
National Technical University of Athens
School of Electrical and Computer Engineering
Department of Computer Science

Static Safety Guarantees for Concurrent Programming
Languages

DOCTORAL DISSERTATION

PRODROMOS GERAKIOS

Supervisor : Konstantinos Sagonas

Assoc. Professor N.T.U.A.

Athens, July 2012



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prodromos Gerakios

Copyright c© Prodromos Gerakios, 2012.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute this work for
non-propfit, educational and research purposes, provided that the source is acknowledged and the
present copyright message is retained. Enquiries regarding use for profit should be directed to the
author.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the National Technical
University of Athens.



Abstract

Modern computers ranging from desktop PC to supercomputers have multi-core processors. Multi-
core processors bring more computing power into a chip and software plays an essential role in uti-
lizing this power.

Multithreaded programming is a widely used paradigm for exploiting concurrency in multi-core
systems. An inherent side-effect of this paradigm is non-determinism of execution, which allows for
invalid execution interleavings to occur. Such interleavings cannot be easily reproduced, thereby mak-
ing the development of reliable concurrent software a hard task.

Data races and deadlocks are two well-known consequences of non-deterministic execution. In-
formally, a data race occurs when multiple threads concurrently access the same memory location
without synchronization. A set of threads reaches a deadlocked state, when each thread in that set is
waiting for a lock in cyclic order.

This dissertation shows that it is possible to increase the reliability of concurrent programs, by
eliminating memory access violations, data races and deadlocks from multithreaded programs. In
particular, we present the theory and implementation of a series of type systems and static analyses
that provide absolute guarantees regarding multithreaded program execution.

In the theoretical parts, we present the formal semantics of the type systems and languages and
give formal soundness proofs. In the implementation parts we discuss how we integrated these formal
systems in real programming languages and the challenges that we met. We also provide extensive
measurements for the performance of each analysis and compare alternative techniques.

3





Acknowledgements

First and foremost, I want to thank from the bottom of my heart my advisors, Nikos Papaspyrou and
Kostis Sagonas, for all the guidance and support they have constantly given me. They have always
dedicated their time and effort to provide me with advice and guidance. It has been a pleasure and an
honor to work with and learn from such extraordinary individuals.

My way of thinking and the direction of my research has been greatly influenced by my studies at
the University of Edinburgh. I would like to thank my advisor there, Stephen Gilmore, and the other
members of the School of Informatics for directing me towards the formal study of programming
languages.

The members of the Software Engineering Laboratory have always been good friends. In partic-
ular, I wish to thank Panagiotis Vekris, Giorgos Korfiatis, Michalis Papakyriakou, Maria Christakis,
Xaris Nakos, Fanis Tziasios and Angelos Manousaridis for their outstanding support, the long hours
of conversation and the good times that we have shared.

Last but not least, my wholehearted thanks go to my family, especially to my brother Kostas
Gerakios, for their endless support in many ways.

My research was partially funded by the programme for supporting basic research (ΠEBE 2010)
of the National Technical University of Athens under a project titled “Safety properties for concurrent
programming languages.”

Prodromos Gerakios,

Athens, July 19, 2012

This thesis is also available as Technical Report CSD-SW-TR-1-12, National Technical University of Athens,
School of Electrical and Computer Engineering, Department of Computer Science, Software Engineering Lab-
oratory, July 2012.

URL: http://www.softlab.ntua.gr/techrep/

FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

5





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Hierarchical regions and locks for safe multithreading . . . . . . . . . . . 18
1.2.2 A hybrid approach to deadlock freedom . . . . . . . . . . . . . . . . . . . 20

2. A unified hierarchy of regions and locks . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Language features through examples . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Formal language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Inference for region hierarchies with reader-writer locks . . . . . . . . . . . . . . . . 37
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Language features through examples . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Formal language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Effects for recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Concurrent Cyclone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Cyclone: A memory-safe dialect of C . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Memory management in Cyclone . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Concurrency in Cyclone . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Common features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Extended regions and kind system . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7



4.3.3 Reentrant functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.4 Type polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.5 Interoperability with traditional regions . . . . . . . . . . . . . . . . . . . 61
4.3.6 Memory consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Explicit annotations for Cyclone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Traditional Cyclone effects . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Hierarchy abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Operating on capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.4 Thread creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Annotation inference for Cyclone . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Code generation and run-time system . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.1 Implementation with explicit annotations . . . . . . . . . . . . . . . . . . 67
4.7.2 Implementation with inference . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Effects for deadlock freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Deadlock avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6. Explicit effects for deadlock freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7. Effect inference for deadlock freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Formal semantics and metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Summarizing recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.6 Type safety and deadlock freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8. Deadlock avoidance tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Deadlock avoidance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.2 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.3 Current limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.4 Runtime system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8



9. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.1 Safe systems programming languages . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2 Region-based memory management . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3 Safe concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.1 Data race freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.3.2 Deadlock freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.3.3 Other approaches to safe concurrency . . . . . . . . . . . . . . . . . . . . 119

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix 129

A. Formal semantics and proof of soundness for Chapter 2 . . . . . . . . . . . . . . . . 129
A.1 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.3 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.4 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.5 Proof of soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B. Formal semantics and proof of soundness for Chapter 3 . . . . . . . . . . . . . . . . 165
B.1 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.3 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.4 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.5 Proof of soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C. Formal semantics and proof of soundness for Chapter 6 . . . . . . . . . . . . . . . . 185
C.1 Summary of additional functions and relations . . . . . . . . . . . . . . . . . . . . 185
C.2 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.3 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.4 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
C.5 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
C.6 Proof of soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D. Formal semantics and proof of soundness for Chapter 7 . . . . . . . . . . . . . . . . 205
D.1 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D.3 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
D.4 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
D.5 Proof of soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9





List of Figures

2.1 Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Configuration, store, threads and evaluation contexts. . . . . . . . . . . . . . . . . . 29
2.3 Thread evaluation relation C  C ′. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Expression evaluation relation σ;S; e→ σ′;S′; e′. . . . . . . . . . . . . . . . . . . 30
2.5 Auxiliary functions and predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Selected typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Effect and capability splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Auxiliary syntax for operational semantics. . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Evaluation relation C  C ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Auxiliary functions and predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Syntax for types, effects and contexts. . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Effect validation and transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Summarized effects of recursive functions. . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Evaluation context typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 A simple extended Cyclone program with reader/writer locks. . . . . . . . . . . . . 65

5.1 An example program, which is well typed before substitution (a) but not after (b). . . 74
5.2 The program of Figure 5.1 with continuation effect annotations; now well typed in

both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Iterprocedural effects and run-time lockset computation. . . . . . . . . . . . . . . . 76

6.1 Language syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Operational semantics, semantic domains. . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Operational semantics, reduction relation. . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 Operational semantics, helper relations. . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 Well-formedness rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6 Auxiliary functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.7 Typing rules (part I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.8 Typing rules (part II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9 Type safety validity relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.10 Evaluation context typing rules (part I). . . . . . . . . . . . . . . . . . . . . . . . . 90
6.11 Evaluation context typing rules (part II). . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1 Language and type syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Operational semantics syntax and evaluation context. . . . . . . . . . . . . . . . . . 96
7.3 Operational semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4 Operational semantics helper relations. . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5 Typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6 Well formedness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11



7.7 Summarization relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.8 Evaluation context typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1 Performance comparison for the dining philosophers. We measure the total number
of times that the n philosophers ate. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12



List of Tables

4.1 Performance overhead, compared to GCC, for benchmarks taken from “The Computer
Language Benchmarks Game.” All times are in seconds and memory sizes in KB. . . 70

4.2 Total lines of code, extended Cyclone statements and annotations compared to C, for
benchmarks taken from “The Computer Language Benchmarks Game.” . . . . . . . 71

8.1 Performance of C vs. C+da (C plus deadlock avoidance). . . . . . . . . . . . . . . . 112

13





List of Listings

1.1 Code from Linux’s EFS (linux/fs/efs/namei.c) . . . . . . . . . . . . . . . . . . 20
Figures/cyc example.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

15





Chapter 1

Introduction

1.1 Motivation

In the modern technological world we heavily depend on the continuous operation of complex
and diverse software systems, which are of vital importance for our work or other purposes such as
information, entertainment, mobility, etc. We rely on the proper functioning of computers, automo-
biles, aircrafts, telecommunications systems, databases and the Internet at all times. Computer system
failures stemming from software hazards or violations from malicious attackers can have devastat-
ing consequences. One of the greatest challenges of our times is to develop techniques and tools for
creating reliable software that will meet the growing demands of our society.

In the last years there has been a broad change in computer architecture that impacts every facet
of our society as every electronic device from mobile phones to supercomputers needs to confront
concurrency. More specifically, modern architectures have shifted from uniprocessor to multi-core
configurations as device scaling predicted by Moore’s Law is no longer a viable option for increasing
the clock frequency of future uniprocessor systems.

A prominent execution model for exploiting the performance benefits of multi-core machines is
explicit multithreading. Programming languages that retain the transparency and control of memory,
such as C, are well-suited for explicit multithreading, except for the fact that programs written in them
often compromise memory safety by allowing invalid memory accesses, buffer overruns, space leaks,
etc., and become susceptible to data races and deadlocks by careless uses of locks. Thus, a challenge
for programming language research is to design and implement multithreaded low-level languages
providing static guarantees for the absence of memory violations and concurrency errors such as data
races and deadlocks.

1.2 Thesis overview

The main objective of this thesis is to develop tools and techniques that improve reliability of
concurrent software. Therefore, we present a number of static analyses that guarantee the absence of
memory violations, data races and deadlocks from concurrent programs and impose minimal over-
heads at execution time.

While this work is primarily targeting low-level languages with unstructured locking,1 and is ap-
plied to multithreaded Cyclone and C/pthreads programs, our formalisms are expressed as simple
extensions of lambda calculus, thereby making the main ideas of our work generic and language
independent.

First we propose two type systems that guarantee the absence of memory access violations and
data races for a lambda calculus with region-based memory management and unstructured locking
primitives. The first type system requires explicit type annotations, whereas the second type system
can automatically infer type annotations and permits reader-writer locks. Second we propose twomore
type systems that guarantee absence of deadlocks for a lambda calculus with unstructured locking

1 Hereon, we use the terms “unstructured locking”, “non lexically-scoped locking” and “non block-structured locking”
interchangeably.

17



primitives. The first type system also guarantees absence of memory access violations and data races,
but requires explicit type annotations. The second type system solely guarantees absence of deadlocks
and is able to automatically infer type annotations. We discuss the integration of our type systems to
low-level languages such as Cyclone and C. Finally, we evaluate the effectiveness of each type system
by testing our implementations over a number of benchmarks.

1.2.1 Hierarchical regions and locks for safe multithreading

Multithreaded programs that interact through shared memory allow concurrent memory accesses
in a single address space. Threads, which are scheduled by a preemptive and weakly fair scheduler,
generate random execution interleavings. Only a subset of these interleavings results in a consis-
tent state. Inconsistent execution states occur in a multithreaded program when one thread accesses
a memory location at the same time another thread attempts to write to it. In such interleavings we
say that we have a data race. A basic correctness guarantee for multithreaded programs is absence
of data races (i.e., data race freedom). In a shared memory system which does not support transac-
tional memory [Harr03], threads must agree on the order of particular interleavings so that data races
are avoided. More precisely, threads must somehow synchronize their actions. In this thesis, we only
consider lock-based blocking synchronization. We also assume that memory accesses are sequentially
consistent. That is, shared memory operations happen in the same order for all threads. Apart from
inconsistent states resulting from data races, explicit memory management in a multithreaded environ-
ment may result in dangling pointer dereferences as one thread may deallocate a memory block while
another thread attempts to access that block. Another important correctness guarantee is the absence
of memory violations (i.e., memory safety).

We present the design, formal semantics, meta-theory and implementation of a strongly-typed lan-
guage that employs advanced region-based management and hierarchical lock-based synchronization
primitives and guarantees both memory safety and data race freedom.

A region [Toft94] can be thought of as a segment of memory. The key idea of region-based mem-
ory management is that each data object is allocated in some region. When a region is deallocated,
all its objects are deallocated simultaneously. Region-based memory management has numerous ben-
efits. The programmer has explicit control of the location and lifetime of memory objects as it is
possible to allocate an object in any live region. In some languages it is also possible to perform early
region deallocation. Moreover, it is more efficient to allocate objects in an existing memory segment
or deallocate objects from it, rather than requesting a new memory area for each object individually.
Our memory regions are organized in a hierarchical manner [Gay01], where each region is physically
allocated within a single parent region and may contain multiple children regions. We propose a lan-
guage that allows deallocation of complete subtrees in the presence of region sharing between threads
and deallocation is allowed to occur at any program point.

Each region is associated with an implicit lock. Thus, locks also follow the hierarchical structure
of regions and in this setting each region is protected by its own lock as well as the locks of all its
ancestors. As opposed to the majority of type systems and analyses that guarantee race freedom for
lexically-scoped locking constructs [Flan99a, Gros03, Boya02], our approach employs non-lexically
scoped locking primitives, which are more suitable for languages at the C level of abstraction. Fur-
thermore, the formal language allows regions and locks to be safely aliased and escape the lexical
scope when passed to a new thread.

More importantly, our work is not just a theoretical design with some nice properties. We have
integrated our analysis in Cyclone [Gros02], a strongly-typed dialect of C which preserves explicit
control and representation of memory without sacrificing memory soundness. We have opted for Cy-
clone because it has a publicly available implementation but also because it is more than a safe variant
of C. Cyclone offers modern programming language features such as first-class polymorphism, excep-
tions, tuples, namespaces, (extensible) algebraic data types, and region-based memory management.
We will discuss how these features interact with our language and the additions that were needed to
Cyclone’s implementation.

18



We briefly outline the main design goals for our language, as well as some of the main design
decisions that we made to serve these goals.

Low-level and concurrent. The language should be at the C level of abstraction and provide built-
in constructs for concurrency similar to those currently used in e.g. C with the pthreads library (i.e.,
it should cater for non-lexically scoped mutual exclusion of concurrent threads).

Shared memory. The language should use shared memory as the means for intra-process commu-
nication. This happens both for efficiency reasons and because shared memory communication can
easily be integrated in the existing region system of Cyclone, the language into which we implement
our constructs.

Backwards compatibility. Sequential (Cyclone) code should work as expected with no modifica-
tions.

Static memory safety and thread safety guarantees. A static type and effect system should guar-
antee the absence of memory access violations and data races in well-typed programs, with minimal
run-time overhead.

Safe and efficient region-based memory management. Traditional stack-based regions [Toft94]
are limiting as they cannot be deallocated early. Furthermore, the stack-based discipline fails to model
region lifetimes in concurrent languages, where the lifetime of a shared region depends on the lifetime
of the longest-lived thread accessing that region. In contrast, we want regions that can be deallocated
early and that can safely be shared between concurrent threads. We opt for a hierarchical region
organization: each region is physically allocatedwithin a single parent region andmay containmultiple
child regions. Early region deallocation in our multi-level hierarchy automatically deallocates the
immediate subtree of a region without having to deallocate each region of the subtree recursively. The
hierarchical region structure imposes the constraint that a child region is live only when its ancestors
are live.

Race freedom. To prevent data races we use lock-based mutual exclusion. Instead of having a sepa-
rate mechanism for locks, we opt for a uniform treatment of regions and locks: locks are placed in the
same hierarchy as regions and enjoy similar properties. Each region is protected by its own private lock
and inherits the access rights of its ancestors. The semantics of region locking is that the entire subtree
of a region is atomically locked once the lock for that region has been acquired. Hierarchical locking
can model complex synchronization strategies and lifts the burden of having to deal with explicit ac-
quisition of multiple locks. Although deadlocks are possible, they can be eliminated by acquiring a
single lock for a group of regions rather than acquiring multiple locks for each region separately or by
more involved mechanisms. Additionally, we provide explicit locking primitives, which in turn allow
a higher degree of concurrency than lexically-scoped locking, as some locks can be released early.

Region polymorphism and aliasing. Like Cyclone, we support functions which are generic with
respect to regions (region polymorphic). This kind of polymorphism permits region aliasing as one
actual region could be passed in the place of two distinct formal region parameters. In the presence of
mutual exclusion and early region deallocation, aliasing is dangerous. We permit safe region aliasing
with minimal restrictions. The mechanisms that we employ for this purpose also allow us to encode
numerous useful idioms of concurrent programming, such as region migration, lock ownership trans-
fers, region sharing, and thread-local regions.

In Chapter 2 we present a lambda calculus with region-based memory management, unstructured
locking primitives and explicit type annotations.We also present its operational semantics, type system

19



59 struct dentry * efs_lookup(struct inode *dir, struct dentry *dentry) {

60 efs_ino_t inodenum;

61 struct inode * inode = NULL;

62 lock_kernel();

63 inodenum = efs_find_entry(dir, dentry->d_name.name, dentry->d_name.len);

64 if (inodenum) {

65 if (!(inode = iget(dir->i_sb, inodenum))) {

66 unlock_kernel();

67 return ERR_PTR(-EACCES);

68 }

69 }

70 unlock_kernel();

71 d_add(dentry, inode);

72 return NULL;

73 }

Listing 1.1: Code from Linux’s EFS (linux/fs/efs/namei.c)

and the main theorems that guarantee the absence of memory violations and data races from well-
typed programs. Chapter 3 presents a similar language that permits reader-writer locks and does not
require explicit annotations as its type system is able to automatically infer them. Finally in Chapter 4,
we integrate the latter type system to Cyclone and evaluate the performance of concurrent Cyclone
programs implementation against C programs.

1.2.2 A hybrid approach to deadlock freedom

In shared memory concurrent programming, deadlocks typically occur as a consequence of cyclic
lock acquisition between threads. Two or more threads are deadlocked when each of them is waiting
for a lock that has been acquired and is held by another thread. As deadlocks are a serious problem,
several methods to achieve deadlock freedom have so far been proposed. In particular, type-based
approaches aim for static deadlock freedom guarantees. Most of the proposed type systems in this
category [Flan99b, Koba06, Suen08, Vasc10] prevent deadlocks by imposing a strict (non-cyclic)
lock acquisition order that must be respected throughout the entire program. However, insisting on
a global lock ordering limits programming language expressiveness as many correct programs are
rejected unnecessarily.

An alternative to deadlock prevention is to employ an approach that dynamically avoids dead-
locks by utilizing information regarding future lock usage which is provided statically by program
analysis. An interesting recent work in this direction is by Boudol [Boud09] who presented a type
and effect system for deadlock avoidance when locking is block-structured (e.g. as in Java’s syn-
chronized blocks). Unfortunately, in Boudol’s system the fact that locking is block-structured is a
crucial assumption that prohibits the use of his method in many situations. For example, there is a lot
of important existing code where locking is used in an unstructured way; cf. the code in Listing 1.1,
which is a typical example of systems code. Furthermore note that in low-level languages such as C,
even if the programmer adheres to block-structured locking, this is nothing more than a convention:
at the source level, any tool needs to deal with separate lock and unlock primitives. Finally, in almost
all languages, the restriction that locking is block-structured is usually lifted at the low-level language
of the compiler for optimization purposes. This is the type of languages this work targets.

More specifically, we present a method to dynamically avoid deadlocks guided by information
about the order of lock and unlock operations which is computed statically via program analysis. The
analysis is based on a type and effect system that is general enough to be applicable regardless of how
locking is used. Unstructured locking primitives and unrestricted lock aliasing introduce significant
complexity to the type system compared with block-structured locking, where lock operations always
match up with implicit unlock operations. The proposed type and effect systems guarantee locks are

20



safely released and acquired in the presence of unrestricted lock aliasing.
In Chapter 5 we review deadlock freedom techniques and provide a gentle introduction to the

main ideas behind our deadlock avoidance technique. In Chapter 6 we present a lambda calculus
with explicitly annotated functions, mutable references, explicit memory management constructs and
unstructured locking primitives. We present its dynamic semantics, static semantics and the main the-
orems that guarantee the absence of memory violations, data races and deadlocks from well-typed
programs. In Chapter 7 we present a lambda calculus with unstructured locking primitives that does
not require explicit annotations as its type system is able to infer them. We present its dynamic se-
mantics, static semantics and the main theorems that guarantee deadlock freedom from well-typed
programs. In Chapter 8 we present a tool that uses a static analysis based on the type system of Chap-
ter 7 to instrument multithreaded C programs and then links these programs with a run-time system
that avoids possible deadlocks. We also report some very promising benchmark results which show
that all possible deadlocks can automatically be avoided with only a small run-time overhead. More
importantly, this is done without having to modify the original source program by altering the order
of resource acquisition operations or by adding annotations.

21





Chapter 2

A unified hierarchy of regions and locks

2.1 Overview

In this chapter we present a multithreaded language that employs advanced region-based memory
management. Regions are organized in a hierarchical manner such that each region is physically allo-
cated within a single parent region and may contain multiple child regions. Implicit reentrant locks are
used to protect regions from data races. This hierarchical structure imposes an ownership relation as
well as lifetime constraints over regions: each region is protected by its own lock as well as the locks
of all its ancestors. In addition, when a region is released, its subregions are automatically released
as well. The language permits early release of regions or locks, thereby giving the programmer ex-
plicit control over the lifetime of regions and locks. Common multithreaded programming idioms are
supported such as data migration and lock transfers between threads. In addition, data can alternate
between “thread-local” and “shared” state. The static type system for this language guarantees that
well-typed programs are free of memory access violations and data races. As opposed to the language
presented in Chapter 3 that permits reader-writer locks and annotation inference, the language pre-
sented in this chapter requires explicit type annotations and supports only writer locks. The following
section presents our language by example. We then present the formal language, its operational se-
mantics, type system. The main theorems that guarantee the absence of memory violations and data
races from well-typed programs are stated and proved.

2.2 Language features through examples

Our regions are lexically-scoped first-class citizens; they are manipulated via explicit handles. For
instance, a region handle can be used for releasing a region early, for allocating references and regions
within it, or for locking it. Our language uses a type and effect system to guarantee that regions and
their contents are properly used. The details will be made clear in Section 2.3 and Section 2.5. Here,
we present the main features of our language through examples. We try to avoid technical issues as
much as possible; however, some characteristics of the type and effect system are revealed in this
section and their presence is justified. Furthermore, to simplify the presentation in this section, we
use abbreviations for a few language constructs that we expect the readers will find more intuitive. In
particular, we use indentation instead of curly braces to denote functions and basic blocks.

We assume the existence of a global heap region ρH whose handle will be denoted by H . The
heap is immortal (i.e., cannot be deallocated), and threads cannot lock it or allocate references to it.
Instead, the heap is used only for allocating other regions into it.

Example 2.1 (Simple region usage) This example shows a typical region use. New regions are allo-
cated via the region construct. This construct requires a handle to an existing region (H in this case),
in which the new region will be allocated, and introduces a type-level name (ρ) and a fresh handle (h)
for the new region. The handle h is then used to allocate a new integer in region ρ; a reference to this
integer (z) is created. Finally, the region is deallocated before the end of its lexical scope.

23



region<ρ>@ H; // {ρ1,1. ρH}
let z = rnew(h) 42;

. . .
∗z = ∗ z + 5;
. . .
rfree(h); // { } — empty effect, ρ is no longer alive
. . .

The comments on the right-hand side of the example’s code show the current effect. An effect is
roughly a set of capabilities that are held at a given program point. Right after creation of region ρ,
the entry ρ1,1. ρH is added to the effect; this means that a capability (“1, 1” — we will later explain
what this means) is held for region ρ, which resides in the heap region (ρH ). Regions start their life
as local to a thread and their contents can be directly accessed. For instance, a reference z can be
created in ρ, dereferenced and assigned a new value, as long as the type system can verify that a
proper capability for ρ is present in the current effect. Deallocation of ρ removes the capability from
the effect; once that is done, the region’s contents become inaccessible.

