will be allocated. Standard assignment and dereference operators complete the picture.

The construct newrgn ρ, x at e1 in e2 allocates a new region ρ with a region handle bound to x. The
new region resides in a parent region, whose handle is given in e1. The scope of ρ and x is e2, which
is supposed to do something useful with the new region. The evaluation of e2 is obliged to consume the
new region by the end of its scope. A region can be consumed either by deallocation or by transferring
its ownership to another thread. At any given program point, each region is associated with a capability
(κ). Capabilities consist of two natural numbers, the capability counts: the region count, which denotes
whether the region is live, and the lock count, which denotes whether the region has been locked to
provide the current thread with exclusive access to its contents. When first allocated, a region starts with
capability (1,1), meaning that it is live and locked for providing exclusive access to the thread which
allocated it (this our equivalent of a thread-local region).

By using the construct capη e, a thread can increment or decrement the capability counts of the region
whose handle is specified in e. The capability operator η can be, e.g., rg+ (meaning that the region count
is to be incremented) or lk− (meaning that the lock count is to be decremented). If the region count
reaches zero, then the region may be physically deallocated and no subsequent operation on it can be
performed. If the lock count becomes zero, then the region is unlocked. Capability counts determine the
validity of operations on regions and references. All operations require that the involved regions are live,
i.e., the region count is greater than zero. Assignment and dereference can be performed only when the
corresponding region is live and locked.

A capability of the form (n1,n2) is called a pure capability, whereas a capability of the form (n1,n2)
is called an impure capability. In both cases, it is implied that the current thread can decrement the
region count n1 times and the lock count n2 times. Impure capabilities are obtained by splitting, in
the same spirit as fractional capabilities [4], pure or other impure capabilities into several pieces, e.g.,
(3,2) = (2,1)+(1,1). These pieces are useful for region aliasing, when the same region is to be passed to a
function in the place of two distinct region parameters. An impure capability implies that our knowledge
of the region and lock count is inexact. The use of such capabilities must be restricted; e.g., an impure
capability with a non-zero lock count cannot be passed to another thread, as it is unsound to allow two
threads to simultaneously hold the same lock. Capability splitting takes place automatically with function
application.

4 Static Semantics

In this section we discuss the most interesting parts of our type system. To enforce our safety invariants,
we use a type and effect system. Effects are used to statically track the capability of each region. An
effect (γ) is a list of elements of the form ρκ.π, denoting that region ρ is associated with capability κ and
has parent π, which can be another region, ⊥, or ?. Regions whose parents are ⊥ or ? are considered as
roots in our region hierarchy. We assume that there is an initial (physical) root region corresponding to
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∆ ` τ τ ≡ τ1
γ1→γ2
−→ τ2

∆;Γ, x : τ1 ` e : τ2 &(γ1;γ2)
∆;Γ ` λx.e as τ : τ&(γ;γ)

(T-F)

∆;Γ ` e1 : τ1
γ1→γ2
−→ τ2 &(γ;γ′) ∆;Γ ` e2 : τ1 &(γ′;γ′′)

ξ = par(ε)⇒ τ2 = 〈〉 ξ ` γ′′′ = γ2 ⊕ (γ′′ 	γ1)

∆;Γ ` (e1 e2)ξ : τ2 &(γ;γ′′′)
(T-AP)

∆;Γ ` e : ref(τ,ρ)&(γ;γ′)
ρ ∈ accessible(γ′)

∆;Γ ` deref e : τ&(γ;γ′)
(T-D)

∆;Γ ` e1 : rgn(ρ′)&(γ;γ′) ρ′ ∈ dom(γ′) ∆ ` τ
∆,ρ;Γ, x : rgn(ρ) ` e2 : τ&(γ′,ρ1,1.ρ′;γ′′) ρ < dom(γ′′)

∆;Γ ` newrgn ρ, x at e1 in e2 : τ&(γ;γ′′)
(T-NG)

∆;Γ ` e1 : τ&(γ;γ′) ∆;Γ ` e2 : rgn(ρ)&(γ′;γ′′)
ρ ∈ dom(γ′′)

∆;Γ ` new e1 at e2 : ref(τ,ρ)&(γ;γ′′)
(T-NR)

∆;Γ ` e1 : rgn(ρ)&(γ;γ′,ρκ.π)
κ′ =

[[
η
]]

(κ) γ′′ = live(γ′,ρκ
′

.π)

∆;Γ ` capη e1 : 〈〉&(γ;γ′′)
(T-CP)

Figure 2: Selected typing rules.