Example 2.2 (Hierarchical regions) In the previous example a trivial hierarchy was created by al-
locating region ρ within the heap H . It is possible to construct richer region hierarchies. As in the
previous example, the code below allocates a new region ρ1 within the heap. Other regions can be
then allocated within ρ1, e.g. ρ2; this can done by passing the handle of ρ1 to the region creation
construct. Similarly, regions ρ3 and ρ4 can be allocated within region ρ2.

region<ρ1> h1 @ H; // {ρ1,11 . ρH}
. . .
region<ρ2> h2 @ h1; // {ρ1,11 . ρH , ρ

1,1
2 . ρ1}

. . .
region<ρ3> h3 @ h2; // {ρ1,11 . ρH , ρ

1,1
2 . ρ1, ρ

1,1
3 . ρ2}

region<ρ4>h4@ h2; // {ρ1,11 . ρH , ρ
1,1
2 . ρ1, ρ

1,1
3 . ρ2, ρ

1,1
4 . ρ2}

. . .

..ρ1,0H

.ρ1,11

.ρ1,12

.. . .

.ρ1,13 .ρ1,14

.. . .

Our language allows regions to be allocated at any level of the hierarchy. For instance, it is possible
to allocate more regions within region ρ1, in the lexical scope of region ρ4.

Example 2.3 (Bulk region deallocation) In the first example a single region was deallocated. That
region was a leaf node in the hierarchy; it contained no sub-regions. In the general case, when a region
is deallocated, the entire subtree below that region is also deallocated. This is what happens if, in the
code of the previous example, we deallocate region ρ2 within the innermost scope; regions ρ3 and ρ4
are also deallocated. They are all removed from the current effect and thus are no longer accessible.

region<ρ1> h1 @ H; // {ρ1,11 . ρH}
. . .
region<ρ2> h2 @ h1; // {ρ1,11 . ρH , ρ

1,1
2 . ρ1}

. . .
region<ρ3> h3 @ h2; // {ρ1,11 . ρH , ρ

1,1
2 . ρ1, ρ

1,1
3 . ρ2}

region<ρ4>h4@ h2; // {ρ1,11 . ρH , ρ
1,1
2 . ρ1, ρ

1,1
3 . ρ2, ρ

1,1
4 . ρ2}

. . .
rfree(h2); // {ρ1,11 . ρH}
. . . // ρ2, ρ3 and ρ4 are no longer alive

..ρ1,0H

.ρ1,11

.ρ1,12

.. . .

.ρ1,13 .ρ1,14

.. . .

Example 2.4 (Region migration) A common multithreaded programming idiom is to use thread-
local data. At any time, only one thread will have access to such data and therefore no locking is
required. A thread can transfer thread-local data to another thread but, doing so, it loses access to the

24



data. This idiom is known as migration. Our language encodes thread-local data and data migration.
As we have seen, newly created regions are considered thread-local; a capability for them is added to
the current effect. We support data migration by allowing such capabilities to be transferred to other
threads.

The following example illustrates region migration. A server thread is defined, which executes an
infinite loop. In every iteration, a new region is created and is initialized with client data. The contents
of the region are then processed and finally transferred to a newly created (spawned) thread.

void server ()
while (true)

region<ρ> h@ H; // {ρ1,1. ρH}
let z = wait data(h); // region ρ is thread-local

process(z);
spawn output(h, z); // { }— empty effect, ρ migrates to output
. . . // ρ cannot be accessed here

The server thread accepts the heap region and its handle. Within the infinite loop, it allocates a new
region ρ in the heap. Its handle h is passed to function wait data, which is supposed to fill the region ρ
with client data (z). Function process is then called and works on the data. Until this point, region ρ is
thread-local and accessible to the server thread, so no explicit locking is required. Now, let us assume
that we want the processed data to be output by a different thread, e.g. to avoid an unnecessary delay on
the server thread. A new thread output is spawned and receives the region handle h and the reference
z to the client data. The capability ρ1,1. ρH is removed from the effect of server and is added to the
input effect of thread output. Therefore, region ρ has now become thread-local to thread output,
which can access it directly, while it is no longer accessible to the server thread.

Example 2.5 (Region sharing) In the previous examples, thread-local regions were associated with
capability “1, 1”. In general, a capability for a region consists of two natural numbers; the first denotes
the region count, whereas the second denotes the lock count. When the region count is positive, the
region is definitely alive. Similarly, when the lock count is positive, memory accesses to this region’s
contents are guaranteed to be race free. Capabilities with counts other than 1 can be used for sharing
regions between threads.

Multithreaded programs often share data for communication purposes. In this example, a server
thread almost identical to that of the previous example is defined. The programmer’s intention here,
however, is to process the data and display it in parallel. Therefore, the output thread is spawned first
and then the server thread starts processing the data.

void server ()
while (true)

region<ρ> h@ H; // {ρ1,1. ρH}
let z = wait data(h);

share(h); unlock(h); // {ρ2,0. ρH}
spawn output(h, z); // {ρ1,0. ρH}— output consumes ρ1,0. ρH
lock(h); // {ρ1,1. ρH}
process(z);
unlock(h); // {ρ1,0. ρH}

Function share increases the region count and function unlock decreases the lock count. As a con-
sequence, starting with capability ρ1,1. ρH , we end up with ρ2,0. ρH . When output is spawned, it
consumes “half” of this capability (ρ1,0. ρH ); the remaining “half” (ρ1,0. ρH ) is still held by the
server thread. Region ρ is now shared between the two threads; however, none of them can access
its data directly, as this may lead to a data race. The lock and unlock functions have to be used for
explicitly locking and unlocking the region, before safely accessing its contents. The server thread
avoids locking the region thus allowing the output thread to gain access to the region when needed.

25



Example 2.6 (Hierarchical locking) In the previous example, locking and unlocking was performed
on a leaf region. In general, locking a region in the hierarchy has the effect of atomically locking its
subregions as well. A region is accessible when it has been locked by the current thread or when at
least one of its ancestors has been locked.

Hierarchical locking can be useful when a set of locks needs to be acquired atomically. In this
example, we assume that two hash tables (tbl1 and tbl2) are used. An object with a given key must be
removed from tbl1, which resides in region ρ1, and must be inserted in tbl2, which resides in region
ρ2. We can atomically acquire access to both regions ρ1 and ρ2, by locking a common ancestor of
theirs.

lock(h); // the handle of a common ancestor of ρ1 and ρ2
let obj = hash remove<ρ1>(tbl1, key);

hash insert<ρ2>(tbl2, key, obj);
unlock(h);

Example 2.7 (Region aliasing) An expressive language with regions will have to support region
polymorphism, which invariably leads to region aliasing. This must be handled with caution, as a
näive approach may cause unsoundness. In the examples that follow, we discuss how region aliasing
is used in our language as well as the restrictions that we impose to guarantee safety.

Function swap, which is polymoprhic in respect to regions ρ1 and ρ2 (polymorphic type variables
ρ1 and ρ2 are specified next to the function name in the prototype declaration), accepts two integer
references, residing in regions ρ1 and ρ2, and swaps their contents. It assumes that both regions are
already locked and remain locked when the function returns.

// ρ1 and ρ2 are locked
void swap<ρ1, ρ2>(int ∗ ρ1 x, int ∗ ρ2 y)

let z = ∗x; // OK: ρ1 is locked
∗x = ∗y; // OK: ρ1 and ρ2 are locked
∗y = z; // OK: ρ2 is locked

In order to instantiate ρ1 and ρ2 with the same region ρ, we can create two lock capabilities by using
the lock function twice on ρ’s handle h. Of course, the second use of lock will succeed immediately,
as the region has already been locked by the same thread.

. . . // {ρ2,0. ρH}
lock(h); lock(h); // {ρ2,2. ρH}
swap<ρ, ρ>(a, b); // each ρ parameter requires ρ1,1. ρH
unlock(h); unlock(h); // {ρ2,0. ρH}

Example 2.8 (Reentrant locks) Region aliasing introduces the need for reentrant locks. To see this,
let us change the swapping function of the previous example, so that it receives two references in
unlocked regions. For swapping their contents, it will have to acquire locks for the two regions (and
release them, when they are no longer needed).

// ρ1 and ρ2 are unlocked
void swap<ρ1, ρ2>(region<ρ1> h1, region<ρ2> h2, int ∗ ρ1 x, int ∗ ρ2 y)

lock(h1);
let z = ∗x; // OK: ρ1 is locked

lock(h2);
∗x = ∗y; // OK: ρ1 and ρ2 are locked
unlock(h1);
∗y = z; // OK: ρ2 is locked
unlock(h2); // all locks can be released

26



Suppose again that we are to instantiate ρ1 and ρ2 with the same region ρ.

. . . // {ρ2,0. ρH}
swap<ρ, ρ>(h, h, a, b); // each ρ parameter requires ρ1,0. ρH

We can easily see, however, that the run-time system cannot use binary locks; in that case, swap<ρ, ρ>
would either come to a deadlock, waiting to obtain once more the lock that it has already acquired, or
— worse — it might release the lock early (at unlock(h1)) and allow a data race to occur. To avoid
unsoundness, we use reentrant locks: lock counts are important both for static typing and for the run-
time system. A lock with a positive run-time count can immediately be acquired again, if it was held
by the same thread. Moreover, a lock is released only when its run-time count becomes zero.

Example 2.9 (Pure and impure capabilities) Unrestricted region aliasing leads to unsoundness.
Consider function bad, which accepts two integer references (x and y) in regions ρ1 and ρ2, which
are both locked. It lets ρ1 migrate to a new thread and passes x as a parameter. It then assigns a value
to y.

// ρ1 and ρ2 are locked
void bad<ρ1, ρ2>(int ∗ρ1 x, int ∗ρ2 y)

spawn f(x); // ρ1 migrates to f while locked
∗y = 7; // OK: ρ2 is still locked — WRONG!

A data race may occur if we call bad as follows; both threads have access to a, each holding a lock
for ρ.

bad<ρ, ρ>(a, a); // each ρ parameter requires ρ1,1. ρH

The cause of the unsoundness is that, in this last call to bad<ρ, ρ>, we allowed a single capability
ρ2,2. ρH to be divided in two distinct capabilities ρ1,1. ρH . More specifically, we divided the lock
count in two and created two distinct lock capabilities, one of which escaped to a different thread
through region migration. To resolve the unsoundness, we introduce the notion of pure (i.e., full) and
impure (i.e., divided) capabilities. For instance, ρ2,2. ρH is a pure capability; when we divide it we
obtain two impure halves, which we denote as ρ1,1. ρH . Impure capabilities cannot be given to newly
spawned threads when their lock count is positive. In contrast with pure capabilities, they represent
inexact knowledge of a region’s counts.

2.3 Formal language

The language syntax is illustrated in Figure 2.1.1 The core expressions include variables (x), con-
stants (c), functions, and function application. Function application terms are annotated with a calling
mode (ξ). The calling mode specifies whether a function application should be executed sequentially
(seq) or in parallel (par). Monomorphic functions (λx. e) must be annotated with their type (τ ). Our
language also includes region-polymorphic functions (Λρ. f ) and region application (e[ρ]). Other con-
structs can be easily included, as long as conservative choices are made to ensure the soundness of
the type system (e.g., in the standard if-then-else construct, both branches should produce the same
effect).

The construct newrgnr ρ, x@ e1 in e2 allocates a fresh region ρ at the region indicated by handle
e1, and binds x to the handle of ρ. Both ρ and x are lexically bound to the scope of e2. The new region
must be explicitly released within e2. The region allocation construct is annotated with the parent
region name r, which is only required for the type safety proof.

The constructs for manipulating references are standard. A newly allocated memory cell is re-
turned by new e1 @ e2, where e1 is an initializer expression for the new cell and handle e2 indicates

1 The constructs rgnı, locl and popγ e are not considered part of the language. They are only introduced during program
evaluation. We defer the discussion about them until Section 2.4.

27



Expression e ::= x | c | f | (e e)ξ | e[r]
| new e@ e | e := e | deref e
| newrgnr ρ, x@ e in e
| caprη e | rgnı | locl | popγ e

Function f ::= λx. e as τ
γ→γ−→ τ | Λρ. f

Type τ ::= b | 〈〉 | τ γ→γ−→ τ | ∀ρ. τ
| ref(τ, r) | rgn(r)

Effect γ ::= ∅ | γ, rκ. π

Capability kind ψ ::= rg | lk
Capability op η ::= ψ + | ψ−
Region r ::= ρ | ı | ı@n
Capability κ ::= n, n | n, n
Region parent π ::= r | ⊥
Calling mode ξ ::= seq | par

Figure 2.1: Syntax.

the region in which the new cell will be allocated. Standard assignment and dereference operators
complete the picture. A region can be released either by deallocation or by transferring its owner-
ship to another thread. At any given program point, each region is associated with a capability (κ).
Capabilities consist of two natural numbers, the capability counts: the region count and lock count,
which denote whether a region is live and locked respectively. When first allocated, a region starts
with capability (1, 1), meaning that it is live and locked, so that it can be accessed directly with no
additional overhead. This is our equivalent of a thread-local region.

By using the construct caprη e, a thread can increment or decrement the capability counts of some
region r whose handle is specified in e. The annotation (r) on the cap construct is only required for
the type safety proof. The capability operator η can be, e.g., rg+ (meaning that the region count is to
be incremented) or lk− (meaning that the lock count is to be decremented). Incrementing counts is
essential for sharing regions among threads and for region aliasing. Furthermore, incrementing a lock
count from 0 to 1 amounts to acquiring a region lock, which may have to block the current thread
if the lock is held by another thread. On the other hand, decrementing counts amounts to releasing
capabilities. When a region count reaches zero, no subsequent operations can be performed on this
region and the region may be physically deallocated (if no other threads are using it). When a lock
count reaches zero, the region is unlocked, but it may still be protected by a locked ancestor region.
As we explained, capability counts determine the validity of operations on regions and references. All
memory-related operations require that the involved regions are live, i.e., the region count is greater
than zero. Assignment and dereference can be performed only when the corresponding region is live
and protected.

A capability of the form (n1, n2) is called a pure capability, whereas a capability of the form
(n1, n2) is called an impure capability. In both cases, it is implied that the current thread can decrement
the region count n1 times and the lock count n2 times. Impure capabilities are obtained by splitting
pure or other impure capabilities into several pieces, e.g., the pure capability (3, 2) can be split into two
impure capabilities (2, 1) and (1, 1), in the same spirit as fractional capabilities [Boyl03]. Splitting
a linear resource into multiple pieces is particularly useful for region aliasing (e.g., the same region
can be passed to a function in the place of two distinct region parameters). An impure capability
implies that our knowledge of the region and lock counts held by the current thread is inexact. Under
certain circumstances, the use of impure capabilities must be disallowed; e.g., an impure capability
with a non-zero lock count cannot be passed to another thread, as it is unsound to allow two threads
to simultaneously access the same region. Capability splitting takes place automatically with function
application.

2.4 Operational semantics

We define a small-step operational semantics for our language, using two evaluation relations, at
the level of threads and expressions (Figure 2.3 and Figure 2.4 on the next page). The thread evaluation

28



Stack σ ::= ∅ | σ; γ
Hierarchy δ ::= ∅ | δ, n 7→ σ

Contents H ::= ∅ | H, ` 7→ v

Region list S ::= ∅ | S, ı 7→ H

Threads T ::= ∅ | T, n : e
Configuration C ::= δ;S;T

E ::= � | (E e)ξ | (v E)ξ | E [r]
| newrgnr ρ, x@ E in e | caprη E
| new v @ E | deref E | E := e
| v := E | new E @ e | popγ E

Figure 2.2: Configuration, store, threads and evaluation contexts.

v1 ≡ λx. e as τ1
γ1→γ2−→ τ2 δ = δ′′, n 7→ σ; γ fresh n′

par ` γ′ = ∅ ⊕ (γ 	 γ1) δ′ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1
δ;S;T, n : E[(v1 v)

par]  δ′;S;T, n :E[()], n′ : (v1 v)
seq (E-SN)

δ = δ′′, n 7→ σ σ;S; e→ σ′;S′; e′ δ′ = δ′′, n 7→ σ′ ` δ′

δ;S;T, n : E[e]  δ′;S′;T, n :E[e′]
(E-S)

δ = δ′, n 7→ (∅; ∅)
δ;S;T, n : ()  δ′;S;T

(E-T)

Figure 2.3: Thread evaluation relation C  C ′.

relation transforms configurations. A configuration C (see Figure 2.2) consists of global hierarchy δ,
an abstract store S and a thread map T .2 The global hierarchy δ maps thread identifiers (n) to stacks
(σ). A thread stack σ is a list of frames (γ) and represents a hierarchy of regions accessible to a thread.
Each frame γ represents the portion of σ that is accessible to the function that is currently executed.
Notice, that frames include region counts. A frame is a list of elements of the form rκ. π, denoting
that region r is associated with count κ and has parent π, which can be another region or ⊥. Regions
whose parents are ⊥ are considered as roots in a region hierarchy. A store S maps region identifiers
(ı) to heaps (H). A heap H , maps memory locations to values. A thread map T associates thread
identifiers to expressions (i.e., threads).

A thread evaluation context E (Figure 2.2) is defined as an expression with a hole, represented
as �. The hole indicates the position where the next reduction step can take place. Our notion of
evaluation context imposes a call-by-value evaluation strategy to our language. Subexpressions are
evaluated in a left-to-right order.

We assume that concurrent reduction events can be totally ordered [Lamp79]. At each step, a
random thread (n) is chosen from the thread list for evaluation (Figure 2.3). It should be noted that
the thread evaluation rules are the only non-deterministic rules in the operational semantics of our
language; in the presence of more than one active thread, our semantics does not specify which one
will be selected for evaluation. Threads that have completed their evaluation, have released all regions
used by them, and have been reduced to unit values, represented as (), are removed from the active
thread list (rule E-T). Rule E-S reduces some thread n via the expression evaluation relation. Notice,
that ruleE-S onlymodifies the stack of threadn and requires that the resulting hierarchy δ′ is consistent
(` δ′ — defined in Figure 2.5): regions accessible to thread n should be inaccessible to other threads
and regions having positive pure capabilities can only be live at a single stack frame of thread n.3
Therefore, the operational semantics will get stuck if the mutual exclusion protocol is unsatisfied.

2 The order of elements in comma-separated lists, e.g. in a store S or in a list of threads T , is unimportant; we consider
all list permutations as equivalent.

3 The second invariant ensures that regions with positive pure capabilities can safely be passed to other threads (e.g.,
locked). This is sound when the current thread has no more counts of such regions in other stack frames.

29



σ = σ′; γ seq ` γ = γ1 ⊕ γr σ′′ = σ′; γr; γ1

σ;S; ((λx. e as τ1
γ1→γ2−→ τ2) v)

seq
→ σ′′;S; popγr e[v/x]

(E-A)

σ = σ′; γr; γ
′ seq ` γ′′ = γ′ ⊕ (γr 	 ∅) σ′′ = σ′; γ′′

σ;S; popγr v → σ′′;S; v
(E-E)

σ = σ′; γ is live(γ, r) fresh ı σ′′ = σ′; γ, ı1,1. r

σ;S; newrgnr ρ, x@ rgnr̄ in e→ σ′′;S, ı 7→ ∅; e[ı/ρ][rgnı/x]
(E-NG)

σ = σ′; γ is live(γ, r) γ = γ′, rκ. π

κ′ = [[η]] (κ) σ′′ = σ′; live(γ′, rκ′
. π)

σ;S; caprη rgnr̄ → σ′′;S; ()
(E-C)

σ = σ′; γ is live(γ, r) fresh `
σ;S; new v @ rgnr̄ → σ;S[r̄ 7→ S(r̄), ` 7→ v]; loc`

(E-NR)

σ = σ′; γ is accessible(γ, r) (` 7→ v1) ∈ S(r̄)

σ;S; loc` := v → σ;S(r̄)[` 7→ v]; ()
(E-AS)

σ = σ′; γ is accessible(γ, r) (` 7→ v) ∈ S(r̄)

σ;S; deref loc` → σ;S; v
(E-D)

fresh n′
σ;S; (Λρ. f)[r] → σ;S; f [r̄@n′/ρ]

(E-RP)

Figure 2.4: Expression evaluation relation σ;S; e→ σ′;S′; e′.

Our approach differs from related work, e.g. the work of Grossman [Gros03], where a special kind of
value junkv is often used as an intermediate step when assigning a value v to a location, before the
real assignment takes place, and type safety guarantees that no junk values are ever read.

When a parallel function application redex is detected within the evaluation context of a thread,
a new thread is created (rule E-SN). The redex is replaced with a unit value in the currently executed
thread and a new thread is added to the thread list, with a fresh thread identifier. The calling mode
of the application term is changed from parallel to sequential. The topmost frame of the spawning
thread (γ) is split into two frames γ′ and γ1 so that the intersection of regions locked in γ′ and in γ1
is empty.4 If it is impossible to split γ, the thread evaluation relation gets stuck. Notice, that γ1 is an
effect annotation of the function abstraction. Frame γ is then replaced by γ′ and γ1 becomes the initial
frame of the new thread.

The expression evaluation relation (defined in Figure 2.4) rewrites tuples of the form σ;S; e, where
σ is a thread local stack, S is the global store, and e is an expression.

Constant regions may be of the form ı@n, which is a constant region ı tagged with a unique
identifier n. The region application (E-RP) rule introduces tags during substitution so as to prevent
the existence of duplicate region names in function effects.

Hereon, the symbol γ means “the topmost frame of the currently executed thread n”. The se-
quential function application (E-A) rule splits γ into two stack frames γ1 and γr such that γ1 matches
the effect expected by the lambda abstraction, and substitutes the sequence of stack frames γr; γ1 for
γ. The function body is placed within a pop construct, which is annotated with frame γr. A pop con-

4 The rules for splitting effects are defined in Figure 2.7 and discussed in Section 2.5. Until then, the judgement ξ ` γ′ =
γ2 ⊕ (γ 	 γ1) should be interpreted as saying that the effect γ′ is what we get if we start with γ, remove the input effect γ1
of the function that we are calling and (when the function returns) add the function’s output effect γ2.

30



(rκ.⊥) ∈ γ rg(κ) > 0

is live(γ, r)
γ = γ′, rκ. r′ rg(κ) > 0 is live(γ′, r′)

is live(γ, r)

(rκ. π) ∈ γ lk(κ) > 0 is live(γ, r)
is accessible(γ, r)

γ = γ′, rκ. r′ lk(κ) = 0 rg(κ) > 0 is accessible(γ′, r′)
is accessible(γ, r)

σ ' σ1; γ, ı
κ. π ⇒ is pure(κ) ∧ rg(κ) = 0∧

ı /∈ dom(∅; γ) ∧ σ1 6= ∅ ⇒ zero pure(σ1, ı)
zero pure(σ, ı)

` δ σ ` δ
` δ, n 7→ σ ` ∅

σ ` δ
∀ı ∈ dom(σ).is accessible(σ, ı) ⇒ ¬is accessible(σ′, ı)

σ ` δ, n 7→ σ′

∀ı ∈ dom(σ).σ ' σ1; γ, ı
κ. π + σ2 ∧ rg(κ) > 0 ∧ is pure(κ)

⇒ zero pure(σ1, ı) ∧ ı /∈ dom(σ2; γ)

σ ` ∅

[[η]] (κ) =

if η ≡ ψ ± ∧is pure(κ) ⇔ is pure(κ′)∧
κ′ (ψ = rg ⇒ rg(κ′) = rg± 1 ∧ lk(κ′) = lk(κ))∧

(ψ = lk ⇒ lk(κ′) = lk± 1 ∧ rg(κ′) = rg(κ))

r̄ =

{
ı if r = ı

r̄′ if r = r′@n′
is pure(κ) = ∃n1. ∃n2. κ = n1, n2
rg(κ) = n1 if κ = n1, n2 ∨ κ = n1, n2
lk(κ) = n2 if κ = n1, n2 ∨ κ = n1, n2
live(γ) = { rκ. π | (rκ. π) ∈ γ ∧ is live(γ, r) }

Figure 2.5: Auxiliary functions and predicates.

struct must not be contained in the original program, and must only appear during program evaluation.
Rule E-E eliminates pop constructs, when the function body has been reduced to a value and the an-
notation γr of pop matches the frame preceding the topmost frame γ′. Frames γr are γ′ are joined to
form a new frame γ′′, which replaces them on the current stack.

The remaining rules of Figure 2.4 make use of judgements is live(γ, r) and is accessible(γ, r)
(auxiliary functions and predicates are defined in Figure 2.5) to establish that a region r is live and
accessible in a frame γ. A region r is live in γ when the region count of each region in the path between
r and the root region is positive. A region r is accessible in γ when it is live and there exists at least
one region in the path between r and the root region with a positive lock count. We also define the
following partial functions: r̄ removes the unique identifier from a tagged region, [[η]] (κ) decrements
or increments the region or lock field of κ by one, according to operation specified by η, and finally
live(γ) selects a subset of γ so that all regions in that subset are live.

Rule E-NG requires that region r is live in γ, adds a fresh and empty region ı to S and adds the
dynamic effect of ı to γ, which specifies that r is the parent of ı and that ı has region and lock count
of one. Rule E-C requires that region r is live in γ, substitutes [[η]] (κ) for κ in γ at the exponent of

31



R;M ;∆; Γ ` e1 : τ1
γ1→γ2−→ τ2& (γ;γ′) ξ = par ⇒ τ2 = 〈〉

R;M ;∆; Γ ` e2 : τ1& (γ′;γ′′) ξ ` γ′′′ = γ2 ⊕ (γ′′ 	 γ1)

R;M ;∆; Γ ` (e1 e2)
ξ : τ2& (γ;γ′′′)

(T-AP)

R;M ;∆; Γ ` e : ref(τ, r)& (γ;γ′) is accessible(γ′, r)
R;M ;∆; Γ ` deref e : τ & (γ;γ′)

(T-D)

R;M ;∆; Γ ` e1 : rgn(r)& (γ;γ′) is live(γ′, r) R;∆ ` τ
R;M ;∆, ρ; Γ, x : rgn(ρ) ` e2 : τ & (γ′, ρ1,1. r;γ′′) ρ 6∈ dom(γ′′)

R;M ;∆; Γ ` newrgnr ρ, x@ e1 in e2 : τ & (γ;γ′′)
(T-NG)

R;M ;∆; Γ ` e1 : τ & (γ;γ′) is live(γ′′, r)
R;M ;∆; Γ ` e2 : rgn(r)& (γ′;γ′′)

R;M ;∆; Γ ` new e1 @ e2 : ref(τ, r)& (γ;γ′′)
(T-NR)

is live(γ′, rκ. π, r) γ′′ = live(γ′, rκ′
. π)

R;M ;∆; Γ ` e1 : rgn(r)& (γ;γ′, rκ. π) κ′ = [[η]] (κ)

R;M ;∆; Γ ` caprη e1 : 〈〉& (γ;γ′′)
(T-CP)

Figure 2.6: Selected typing rules.

ξ ` γ = γ1 ⊕ γr ξ ` γ′ = γ2 ⊕ γr
γ′′ = live(γ′) ok(γ1; γ2) ξ = par ⇒ γ2 = ∅

ξ ` γ′′ = γ2 ⊕ (γ 	 γ1)
(ESJ)

ξ ` γ, rκ2. π = γ1 ⊕ γ2
ξ ` κ = κ1 + κ2 π ' π′ r′ ' r

ξ ` γ, rκ. π = γ1, r
′κ1. π′ ⊕ γ2

(ES-C)
ξ ` γ = ∅ ⊕ γ

(ES-N)

rg(κ) = rg(κ1) + rg(κ2) lk(κ) = lk(κ1) + lk(κ2) is pure(κ) ⇔ is pure(κ2)
is pure(κ1) ⇒ κ = κ1 ξ = par ∧ ¬is pure(κ1) ⇒ lk(κ1) = 0

ξ ` κ = κ1 + κ2
(CS)

Figure 2.7: Effect and capability splitting.

r, and removes dead regions from the resulting frame. Rule E-NR requires that region r is live in γ
and updates the heap of r with a fresh location ` mapping to value v. Notice, that r may be unlocked.
Rules E-AS and E-D require that some region r, which contains the location (`) being accessed, must
be accessible in γ. Therefore, the semantics will get stuck when a thread attempts to access a memory
location without having acquired an appropriate lock for this location.

2.5 Static semantics

We discuss the most interesting aspects of our type system. We employ a type and effect system to
enforce memory and race safety invariants. Effects (γ) are used to statically track region capabilities.

The syntax of types has been defined in Figure 2.1. A collection of base types b is assumed; the
syntax of values belonging to these types and operations upon such values are omitted. We assume
the existence of a unit base type, which we denote by 〈〉. Region handle types rgn(r) and reference
types ref(τ, r) are associated with a type-level region r. Monomorphic function types carry an input

32



and an output effect. A well-typed expression e has a type τ under an input effect γ and results in an
output effect γ′. The typing relation (see Figure 2.6) is denoted by R;M ;∆; Γ ` e : τ & (γ;γ′) and
uses four typing contexts: a set of region literals (R), a mapping of locations to types (M ), a set of
region variables (∆), and a mapping of term variables to types (Γ).

The typing rule for function application (T-AP) splits the output effect of e2 (γ′′) by subtracting
the function’s input effect (γ1). It then joins the remaining effect with the function’s output effect (γ2).
In the case of parallel application, rule T-AP also requires that the return type is unit. The splitting and
joining of effects is controlled by the judgement ξ ` γ′′ = γ2⊕(γ	γ1), which is defined by rule ESJ
in Figure 2.7. It uses the simpler judgement ξ ` γ = γ1 ⊕ γ2 for just splitting (not joining) effects,
which is defined by rules ES-N and ES-C. This, in turn, uses a third judgement ξ ` κ = κ1 ⊕ κ2 for
splitting capabilities, which is defined by ruleCS. Some auxiliary functions and predicates are defined
in Figure 2.5.

As defined in Figure 2.7 the rules for splitting and joining effects enforce the following properties:

− The effect after the join satisfies the liveness invariant, i.e., all regions that appear in it are live
(their region counts and those of all their ancestors are positive). This is enforced by γ′′ =
live(γ′) in rule ESJ .

− For parallel application, the thread output effect must be empty. In other words, every thread is
obliged to deallocate all its regions and release the locks that it holds.

− Regions with pure capabilities cannot appear more than once in a function’s input or output
effect. In other words, region aliasing is only allowed with impure capabilities. This is enforced
by ok(γ1; γ2) in rule ESJ .

− Capability and effect splitting is not symmetric. In ξ ` κ = κ1 ⊕ κ2, capability κ1 goes to
the function being called and capability κ2 is what “stays behind” (the same is true for effects).
Under this light, the rule CS ensures three things:

– Capabilities that stay behind are of the same purity as the original ones. This implies that
capabilities do not change purity as a result of splitting and joining.

– If a pure capability is passed to a function, nothing stays behind.
– If an impure capability is passed to a spawned thread, the lock count must be zero.

It is interesting to notice that the pure capability (2, 1) can be split as (1, 0)⊕ (1, 1), but not as
(1, 1)⊕ (1, 0). In the case of parallel application, it cannot be split as (1, 1)⊕ (1, 0) either.

− In the effect that is passed to the called function, regions (and their parents) need not be identical
to those in the original effect. Rule ES-C only requires that r ' r′ (and π ' π′), which means
that equality is checked after erasing the region tags that are introduced by the operational se-
mantics (i.e., replacing ı@n with ı). This requirement is only important for the proof of type
safety.

The typing rules for references are standard. In Figure 2.6 we only show the rules for dereference
(T-D) and reference allocation (T-NR). The former checks that region r is accessible. The latter only
checks that the region r is live. Notice that effect typing is left-to-right, which is consistent with the
left-to-right evaluation in the operational semantics. The output effect of the rightmost sub-expression
of each construct is always (except for rule T-NG) used for checking the liveness and accessibility
invariants. The rule for creating new regions (T-NG) checks that e1 is a handle for some live region
r′. Expression e2 is type checked in an extended typing context (i.e., ρ and x : rgn(ρ) are appended
to∆ and Γ respectively) and an extended input effect (i.e., a new effect is appended to the input effect
such that the new region is live and accessible to this thread). The rule also checks that the type and
the output effect of e2 do not contain any occurrence of region variable ρ. This implies that ρ must be
consumed by the end of the scope of e2. The capability manipulation rule (T-CP) checks that e is a

33



handle of a live region r. It then modifies the capability count of r as dictated by function [[η]], which
increases or decreases the region or the lock count of its argument, according to the value of η. The
dynamic semantics ensures that an operational step is performed if the updated hierarchy preserves the
invariant that protected regions are accessible to a single thread at instance of time. For instance, if the
lock of region r is held by some other executing thread, the evaluation of caplk+ must be suspended
until the lock can be obtained. On the other hand, the evaluation of caprg− does not need to suspend
but may not be able to physically deallocate a region, as it may be used by other threads.

2.6 Type Safety

In this section we discuss the fundamental theorems that prove type safety of our language.5 The
type safety formulation is based on proving the preservation and progress lemmata. Informally, a
program written in our language is safe when for each thread of execution an evaluation step can
be performed or that thread is waiting for a lock (blocked). As discussed in Section 2.4, a thread
may become stuck when it accesses a region that is not live or accessible (these are obviously the
interesting cases in our concurrent setting; of course a thread may become stuck when it performs a
non well-typed operation). Deadlocked threads are not considered to be stuck.

Definition 1 (Thread Typing) Let T be a collection of threads. Let R;M ; δ be a global typing con-
text. For each thread n : e in T , we take δ(n) to be the input effect that corresponds to the evaluation
of expression e. The following rules define well-typed threads.

pops(σ : e) =



pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ (e1 e2)
ξ ∧ e1 6= v

pops(σ : e2) ∧ pops(∅; ∅ : v) if e ≡ (v e2)
ξ

pops(σ : e1) if e ≡ (e1) [v]
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ newrgnr ρ, x@ e1 in e2
pops(σ : e1) if e ≡ capr

′
η e1

pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ new v @ e1
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ new e1 @ e2 ∧ e1 6= v
pops(σ : e1) if e ≡ deref e1
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ e1 := e2 ∧ e1 6= v
pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ v := e1
pops(σ′ : e1) if e ≡ popγr e1 ∧ σ = ∅; γr + σ′

σ ≡ ∅; γ ∧ pops(∅; ∅ : e′) if e ≡ λx. e′ as τ
σ ≡ ∅; γ ∧ pops(∅; ∅ : f) if e ≡ Λρ. f
σ ≡ ∅; γ if e ∈ {loc`, rgnı, ()}

R;M ; ∅ ` ∅

R;M ; ∅; ∅ ` e : 〈〉& (γ;∅)
R;M ; δ′ ` T ∀(n′ : e′) ∈ T.n′ 6= n
δ = δ′, n 7→ σ; γ pops(σ; γ : e)

R;M ; δ ` T, n : e

Definition 2 (Store Typing) A store S is well-typed with respect to R;M (we denote this by
R;M ` S) when the following conditions are met:

− the set of region names in S is equal to R,

− the set of locations inM is equal to the set of locations in S, and

− each stored value S(ı)(`) is closed and has type M(`) with empty effects, i.e., R;M ; ∅; ∅ `
S(ı)(`) :M(`)& (∅;∅).

5 Full proofs and a full formalization of our language are given in the Appendix A.

34



R = {ı | (ı 7→ H) ∈ S}
R ` S∪

(ı7→H)∈S{` | (` 7→ v) ∈ H} = {` | (` 7→ (τ, )) ∈M}
M ` S

M ` S R ` S
∀(` 7→ (τ, ı)) ∈M.R;M ; ∅; ∅ ` S(ı)(`) : τ & (∅;∅)

R;M ` S

Definition 3 (Configuration Typing) A configuration δ;S;T is well-typed with respect to R;M
(we denote this by R;M ` δ;S;T ) when the collection of threads T is well-typed with respect to
R;M , the store S is well-typed with respect to R;M and the global hierarchy δ is consistent and
well-typed with respect to R.

∀(n 7→ σ) ∈ δ.∀γ ∈ σ.∀(rκ. π) ∈ γ.
r̄ ∈ R ∧ (π = r′ ⇒ r̄′ ∈ R)

R ` δ
` δ R;M ` S R ` δ

R;M ` δ;S

R;M ; δ ` T R;M ` δ;S
R;M ` δ;S;T

Definition 4 (Not stuck) A configuration S;T is not stuck when each thread in T can take one of
the evaluation steps in Figure 2.3 (E-S, E-T or E-SN) or it is waiting for a lock held by some other
thread. Deadlocked threads are not considered to be stuck.

nolock(δ, n, e) ≡ e = E[capr+lk
rgnj] ∧ ∃δ′′, π, κ, κ′. δ = δ′′, n 7→ σ; γ, rκ. π∧

κ′ = [[lk+]] (κ) ∧ ¬ ` δ′′, n 7→ σ; γ, rκ
′
. π

∀(n : e) ∈ T. (δ;S;T  δ;S′;T ′ ∧ (n : e) /∈ T ′) ∨ nolock(δ, n, e)
` δ;S;T

Given these definitions, we can now present the main results of this paper. The progress and
preservation lemmata are first formalized at the program level, i.e., for all concurrently executed
threads.

Lemma 2.1 (Progress — Program) Let S;T be a closed well-typed configuration with R;M `
δ;S;T , then S;T is not stuck (` S;T ).

Lemma 2.2 (Preservation — Program) Let δ;S;T be a well-typed configuration with R;M `
δ;S;T . If the operational semantics takes a step δ;S;T  δ′;S′;T ′, then there exist R′ ⊇ R and
M ′ ⊇M such that the resulting configuration is well-typed with R′;M ′ ` δ′;S′;T ′.

Type safety is based on proving the preservation and progress lemmata.6 The type safety theorem
can be formulated as follows:

Theorem 2.1 (Type safety) LetT0 be the program’s initial thread list, containing only the main thread
with identifier 1. Let δ0 and S0 be the program’s initial hierarchy and region list, such that there is only
the heap region ıH , with capability (1, 0) for thread 1. If the operational semantics takes any number
of steps δ0;S0;T0  ∗ δ;S;T , then the resulting configuration δ;S;T is not stuck.

6 Full proofs and a full formalization of our language are given in Appendix A.

35





Chapter 3

Inference for region hierarchies with reader-writer locks

3.1 Overview

This chapter combines ideas and material which we presented in the previous chapter, but at the
same time it significantly extends this work. In particular, the language presented in the previous
chapter is quite complicated and has several drawbacks: it requires explicit effect annotations, thereby
restricting aliasing and requiring manual effort from the programmer. For instance, when aliasing
occurs it may be necessary to manually create new capabilities, which entails a run-time overhead
and makes programming less intuitive. Additionally, explicit count annotations as well as information
about the “parent-of” relation limit polymorphism and result in code duplication.

In this chapter, we lift all these limitations. The type and effect system we will develop requires
annotations only at thread creation points (i.e., at uses of the spawn operator) and all the remaining
annotations are automatically inferred and checked by the analysis. Moreover, there are no annota-
tions regarding region aliasing state (i.e., aliased and non-aliased regions). We also extend the formal
language with permissions for read-only accesses to hierarchies. Such a feature is useful and increases
concurrency when threads share regions without modifying them. Of course, a region can alternate
between read-only and read/write or “no-access” states during its lifetime in a safe manner. The type
system ensures this.

In short, the main features of the type system we present and the contributions of this chapter are
as follows:

Hierarchical regions and reader/writer locks. We develop a region-polymorphic lambda calculus,
where regions are organized in a hierarchy and are protected with reader/writer locks. When a read-
er/writer lock of a region is acquired, then its subregions atomically inherit the same access rights. In
addition, read/write-protected hierarchies can migrate or be shared with new threads.

Effect inference. Functions need not be annotated with explicit effects and the system permits a
higher degree of polymorphism as there are no explicit capabilities.

Formalisms and soundness. We provide an operational semantics for the proposed language and
a static semantics that guarantees absence of memory violations and freedom from data races. In
addition, we state safety theorems and provide proofs for the soundness of the core language. The
operational semantics presented in Section 3.4 has been greatly simplified compared to the operational
semantics of Section 2.4. For instance, the thread-local stack of hierachies (σ) has been simplified to
a single hierarchy. In contrast with the semantics of Section 2.4, types can be erased and have no run-
time significance. The language run-time system and compiler, which are implemented after the formal
semantics, also benefit from these simplifications as there is less run-time overhead at function/spawn
call and return points.

The next section presents the main features of our language by example. We then provide a de-
scription of the formal language, its operational semantics and static semantics, followed by a section
where the main theorems that guarantee the absence of memory violations and data races from well-
typed programs are stated and proved. The chapter ends with some concluding remarks.

37



3.2 Language features through examples

In this section, we present the main features of our language through examples. We try to avoid
technical issues as much as possible (the details will be made clear in Section 3.3); however, some
characteristics of the type and effect system are revealed in this section and their presence is justified.

Example 3.1 (Simple region usage) Our first example shows a typical use of regions and is identical
to Example 2.1.

region<ρ> h@ H; // Live ρH
let z = rnew(h) 42; // Live ρH , Live ρ

. . .
∗z = ∗ z + 5 ; // Live ρH , Live ρ, R ρ, W ρ,
. . .
rfree(h); // Live ρH , Live ρ, R ρ, W ρ, Cap {ρ 7→ (−1, 0, 0)}
. . .

The comments on the right-hand side of the example’s code show the current effect. An effect is an
order of actions that abstract program behavior at each program point. The effect at each program
point is a prefix of the effect of the succeeding program points. Therefore, we employ a causal type
and effect system to achieve absence of memory violations and data races.

Once region ρ is created, the constraint Live ρH is appended to the effect; this means that the
parent region of ρ, the heap region ρH , must be live at this program point. The reference allocation
operation appends a new constraint to the effect, namely Live ρ, which requires that ρ is live, but
not necessarily accessible (i.e., protected by some lock). Both the region and reference allocation
constructs enable a higher degree of concurrency as threads need not acquire exclusive access to a
region to allocate some data within it.

The next command reads the value of the cell pointed by z, adds the value five to it and stores
the result back to the cell. The constraints generated for the read and write operation are R ρ and W ρ
respectively. Constraint R ρ requires that region ρ is at least read-protected by some lock, whereas
the second constraint W ρ requires that this thread has exclusive access to ρ. At each program point,
region ρ is associated with three counters represented as a three-element vector, representing its ref-
erence count, write lock count and read lock count. The constraint generated for the rfree operator is
Cap {ρ 7→ (−1, 0, 0))}, which states that the static counts of ρ should be incremented by (−1, 0, 0).

When the entire effect for ρ is gathered, then two actions are performed:

− The first action validates each constraint of the effect against the initial count (1, 1, 0) (i.e., ρ
is initially live and this thread has exclusive/direct access to ρ, that is, ρ is thread-local). Once
effect validation is completed, the resulting count must be of the form (0, n1, n2), otherwise ρ
may have been deallocated implicitly by deallocating some of its ancestors. In the latter case,
the constraint ¬Live ρH is added, which requires that at least one of the ancestors of ρ starting
from its parent ρH is not live.

E.g., given the effect Live ρH , Live ρ, R ρ, W ρ, Cap {ρ 7→ (−1, 0, 0)} and the initial count of
(1, 1, 0) for ρ it is easy to see that all constraints regarding ρ are satisfiable and the resulting
count of ρ is (0, 1, 0), therefore the region has been deallocated.

− The second action simplifies the current effect by removing satisfiable constraints regarding
ρ and by translating unsatisfiable constraints to constraints regarding the ancestors of ρ. For
instance, if W ρ is unsatisfiable, then it is translated to W ρH . This implies that if ρ is not write-
protected, then at least one of its ancestors must be write-protected.

Once both actions are completed the resulting effect is Live ρH .

38



In the examples that follow, we simplify the presentation of effects by showing the region counts
at each step (e.g., ρ1,1,0) as opposed to showing the entire effect. The construction of richer region
hierarchies and bulk region deallocation occur in the same manner as in Examples 2.2 and 2.3 respec-
tively.

Example 3.2 (Region migration) The following code illustrates region migration and is identical to
Example 2.4 except for the the spawn operator, which is also passed the tuple (h, 1, 1, 0) denoting that
thread output steals (1, 1, 0) counts from the server thread. Therefore, the counts for ρ in the server
thread once spawn is executed are (0, 0, 0), which implies that ρ is no longer accessible. In the output
thread, ρ is directly accessible and no further lock operations are required.

void server ()
while (true)

region<ρ> h@ H ; // ρ1,1,0

let z = wait data(h) ;
process(z); // ρ1,1,0

spawn (h, 1, 1, 0) output(h, z);
. . . // ρ0,0,0

// ρ cannot be accessed here!

Example 3.3 (Region sharing) The following code illustrates region sharing and is identical to Ex-
ample 2.4 except for the explicit annotation at the spawn operation and wr lock/wr unlock, which
are equivalent to lock/unlock operations of the previous chapter. Thread output steals (1, 1, 0), thus
the counts remaining for ρ in the server thread are (1, 0, 0). Therefore region ρ is now shared between
the two threads.

void server ()
while (true)

region<ρ> h@ H ; // ρ1,1,0

let z = wait data(h) ;
share(h); // ρ2,1,0

spawn(h, 1, 1, 0) output(h, z); // ρ1,0,0

wr lock(h); // ρ1,1,0

process(z);
wr unlock(h); // ρ1,0,0

. . .

Example 3.4 (Region and lock sharing) In the previous example, region ρwas shared between two
threads, but each of them had to acquire exclusive access to ρ. This approach limits the degree of
concurrency, especially in the case where functions process and output do not modify the contents
of ρ. Here, we extend the previous example so that both threads have simultaneous access to ρ.

void server ()
while (true)

region<ρ> h@ H ; // ρ1,1,0

let z = wait data(h) ;
share(h); // ρ2,1,0

wr unlock(h); // ρ2,0,0

rd lock(h); // ρ2,0,1

rd lock(h); // ρ2,0,2

spawn(h, 1, 0, 1) output(h, z); // ρ1,0,1

process(z);
. . .

39



Operator share increases the region count, whereas the following three instructions release the write
access permission to ρ and acquire two read access permissions to ρ. Consequently, the original count
for ρ, namely (1, 1, 0) is transformed to (2, 0, 2). Thread output steals (1, 0, 1), thus the counts re-
maining for ρ in the server thread are (1, 0, 1). Region ρ is now shared between the two threads and
both threads can concurrently read (only) the contents of ρ.

Example 3.5 (Hierarchical locking) The following code illustrates region sharing and is identical to
Example 2.6 except for wr lock/wr unlock, which are equivalent to lock/unlock operations of the
previous chapter.

wr lock(h); // the handle of a common ancestor of ρ1 and ρ2
let obj = hash remove<ρ1>(tbl1, key);

hash insert<ρ2>(tbl2, key, obj);
wr unlock(h);

Example 3.6 (Reentrant locks) Similarly to Example 2.8, this example shows that region aliasing
introduces the need for reentrant locks in our language.

// ρ1 and ρ2 are unlocked
void swap<ρ1, ρ2>(region<ρ1> h1, region<ρ2> h2, int ∗ ρ1 x, int ∗ ρ2 y)

wr lock(h1);
let z = ∗x ; // OK: ρ1 is locked

wr lock(h2);
∗x = ∗y; // OK: ρ1 and ρ2 are locked
wr unlock(h1);
∗y = z; // OK: ρ2 is locked
wr unlock(h2); // all locks can be released

. . .
swap<ρ, ρ>(h, h, a, b);

Example 3.7 (Unsound sharing) In the code that follows, region ρ is shared with a new thread that
accesses the contents of ρ, namely reference z. Region ρ is accessible in both the main and the new
thread (the one executing function f).

region<ρ> h@ H ; // ρ1,1,0

let z = rnew(h) 42; // ρ1,1,0

share(h); // ρ2,1,0

wr lock(h); // ρ2,2,0

spawn (h, 1, 1, 0) f(h, z); // ρ1,1,0

∗z = 17; // possible data race!

This program code will be rejected by our type system as spawnmust consume either none or all write
locks of ρ.