ξ ` γ = γ1 ⊕γr ξ ` γ′ = γ2 ⊕γr γ′′ = live(γ′) consistent(γ,γ′′)
ξ = seq⇒ abs par(γ,γ1) ⊆ dom(γ′′) ξ = par(ε)⇒ γ2 = ∅∧ ε = pure(γ)∩dom(γ1)

ξ ` γ′′ = γ2 ⊕ (γ	γ1)
(ESJ)

ξ ` γ = ∅⊕γ
(ES-N)

π′ ∈ {π,?} ξ = par(ε)⇒ π′ , ? ξ ` κ = κ1 + κ2 ξ ` γ = γ1 ⊕γ2

ξ ` γ,rκ.π = γ1,rκ1.π′ ⊕γ2,rκ2.π
(ES-C)

rg(κ) = rg(κ1) + rg(κ2) lk (κ) = lk (κ1) + lk (κ2) rg(κ1) > 0
is pure(κ1)⇔ is pure(κ2) is pure(κ1)⇒ κ = κ1 ξ , seq∧¬is pure(κ1)⇒ lk (κ2) = 0

ξ ` κ = κ1 + κ2
(CS)

Figure 3: Effect and capability splitting.

the entire heap, whose handle is available to the main program. The parent of the heap region is ⊥. More
(logical) root regions can be created using hierarchy abstraction. The abstract parent of a region that is
passed to a function is denoted by ?.

The syntax of types in Figure 1 (on page 3) is more or less standard. A collection of base types b
is assumed; the syntax of values belonging to these types and operations upon such values is omitted
from this paper. We assume the existence of a unit base type, which we denote by 〈〉. Region handle
types rgn(ρ) and reference types ref(τ,ρ) are associated with a type-level region name ρ. Monomorphic
function types carry an input and an output effect. A well-typed expression e has a type τ under an input
effect γ and results in an output effect γ′. We denote this by ∆;Γ ` e : τ&(γ;γ′). The typing relation
(cf. Figure 2) uses two standard typing contexts: ∆, a set of region variables, and Γ, a mapping of term
variables to types. The effects that appear in our typing relation must satisfy a liveness invariant: all
regions that appear in the effect are live, i.e. their region counts and those of all their ancestors are non-
zero. Thus, in order to check whether a region ρ is live in the current effect γ, we only need to check that
ρ ∈ dom(γ).

The typing rule for lambda abstraction (T-F ) requires that the body e is well-typed with respect to the
effects ascribed on its type. The typing rule for function application (T-AP) splits the output effect of e2
(γ′′) by subtracting the function’s input effect (γ1). It then joins the remaining effect with the function’s
output effect (γ2). In the case of parallel application, rule T-AP also requires that the return type is unit.
The splitting and joining of effects is controlled by the judgement ξ ` γ′′ = γ2⊕ (γ	γ1), which is defined
in Figure 3 (the auxiliary functions and predicates are defined in Figures 4 and 5). Its definition enforces
the following properties:

• the liveness invariant for γ′′;
• the consistency of γ and γ′′, i.e. regions cannot change parent and capabilities cannot switch from

pure to impure or vice versa;

4



A Concurrent Language with a Uniform Treatment of Regions and Locks P. Gerakios et al.

(ρκ.π) ∈ γ π ∈ {⊥,?}
is live(γ,ρ)

(ρκ.ρ′) ∈ γ is live(γ,ρ′)
is live(γ,ρ)

(ρκ.π) ∈ γ lk (κ) > 0
is accessible(γ,ρ)

(ρκ.ρ′) ∈ γ is accessible(γ,ρ′)
is accessible(γ,ρ)

Figure 4: Auxiliary predicates: region liveness and accessibility.

rg(κ) = n1 if κ = n1,n2∨ κ = n1,n2
lk (κ) = n2 if κ = n1,n2∨ κ = n1,n2
dom(γ) = {ρ | (ρκ.π) ∈ γ }
live(γ) = {ρκ.π | (ρκ.π) ∈ γ∧ is live(γ,ρ) }
accessible(γ) = {ρ | (ρκ.π) ∈ γ∧ is accessible(γ,ρ) }
is pure(κ) = ∃n1. ∃n2. κ = n1,n2
pure(γ) =

{
rκ.π | (rκ.π) ∈ γ∧ is pure(κ)

}
consistent(γ1,γ2) = ∀(ρκ.π) ∈ γ1. ∀(ρκ

′

.π′) ∈ γ2. π = π′∧ (is pure(κ)⇔ is pure(κ′))
abs par(γ1,γ2) =

{
ρ | (ρκ.ρ′) ∈ γ1∧ (ρκ

′

.?) ∈ γ2
}

Figure 5: Auxiliary functions and predicates.