Example 3.8 (Unsound aliasing) In the previous example the data race bug was exposed in the main
thread. However, data races may be introduced in nested function calls as a result of region aliasing.
Consider function bar, which accepts a region handle h to region ρ1, and two integer references (x
and y) in regions ρ1 and ρ2, which are both locked.

void bar<ρ1, ρ2>(region<ρ1> h, int ∗ρ1 x, int ∗ρ2 y) // ρ1
1,1,0, ρ2

1,1,0

spawn (h, 1, 1, 0) f(x); // ρ2
1,1,0

∗y = 17; // ρ2
1,1,0

40



The region counts calculated by the type system are shown on the right-hand side. As shown in the
code below, if bar is invoked with the same reference z, a data race may occur since both main and
the new thread will have access to ρ.

region<ρ> h@ H; // ρ1,1,0

let z = rnew(h) 42; // ρ1,1,0

share(h); // ρ2,1,0

wr lock(h); // ρ2,2,0

bar<ρ, ρ>(h, z, z); // possible data race!

As mentioned in Example 3.1, the type system gathers the effect corresponding to the scope of a
new region construct and then performs effect translation/validation. When type checking a function
call, the formal regions of the function effect are substituted for the actual regions that instantiate the
function. However, no checking is performed at the function call site. Therefore, region substitution
and the deferred effect validation reduce invalid programs resulting from region aliasing to invalid
programs resulting from invalid lock usage. As in the previous example, the type system will reject
the above program as some but not all locks of ρ are passed to the new thread.

Example 3.9 (Negative constraints) As explained in Example 3.7, programs that grant region access
to more than thread are susceptible to data races and are rejected by our type system. A region can
also be protected by its own lock or the locks of its ancestors. Here we illustrate a program that is
susceptible to data races as a result of hierarchical locking.

region<ρ1> h1 @ H; // ρ1
1,1,0

region<ρ2> h2 @ h2; // ρ1
1,1,0, ρ2

1,1,0

let z = rnew(h2) 42; // ρ1
1,1,0, ρ2

1,1,0

share(h1); // ρ1
2,1,0, ρ2

1,1,0

share(h2); // ρ1
2,1,0, ρ2

2,1,0

spawn {(h1, 1, 1, 0) (h2, 1, 0, 0)} f(x); // ρ1
1,0,0, ρ2

1,1,0

∗z = 17; // possible data race!

The main thread allocates a new region ρ1 in the heap region and another region ρ2 in region ρ1. It
then shares ρ1 and ρ2, by invoking the operation share on ρ1 and ρ2 respectively, and spawns a new
thread f that has the lock for ρ1 but not ρ2. The main thread retains the lock for region ρ2.

Due to the hierarchical relation of ρ1 and ρ2, the latter region is accessible in the new thread.
Therefore, this program is susceptible to data races. The type system rejects such programs by intro-
ducing negative constraints. In particular, ¬RW ρ1 is added in the effect of the new thread as its child
region ρ2 is accessible in the main thread. This constraint implies that neither ρ1 nor its ancestors must
be initially accessible in the new thread. Of course, this constraint is unsatisfiable and the program is
rejected.

3.3 Formal language

The language syntax is illustrated in Figure 3.1. The core language includes variables (x), con-
stants (true, false and () — the unit value), functions (f ), function application (e1 e2), and con-
ditional expressions (if e then e1 else e2). Functions can be monomorphic (λx. e), region poly-
morphic (Λρ. f ) where ρ is a region variable, and recursive (fix x. f ). The application of region
polymorphic functions is explicit (e [r]) where r is a metavariable ranging over region variables ρ and
region constants ı. We assume the existence of a special region constant denoted by ⊥, which corre-
sponds to the whole memory that is available to the program. This region cannot be manipulated (e.g.,
locked, released, etc.) by the program and only serves as the root of the region hierarchy.

The construct newrgn ρ, x@ e1 in e2 allocates a fresh region ρ, residing inside the region indicated
by handle e1, and binds x to the handle of ρ. Both ρ and x are lexically bound to the scope of e2 and

41



Expression e ::= x | f | () | true | false | e e | e [r] | if e then e else e
| newrgn ρ, x@ e in e | new e@ e | e := e | deref e | capη e
| spawnξ e | loc` | rgnı

Function f ::= λx. e | Λρ. f | fix x. f
Value v ::= f | () | true | false | loc` | rgnı
Region r ::= ρ | ı
Count vector η ::= (n, n, n)

Spawn effect ξ ::= ∅ | ξ, r 7→ η

Figure 3.1: Syntax.

the new region must be explicitly released within e2. Each region is associated with a count vector η,
consisting of three natural numbers (n1, n2, n3):

− the reference count (n1), which tells us whether the region is live in the current thread;

− the write lock count (n2), which provides exclusive access to the region and tells us whether the
current thread can assign values to locations in it; and

− the read lock count (n3), which provides non-exclusive access to the region and tells us whether
the current thread can read values from locations in it.

We use counts (natural numbers) instead of boolean values to support re-entrant locks and region
aliasing, as explained in Section 3.2. Notice that the write lock (n2) takes priority over the read lock
(n3): if n2 > 0 then a thread has exclusive access to a region and is capable of writing and reading,
otherwise if n3 > 0 then a thread has non-exclusive access to a region and is only capable of reading,
otherwise (if n2 = n3 = 0) a thread has no access to a region, i.e., it cannot write nor read. When first
allocated, a region starts with (1, 1, 0), meaning that it is live and exclusively locked by the current
thread, so that it can be accessed directly with no additional overhead. This is our equivalent of a
thread-local region.

The constructs for manipulating references are standard. A new memory cell is allocated by
new e1 @ e2, where e1 is an initializer expression for the new cell’s contents and e2 is a handle
indicating the region in which the new cell will be allocated; the result is a reference to the newly
allocated cell. Standard assignment (e1 := e2) and dereference (deref e) complete the picture. As
we explained, capability counts determine the validity of operations on regions and references. All
memory-related operations require that the involved regions are live. Assignment can be performed
only when the corresponding region is live and write-protected, whereas dereference can be performed
when the region is live and at least read-protected.

The construct capη e formalizes the concept of incrementing or decrementing the counts for a
region (i.e., acquiring or releasing capabilities). It is the formal counterpart of the constructs with the
more descriptive names share, rw lock, etc., that were used in Section 3.2. It requires a region handle
e and a three-element vector η that denotes the relative counts to be added to the current counts of
that region. In this vector η, a count is allowed to be negative, meaning that the current count is to be
decreased. Incrementing a lock count (n2 or n3) from zero to a positive value amounts to acquiring
a region lock and may have to block the current thread, if the lock is held by another thread. On the
other hand, decrementing lock counts never blocks the current thread. Decrementing a region count
(n1) from a positive value to zero amounts to releasing the region; it may cause the region’s contents
(including any subregions residing in it) to be deallocated.

New threads can be created with the spawnξ e construct, which starts evaluating expression e in
parallel with the remaining computation in the current thread. It is annotated with a spawn effect ξ,
which contains the list of regions that will be passed to the new thread and the exact counts that will

42



Hierarchy θ ::= ∅ | θ, ı 7→ (η, ı)

Heap H ::= ∅ | H, ` 7→ v

Store S ::= ∅ | S, ı 7→ H

Threads T ::= ∅ | T, 〈θ; e〉
ConfigurationC ::= S;T

Stack E ::= � | E[F ]

Frame F ::= � e | v � | � [r] | if � then e else e | newrgn ρ, x@ � in e
| new �@ e | new v @ � | � := e | v := � | deref � | capη �

Figure 3.2: Auxiliary syntax for operational semantics.

be consumed. To sum up, the counts of a region can be altered either by using the cap construct, or
by transferring some to a newly spawned thread.

The two remaining constructs rgnı and loc` correspond to explicit region and location handles (the
metavariables ı and ` range over region and location constants, respectively). They are not considered
part of the source language, except for the special case rgn⊥ which is the handle of the total memory
and can be used to create new regions therein. With this exception, both constructs must not be used
in the source program: they are only introduced during program evaluation, as discussed further in
Section 3.4.

3.4 Operational semantics

We define a small-step operational semantics for our language in Figures 3.2 and 3.3. The thread
evaluation relationC  C ′ transforms configurations. A configurationC consists of an abstract store
S and a thread list T .1 A store S maps region identifiers (ı) to heaps (H), which in turn map memory
locations to values. Each thread in T is a pair containing a thread-local region hierarchy θ and an
expression e to be evaluated. The hierarchy θ is a map indexed by region identifiers; for each region,
this map gives us its count vector η (as known by some specific thread) and its parent region. A frameF
is an expression with a hole, represented as�. The hole indicates the position where the next reduction
step can take place. Our notion of thread evaluation context is defined as a stack of nested frames
E, imposing a call-by-value evaluation strategy to our language. Subexpressions are evaluated in a
left-to-right order. We assume that concurrent reduction events can be totally ordered [Lamp79]. Our
evaluation rules are non-deterministic: the order in which different threads evaluate their expressions
is not specified.

Threads that have been reduced to unit values are removed from the active thread list, as long as
they have released all regions used by them (rule E-T). This is established by the premise live(θ) =
∅. Function live returns the set of all regions in θ that are live, i.e., their reference count as well as
those of all their ancestors are positive. The formal definition of function live is given in Figure 3.4,
together with the definitions of other auxiliary functions and predicates that are used in the operational
semantics.

When a spawn redex is detected within a thread evaluation context, a new thread is created (rule
E-SP). The redex is replaced with a unit value in the currently executed thread and a new thread is
created to evaluate the given expression. The premise merge(ξ) ` θ = θ′ ⊕ θ′′ splits the hierarchy
of the current thread θ into θ′ and θ′′, corresponding to the hierarchy that will remain in the current
thread and the hierarchy that will be passed to the new thread, respectively. The annotation ξ drives
the splitting process by defining the counts that should be passed to the new thread. Function merge

1 The order of elements in comma-separated lists, e.g. in a store S or in a list of threads T , is unimportant; we consider
all list permutations as equivalent.

43



live(θ) = ∅
S;T, 〈θ; ()〉  S;T

(E-T)

merge(ξ) ` θ = θ′ ⊕ θ′′ dom(θ′′) ⊆ live(θ)
S;T, 〈θ;E[spawnξ e]〉  S;T, 〈θ′;E[()]〉, 〈θ′′;�[e]〉

(E-SP)

f ≡ λx. e

S;T, 〈θ;E[f v]〉  S;T, 〈θ;E[e[v/x]]〉
(E-A)

f ≡ Λρ. f ′

S;T, 〈θ;E[f [ı]]〉  S;T, 〈θ;E[f ′[ı/ρ]]〉
(E-RP)

f ≡ fix x. f ′

S;T, 〈θ;E[f v]〉  S;T, 〈θ;E[f ′[f/x] v]〉
(E-FX)

S;T, 〈θ;E[if true then e1 else e2]〉  S;T, 〈θ;E[e1]〉
(E-IT)

S;T, 〈θ;E[if false then e1 else e2]〉  S;T, 〈θ;E[e2]〉
(E-IF)

 ∈ live(θ) ∪ {⊥} fresh ı θ′ = θ, ı 7→ ((1, 1, 0), )

S;T, 〈θ;E[newrgn ρ, x@ rgn in e]〉  S, ı 7→ ∅;T, 〈θ′;E[e[ı/ρ][rgnı/x]]〉
(E-NR)

ı ∈ live(θ) fresh `
S;T, 〈θ;E[new v @ rgnı]〉  S[ı 7→ S(ı), ` 7→ v];T, 〈θ;E[loc`]〉

(E-NL)

` 7→ v′ ∈ S(ı) ı ∈ wlocked(θ) ı /∈ rwlocked(T )
S;T, 〈θ;E[loc` := v]〉  S[ı 7→ S(ı)[` 7→ v]];T, 〈θ;E[()]〉

(E-AS)

` 7→ v ∈ S(ı) ı ∈ rwlocked(θ) ı /∈ wlocked(T )
S;T, 〈θ;E[deref loc`]〉  S;T, 〈θ;E[v]〉

(E-D)

ı ∈ live(θ) θ′ = θ, ı 7→ (η + η′, ) mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T})
S;T, 〈θ, ı 7→ (η, );E[capη′ rgnı]〉  S;T, 〈θ′;E[()]〉

(E-CP)

Figure 3.3: Evaluation relation C  C ′.

takes care of region aliasing, by merging the counts of entries in ξ that correspond to the same region.
On the other hand, the premise dom(θ′′) ⊆ live(θ) ensures that all regions passed to the new thread
are live.

The rules for evaluating the application of monomorphic functions (E-A), polymorphic functions
(E-RP) and recursive functions (E-FX ) are standard, as well as the rules for evaluating conditionals
(E-IT and E-IF).

Rule E-NR requires that the parent region  is live or has the value ⊥. The rule adds a fresh and
empty region ı to the store S and associates it with the pair, ((1, 1, 0), ) in the local hierarchy θ.
Therefore, the new region is initially live and the current thread has exclusive access to it. Rule E-NL
requires that region ı is live in θ and updates the heap of ı with a fresh location ` mapping to value v.
Notice, that ı need not be protected.

Rule E-AS requires that location ` exists in some region ı of the global store S and requires that ı
is exclusively owned by the current thread. This is established by ı ∈ wlocked(θ) and ı /∈ rwlocked(T ).
Function wlocked returns the set of live regions that can be write-accessed by the current thread,
whereas function rwlocked returns the set of live regions that can be read or written by the remain-
ing threads in T . If the current thread has no write-access to ı or any other thread has read or write
access to ı, then the evaluation will get stuck.

44



merge(∅) = ∅
merge(ξ, r 7→ η) = merge(ξ), r 7→ η if r 6∈ {r′ | r′ 7→ η′ ∈ ξ}
merge(ξ, r 7→ η, r 7→ η′) = merge(ξ, r 7→ (η + η′))

ok(n1, n2, n3) = n1 ≥ 0 ∧ n2 ≥ 0 ∧ n3 ≥ 0

(c1, w1, z1)⊕ (c2, w2, z2) = (c1 + c2, w1 + w2, z1 + z2) if ok(c1, w1, z1) ∧ ok(c2, w2, z2) ∧
(w1 = 0∨w2 = 0)∧ (c2 > 0)∧
(c1 = 0 =⇒ w1 = z1 = 0) ∧
(w1 > 0 =⇒ z2 = 0) ∧
(w2 > 0 =⇒ z1 = 0)

ancestors(θ,⊥) = ∅
ancestors(θ, ı) = {ı} ∪ ancestors(θ′, ) if θ = θ′, ı 7→ (η, )

ok(θ) = ∀ı 7→ (η, ) ∈ θ. ok(η) ∧ ancestors(θ, ı) defined

live(θ) = {ı | ∀ ∈ ancestors(θ, ı). ∃ 7→ (η, ′) ∈ θ. ok(η − (1, 0, 0))}

wlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ.  ∈ ancestors(θ, ı) ∧ ok(η − (0, 1, 0))}
rlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ.  ∈ ancestors(θ, ı) ∧ ok(η − (0, 0, 1))}
rwlocked(θ) = rlocked(θ) ∪ wlocked(θ)

wlocked(T ) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ wlocked(θ)}
rwlocked(T ) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ rwlocked(θ)}

mutex({θ1, . . . , θn}) = ∀ı 6= . rwlocked(θı) ∩ wlocked(θ) = wlocked(θı) ∩ rwlocked(θ) = ∅

hierarchy ok(θ1; θ2) = ∀ı 7→ (η, ) ∈ θ1. ∃ ı 7→ (η′, ′) ∈ θ2. ( = ′ ∨ ( = ⊥ ∧ ′ /∈ dom(θ1)))

∅ ` θ = θ ⊕ ∅

η = η1 ⊕ η2 ξ ` θ = θ1 ⊕ θ2
∀ı′ ∈ dom(ξ). ı /∈ ancestors(θ, ı′) ′ = if  ∈ dom(ξ) then  else ⊥

ξ, ı 7→ η2 ` θ, ı 7→ (η, ) = θ1, ı 7→ (η1, )⊕ θ2, ı 7→ (η2, 
′)

∅ − ∅ = ∅
η1 ≥ η2 θ1 − θ2 = θ′

θ1, r 7→ η1 − θ2 7→ η2 = θ′, r 7→ η1 − η2

Figure 3.4: Auxiliary functions and predicates.

In contrast to the rule for assignment, rule E-D is more permissive as it admits simultaneous read-
only access to region ı by more than one threads. It requires that the current thread has (possibly)
non-exclusive access to region ı and that no other thread in T has exclusive access to it. Evaluation
will get stuck if any of these two are violated.

Consequently, memory cells can be accessed only when there is an appropriate level of protection
by the current thread and other threads do not violate mutual exclusion for write-locks. Our type safety
results (see Section 3.7) guarantee that no thread can get stuck by violating mutual exclusion.

Rule E-CP requires that region ı is live in θ and adds the relative count vector η′ to the current
vector η for ı. It is possible that the resulting hierarchy θ′ does not preserve mutual exclusion with
respect to the other hierarchies in T . For instance, suppose that ı is exclusively locked by some other
thread in T and that the current thread tries to acquire a lock by incrementing its lock count. In this
case, the current thread should block until the lock is released by the other thread. This is established
by the premise mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T}), which requires that the mutual exclusion invariant
holds between all threads once θ is modified to θ′.

45



Type τ ::= unit | bool | τ γ−→ τ | ∀ρ. τ | Ref(τ, r) | Rgn(r)
Constraint δ ::= R | W | ¬RW | ¬W | Live | ¬Live
Event ζ ::= Cap ξ | δ r | Spawn ξ γ | Join γ γ
Effect γ ::= ∅ | ζ :: γ

Type context � ::= ∅ | Γ, x : τ

Region context � ::= ∅ | ∆, ρ
Heap context M ::= ∅ | M, ` 7→ (τ, ı)

Store context R ::= ∅ | R, ı

Figure 3.5: Syntax for types, effects and contexts.

3.5 Static semantics

We now present the type and effect system that we use to enforce memory safety and race freedom.
The syntax of types and effects is given in Figure 3.5. Basic types consist of the unit type and the type
of boolean values. Monomorphic function types (τ γ−→ τ ) are annotated with the function’s effect
γ; effects are the most important aspect of this system and will be explained in detail in the rest of
this section. Although this is not apparent in Figure 3.5, polymorphic types (∀ρ. τ ) are restricted to
functions. Region handle types Rgn(r) and reference types Ref(τ, r) are associated with a type-level
region r; the former is essentially a singleton type, the latter corresponds to the type of memory cells
that reside in region r and whose contents have type τ .

Effects (γ) are used to statically track region state and accesses. They are ordered sequences of
events (ζ) which correspond to behaviors that arise when evaluating expressions. Although in Fig-
ure 3.5 operator :: denotes the “cons” operation on effects, prepending an event to an effect, we will
often abuse notation and use :: as an associative operator for appending effects, with ∅ as a zero ele-
ment. We will also silently treat events as effects of length one.

There are four kinds of events. An event of the form Cap ξ roughly corresponds to the evaluation
of one or more capη r expressions: it means that for each r 7→ η in ξ, the count vector of region r
is incremented by η. On the other hand, an event of the form δ r is meant to impose a constraint δ
on region r. There are several types of constraints, requiring that a region is readable (R), writable
(W), not readable nor writable (¬RW), not writable (¬W), live (Live), and not live (¬Live). Events of
the form Cap ξ and δ r are commonly called atomic events. On the other hand, we have two kinds of
composite events. A spawn event Spawn ξ γ means that a new thread is spawned, where ξ denotes the
set of regions and corresponding count vectors that are passed to the new thread, and γ is the effect
of the new thread’s body. A conditional event Join γ1 γ2 means that control flow branches and the
effects of the two alternatives are γ1 and γ2.2

The typing relation, is denoted by R;M ;∆; Γ ` e : τ & γ which means that expression e has
type τ and produces effect γ. It is defined in Figure 3.6 and uses four typing contexts (defined in
Figure 3.5 ): a set of region constants (R), a mapping of locations to types and regions (M ), a set
of region variables (∆), and a mapping of term variables to types (Γ). For brevity, we have omitted
from our presentation in this section the definitions of several judgements referring either to the well-
formedness of types, regions, etc., with respect to the typing contexts, or to the well formedness of the
typing contexts themselves.

The typing rules T-V , T-U , T-TR, T-FL, T-R, T-L, T-F, T-A, T-RF, and T-RP, are more or less
standard. Notice that the effects produced by values are always empty. The typing rule for function
abstraction (T-F) annotates the function’s type with the effect of the function’s body. Moreover, the
typing rule for function application (T-A) simply concatenates the effects of e1 and e2 (γ1 and γ2, re-

2 The “append” operator distributes over “join”. Semantically, the effects γ :: Join γ1 γ2 :: γ′ and
Join (γ :: γ1 :: γ′) (γ :: γ2 :: γ′) are equivalent.

46



x : τ ∈ Γ ` R;M ;∆; Γ

R;M ; ∆; Γ ` x : τ & ∅
(T-V)

` R;M ;∆; Γ

R;M ;∆; Γ ` () : unit& ∅
(T-U)

` R;M ;∆; Γ

R;M ; ∆; Γ ` true : bool& ∅
(T-TR)

` R;M ;∆; Γ

R;M ;∆; Γ ` false : bool& ∅
(T-FL)

ı ∈ R ∪ {⊥} ` R;M ;∆; Γ

R;M ;∆; Γ ` rgnı : Rgn(ı)& ∅
(T-R)

` 7→ (τ, ı) ∈M ` R;M ;∆; Γ

R;M ; ∆; Γ ` loc` : Ref(τ, ı)& ∅
(T-L)

R;M ;∆; Γ, x : τ1 ` e : τ2& γ
R;M ; ∆; Γ ` λx. e : τ1

γ−→ τ2& ∅
(T-F)

R;M ;∆; Γ ` e1 : τ1
γ−→ τ2& γ1 R;M ;∆; Γ ` e2 : τ1& γ2

R;M ;∆; Γ ` e1 e2 : τ2& γ1 :: γ2 :: γ
(T-A)

R;∆ ` Γ R;M ;∆, ρ; Γ ` f : τ & ∅
R;M ;∆; Γ ` Λρ. f : ∀ρ. τ & ∅

(T-RF)

R;M ;∆; Γ ` e : ∀ρ. τ & γ R;∆ ` r r 6= ⊥
R;M ;∆; Γ ` e [r] : τ [r/ρ]& γ

(T-RP)

R;M ;∆; Γ ` e : bool& γ R;M ; ∆; Γ ` e1 : τ & γ1 R;M ;∆; Γ ` e2 : τ & γ2
R;M ; ∆; Γ ` if e then e1 else e2 : τ & γ :: Join γ1 γ2

(T-IF)

R; ∆ ` ξ R;M ;∆; Γ ` e : unit& γ dom(ξ) = dom(γ)
R;M ;∆; Γ ` spawnξ e : unit& Spawn ξ γ

(T-SP)

γL = {Live r | r ∈ dom(φ(∅))} γs = summary(φ(γL))

R;M ;∆; Γ, x : τ1
γs−→ τ2 ` f : τ1

φ(γs)−→ τ2& ∅
R;M ;∆; Γ ` fix x. f : τ1

γs−→ τ2& ∅
(T-FX)

R;M ;∆; Γ ` e : Rgn(r)& γ r 6= ⊥
R;M ;∆; Γ ` capη e : unit& γ :: Cap {r 7→ η}

(T-CP)

R;M ;∆; Γ ` e1 : Ref(τ, r)& γ1 R;M ;∆; Γ ` e2 : τ & γ2 r 6= ⊥
R;M ;∆; Γ ` e1 := e2 : unit& γ1 :: γ2 :: W r

(T-AS)

R;M ;∆; Γ ` e : Ref(τ, r)& γ r 6= ⊥
R;M ;∆; Γ ` deref e : τ & γ :: R r

(T-D)

R;M ;∆; Γ ` e1 : τ & γ1 R;M ;∆; Γ ` e2 : Rgn(r)& γ2 r 6= ⊥
R;M ;∆; Γ ` new e1 @ e2 : Ref(τ, r)& γ1 :: γ2 :: Live r

(T-NL)

R;M ; ∆; Γ ` e1 : Rgn(r)& γ1 R;M ;∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ & γ2
R;∆ ` τ translate(γ2, ρ, (1, 1, 0), r) = γ′2
R;M ;∆; Γ ` newrgn ρ, x@ e1 in e2 : τ & γ1 :: Live r :: γ′2

(T-NR)

Figure 3.6: Typing rules.

47



spectively) and the effect of the function’s body (γ). This concatenation of effects is typical for several
more constructs: the effects produced by subexpressions are first concatenated in the same order in
which these subexpressions are evaluated (left to right), then (possibly) some effect that reflects the
construct’s behavior is appended. In the case of rule T-A, the additional effect is γ— the effect of the
function’s body. In the descriptions that follow, we will focus on the additional effects and ignore the
effects that are propagated from the subexpressions.

For conditional expressions, the type system records the effects of the two branches without unify-
ing them (rule T-IF), by adding the effect Join γ2 γ3 which represents the two possible paths that will
be executed at run-time. Similarly, the typing rule for thread creation (T-SP) adds the effect Spawn ξ γ
representing the spawn operation, where γ is the effect produced by the expression that will be eval-
uated in the new thread. Notice that the domains of ξ and γ should coincide: for all regions in the
effect of the new thread, the spawn construct should determine the exact count vectors that will be
passed from the current thread. Although, to simplify the type system, ξ is given as an annotation
of the spawn construct, an implementation will be able to infer most of it. Because of the premise
dom(ξ) = dom(γ), after type checking the spawned expression, the domain of ξ is found. In general,
it is not possible to infer unambiguously the lock counts of regions in ξ, however, it would be much
simpler for programmers if they only had to annotate the spawn construct with the locks that are passed
to the new thread.

If we ignore the effects on the function types, the rule for typing recursive functions (T-FX ) is the
standard one. However, in recursive functions it may be impossible to assign the recursive function
x the same effect as the function’s body f . Suppose that γs is the effect of the recursive function x.
Then, the effect of the function’s body may properly contain γs if there are recursive calls to x. In
fact, the effect of the function’s body is of the form φ(γs), where φ is a “compositional” function on
events, i.e., a function that can only use its parameter as a sub-effect of the result. Our type system
chooses an appropriate γs by using the function summary. We postpone the discussion on summaries
and the restrictions that we impose on recursive functions until Section 3.6.

The typing rule for the capability manipulation construct (T-CP) adds the effect Cap {r 7→ η},
representing change in the count vector of region r, whose handle is given by expression e and which
must not be the special region ⊥. Similarly, the typing rules for assignment and dereference (T-AS
and T-D) add an effect with a constraint of type W and R, respectively. The typing rule for reference
allocation (T-NL) is more relaxed, adding an effect with the constraint Live.

The most complicated typing rule is the one for creating new regions (T-NR). This is where the
actual effect checking takes place, based on the events and constraints that have been added by the
other rules. Assuming that e1 is a handle for the parent region r, expression e2 is type checked in an
extended typing context that contains ρ and x. The type τ of e2 should not mention ρ, i.e., the new
region cannot escape in the result of e2. The resulting effect contains the constraint that the parent
region must be live. Furthermore, it contains γ′2, a modified version of γ2 (the effect produced by e2)
which is computed with the partial function translate defined in Figure 3.7.

Function translate(γ, ρ, η, r) performs two tasks: (a) it validates the effect γ with respect to the
specific region ρ, which starts with a count vector η and whose parent is r; and (b) if validation
is successful, it produces a transformed effect in which all events mentioning ρ have either been
removed, or replaced by appropriate events mentioning r (the parent of ρ). Validation keeps track of
events modifying ρ’s vector count and checks that all constraints are satisfied. Moreover, it checks
that region ρ has been properly released at the end of effect γ. Transformation makes sure that ρ is not
mentioned in the resulting effect.

Let us see this process with two simple examples. First, consider the effect γ = Live ρ :: W ρ ::
Cap {ρ 7→ (0,−1, 0)} :: R ρ :: Cap {ρ 7→ (−1, 0, 0)} that could have been produced by the second
line in the following program segment, which is erroneous because it tries to dereference z after it it
has been unlocked:

region<ρ> h@ hr ;
let z = rnew(h) 42; ∗ z = 17; wr unlock(h); print(∗z); rfree(h)

48



rg(n1, n2, n3) = n1
wr(n1, n2, n3) = n2
rd(n1, n2, n3) = n3

bot(δ,⊥) = ∅ if δ 6∈ {R, W}
bot(δ, r) = δ r if r 6= ⊥

solve(R, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) > 0
solve(R, r, η) = bot(R, r) if ok(η − (1, 0, 0)) ∧ wr(η) + rd(η) = 0
solve(W, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) > 0
solve(W, r, η) = bot(W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(¬RW, r, η) = bot(¬RW, r) if ok(η − (1, 0, 0)) ∧ wr(η) = rd(η) = 0
solve(¬W, r, η) = bot(¬W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(Live, r, η) = bot(Live, r) if ok(η − (1, 0, 0))
solve(¬Live, r, η) = ∅ if ok(η) ∧ rg(η) = 0
solve(¬Live, r, η) = ¬Live r if ok(η − (1, 0, 0)) ∧ r 6= ⊥

p-constraint(r, η) = bot(¬RW, r) if wr(η) > 0
p-constraint(r, η) = bot(¬W, r) if wr(η) = 0 ∧ rd(η) > 0
p-constraint(r, η) = ∅ if wr(η) = rd(η) = 0

solve(¬Live, r′, η) = γ

translate(∅, r, η, r′) = γ
(TR-E)

r 6∈ dom(ξ) translate(γ, r, η, r′) = γ′

translate(Cap ξ :: γ, r, η, r′) = Cap ξ :: γ′
(TR-CN)

merge(ξ) = ξ′, r 7→ η′ γs = solve(Live, r′, η) :: Cap ξ′

translate(γ, r, η + η′, r′) = γ′ ok(η + η′)

translate(Cap ξ :: γ, r, η, r′) = γs :: γ
′ (TR-CT)

r1 6= r2 translate(γ, r2, η, r′) = γ′

translate(δ r1 :: γ, r2, η, r′) = δ r1 :: γ
′ (TR-DN)

solve(δ, r′, η) = γs translate(γ, r, η, r′) = γ′

translate(δ r :: γ, r, η, r′) = γs :: γ
′ (TR-DT)

translate(γ1 :: γ, r, η, r′) = γ′1 translate(γ2 :: γ, r, η, r′) = γ′2
translate(Join γ1 γ2 :: γ, r, η, r′) = Join γ′1 γ

′
2

(TR-J)

r 6∈ dom(ξ) translate(γ, r, η, r′) = γ′

translate(Spawn ξ γs :: γ, r, η, r′) = Spawn ξ γs :: γ
′ (TR-SN)

merge(ξ) = ξ′, r 7→ ηs η = ηr ⊕ ηs rs = if r′ ∈ dom(ξ) then r′ else ⊥
p-constraint(rs, ηr) = γ′s translate(γs, r, ηs, rs) = γ′′s

p-constraint(r′, ηs) = γ′r translate(γ, r, ηr, r′) = γ′′r γ0 = solve(Live, r′, η)
translate(Spawn ξ γs :: γ, r, η, r′) = γ0 :: Spawn ξ

′ (γ′s :: γ
′′
s ) :: γ

′
r :: γ

′′
r

(TR-ST)

Figure 3.7: Effect validation and transformation.

49



Starting with a count vector of η = (1, 1, 0), the validation phase for γ first checks that the constraint
Live ρ is satisfied and then checks that the constraint W ρ is satisfied. It then proceeds by decrementing
the write lock count by 1, thus obtaining a count vector of (1, 0, 0) for ρ. Subsequently, it checks if
the constraint R ρ is satisfied and finds that it is not, as ρ is now not protected for reading. It therefore
generates a constraint R r for the parent region; if the parent is locked for reading, then it is safe to
access the contents of ρ as well. Validation will fail when translate is invoked for the parent region r,
if this is not the case.

Let us now suppose that we fix the bug in the program, e.g., by removing the unlock operation
or by moving the read operation before it. The resulting effect passes validation as all constraints are
now satisfied and also, when we reach the end of the effect, region ρ has been released (its reference
count is zero). The transformation effect translates all events that mention ρ to Live r. The intuition
behind this is that, after validation was successful as far as ρ is concerned, it is only necessary to know
that when ρ is mentioned its parent r is live. In this way, it is possible to reject erroneous programs
such as the following:

region<ρ> h@ hr ;
let z = rnew(h) 42; ∗ z = 17; rfree(hr); print(∗z); rfree(h)

where the effect for the second line is

γ = Live ρ :: W ρ :: Cap {r 7→ (0,−1, 0)} :: R ρ :: Cap {ρ 7→ (−1, 0, 0)}

In this case, with respect to ρ, validation succeeds and the transformed effect is γ′ = Live r :: Live r ::
Cap {r 7→ (0,−1, 0)} :: Live r :: Live r. Notice that the event mentioning r in γ is not affected by
the transformation. Now, when later this effect will be validated with respect to r, assuming that the
initial reference count is equal to one, validation will fail.

In Figure 3.7, the definition of translate uses the partial function solve, which checks whether the
atomic effect denoted by the first argument is valid with respect to a region that has a vector count
given by the third argument. If this cannot be established unconditionally, the result is a constraint on
the parent of this region that is given by the second argument. The definition of solve is straightforward.
In the cases for R and W, if the constraint is found to be satisfied by the given count vector then the
only requirement is that the parent region is live (except when the parent region is ⊥ which is always
considered live). Otherwise, the constraint is propagated to the parent region, e.g., if a region is not
write-protected, a W constraint can only be satisfied if the same constraint is satisfied for its parent. A
Live constraint for the parent is also generated in the case of Live. On the other hand, the negative
constraints ¬RW and ¬W always propagate to the parent. The same happens with ¬Live, unless the
region’s reference count is zero.

The partial function translate(γ, r, η, r′) is defined with a case analysis on the first event in γ. If γ is
empty, rule TR-E requires that region r is not live. Rules TR-CN and TR-DN handle the case of atomic
events that refer to regions other than r; these remain unaffected. On the other hand, rules TR-CT and
TR-DT use solve to validate and translate an atomic effect referring to r. Rule TR-J handles the case
of “join” events: the two branches are translated separately, prepended to the rest of the effect, and the
results are joined.

Rules TR-SN and TR-ST handle “spawn” events. The former is used when region r is not passed
to the new thread. The latter is quite complicated. It determines the count vector ηs that is passed to
the new thread and the count vector ηr that is left to the current thread.

It determines rs, the parent of r as seen by the new thread (it is r′, if r′ is also passed to the new
thread, otherwise it is ⊥). It then translates the effects of the new thread and the current thread with
the appropriate count vectors and parents. Finally, it prepends appropriate constraints, generated by
function p-constraint, which guarantee mutual exclusion between the new and the current thread.

Let us suppose that a region r is shared between two threads, the first thread sees r′ as the parent
of r and the second thread sees η as the vector count for r. The purpose of p-constraint(r′, η) is to
determine the constraints on r′ that must be satisfied by first thread to guarantee mutual exclusion. If

50



ξ1 − ξ2 = {r 7→ ξ1(r)− ξ2(r)} where ξ(r) = η if r 7→ η ∈ ξ and ξ(r) = (0, 0, 0) otherwise
ok(ξ) = ∀ı 7→ η ∈ ξ. ok(η)

ok(ξ)
recursive(ξ; ∅) = ξ

(R-E)
δ /∈ {¬RW,¬W,¬Live} recursive(ξ; γ) = ξ′

recursive(ξ; δ r :: γ) = ξ′
(R-D)

ok(ξ) recursive(ξ − ξ′; γ) = ξ′′

recursive(ξ; Cap ξ′ :: γ) = ξ′′
(R-C)

ok(ξ) ξr = ξ − ξs
∀r 7→ η ∈ ξs. rd(η) = wr(η) = 0 recursive(ξr; γ) = ξ′r

recursive(ξ; Spawn ξs γs :: γ) = ξ′r
(R-S)

recursive(ξ; γ1) = ξ′ recursive(ξ; γ2) = ξ′ recursive(ξ′; γ) = ξ′′

recursive(ξ; Join γ1 γ2 :: γ) = ξ′′
(R-J)

recursive(ξ1; γ) = ξ1
ξ1 = {r 7→ (1, 0, 0) | r ∈ dom(γ)} ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(γ)}

summary(γ) = Cap ξ1 :: Spawn ξ1 (γ :: Cap ξ2)
(SUM)

Figure 3.8: Summarized effects of recursive functions.

η has a positive write-lock count (in the second thread), then the region’s parent r′ must not be read-
or write-protected (in the first thread). Otherwise, if η has a positive read-lock count (in the second
thread), then the region’s parent r′ must not be write-protected (in the first thread). Otherwise, if both
lock counts are zero in η, no additional constraints must be imposed on r′. Notice that p-constraint is
used twice in rule TR-ST symmetrically.

3.6 Effects for recursive functions

Although the basics of how to type check recursive functions were explained in the previous sec-
tion, we have not explained how to find the effect γs in rule T-FX . This is done with the partial function
summary, defined in Figure 3.8, which imposes some restrictions on recursive functions and calcu-
lates the summarized effect. The restrictions imposed are the following and they apply to “external”
regions, i.e., regions that exist before a recursive function is called (in contrast to regions that are
created in a recursive function’s body):

− When a recursive function returns, the counts of all external regions must be equal to the counts
when the function was called. This is ensured by the premise recursive(ξ1; γ) = ξ1 in rule SUM .
It implies that a recursive function cannot deallocate any external regions.

− If a recursive function spawns new threads, it cannot pass to them any locks to external regions.
This is ensured by rule R-S.

− A recursive function cannot presume any existing locks on external regions. This is ensured by
the definition of ξ1 and the spawn event in rule SUM .

After all this, we can now return to the explanation of rule T-FX on page 47. If φ is the compo-
sitional function on effects that corresponds to the recursive function’s body, then φ(∅) is the effect
that one gets by completely ignoring the recursive calls. We just use this effect to identify the external
regions that a recursive function uses and to construct the effect γL, which contains Live constraints
for all those regions. Then we take the effect φ(γL) as the basis for our summary.

To summarize an effect, as shown in rule SUM , we essentially check that the constraints stated
above are satisfied. The first two constraints are directly enforced by the partial function recursive,

51



whose definition is straightforward. Then, the effect γ to be summarized is isolated inside a Spawn
effect, which enforces the third constraint.

3.7 Type safety

In this section we discuss the fundamental theorems that prove type safety of our language.3 The
type safety formulation is based on proving the preservation and progress lemmata. Informally, a
program written in our language is safe when for each thread of execution an evaluation step can
be performed or that thread is waiting for a lock (blocked). As discussed in Section 3.4, a thread
may become stuck when it accesses a region that is not live or accessible — these are obviously the
interesting cases in our concurrent setting; of course a thread may become stuck when it performs a
non well-typed operation. Blocked threads and deadlocked threads are not considered to be stuck.

Definition 3.1 (Constraint validity) Predicate cvalid(δ; ı; θ) is true when the constraint δ on r is con-
sistent with the run-time hierarchy θ. It is defined as follows:

cvalid(Live;⊥; θ)
(C-T)

θ = θ′, ı 7→ (η, ) solve(δ, , η) = ∅
cvalid(δ; ı; θ)

(C-B)

θ = θ′, ı 7→ (η, ) solve(δ, , η) = δ′  cvalid(δ′; ; θ′)
cvalid(δ; ı; θ)

(C-R)

Function solve is used in rules C-B and C-R to enable the validation of hierarchical constraints.

Definition 3.2 (Validity for count modification) The partial function xvalid(ξ; θ) is defined as fol-
lows. We have xvalid(ξ; θ) = θ′ when it is valid to apply the count modifications defined by ξ to the
hierarchy θ and the result is θ′.

xvalid(∅; θ) = θ
(X-E)

ok(η + η′) cvalid(Live ; ı; θ, ı 7→ (η, ))
xvalid(ξ; θ, ı 7→ (η + η′, )) = θ′

xvalid(ξ, ı 7→ η′; θ, ı 7→ (η, )) = θ′
(X-S)

Definition 3.3 (Effect validity) The partial functions evalid(ζ; θ) and gvalid(γ; θ), as well as the pred-
icate valid(γ; θ) are defined with the following rules. We have evalid(ζ; θ) = θ′ when the event ζ is
valid in hierarchy θ and the result is θ′. Similarly, we have gvalid(γ; θ) = θ′ when the effect γ is valid
in hierarchy θ and the result is θ′. Finally, gvalid(γ; θ) is true when the effect γ is valid in hierarchy θ
and the result is a hierarchy with no live regions.

cvalid(δ; ı; θ)
evalid(δ ı; θ) = θ

(V-D)
xvalid(merge(ξ); θ) = θ′

evalid(Cap ξ; θ) = θ′
(V-C)

gvalid(γ1; θ) = θ′ gvalid(γ2; θ) = θ′

evalid(Join γ1 γ2; θ) = θ′
(V-J)

∀ı ∈ dom(θs). cvalid(Live ; ı; θ)
merge(ξ) ` θ = θr ⊕ θs valid(γs; θs) mutex({θs, θr})

evalid(Spawn ξ γs; θ) = θr
(V-S)

ok(θ)
gvalid(∅; θ) = θ

(V-E)
ok(θ1) evalid(ζ; θ1) = θ2 gvalid(γ; θ2) = θ3

gvalid(ζ :: γ; θ1) = θ3
(V-K)

gvalid(γ; θ) = θ′ live(θ′) = ∅
valid(γ; θ)

(V-V)

3 Full proofs and a full formalization of our language are given in Appendix B.

52



For the definition of evalid, the most interesting cases are rules V-J and V-S. In the former, a “join”
effect is valid when both branches are valid and produce the same result. In the latter, for the validation
of a “spawn” effect, θ is split into θs and θr, according to merge(ξ), and the lock counts of these two
hierarchies must satisfy the mutual exclusion criteria; then, θs is the hierarchy of the new thread and
γs must be valid for it, whereas θr is the hierarchy of the main thread and therefore the result.

Definition 3.4 (Thread typing) Let T be a collection of threads andR;M be a global typing context.
The relation R;M ` T is defined as follows:

R;M ` ∅

R;M ` T R;M ; ∅; ∅ ` e : unit& γ valid(γ; θ)
∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}

R;M ` T, 〈θ; e〉

For each thread 〈θ, e〉 in T , the effect γ produced by the closed expression e must be valid under θ,
the regions contained in θ must be a subset of R, and their parents must be contained in R or ⊥.

Definition 3.5 (Store typing) Let S be a store and R;M be a global typing context. The relation
R;M ` S is defined as follows:

R = {ı | ı 7→ H ∈ S} {(`, ı) | ` 7→ (τ, ı) ∈M} = {(`, ı) | ` 7→ v ∈ H ∧ ı 7→ H ∈ S}
∀` 7→ (τ, ı) ∈M. R;M ; ∅; ∅ ` S(ı)(`) : τ & ∅

R;M ` S

The set of region names in S must be equal toR. The set of locations inM must be equal to the set of
locations in all the heaps in S, and the regions in which these locations reside must coincide. Finally,
for each location `, the value stored in this location must be closed, must have the type mentioned by
M and must produce an empty effect.

Definition 3.6 (Configuration typing) Let S;T be a configuration andR;M be a global typing con-
text. The relation R;M ` S;T is defined as follows:

R;M ` T R;M ` S mutex({θ | 〈θ; e〉 ∈ T})
R;M ` S;T

A configuration S;T is well-typed with respect to R;M when both the collection of threads T and
the store S are well-typed with respect to R;M . In addition the hierarchies of all threads in T must
adhere to the mutual exclusion criteria (see predicate mutex in Figure 3.4 on page 45).

Definition 3.7 (Running) Let 〈θ; e〉 be a thread, T be the remaining threads, and S be a store. The
predicate running(S;T ; 〈θ; e〉) is defined as follows:

S;T, 〈θ; e〉  S′;T ′ T ⊆ T ′

running(S;T, 〈θ; e〉; 〈θ; e〉)

A thread is running when it can take one of the evaluation steps in Figure 3.3.

Definition 3.8 (Blocked) Let 〈θ; e〉 be a thread and T be the remaining threads. The predicate
blocked(T ; 〈θ; e〉) is defined as follows:

ı ∈ live(θ, ı 7→ (η, )) mutex({θ, ı 7→ (η, )} ∪ {θ′ | 〈θ′; e′〉 ∈ T})
¬mutex({θ, ı 7→ (η + η′, )} ∪ {θ′ | 〈θ′; e′〉 ∈ T})

blocked(T ; 〈θ, ı 7→ (η, );E[capη′ rgnı]〉)

A thread is blocked when it attempts to acquire the lock of a live region that is locked by another
thread.

53



Definition 3.9 (Not stuck) Let S;T be a configuration. The relation ` S;T is defined as follows:
∀〈θ; e〉 ∈ T. running(S;T ; 〈θ; e〉) ∨ blocked(T ; 〈θ; e〉)

` S;T
A configuration S;T is not stuck when each thread in T is either running or blocked by some other
thread.

Given these definitions, we can now present the main results of this chapter.

Lemma 3.1 (Progress) Let R;M be a global typing context and S;T be a well-typed configuration
with R;M ` S;T . Then ` S;T , in other words S;T is not stuck.

Proof sketch. By induction on the evaluation relation. Most cases can be trivially shown by using
the invariants provided by predicate valid, which is obtained by inversion of the well formedness
hypothesis for T .

Lemma 3.2 (Preservation) Let R;M be a global typing context and S;T be a well-typed configu-
ration with R;M ` S;T . If the operational semantics takes a step S;T  S′;T ′, then there exist
R′ ⊇ R andM ′ ⊇M such that the resulting configuration is well-typed with R′;M ′ ` S′;T ′.

Proof sketch. By induction on the evaluation relation. Most cases can be trivially shown by using
the invariants provided by predicate valid, which is obtained by inversion of the well formedness
hypothesis for T . Themost interesting cases areE-NR, where it is must be shown that function translate
entails effect validity, and E-FX , where it must be shown that function summary entails effect validity.
These two are established by Lemmata 3.3 and 3.4, respectively.

Lemma 3.3 (Translate implies valid) If valid(translate(γ, ı, η, ); θ) for some region ı such that ı /∈
dom(θ), then valid(γ; θ, ı 7→ (η, )).

Proof sketch. By induction on the structure of γ. The most interesting case is when γ is of the form
Spawn ξs γs :: γ

′, merge(ξs) = ξ′s, ı 7→ ηs and η = ηr ⊕ ηs; it must be shown that if mutex holds for
the hierarchies of the child and parent thread, θs and θr respectively, then mutex also holds when ı is
added in the two hierarchies with counts ηs and ηr respectively. We employ the definitions of function
p− constraint and η = ηr ⊕ ηs to show that when one of the threads has write access to ı, then the
other thread does not have access to ı and vice versa.

Lemma 3.4 (Recursion implies valid) If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)),
and valid(γs :: γ; θ), then valid(φ(γs) :: γ; θ).

Proof sketch. Using a series of intermediate lemmata, the proof is reduced to showing that if
gvalid(γs; θ0) = θ0, hierarchy ok(θ1; θ0), and gvalid(φ(γL); θ1) = θ2, then gvalid(φ(γs); θ1) = θ2.
This can be achieved by induction on the structure of the compositional function φ.

Now, assume that e is the expression that represents the initial program. Let S0 = ∅ be the initial
empty store and T0 = ∅, 〈∅; e〉 be the initial set of threads, consisting of just e with an empty region
hierarchy. We are interested only in programs that are closed, well typed and whose effect is consistent
with the initial empty region hierarchy. Our type safety theorem shows that such programs cannot
become stuck.

Theorem 3.1 (Type safety) Let e be such that ∅; ∅; ∅; ∅ ` e : unit& ∅. If the operational semantics
takes any number of steps S0;T0  n Sn;Tn, then the resulting configuration Sn;Tn is not stuck.