• in the case of sequential application, regions that pass under hierarchy abstraction must be live
after the function returns;

• in the case of parallel application, the thread output effect is empty, the thread input effect does not
contain impure capabilities with non-zero lock counts, no hierarchy abstraction is permitted, and
regions that migrate are exactly those given by the annotation ε.

The typing rules for references are standard. Here we only show the rules for dereference (T-D)
and reference allocation (T-NR ). The former checks that the region ρ where the reference resides is
accessible, i.e. ρ itself or one of its ancestors has a non-zero lock count in the current effect. The latter
just checks that the region ρ is live. The rule for creating new regions (T-NG ) first checks that e1 is a
handle for some live region ρ′. The body expression e2 is type checked in a context extended with the
fresh region ρ and its handle x. A new element ρ1,1.ρ′ is added to the input effect of e2, stating that the
new region is thread-local (live, locked and not known to anybody else). The rule also checks that the type
of the result τ and the output effect γ′′ do not contain any occurrence of region variable ρ. This implies
that e2 must have consumed the new region by the end of its scope. The capability manipulation rule
(T-CP) checks that the given expression is the handle of a live region ρ. It then modifies the capability
count of the effect element corresponding to that region, as dictated by function

[[
η
]]

which increases
or decreases the region or the lock count of its argument, according to the value of η. The dynamic
semantics makes sure that evaluation returns only when the actual capability counts are consistent with
the desired output effect. For instance, if the lock of region ρ is held by some other executing thread,
evaluation of caplk+ must be suspended until the lock can be obtained. On the other hand, evaluation of
caprg− does not need to suspend but may not be able to physically deallocate a region, as it may be in
use by other threads.

5 Related Work

The first statically checked stack-based region system was developed by Tofte and Talpin [11]. Since
then, several memory-safe systems that enabled early region deallocation for a sequential language were
proposed [1, 10, 13, 6]. Cyclone [9] and RC [7] were the first imperative languages to allow safe region-
based management with explicit constructs. They both allowed early region deallocation and RC also
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introduced the notion of multi-level region hierarchies. RC programs may throw region-related excep-
tions, whereas our approach is purely static. Both Cyclone and RC make no claims of memory safety
or race freedom for concurrent programs. In the context of Cyclone, Grossman proposed a type system
for safe multi-threading [8]. Race freedom is guaranteed by statically tracking locksets within lexically-
scoped synchronization constructs. Grossman’s proposal allows for fine-grained locking, but only deals
with stack-based regions and does not enable early release of regions and locks. Furthermore, we of-
fer hierarchical locking as opposed to just primitive locking. Bulk region deallocation is impossible in
Grossman’s system.

Statically checked region systems have also been proposed [3, 15, 14] for real-time Java to rule
out dynamic checks imposed by its specification. Boyapati et al. [3] introduce hierarchical regions in
ownership types but the approach suffers from the same disadvantages as Grossman’s work. Additionally,
their type system only allows sub-regions for shared regions, whereas we do not have this limitation.
Boyapati also proposed an ownership-based type system that prevents deadlocks and data races [2]. Static
region hierarchies (depth-wise) have been used by Zhao [15]. Their main advantage is that programs
require fewer annotations compared to programs with explicit region constructs. In the same track,
Zhao et al. [14] proposed implicit ownership annotations for regions. Thus, classes that have no explicit
owner can be allocated in any static region. This is a form of existential ownership. In contrast, we
allow a region to completely abstract its owner/ancestor information by using the hierarchy abstraction
mechanism. None of the above approaches allow full ownership abstraction for region subtrees.

The main limitation of our work is that we require explicit annotations regarding ownership and
region capabilities. Moreover, our locking system offers coarser-grained locking compared to [5] and
related type systems. The use of hierarchical locking avoids some, though not all, deadlocks.
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