Proof. Let R0 = ∅ andM0 = ∅. Using the assumptions it is easy to establish that R0;M0 ` S0;T0.
Then, by induction on the number of steps n and using Lemma 3.2, we show that there existRn ⊇ R0

andMn ⊇M0 such that Rn;Mn ` Sn;Tn. Finally, Lemma 3.1 implies that Sn;Tn is not stuck.

The empty contexts that are used when type-checking the initial program e guarantee that no
explicit region values (rgnı) or location values (loc`) are used in the source of the initial program.

54



` R;M ;∆; Γ R;∆ ` τ

R;M ;∆; Γ ` � : τ
τ−→∅γ2

(E0)

R;M ;∆; Γ ` E : τ2
τ3−→ γ2

R;M ;∆; Γ ` F : τ1
τ2−→ γ1

R;M ;∆; Γ ` E[F ] : τ1
τ3−→ γ1 :: γ2

(E1)

τ ≡ τ1
γa−→ τ2 R;∆ ` τ

R;M ;∆; Γ ` e2 : τ1& γ1
R;M ;∆; Γ ` � e2 : τ

τ2−→ γ1 :: γa
(F1)

τ ≡ τ1
γa−→ τ2

R;M ;∆; Γ ` v1 : τ & ∅
R;M ;∆; Γ ` v1 � : τ1

τ2−→ γaγ3
(F2)

R;M ;∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ & γ1 R;∆ ` r
R; ∆ ` τ Live r :: translate(γ1, ρ, (1, 1, 0), r) = γ2

R;M ; ∆; Γ ` newrgn ρ, x@ � in e2 : Rgn(r)
τ−→ γ2γ

′
(F3)

` R;M ;∆; Γ R;∆ ` ∀ρ. τ R;∆ ` r r 6= ⊥

R;M ;∆; Γ ` � [r] : ∀ρ. τ τ [r/ρ]−→ ∅
(F4)

R;M ;∆; Γ ` e2 : Rgn(r)& γ2 R;∆ ` τ r 6= ⊥

R;M ;∆; Γ ` new �@ e2 : τ
Ref(τ,r)−→ γ2 :: Live rγ

′
(F5)

R;∆ ` r R;M ;∆; Γ ` v : τ & ∅ r 6= ⊥

R;M ;∆; Γ ` new v @ � : Rgn(r)
Ref(τ,r)−→ Live rγ′

(F6)

R; ∆ ` r R;M ;∆; Γ ` e2 : τ & γ1 r 6= ⊥

R;M ;∆; Γ ` � := e2 : Ref(τ, r)
unit−→& γ1 :: W r

(F7)

R;M ;∆; Γ ` loc` : Ref(τ, ı)& ∅ ı 6= ⊥

R;M ;∆; Γ ` loc` := � : τ
unit−→& W ı

(F8)

` R;M ;∆; Γ R;∆ ` Ref(τ, r) r 6= ⊥
R;M ;∆; Γ ` deref � : Ref(τ, r)

τ−→& R r
(F9)

` R;M ; ∆; Γ R;∆ ` Rgn(r) r 6= ⊥

R;M ;∆; Γ ` capη � : Rgn(r)
unit−→& Cap {r 7→ η}

(F10)

R;M ;∆; Γ ` e1 : τ & γ2 R;M ;∆; Γ ` e2 : τ & γ3
R;M ;∆; Γ ` if � then e1 else e2 : bool

τ−→& Join γ2 γ3
(F11)

Figure 3.9: Evaluation context typing rules.

55





Chapter 4

Concurrent Cyclone

4.1 Overview

Cyclone is a safe variant of C that offers modern programming language features such as first-class
polymorphism, exceptions, tuples, namespaces, (extensible) algebraic data types, and region-based
memory management. However, Cyclone has no built-in support for concurrency. In this chapter we
present the main features of Cyclone regarding memory management and argue that the safety guar-
antees of Cyclone are compromised by introducing concurrency to the language via external library
support such as pthreads. We then discuss the integration of the type systems and language constructs
described in the previous chapters to Cyclone as two distinct implementations, and argue about the
decisions that we have made in order to guarantee memory safety and race freedom at the implemen-
tation level. We evalutate the performance of programs written in extended Cyclone (i.e. Concurrent
Cyclone) against C/pthreads programs and present the performance results.

4.2 Cyclone: A memory-safe dialect of C

In this section we provide a brief overview of Cyclone before our additions. In particular, we
first discuss memory management aspects of Cyclone: how “traditional” Cyclone regions are used
and identify some shortcomings that are alleviated in the “extended” regions we described in this
chapter. We also show through several examples that Cyclone’s memory safety guarantees only hold
for sequential programs. (All code excerpts in this chapter are shown using Cyclone syntax.)

4.2.1 Memory management in Cyclone

Cyclone employs a uniform treatment of different memory segments such as the main heap, the
stack and individual regions. More specifically, memory segments are mapped into logical memory
partitions. Each data object is allocated in a single memory segment, but references to objects may
refer tomultiple segments. Hereon, we overload the term “region” tomean a type-level logicalmemory
partition, a run-time entity that enables fast allocation and bulk deallocation of objects, or a memory
segment such as the heap and the stack.

For instance, a stack frame is treated as a region holding the values of variables declared in a lexical
block. As another example, the main heap is an immortal region that contains all global variables. The
type system of Cyclone tracks the set of live regions at each program point and verifies that the regions
associated with each accessed object are indeed a subset of the live regions.

{ region<‘r> h ; // live regions: {‘r}
int ∗ ‘r z = rnew(h) 42; // {‘r}

. . . // {‘r}
} // { }

The above example illustrates how a scoped region can be created and used in Cyclone: the first
statement allocates a fresh memory segment, and associates this segment with a fresh type-level region

57



(i.e., ‘r). Following Cyclone’s terminology, we use a leading backquote for type-level names, e.g. ‘r.
(We will use the same name without the backquote for the corresponding region handle, which here is
explicitly named h.) The comments on the right-hand side of the example’s code show the live region
set (i.e., the effect) at each program point.

The new region can be accessed via its region handle (h), which is given the singleton type
region<‘r>. The second statement uses h to allocate memory for a single integer and initializes
it to the value 42. The type of the fresh reference is annotated with region ‘r (i.e., int ∗ ‘r). The type
system ensures that the reference can only be accessed when ‘r is in the current effect.

In Cyclone, the uniform treatment of memory allows for polymorphism over different kinds of
memory segments.

void swap (int ∗ ‘r1 x , int ∗ ‘r2 y);

For instance, the above line of code declares a function that swaps the contents of the variables x and
y located at regions ‘r1 and ‘r2 respectively. Both ‘r1 and ‘r2 are polymorphic and can be instantiated
with any region. The following line of code invokes swap by explicitly instantiating both ‘r1 and ‘r2
to the same region ‘r.

{ region<‘r>h ;
int ∗ ‘r z = rnew(h) 42;
int ∗ ‘r y = rnew(h) 54;
swap(z, y); // effect of swap: {‘r, ‘r}

}

As shown in the comment, type-level regions can be freely aliased in a effect (e.g. {‘r, ‘r}). The
downside of allowing unrestricted aliasing is that scoped regions can only be deallocated implicitly
by the run-time system when a region’s scope ends.

To ameliorate the situation, Cyclone’s region system has been extended with three powerful fea-
tures, namely tracked types, the notion of borrowing tracked types and existential types. Tracked types,
which are closely related to linear types, disallow aliasing of tracked references. Borrowing can be
used to convert a tracked reference to an aliasable reference within a particular scope. The aliasable
reference is accessible within the scope, whereas the tracked reference becomes inaccessible for the
duration of the scope. Finally, existential types serve as the means for overcoming lexically scoped
region names, by permitting the on-demand concealment and disclosure of region names. Cyclone
allows access and deallocation of non-lexically scoped (i.e., dynamically scoped) regions as follows:

− A request is made to the run-time system to allocate a fresh dynamic region.

− The run-time system returns an existential package containing some region name ‘r and a key
(i.e., a tracked reference) to the handle of the fresh region. The handle is also annotated with ‘r.

− The existential package is unpacked and ‘r is brought into scope as well as the key.

− The program can immediately deallocate the new region by deallocating the key, or it may
temporarily yield access to the key by allowing it to be borrowed within a scope. When this
happens, ‘r is added to the effect and the region referred by the key is usable.

The following example illustrates a similar scenario:

void access and deallocate (NewDynRgn pr ) {
let NewDynRgn{<‘r> key} = pr; // open existential
{ region h = open(key); // borrow key for this scope
let x = rnew(h) 42;
. . .

}

58



. . . // do some work
free ukey(key); // deallocate region

}

It should be noted that a dynamic region cannot be deallocated when its key has been borrowed.
Additionally, Cyclone allows tracked references to leak and thus allows dynamic regions to leak as
well. To tackle this issue, an intra-procedural analysis can be used to report tracked reference leaks.
In practice, this analysis is impractical as it produces a large number of false positives [Swam06]. For
instance, when a function call takes place between the allocation and deallocation point of a tracked
reference, the analysis must report that the tracked reference may leak as an uncaught exception may
be thrown during the call. For a detailed discussion about memory management aspects of Cyclone
we refer the reader to the work of Swamy et al. [Swam06].

For sequential Cyclone programs, our extended regions disallowmemory leaks in the presence of a
complex sharedmemorymanagement schemewith bulk region deallocation, allow region deallocation
at any program point and simplify the process of creating, using and deallocating explicitly freeable
regions.

4.2.2 Concurrency in Cyclone

Cyclone does not have language support for concurrency. Instead, it provides an interface to the
pthreads library, which allows programmers to spawn new threads and use numerous synchronization
primitives to control the interaction between threads. The interface to the pthreads library ensures that
the run-time data structures are correctly initialized before a new thread runs.

To preserve memory safety (e.g., absence of dangling pointers), Cyclone requires that all memory
regions passed to a new thread must live at least as long as the immortal (main) heap. This implies that
threads can interact with other threads via dynamically allocated references that reside in the heap or in
global variables. This restriction diminishes the explicit memory management benefits of Cyclone; in
concurrent programs, aliasable heap references can only be garbage collected. The following definition
has been extracted from Cyclone’s interface to pthreads library:

int pthread create (pthread t@, const pthread attr t ∗,
‘a(@‘H)(‘b), ‘b arg : regions(‘b) ≤ ‘H)

The most interesting part of the above definition is regions(‘b) ≤ ‘H , which says that all region
names occurring in the type that will instantiate the type variable ‘bmust be live for at least as long as
the immortal heap (‘H). Tracked pointers cannot be passed to threads.

But the memory safety guarantees that Cyclone aims for can be compromised in other ways in the
presence of multi-threading. Here we will only mention a few such cases.

Firstly, the data flow analysis performed for identifying where dynamic checks (e.g., null pointer
and array bounds checks) should be inserted is unsound in a concurrent setting. Consider the following
code fragment:

void foo (int ∗ ‘r ∗ ‘r x) {
if (x != NULL && ∗x != NULL) ∗∗x = 42;

}

Assuming that x is a shared possibly null reference, then the analysis will deduce that ∗∗x can be
accessed within the conditional statement as x and ∗x are definitely not null. This property does not
hold for concurrent programs that share x, but do not synchronize their accesses to it.

Secondly, some features of Cyclone such as pattern matching, accesses to wide references (i.e., fat
pointers) and swap operations between tracked references must be performed atomically. The lack of
atomicity in swap operations and wide references can trivially compromise memory safety and cause
dangling pointer dereferences and double “free” operations.

59



Last but not least, Cyclone’s type system does not guard against data races. The absence of data
races gives additional guarantees to the programmer and allows a thread-aware compiler to perform
certain kinds of optimizations that should only be applied to sequential programs. As will be shown
in the next two sections, we have solved some of these issues by implementing an adjusted version
of our type system and operational semantics in Cyclone. We have also re-engineered the run-time
system of Cyclone so that it is mostly non-blocking and thread-safe.

4.3 Common features

There are two distinct implementations for each of the type systems presented in the previous
chapters. Both implementations have been integrated into the original compiler of Cyclone as distinct
stages and are approximately twenty thousand lines of code. The two implementations have some
features in common, such as the kind system, exception and re-entrant function annotations, the mem-
ory consistency model and are subject to the same restrictions such as their limited interaction with
Cyclone’s type polymorphism.

4.3.1 Extended regions and kind system

In contrast with traditional lexically scoped regions, which are allocated in a LIFO manner, our
extended regions can be allocated at any extended region ancestor. We consider the main heap (‘H) as
the root of our region hierarchy. We have already shown a number of examples using extended regions
in the previous two chapters. This form of allocation generalizes the stack-based region organization
to a tree-based organization and enables finer-grained control of region lifetimes. As in the operational
semantics, extended regions are sharable, but no synchronization is required for accessing its data, as
an extended region is initially accessible to the thread allocating it.

In particular, our implementation draws a line between our extended regions and traditional Cy-
clone regions. In this way, we are able to restrict what kinds of regions can be shared. Traditional
lexically scoped regions cannot be shared safely. For instance, the stack frame of a function is treated
as a region and sharing the stack in a safe manner would have a severe impact on concurrency between
threads. The type system of Cyclone uses kinds to group types. We therefore use two different kinds
of region type variables: one for Traditional regions that cannot be shared among threads, and one for
extended regions that are sharable.

4.3.2 Exceptions

Having static guarantees about the control flow of a program plays a crucial role inmanualmemory
management. As mentioned in Section 4.2, in Cyclone the memory of tracked objects (e.g., dynamic
regions) can only be safely reclaimed by the garbage collector.

Since we aim for a low-level language (cf. Section 2.1), we decided that the programmer should
always be able to reclaim extended regions manually. Towards this goal, we have made it possible for
the programmer to annotate Cyclone function declarations with uncaught exception names that may
be thrown from a function’s body.1 In addition, exact knowledge of a function’s control-flow graph is
required to guarantee soundness. There exist three kinds of annotations for exceptions:

1. the @throws(. . .) enumerates all exceptions that may be thrown from a function body;

2. the @nothrow annotation is an abbreviation for @throws(); and

3. @throwsany acts as a wildcard for any exception that may be thrown. (This annotation is often
useful for legacy library prototypes and code.)

1 We have noticed that the implementation of Cyclone actually had a @throws clause but it is undocumented and not
functioning.

60



The default annotation for functions is @throwsany. Exceptions may be thrown explicitly by the
programmer or implicitly by the run-time system. Implicit exceptions arise in situations where:

− a null pointer is dereferenced;

− an out of bounds array access is performed;

− the run-time system has insufficient memory to fulfill an allocation request;

− a value cannot be matched against any of the available patterns.

The exception analysis takes into consideration both explicit and implicit exceptions and guaratees
the definite deallocation of extended regions in case uncaught exceptions are raised.

4.3.3 Reentrant functions

Global data is implicitly shared by all threads and this may cause a data race. To preserve race free-
dom, we have constrained our language so that only extended regions can be shared between threads.
(Although we allow reading global variables that are declared as constant.) Traditional Cyclone re-
gions (or references) cannot be passed to threads.

To enforce this policy, we require that each explicitly spawned thread must be @re entrant.
A function annotated as @re entrant yields access to global variables, the immortal heap, tracked
objects and it can only invoke @re entrant functions. Function main, is not @re entrant. Global
data and tracked objects can still be directly accessed by any non reentrant function invoked directly
or indirectly by main. Therefore, sequential programs have full access to global data. Relaxing type
checking so that tracked objects can be passed to threads, provided that these objects are consumed
from the environment performing a spawn operation is left for future work.

4.3.4 Type polymorphism

Cyclone effects are not polymorphic. To allow the invocation of functions, which have polymor-
phic arguments (e.g., say ‘a), Cyclone programmers use the regions(‘a) operator. Its purpose is to
defer effect checking until the function call is performed, where the calling environment must prove
that all regions occurring in the type that instantiates ‘a are present in the environment’s effect:

void foo( ‘a ; regions(‘a));

In terms of extended regions, the regions operator would require that all regions occurring in ‘a are
live and accessible for the scope of the function call. However, this is beyond the scope of our type
system. Furthermore, we cannot provably guarantee memory safety if this construct is used in the way
described above. Therefore, the type checker disallows invalid uses of the regions operator.

This limitation could be improved in future work, but as a workaround we allow extended regions
to interoperate with traditional regions. We explain this feature in the following subsection.

4.3.5 Interoperability with traditional regions

The distinction between traditional and extended regions may be limiting for programs that require
both kinds of regions. To ameliorate the situation we introduce a language construct, which is similar
to the alias and open constructs of Cyclone, that borrows a part (or a fraction) of an accessible
extended region for a certain scope. Consider the following example:

{ region child@ parent;
{ region h = xopen(child); // consume one write-lock capability

. . .
} // restore write-lock capability
. . .

}

61



The xopen construct borrows exactly one lock capability from the extended region ‘child for the scope
of the xopen construct. The type system requires that region ‘child is live by the end of the xopen
scope and creates a fresh logical region ‘h, which can be used as a traditional Cyclone region. It should
be noted that ‘child is still live and possibly accessible (if it has more than one lock capability) during
the scope of xopen. On the downside, region ‘child must remain locked for the scope of xopen.

4.3.6 Memory consistency

Our formal language semantics assumes a sequentially consistentmemorymodel [Lamp79], which
implies that concurrent read andwrite operations are viewed as an interleaving of atomic steps.Modern
processors are implemented with much weaker memory consistency specifications, because sequen-
tial consistency restricts common compiler and hardware optimizations. Research on relaxed memory
models [Ghar90, Adve90] has shown that race-free programs (i.e., programs where read and write op-
erations to shared memory locations only occur within memory synchronization primitives) running
on relaxed memory systems have a sequentially consistent view of memory operations.

Assuming that the compilation process preserves the original Cyclone code semantics, then we
obtain race-free native code with sequential consistency guarantees. At the implementation level, we
must guarantee that memory operations to extended regions cannot escape the scope of a “lock/unlock”
primitive as locking operations synchronize memory. This situation may arise as a result of compiler
optimizations such as register promotion [Boeh05]. We have taken the most conservative approach
and require that extended region data objects are compiled down to C as volatile. According to the
manual of GCC, which is invoked by the Cyclone compiler to generate native code, “an implementa-
tion is free to reorder and combine volatile accesses which occur between sequence points, but cannot
do so for accesses across a sequence point” [Stal11, Section 6.40, page 357]. Our locking primitives
introduce sequence points and thus the compilation process will not reorder volatile accesses in an
unsafe manner.

4.4 Explicit annotations for Cyclone

In this section we discuss integration-specific details of the type system without inference to Cy-
clone such as the input/output effect annotations, hierarchy abstraction, the thread creation semantics
and the encoding of capability-modifying operations as ordinary functions.

4.4.1 Traditional Cyclone effects

The effect system of Cyclone tracks the set of accessible regions at each program point. Functions
are annotated with a single effect, which can be automatically inferred by calculating the union of re-
gion variables occurring in the types of function parameters. As mentioned, traditional regions cannot
be deallocated once they have been added in a function’s effect, as unrestricted region aliasing within
an effect is admitted. Therefore, a function effect serves as both a precondition and a postcondition of
the regions that are accessible before and after calling a function respectively.

The following example illustrates a function, which has been annotated explicitly with the effect
{‘r}. This effect implies that region ‘r is both live and accessible for the entire scope of foo.

void foo ( region t < ‘r > ; {‘r});

We have decided to place our effects in separate annotations as full effect inference for our regions
is beyond the scope of this work and we wish to preserve backwards compatibility with traditional
Cyclone programs that enjoy full inference.

Our effects are mutually exclusive with traditional effects so a region name may not exist in both
effects. We expect that future implementations will integrate the two different kinds of effects into a
single effect and will enjoy effect inference for both traditional and extended regions.

The following example shows how we can write function foo so that it uses extended regions:

62



void foo ( region t < ‘r > )@ieffect({‘r, i(1, 1), ‘H})
@oeffect({‘r, i(1, 1), ‘H});

The @ieffect and @oeffect annotations denote the input and output effects of function foo. These
effects consist solely of extended regions or ‘H .2 The equivalent type of function foo in our formal
type system would be:

∀‘r. region t < ‘r > γ→γ−→〈〉 where γ ≡ ‘r1,1.⊥

The heap region is mapped to ⊥ as it is immortal. Impure capabilities n1, n2 are denoted by
i(n1, n2), whereas pure capabilities n1, n2 are denoted by p(n1, n2). Pure capabilities are most useful
when transferring lock capabilities to other threads. It is therefore expected that impure capabilities
would be the common case. Therefore, the above definition can be abbreviated as follows:

void foo( region t < ‘r > )@ieffect({‘r, 1, 1, ‘H})
@oeffect({‘r, 1, 1, ‘H});

Finally, it is possible to omit the output effect annotation when a function consumes the regions
declared at the input effect.

4.4.2 Hierarchy abstraction

In order to allow a function to access a region without having to pass all its ancestors explicitly, its
ancestors can be abstracted from an effect for the duration of a function call. To maintain soundness,
we require that abstracted parents are live before and after the call. Regions whose parent information
has been abstracted cannot be passed to a new thread as this may be unsound. The definition of foo
can be further simplified, by using hierarchy abstraction:

void foo ( region t < ‘r > )@ieffect({‘r, 1, 1})
@oeffect({‘r, 1, 1});

4.4.3 Operating on capabilities

The cap operator of the formal semantics has been encoded as a set of library functions:

void xdec ( region t <‘r>) @ieffect({‘r, 1, 0});
void xinc ( region t <‘r>) @ieffect({‘r, 1, 0})

@oeffect({‘r, 2, 0});
void xldec ( region t <‘r>) @ieffect({‘r, 1, 1})

@oeffect({‘r, 1, 0});
void xlinc (region t <‘r>) @ieffect({‘r, 1, 0})

@oeffect({‘r, 1, 1});

For instance, the first function xdec encodes the operator caprg− for any region ‘r. It requires that
the calling context has at least one region capability. This invariant is encoded in its input effect. The
output effect of xdec is empty, thus exactly one region capability is consumed. Similarly the remaining
functions encode the remaining functionality of operator cap. It would be preferable to use dependent
types to allow these functions to increment or decrement counts by more than one. To the best of our
knowledge this is impossible to express at the type level, in Cyclone’s type system. However, we plan
on extending the type-level expressiveness in future versions.

2 ‘H can only occur as a parent annotation.

63



4.4.4 Thread creation

Threads can be explicitly created by the means of the spawn operator. This operator takes two
expressions e1 and e2, i.e., spawn (e1) e2, and spawns a new thread. The first expression is a list of
thread-specific parameters such as the stack size. The second expression e2 must be a function call
and the functionmust be annotated as@re entrant@nothrow and its@oeffect annotationmust be
either empty or omitted. Furthermore, the traditional Cyclone effect must be empty so that unsharable
regions cannot be used in the new thread. Both expressions e1 and e2 are evaluated from left to right.
The spawning thread does not block and returns immediately.

4.5 Annotation inference for Cyclone

In this section we discuss integration-specific details of the type system with inference to Cyclone
such as the cap operator and the thread creation semantics.

Operating on capabilities. The cap operator of the formal semantics has been implemented as is
in our extension of Cyclone. Moreover, it is possible to encode various primitives using the macro
preprocessor of Cyclone, as is shown in the following code excerpt.

#define rfree(h) cap (−1, 0, 0) (h)
region<‘r> h@ H;

let z = rnew(h) 42;
. . .
∗z = ∗ z + 17 ;
. . .
rfree(h);
. . .

Extended region functions. To speed up the compilation process, we require that functions which
modify or access in any way extended regions must be explicitly declared as @xrgn.

Thread creation. Threads can be explicitly created by the means of the spawn operator. This opera-
tor takes two expressions e1 and e2, i.e., spawn (e1) e2, and spawns a new thread. The first expression
is a list of tuples of the form (h, n1, n2, n3), where h is a region handle, and n1, n2 and n3 represent
the region counts passed to the new thread. The second expression e2 must be a function call and the
function must be annotated as @re entrant@nothrow. Furthermore, the traditional Cyclone effect
must be empty so that unsharable regions cannot be used in the new thread. Both expressions e1 and
e2 are evaluated from left to right. The spawning thread does not block and returns immediately.

Example. To clarify the above features of extended Cyclone we provide the example of Figure 4.1.
Lines 1 − 6 are standard C macros and the statement at line 7 includes the namespace of Core li-
brary to the current namespace. The entry point of our program is at line 30, where function main is
declared. The first two declarations in the body of main allocate two regions ‘parent and ‘child re-
spectively so that ‘child is allocated within ‘parent and ‘parent is allocated within the heap region
(‘heap region). Lines 34 − 46 define a try/catch block that handles a possible memory allocation
exception that may be implicitly thrown at line 34. The exception handler deallocates the entire hierar-
chy (line 44) by deallocating region ‘parent. The program would be rejected if line 44 were omitted
as both extended regions are alive at that point. The fresh reference at line 34 is allocated in region
‘child, initialized to the value 25 and assigned to the stack variable ref. The next two lines yield ac-
cess to regions ‘parent and ‘child. Lines 37-40 create reader threads that execute function reader,
which takes that handle of region ‘child, the reference ref and a unique identifier ı. At each iteration,

64



the region count of ‘child is incremented by one (line 38) and is then passed to the thread reader.
Once all reader threads are created, the main thread calls function writer, which takes that handle of
region ‘parent and the reference ref and terminates. Both reader and writer threads perform a fixed
number of iterations and at each iteration each thread sleeps for a fixed interval so that we can obtain
some interesting interleavings. Reader and writer threads release regions ‘child and ‘writer thread
when they terminate. The actual regions are deallocated when their reference counts reach the value
zero. The writer thread acquires and releases the writer lock on ‘parent region at lines 23 and 25 re-
spectively and writes the iteraction counter ı to the shared location ref. Notice, that the writer thread
does not have to explicitly lock region ‘child as the write access on a region implies write access on
its subregions. The reader thread acquires and releases a reader lock on ‘child region at lines 13 and
15 respectively and prints to the standarding error the unique thread identifier and the current value
of location ref.

1 #include <core.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #define MONITOR_TIME 500000000
5 #define READERS 2
6 #define ITERATIONS 10000
7 using Core;
8
9 void reader( region_t<‘r0::X> h, int @‘r::X ref,int tid)
10 @xrgn @nothrow @re_entrant {
11 for(int i=0;i<ITERATIONS;i++) {
12 nsleep(MONITOR_TIME);
13 cap(h,0,0,1); // acquire read lock
14 fprintf(stderr,”\n[%d] Reading ref : %d”,tid, *ref);
15 cap(h,0,0,-1); // release read lock
16 }
17 cap(h,-1,0,0);
18 }
19
20 void writer(region_t<‘r::X> h, int @‘r0::X ref) @xrgn {
21 for(int i=0;i<ITERATIONS;i++) {
22 nsleep(MONITOR_TIME);
23 cap(h,0,1,0);
24 *ref = i;
25 cap(h,0,-1,0);
26 }
27 cap(h,-1,0,0);
28 }
29
30 int main(int argc, char *@fat *@fat argv) {
31 region parent @ heap_region;
32 region child @ parent;
33 try{
34 let ref = rnew(child) 25; // child is thread-local
35 cap(parent,0,-1,0); //yield write access to parent
36 cap(child,0,-1,0); // yield write access right to child
37 for(int i=0;i<READERS;i++) {
38 cap(child,1,0,0);
39 spawn ($(child,1,0,0)) reader(child,ref,i);
40 }
41 writer(parent,ref);
42 } catch {
43 case &Core::Failure(s):
44 cap(parent,-1,0,0);
45 return -1;
46 }
47 return 0;
48 }

Figure 4.1: A simple extended Cyclone program with reader/writer locks.

65



4.6 Implementation

Even though the analyses of the two type systems differ, the compiler implementation (Sec-
tion 4.6.1) is similar for both implementations. The code generation pass and the run-time system
implementation diverge significantly for each of the two implementations and are described sepa-
rately in sections 4.7.1 and 4.7.2 respectively.

4.6.1 Compiler

We have implemented extended region checking as a separate compiler pass in Cyclone. First, the
type well-formedness of our annotations (effects, exceptions, types) is checked. During type checking,
we disregard control-flow and verify that the extended regions being accessed exist in a function’s
scope. This allows us to catch common errors early. Once type checking is finished, the compiler enters
the static analysis stage where it performs data- and control-flow analyses and determines candidate
program locations for dynamic check (e.g., array bounds checks) insertion.

The compiler may eliminate some candidate locations, by utilizing programmer-inserted checks
(e.g, if (i < len) a[i] = 42;). As illustrated in Section 4.2, some optimizations may be unsound.
Ideally, the data-flow analysis should discard programmer-inserted assertions for memory accesses at
some region r, when they are followed by an unlock operation on r. Our current implementation, is
highly conservative and only allows dynamic check elimination for trivial cases of shared memory
accesses.

The exception analysis considers compiler-inserted checks as implicit exceptions and performs a
control-flow sensitive analysis to verify that uncaught exceptions that may be thrown from a function
body are included in the function’s @throws specification.

Finally, a control-flow sensitive effect analysis is performed. The analysis propagates effects
through the control flow graph and performs the following actions in each of the two implementa-
tions respectively:

− Explicit annotations: it verifies that the output effect of the function body matches the func-
tion’s @oeffect specification. Capability validation is performed on the immediately when
encountering operations that modify capabilities.

− Annotation inference: appends new effects when appropriate to the overall effect without any
additional checks. Effect translation and validation is performed when the entire effect of a
region has been gathered.

It is worth noting that iterative and exception handling statements are treated conservatively. It is
entirely possible to spawn a new thread, which consumes some locks or regions, in one of the branches
of a conditional statement and not in the other. Of course, both branches must have the same overall
capability counts for each region. For instance, the branch not containing the spawn operation could
have a xdec operation (or a cap operation in the case of the implementation with inference) so as to
guarantee that the output effects of both branches match.

This analysis also utilizes function attributes, when checking function calls. For instance, effects
are not propagated from function calls that never return to the calling context (i.e., annotated with
attribute((noreturn)) ).

4.7 Code generation and run-time system

In the following subsections we discuss the code generation pass and the implementation of the
run-time system for the implementation with explicit annotations and the implementation with infer-
ence respectively.

66



4.7.1 Implementation with explicit annotations

As discussed in Section 2.4, each thread maintains a local view of the hierarchy and each function
call accesses a specific portion of the thread’s view. This is a crucial feature for avoiding false region
sharing, which in turn reduces parallelism, and memory leaks caused by bulk region deallocation.

Consider the case where a thread owning an unlocked region ρ shares that region with a new
thread, which in turn allocates a fresh region ρ1 at region ρ. The second thread uses ρ1 locally and
then deallocates it. Assuming that there is a global view of the hierarchy, ρ1 is owned by the second
thread. If the first thread attempts to lock ρ, then it will have to block until ρ1 is deallocated by the
second thread.

Deallocating regions en masse may temporarily cause a region leak, when there is an inexact
correspondence between the dynamic hierarchy and the static hierarchy accessible to a function call.
Let us assume that function calls access dynamically a single (local) view of the hierarchy, but each
call views statically a specific portion of the hierarchy (including region and lock counts). At the
type-level, when a non-leaf node of a hierarchy is removed from a function’s effect, then the entire
subtree of that node is also removed from the effect. The dynamic semantics can only decrement the
count of the node being removed, but it cannot decrement the remaining nodes as it is unaware of the
portion being removed. Thus, the subtree would temporarily leak until the non-leaf node is entirely
removed. If the node being removed is pure, then it is safe to deallocate its subtree from the local
hierarchy without requiring additional information. Otherwise, the compiler has two options: issue
a warning about a possible leak or generate code that dynamically tracks the hierarchy passed to a
function call. That is, the compiler could preserve an exact correspondence between run-time views
and static effects. The advantage of the second approach is that it prevents temporary memory leaks.
On the downside, it places an overhead for each function call that uses non-trivial hierarchies.

The current implementation strictly adheres to the formal semantics and implements the second
option. As an optimization, we avoid code generation for function calls that use hierarchies of height
one. However, it is entirely possible to allow the programmer to decide whether such leaks should be
prevented, by adding annotations to functions (e.g., @noleak), or by introducing new compiler flags.

In the paragraphs that follow we discuss how the code generator assists the run-time system with
type information so that it can prevent false sharing and region leaks. We also discuss about new
features that have been added to the run-time system.

Code generation. We have altered the code generation pass so that we can perform the following
tasks:

− Translate spawn statements to low-level primitives, which require (un)packing of function ar-
guments and placing the call into a wrapper function, which acts as a glue between the call and
thread that will execute it.

− Generate specialized code for allocating extended regions and references.

− Generate code for allowing “dynamic effect tracking” before some function calls. The sub-tree
passed to a call is not actually copied. Instead we use a form of dynamic scoping (shallow
binding in particular) so as to map type-level region names to nodes of the local tree. Each
dynamic scope is pushed into the virtual stack frame of the run-time system. An additional pop
statement is added after the call.

Run-time system. In order to maintain a local view of the global hierarchy, the run-time system
performs the following tasks:

− It registers fresh regions to the local thread hierarchy in which they are allocated.

67



− When a subtree has to be deallocated, it uses the dynamic scoping structures to retrieve nodes
of the local hierarchy and update their dynamic counts accordingly. Notice that all remaining
region locks are released during the deallocation phase.

− The implementation of spawn uses a similar technique to construct the subtree passed to new
thread and makes this tree accessible to the new thread. It also performs capability accounting
tasks so that the dynamic trees of both threads match the static effects.

− Region locking is implemented in a straightforward manner by traversing the local hierarchy.
To avoid deadlocks, subtrees are always locked in a top-down left-to-right manner.

− The region allocation subsystem has been re-engineered so that it can serve concurrent allocation
requests in a non-blocking manner (i.e., using atomic operations).

4.7.2 Implementation with inference

Code generation. We have altered the code generation pass so that we can perform the following
tasks:

− Translate spawn statements to low-level primitives, which require packing and unpacking of
function arguments and placing the call into a wrapper function, which acts as a glue between
the call and thread that will execute it.

− Generate specialized code for allocating extended regions and references.

Run-time system. In order to maintain a local view of the global hierarchy, the run-time system
performs the following tasks:

− It registers fresh regions to the local thread hierarchy in which they are allocated.

− When a subtree has to be deallocated, the appropriate region counts of the local hierarchy are
updated. Notice that all remaining region locks are released during the deallocation phase.

− The implementation of spawn uses a similar process based on the region count annotations of
spawn operation to construct the subtree passed to new thread and makes this tree accessible to
the new thread.

− Region locking is implemented in a straightforward manner by traversing the local hierarchy.
To avoid deadlocks, subtrees are always locked in a top-down left-to-right manner.

− The region allocation subsystem has been re-engineered so that it can serve concurrent allocation
requests in a non-blocking manner (i.e., using atomic operations).

4.8 Performance evaluation

We evaluated our implementation on concurrent benchmark programs taken from “The Computer
Language Benchmarks Game.”3 As a basis for our evaluation we tried to use the fastest version of
the programs in C, which we translated by hand to extended Cyclone as directly as possible. In case
this was not possible (e.g., the programs could not be translated) we either used a slower version in C
or (if no such version was available from the shootout) we picked a concurrent solution written in a
different language (e.g., C#) and translated it both to C and to our language as directly as possible. In all
cases, the two programs that we are comparing implement the same algorithm. The seven benchmark
programs we used were:4

3 In June 2011, its URL is http://shootout.alioth.debian.org/u32q/.
4 Our implementation and the benchmark programs we used in this section are available from the URL: http://www.

softlab.ntua.gr/~pgerakios/cycinfer.tgz.

68

http://shootout.alioth.debian.org/u32q/
http://www.softlab.ntua.gr/~pgerakios/cycinfer.tgz
http://www.softlab.ntua.gr/~pgerakios/cycinfer.tgz


binary-trees: a program that allocates, traverses and deallocates binary trees. The original program
(#7) uses GCC’s OpenMP library and, for efficiency, memory pools as implemented in the
Apache Portable Runtime Library.

chameneos-redux: a program that simulates the interaction of a number of creatures, using symmet-
rical thread rendez-vous. Our basis for the comparison is the second fastest version in C (#2);
it uses pthreads and mutex locks. The fastest version in C (#5) uses the processor’s “compare
and swap” instruction, instead of locks, and explicitly schedules threads to processor cores; it
cannot be translated directly to our language. Besides, on our testing machine, it only produced
the correct result when compiled with -O2.

fannkuch-redux: a program that performs indexed access to small sequences of integer numbers.
The original program (#2) uses pthreads. However, on our testing machine, it only produced
the correct result when compiled without optimizations and, for fairness, we did the same for
our program. Since November 2009, this program has been removed from the shootout; there
is currently no multithreaded solution in C for fannkuch-redux.

mandelbrot: a program that plots a bitmap of the Mandelbrot set. The basis of our comparison was
the fastest C solution in November 2009 (#6); which uses pthreads and special SSE2 128-bit
floating-point instructions. However, because SSE2 operations are not available in Cyclone, for
fairness, we used the same algorithm but with normal double precision numbers. Since Novem-
ber 2009, two faster C solutions have appeared in the shootout: they both use atomic builtins
for synchronization and the first (#4) uses OpenMP while the second (#3) uses pthreads.

regex-dna: a program that records the frequencies of DNA patterns, expressed as regular expressions.
The input is provided by a file containing numerous DNA sequences, which are placed in a
read-only array. The patterns are distributed to worker threads, which simultaneously access the
read-only array. The basis of our comparison is the C# solution (#6). We should mention that
the fastest C solution (#1), using a different algorithm which distributes workload dynamically,
performed a bit slower than both translations of the C# version (in C and in Cyclone) for our
50MB input test.

spectral-norm: a program that calculates the spectral norm of an infinite matrix. The algorithm is
based on iterative parallelism, where threads are synchronized at each loop with the use of bar-
riers. Two vectors are used for storing intermediate results. At each loop iteration, the vectors
become read-only so that they can be simultaneously accessed by all threads involved in the
computation. The fastest C solution (#4) uses pthreads and special SSE2 128-bit floating-point
instructions and, again, for fairness we used the same algorithm but with normal double preci-
sion numbers.

thread-ring: a program that creates a large number of threads, organized in a ring, and repeatedly
passes a token from one thread to the next. The original program (#1) uses pthreads and mutex
locks. (We should mention that at the time of this writing, the original C program performs very
poorly, compared to versions in other languages.)

The testing machine we used is a quad-core 2.5GHz Intel (Q8300), with 4GB of RAM and 2x2MB
of L2 cache, running a Linux 2.6.26-2 kernel. When running the benchmarks, the testing machine was
in single-user mode and, besides the operating system, the only program running was the “bencher”
program, which we took from the web site of the “Computer Language Benchmarks Game.” The
bencher program does repeated measurements (10 times) of program CPU time, elapsed time, resident
memory usage, CPU load while the benchmark is running, and summarizes those measurements. Our
implementation used GCC 4.3.2 as a back end, which was also used to compile the C programs. We
used -O3 (except for fannkuch-redux, as explained above). In our Cyclone implementationwe disabled

69



benchmark lang CPU memory load per core (%) elapsed factor

binary-trees c 13.281 100648 0 87 97 81 5.383 1.00
cyc 15.725 121880 80 78 85 85 4.966 0.92

chameneos-redux c 28.774 560 76 73 52 89 12.946 1.00
cyc 241.679 720 88 87 78 85 73.199 5.65

fannkuch-redux c 139.989 552 99 100 99 98 35.275 1.00
cyc 171.499 716 100 99 100 100 42.947 1.22

mandelbrot c 37.914 31868 81 100 85 97 10.485 1.00
cyc 37.694 31924 99 83 84 99 10.354 0.99

regex-dna c 6.500 832540 76 95 65 77 2.043 1.00
cyc 6.568 832576 69 75 93 72 2.112 1.03

spectral-norm c 10.609 616 100 99 98 99 2.686 1.00
cyc 9.761 680 99 99 99 99 2.745 1.02

thread-ring c 179.479 4520 8 42 5 40 121.565 1.00
cyc 350.778 4748 44 45 1 5 188.443 1.55

Table 4.1: Performance overhead, compared to GCC, for benchmarks taken from “The Computer
Language Benchmarks Game.” All times are in seconds and memory sizes in KB.

the use of Boehm’s garbage collector, which is only used for Cyclone’s original regions and is not need
for these benchmarks.

The results are summarized in Table 4.1. CPU and elapsed times are in seconds; memory is in KB.
As shown in the table the benchmark programs fall in two categories. In the first category one finds
Cyclone programs with approximately the same performance as the original C program. Programs
in this category are: spectral-norm (2% slower), mandelbrot (1% faster), regex-dna (3% slower), and
binary-trees (8% faster). In the case of regex-dna and spectral-norm we managed to achieve similar
performance to the C/pthreads program by employing reader locks for read-only arrays. The case of
binary-trees is particularly interesting as the two programs use the same algorithm and the original C
program also uses a region-based memory management scheme (memory pools, implemented by the
Apache Portable Runtime Library).

In the second category one finds programs that run slower in Cyclone compared to the ones in C:
fannkuch-redex (22% slower), thread-ring (55% slower) and chameneos-redux (465% slower). In the
former two benchmarks the overhead can be attributed to the fact that our implementation of locks
is not as optimized as the pthreads library for lock-intensive applications. (Unfortunately, we could
not use the pthreads library for implementing our locks, as the pthreads specification does not support
lock transfers between threads.) There is a very heavy performance penalty in chameneos-redux. The
original program uses one lock for the meeting place, where the creatures meet. In addition to this lock,
our program also uses a second lock for the entire array holding the creatures’ data. In our Cyclone
implementation, the array must be locked because it is not possible to convince the type system that
the creature waiting in the meeting roomwill never access its data, but instead this data will be updated
by its peer and therefore no data race will occur. The creatures’ array must also be locked even when
accessing certain “thread-local” fields of the creature structure. The performance penalty is mainly
imposed by the second lock, which only allows one creature to make progress.

The overhead of the chameneos-redux program compared to the original C program reveals an
inherent limitation of the granularity of locking supported by our type system. In Cyclone as well
as in all region-based languages where regions annotate types, each array must reside in a single
region whose name is present in the array’s type. Therefore one cannot have an array whose elements
reside in different regions. For our system, this means that concurrent access to array elements is
necessarily coarse: a thread has to acquire the lock corresponding to the region, therefore locking
the whole array for writing or reading. In other words, it is impossible to have two different threads
writing concurrently to different parts of the same array. This limitation could be lifted by introducing
existential types over regions, but this is technically quite involved and is a topic for future work.

70



benchmark total
(c)

total
(cyc)

statements
(cyc)

annotations
(cyc)

binary-trees 129 183 12 14
chameneos-redux 301 333 16 30
fannkuch-redux 173 257 7 19
mandelbrot 169 232 6 13
regex-dna 306 417 6 11
spectral-norm 238 307 10 29
thread-ring 75 103 9 12

Table 4.2: Total lines of code, extendedCyclone statements and annotations compared to C, for bench-
marks taken from “The Computer Language Benchmarks Game.”

In terms of memory consumption, our implementation uses more or less the same amount of mem-
ory as the original programs. The only benchmark with noticeable difference in memory is binary-
trees. Notice however that the implementation technology behind the two programs here is different:
the original program uses OpenMP, whereas our program uses pthreads. These two implementation
technologies cannot be directly compared.

Syntactic overhead The safety guarantees provided by extended Cyclone’s hierarchical region sys-
tem with reader/writer locks require the use of new programming constructs and annotations as dis-
cussed in earlier sections. We have assessed the syntactic overhead of writing programs in extended
Cyclone compared to the corresponding C programs by counting the lines of code in each bench-
mark. For the extended Cyclone programs, we have also measured the number of lines that contain
additional statements required by our type system (e.g., region sharing and locking primitives, etc.)
or type annotations (e.g., when spawning new threads). The results are summarized in Table 4.2. Ex-
tended Cyclone programs have 34% more lines of code compared to C programs. However, only a
small percentage of the additional lines of code is due to extended Cyclone features. In particular,
the lines corresponding to additional statements and annotations account for 7.6% and 4.3% of the
additional lines of code respectively.

71





Chapter 5

Effects for deadlock freedom

5.1 Overview

The possibility to run into a deadlock is an annoying and commonly occurring hazard associ-
ated with the concurrent execution of programs. This chapter serves as an introduction to type-based
deadlock avoidance for languages with non block-structured locking primitives as a technique for
guaranteeing deadlock freedom. In the section that follows, we briefly review existing type-based
approaches to deadlock freedom We then explain why his approach cannot guarantee deadlock free-
dom in the presence of unstructured locking and describe informally how our approach manages to
avoid deadlocks when unstructured locking is used.We also give the intuition behind the effect system
employed to guarantee deadlock freedom.

5.2 Introduction

Lock-based synchronization may give rise to deadlocks. Two or more threads are deadlocked
when each of them is waiting for a lock that is acquired by another thread. According to Coffman et
al. [Coff71], a set of threads reaches a deadlocked state when the following conditions hold:

− Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
− Hold and wait: Threads already holding locks may request (and wait for) new locks.
− No preemption: Locks cannot be forcibly removed from threads; theymust be released explicitly

by the thread that acquired them.
− Circular wait: Two or more threads form a circular chain, where each thread waits for a lock

held by the next thread in the chain.

Coffman has identified three strategies that guarantee deadlock-freedom by denying at least one
of the above conditions before or during program execution:

− Deadlock prevention: At each point of execution, ensure that at least one of the above conditions
is not satisfied. Thus, programs that fall into this category are correct by design.

− Deadlock detection and recovery: A dedicated observer thread determines whether the above
conditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their
locks, so that the remaining threads can make progress.

− Deadlock avoidance: Using information that is computed in advance regarding thread resource
allocation, determine whether granting a lock will bring the program to an unsafe state, i.e., a
state which can result in deadlock, and only grant locks that lead to safe states.

Several type systems have been proposed that guarantee deadlock freedom, the majority of which
is based on the first two strategies. In the deadlock prevention category, one finds type and effect
systems that guarantee deadlock freedom by statically enforcing a global lock acquisition order that
must be respected by all threads [Flan99b, Boya02, Koba06, Suen08, Vasc10]. Using a strict lock
acquisition order is a constraint we want to avoid, as it unnecessarily rejects many correct programs.
Our work follows the third strategy (deadlock avoidance). It is based on an idea put forward recently

73



let f = λx. λ y. λ z. lock{y} x; x := x+ 1;
lock{z} y; y := y + x;
unlock x;
lock∅ z; z := z + y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock{a} a; a := a+ 1;
lock{b} a; a := a+ a;
unlock a;
lock∅ b; b := b+ a;
unlock b;
unlock a

(b) after substitution

Figure 5.1: An example program, which is well typed before substitution (a) but not after (b).

by Boudol, who proposed a type system for deadlock avoidance that is more permissive than existing
approaches [Boud09]. However, his system is suitable for programs that use exclusively lexically-
scoped locking primitives. Our approach ensures deadlock freedom for the proposed language by
preserving exact information about the order of events, both statically and dynamically. In the next
section, we informally describe Boudol’s idea and present an informal overview of our type and effect
system.

5.3 Deadlock avoidance

Recently, Boudol developed a type and effect system for deadlock freedom [Boud09], which is
based on deadlock avoidance. The effect system calculates for each expression the set of acquired
locks and annotates lock operations with the “future” lockset. The runtime system utilizes the inserted
annotations so that each lock operation can only proceed when its “future” lockset is unlocked. The
main advantage of Boudol’s type system is that it allows a larger class of programs to type check and
thus increases the programming language expressiveness as well as concurrency by allowing arbitrary
locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only
lock operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type systemwhich, in general, allows locks to be acquired in any
order. At runtime, the first lock operation of the first thread must ensure that y has not been acquired
by the second (or any other) thread, before granting x (and symmetrically for the second thread). The
second lock operations need not ensure anything special, as the future locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped.
Even if his language had lock/unlock constructs, instead of lock . . . in . . ., Boudol’s type system is
not sufficient to guarantee deadlock freedom. The example program in Figure 5.1(a) will help us see
why: It updates the values of three shared variables, x, y and z, making sure at each step that only the
strictly necessary locks are held.1

In our näively extended (and broken, as will be shown) version of Boudol’s type and effect system,
the program in Figure 5.1(a) will type check. The future lockset annotations of the three locking
operations in the body of f are {y}, {z} and ∅, respectively. (This can be easily verified by observing
the lock operations between a specific lock and unlock pair.) Now, function f is used by instantiating
both x and y with the same variable a, and instantiating z with a different variable b. The result of
this substitution is shown in Figure 5.1(b). The first thing to notice is that, if we want this program to
work in this case, locks have to be re-entrant. This roughly means that if a thread holds some lock, it
can try to acquire the same lock again; this will immediately succeed, but then the thread will have to
release the lock twice, before it is actually released.

1 To simplify presentation, we assume here that there is one implicit lock per variable, which has the same name.

74



let f = λx. λ y. λ z. lock[y+, x−, z+, z−, y−] x;x := x+ 1;
lock[x−, z+, z−, y−] y; y := y + x;
unlock x;
lock[z−, y−] z; z := z + y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock[a+, a−, b+, b−, a−] a; a := a+1;
lock[a−, b+, b−, a−] a; a := a+a;
unlock a;
lock[b−, a−] b; b := b+a;
unlock b;
unlock a

(b) after substitution

Figure 5.2: The program of Figure 5.1 with continuation effect annotations; now well typed in both
cases.

Even with re-entrant locks, however, it is easy to see that the program in Figure 5.1(b) does not
type check with the present annotations. The first lock for a now matches with the last (and not the
first) unlock; this means that a will remain locked during the whole execution of the program. In
the meantime b is locked, so the future lockset annotation of the first lock should contain b, but it
does not. (The annotation of the second lock contains b, but blocking there if lock b is not available
does not prevent a possible deadlock; lock a has already been acquired.) So, the technical failure of
our näively extended language is that the preservation lemma breaks. From a more pragmatic point
of view, if a thread running in parallel already holds b and, before releasing it, is about to acquire a,
a deadlock can occur. The näive extension also fails for another reason: Boudol’s system is based on
the assumption that calling a function cannot affect the set of locks that are held. This is obviously not
true, if non lexically-scoped locking operations are to be supported.

The type and effect system proposed in this chapter supports unstructured locking, by preserving
more information at the effect level. Instead of treating effects as unordered collections of locks, our
type system precisely tracks effects as an order of lock and unlock operations, without enforcing
a strict lock-acquisition order. The continuation effect of a term represents the effect of the function
code succeeding that term. In our approach, lock operations are annotated with a continuation effect.
When a lock operation is evaluated, the future lockset is calculated by inspecting its continuation
effect. The lock operation succeeds only when both the lock and the future lockset are available.

Figure 5.2 illustrates the same program as in Figure 5.1, except that locking operations are now
annotated with continuation effects. For example, the annotation [y+, x−, z+, z−, y−] at the first
lock operation means that in the future (i.e., after this lock operation) y will be acquired, then x will
be released, and so on.2 If x and y were different, the runtime system would deduce that between
this lock operation on x and the corresponding unlock operation, only y is locked, so the future
lockset in Boudol’s sense would be {y}. On the other hand, if x and y are instantiated with the same
a, the annotation becomes [a+, a−, b+, b−, a−] and the future lockset that is calculated is now the
correct {a, b}. In a real implementation, there are several optimizations that can be performed (e.g.,
pre-calculation of effects) but we do not deal with them in this chapter.

There are three issues that must be faced, before we can apply this approach to a full program-
ming language. First, we need to consider continuation effects in an interprocedural manner as lock
operations and their matching unlock operations may not occur in the same scope. Figure 5.3(a) illus-
trates a program where the first lock operation in the body of function g matches with the last unlock
operation in the body of function h after the point where g is called. In this case, the future lockset of
the first lock operation of h contains lock z that is not visible in the body of h. We choose to compute
function effects intraprocedurally and to annotate each application term with a continuation effect,
which represents the effect of the code succeeding the application term in the calling function’s body,
as shown in Figure 5.3(a). At each function call, the associated continuation effect is pushed on the

2 In the examples of this section, a simplified version of effects is used, to make presentation easier. In the formalism
of Section 6.2, the plus and minus signs would be encoded as differences in lock counts, e.g., y+ would be encoded by a
y1,0 (an unlocked y) followed in time by a y1,1 (a locked y).

75



let f () = g ()[z+];
lock[] z

let g () = lock[y+, y−] x;

lock[y−] y;
unlock y

let h () = f ()[z−, x−];
unlock z;
unlock x

(a) lock and unlock operations are not in the same scope

Stack
z+
z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y,z }

(b) the run-time state of program (a)
when the boxed term is executed

Figure 5.3: Iterprocedural effects and run-time lockset computation.

stack for the duration of the call. Figure 5.3(b) shows the run-time state of the program when control
reaches the lock operation on x: the run-time stack (which grows upwards in the figure) contains the
continuation effects of the f and g calls. The future lockset computation algorithm is straightforward
given the continuation effect of x and the run-time stack: the algorithm starts with an empty future
lockset and traverses the continuation effect until the matching x− is found. While traversing the ef-
fect, other locations being locked are added to the future lockset. For instance, in Figure 5.3(b) the
algorithm adds y to the future lockset of x and then considers the continuation effects on the stack,
from top to bottom. Thus, z is added to the future lockset and the matching unlock operation is found
on the next element of the stack. The resulting lockset is {y, z}. During program execution the lock
operation unblocks when lockset {x, y, z} is available. Notice that we grant only a single lock for
each lock operation (only x in this case) as opposed to acquiring prematurely the entire lockset with
it ({y, z}), which would damage the program’s degree of parallelism.

Second, we need to support conditional statements. The tricky part here is that, even in a simple
conditional statement such as

if c then (lock x; ... unlock x) else (lock y; ... unlock y)

the two branches have different effects: [x+, x−] and [y+, y−], respectively. A typical type and effect
system would have to reject this program, but this would be very restrictive in our case. We resolve
this issue by requiring that the overall effect of both alternatives is the same. This (very roughly)
means that, after the plus and minus signs cancel each other out, we have equal numbers of plus or
minus signs for each lock in both alternatives. Furthermore, we assign the combined effect of the
two alternatives to the conditional statement, thus keeping track of the effect of both branches; in the
example above, the combined effect is denoted by [x+, x−] ? [y+, y−].

The third and most complicated issue that we need to face is support for recursive functions.
Consider the following example:

letrec f = λ x. λ y. λ z.
if z > 0 then (lockγ x; f x y (z− 1); unlock x)

else (lock∅ y; . . . unlock y; )

In this case, if we employ the usual typing for letrec, the effect of f must equal the effect of its body.
However, this is impossible, as the two effects cannot be structurally equivalent: in fact, the effect of
f is contained in the effect of its body, due to the recursive call.

Let us briefly see how our system can infer the effect of function f in the example above. Suppose
that γf is the (unknown) effect of f . Then, the effect of the body of f as a function of γf is expressed
as

γb(γf ) = ([x+] ? γf ? [x−]) ? [y+, y−]

where γ1 ? γ2 denotes the appending of two effects γ1 and γ2. We are looking for a solution to the
equation

γf = summary(γb(γf ))

76



At this point, we can start with γ0 = ∅ (noticing that function f has no unmatched lock or unlock
operations) and look for the limit of the sequence γn+1 = summary(γb(γn)) in other words, for a
fixed point of the summarized function’s body. We have

γ1 = summary(γb(γ0)) = summary([x+, x−] ? [y+, y−])

Although we have not formally defined what function summary does, a possible (but conservative)
choice here would be to “merge” the effects of the two branches in the summary. Therefore,

γ1 = [x+, x−, y+, y−]

We can then proceed in the same way and take

γ2 = summary([x+, x+, x−, y+, y−, x−] ? [y+, y−])

If we are outside function f , we don’t care if inside f lock x is taken more than once. Nor do we care
if x is held or not, at the moment when y is taken. We are just happy to know that x and y are taken
and released. Therefore, by merging again:

γ2 = [x+, x−, y+, y−] = γ1

We reached a fixed point and we can take γ1 as the summarized effect of function f . Therefore, the
effect γ in the annotation of the first lock operation in the example is equal to [x+, x−, y+, y−, x−].

5.4 Concluding remarks

This chapter served as an introduction to type-based deadlock avoidance for languages with non
block-structured locking primitives as a technique for guaranteeing deadlock freedom. We presented
informally our effect system, defined the notion of “continuation effects” and discussed how different
language features are treated using effects such lock operations, function calls, conditional expressions
and recursion.

The following two chapters present two type systems for deadlock avoidance. The first type sys-
tem is more complex as it provides additional guarantees for well-typed programs such as memory-
safety and race freedom, but requires type annotations. Thus, it is more suitable for languages such as
Cyclone. The second type system only focuses on deadlock freedom, but is able to infer all effects.
This makes it suitable for multithreaded C programs which are usually hard to annotate. The third
chapter following the present chapter discusses the analysis and the tool that we have developed for
multithreaded C programs.

77





Chapter 6

Explicit effects for deadlock freedom

6.1 Overview

In this chapter we present a simple language with explicitly annotated functions, mutable ref-
erences, explicit (de-)allocation constructs and unstructured locking primitives. We also present its
operational semantics and a type system that ensures that well typed programs are memory safe (safe
memory accesses and definite release of allocated memory), race free (and definite release of locks
and absence of dangling unlock operations) and deadlock free. The chapter ends with the presentation
of the main soundness results and a few concluding remarks.

6.2 Formalism

The syntax of our language is illustrated in Figure 6.1, where x and ρ range over term and “region”
variables, respectively. A region is thought of as a memory unit that can be shared between threads
and whose contents can be atomically locked. In this chapter, we make the simplistic assumption that
there is a one-to-one correspondence between regions and memory cells (locations), but this is of
course not necessary.

The language core comprises of variables (x), constants (the unit value, true and false), func-
tions (f ), and function application. Functions can be location polymorphic (Λρ. f ) and location ap-
plication is explicit (e[ρ]). Monomorphic functions (λx. e) must be annotated with their type. The
application of monomorphic functions is annotated with a calling mode (ξ), which is seq for normal
(sequential) application and par for parallel application. Notice that sequential application terms are
annotated with γ, the continuation effect as mentioned earlier. The semantics of parallel application is
that once the application term is evaluated to a redex, then it is moved to a new thread of execution and
the spawning thread can proceed with the remaining computation in parallel with the new thread. The
term popγ e encloses a function body e and can only appear during evaluation. The same applies to
constant locations ı@n, which cannot exist at the source-level. The construct let ρ, x= ref e1 in e2
allocates a fresh cell, initializes it to e1, and associates it with variables ρ and x within expression
e2. As in other approaches, we use ρ as the type-level representation of the new cell’s location. The
reference variable x has the singleton type ref(ρ, τ), where τ is the type of the cell’s contents. This
allows the type system to connect x and ρ and thus to statically track uses of the new cell. As will
be explained later, the cell can be consumed either by deallocation or by transferring its ownership
to another thread. Assignment and dereference operators are standard. The value locı represents a
reference to a location ı and is introduced during evaluation. Source programs cannot contain locı.

At any given program point, each cell is associated with a capability (κ). Capabilities consist of
two natural numbers, the capability counts: the cell reference count, which denotes whether the cell
is live, and the lock count, which denotes whether the cell has been locked to provide the current
thread with exclusive access to its contents. Capability counts determine the validity of operations
on cells. When first allocated, a cell starts with capability (1, 1), meaning that it is live and locked,
which provides exclusive access to the thread which allocated it. (This is our equivalent of thread-local
data.) Capabilities can be either pure (n1, n2) or impure (n1, n2). In both cases, it is implied that the

79



Expression e ::= x | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x = ref e in e
| share e | release e | lockγ e
| unlock e | () | popγ e | locı
| if e then e else e | true | false

Value v ::= f | () | locı | true | false
Function f ::= λx. e as τ

γ−→ τ | Λρ. f | fix x : τ. f

Type τ ::= 〈〉 | τ γ−→ τ | ∀ρ. τ
| ref(τ, r) | bool

Location r ::= ρ | ı@n | ρ@n
Calling mode ξ ::= seq(γ) | par
Capability κ ::= n, n | n, n
Effect γ ::= ∅ | γ, rκ | γ, γ ? γ

Figure 6.1: Language syntax.

Configuration C ::= S;T

Store S ::= ∅ | S, ı 7→ v

Threads T ::= ∅ | T, n : θ; e
Locations ε ::= ∅ | ε, ı
Access Lists θ ::= ∅ | θ, ı 7→ n;n; ε; ε

Stack E ::= � | E[F ]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r]
| let ρ, x = ref � in e
| deref � | � := e | v := �
| share � | release �
| lockγ � | unlock � | popγ �
| if � then e1 else e2

Figure 6.2: Operational semantics, semantic domains.

current thread can decrement the cell reference count n1 times and the lock count n2 times. Similarly
to fractional permissions [Boyl03], impure capabilities denote that a location may be aliased. Our type
system requires aliasing information so as to determine whether it is safe to pass lock capabilities to
new threads.

The remaining language constructs (share e, release e, lockγ e and unlock e) operate on a
reference e. The first two constructs increment and decrement the cell reference count of e respectively.
Similarly, the latter two constructs increment and decrement the lock count of e. As mentioned earlier,
the runtime system inspects the lock annotation γ to determine whether it is safe to lock e.

6.3 Operational semantics

We define a small-step operational semantics for our language in Figure 6.3 and Figure 6.2.1 The
evaluation relation transforms configurations. A configuration C consists of an abstract store S and a
thread map T .2 A store S maps constant locations (ı) to values (v). A thread map T associates thread
identifiers to expressions (i.e., threads) and access lists. An access list θ maps location identifiers to
reference and lock counts.

A frame F is an expression with a hole, represented as �. The hole indicates the position where
the next reduction step can take place. A thread evaluation context E, is defined as a stack of nested
frames. Our notion of evaluation context imposes a call-by-value evaluation strategy to our language.
Subexpressions are evaluated in a left-to-right order. We assume that concurrent reduction events can
be totally ordered [Lamp79]. At each step, a random thread (n) is chosen from the thread list for
evaluation. Therefore, the evaluation rules are non-deterministic.

When a parallel function application redex is detected within the evaluation context of a thread,
a new thread is created (rule E-SN). The redex is replaced with a unit value in the currently executed
thread and a new thread is added to the thread list, with a fresh thread identifier. The calling mode of

1 Some of the functions and judgements that are used by the operational and (later) the static semantics are not formally
defined in this chapter. Verbal descriptions and a full formalization are given in Appendix C.

2 The order of elements in comma-separated lists, e.g., in a store S or in a list of threads T , is unimportant; we consider
all list permutations as equivalent.

80



v′ ≡ λx. e1 as τ1
γa−→ τ2 fresh n′ (θ1, θ2) = split(θ , max(γa))

S;T, n : θ;E[(v′ v)par]  S;T, n : θ1;E[()], n′ : θ2;�[(v′ v)seq(min(γa))]
(E-SN)

∀ı. θ(ı) = (0, 0)

S;T, n : θ; ()  S;T
(E-T)

v′ ≡ λx. e1 as τ
′

S;T, n : θ;E[(v′ v)seq(γb)]  S;T, n : θ;E[popγb e1[v/x]]
(E-A)

S;T, n : θ;E[popγ v]  S;T, n : θ;E[v]
(E-PP)

fresh n2
S;T, n : θ;E[(Λρ. f)[ı@n1]]  S;T, n : θ;E[f [ı@n2/ρ]]

(E-RP)

S;T, n : θ;E[(fix x : τ. f v)seq(γa)]  S;T, n : θ;E[(f [fix x : τ. f/x] v)seq(γa)]
(E-FX)

S;T, n : θ;E[if true then e1 else e2]  S;T, n : θ;E[e1]
(E-IT)

S;T, n : θ;E[if false then e1 else e2]  S;T, n : θ;E[e2]
(E-IF)

fresh ı@n1 S′ = S, ı 7→ v θ′ = θ, ı 7→ 1; 1; ∅; ∅
S;T, n : θ;E[let ρ, x = ref v in e2]  S′;T, n : θ′;E[e2[ı@n1/ρ][locı/x]]

(E-NG)

θ(ı) ≥ (1, 1) ı /∈ locked(T )
S;T, n : θ;E[locı := v]  S[ı 7→ v];T, n : θ;E[()]

(E-AS)

θ(ı) ≥ (1, 1) ı /∈ locked(T )
S;T, n : θ;E[deref locı]  S;T, n : θ;E[S(ı)]

(E-D)

θ(ı) ≥ (1, 0) θ′ = θ +ı (1, 0)

S;T, n : θ;E[share locı]  S;T, n : θ′;E[()]
(E-SH)

θ(ı) ≥ (1, 0) θ(ı) = (n1, n2)
n1 = 1 ⇒ n2 = 0 θ′ = θ +ı (−1, 0)

S;T, n : θ;E[release locı]  S;T, n : θ′;E[()]
(E-RL)

ε = lockset(ı, 1, E[popγ1 �]) θ = θ′′, ı 7→ n1; 0; ε1; ε2
θ′ = θ′′, ı 7→ n1; 1; dom(S); ε n1 ≥ 1 locked(T ) ∩ ε = ∅

S;T, n : θ;E[lockγ1 locı]  S;T, n : θ′;E[()]
(E-LK0)

θ(ı) ≥ (1, 1) θ′ = θ +ı (0, 1)

S;T, n : θ;E[lockγ1 locı]  S;T, n : θ′;E[()]
(E-LK1)

θ(ı) ≥ (1, 1) θ′ = θ +ı (0,−1)

S;T, n : θ;E[unlock locı]  S;T, n : θ′;E[()]
(E-UL)

Figure 6.3: Operational semantics, reduction relation.

81



set(γ) = ∀α, γ1, γ2. γ = (γ1, α) :: γ2 ⇒ α = rκ ∧ r /∈ dom(γ1) ∪ dom(γ2)

γ :: ∅ = γ

γ :: γ′ = γ′′

γ :: γ′, rκ = γ′′, rκ
γ :: γ′ = γ′′

γ :: γ′, (γ1 ? γ2) = γ′′, (γ1 ? γ2)

dom(γ) = ε

dom(γ, rκ) = ε ∪ {r}

dom(γ) = ε
dom(γ′) = ε′ dom(γ′′) = ε′′

dom(γ, γ′ ? γ′′) = ε ∪ ε′ ∪ ε′′ dom(∅) = ∅

max(∅) = ∅
γ2 = {r′κ ∈ max(γ1) | r′ 6= r}

max(γ1, rκ) = γ2, r
κ

γ4 = max(γ1 :: γ2) = max(γ1 :: γ3)
max(γ1, γ2 ? γ3) = γ4

set(γ1) γ2 = γ1 :: γ3
dom(γ2) = dom(γ1)

min(γ2) = γ1

γ1 = γ2 :: γ3
γ2 C γ1

max(γ) = (γ1, r
κ) :: γ2

γ(r) = κ

locked(T ) = { ı | (n : θ; e) ∈ T ∧ θ(ı) ≥ (1, 1)}
lk(κ) = n2 if κ = (n1, n2)

θ +ı (n1, n2) = θ[ı 7→ n1 + n3;n2 + n4; ε1; ε2] if (ı 7→ n3;n4; ε1; ε2) ∈ θ

θ(ı) = (n1, n2) if (ı 7→ n1;n2; ε1; ε2) ∈ θ

κ = (n1, n2) (θa, θb) = split(θ , γ)
(θc, θd) = (θa +ı (−n1,−n2) , θb +ı (n1, n2))

(θc, θd) = split(θ , γ, (ı@n0)κ)
(A1)

(θ, ∅) = split(θ , ∅)
(A2)

(∅, n) = frame lockset(ı, n, ∅)
(W0)

(∅, 0) = frame lockset(ı, 0, γ)
(W1)

n1 > 0 n2 = lk(κ)− lk(γ(ı@n0))
(ε, n3) = frame lockset(ı, n1 + n2, γ)

(ε, n3) = frame lockset(ı, n1, γ, (ı@n0)κ)
(W2)

n1 > 0 (ε, n2) = frame lockset(ı, n1, γ1 :: γ2)
(ε′, n2) = frame lockset(ı, n1, γ1 :: γ3)

(ε ∪ ε′, n2) = frame lockset(ı, n1, γ1, γ2 ? γ3)
(W3)

n1 > 0 (ε, n2) = frame lockset(ı, n1, γ) j 6= ı
ε′ = {j | lk(κ)− lk(γ(j@n0)) < 0}

(ε ∪ ε′, n2) = frame lockset(ı, n1, γ, (j@n0)κ)
(W4)

{ı} = lockset(ı, n,�) (L1)

n1 > 0 ε′ = lockset(ı, n2, E) (ε, n2) = frame lockset(ı, n1, γ)
ε ∪ ε′ = lockset(ı, n1, E[popγ �])

(L2)

E 6= �
{ı} = lockset(ı, 0, E)

(L3)
F 6= popγ � ε = lockset(ı, n1, E) n1 > 0

ε = lockset(ı, n1, E[F ])
(L4)

Figure 6.4: Operational semantics, helper relations.

82



the application term is changed from parallel to sequential. The continuation effect associated with the
sequential annotation equals the resulting effect of the function being applied (i.e., min(γa)). Notice,
that θ is divided into two lists θ1 and θ2 using the new thread’s initial effect max(γa) as a reference
for consuming the appropriate number of counts from θ. The formal definitions of helper functions
such asmin,max and split are available in Figure 6.4. When evaluation of a thread reduces to a unit
value, the thread is removed from the thread list (rule E-T). This is successfully only if the thread has
previously released all of its resources.

The rule for sequential function application (E-A) reduces an application redex to a pop expression,
which contains the body of the function and is annotated with the same effect as the application term.
Evaluation propagates through pop expressions (rule E-PP), which are only useful for calculating
future locksets in ruleE-LK0. The rules for evaluating the application of polymorphic functions (E-RP)
and recursive functions (E-FX ) are standard, as well as the rules for evaluating conditionals (E-IT and
E-IF).

The rules for reference allocation, assignment and dereference are straightforward. Rule E-NG
appends a fresh location ı (with initial value v) and the dynamic count (1, 1) to S and θ respectively.
Rules E-AS and E-D require that the location (ı) being accessed is both live and accessible and no
other thread has access to ı (see Figure 6.4 for the definition of function locked). Therefore dangling
memory location accesses as well as unsynchronized accesses cause the evaluation to get stuck. Fur-
thermore, the rules E-SH , E-RL and E-UL manipulate a cell’s reference or lock count. They are also
straightforward, simply checking that the cell is live and (in the case of E-UL) locked. Rule E-RL
makes sure that a cell is unlocked before its reference count can be decremented to zero.

The most interesting rule is E-LK0, which applies when the reference being locked (ı) is initially
unlocked. The future lockset (ε) is dynamically computed, by inspecting the preceding stack frames
(E) as well as the lock annotation (γ1). The lockset ε is a list of locations (and thus locks). (see Fig-
ure 6.4 for the definition of function lockset). The reference ı must be live and no other thread must
hold either ı or any of the locations in ε. Upon success, the lock count of ı is incremented by one. On
the other hand, rule E-LK1 applies when ı has already been locked by the current thread (that tries to
lock it again). This immediately succeeds and the lock count is incremented by one. The definition of
function +ı is available in Figure 6.4.

6.4 Static semantics

In this section we present our type and effect system and discuss the most interesting parts. Effects
are used to statically track the capability of each cell. An effect (γ) is an ordered list of elements
of the form rκ and summarizes the sequence of operations (e.g., locking or sharing) on references.
The syntax of types in Figure 6.1 (on page 80) is more or less standard: Atomic types consist of
base types (the unit type, denoted by 〈〉, and bool); reference types ref(τ, r) are associated with a
type-level cell name r and monomorphic function types carry an effect. Figure 6.5 contains the well-
formedness rules for the typing environment, types and effects. Figure 6.7 and Figure 6.8 contain
the typing rules and Figure 6.6 contains auxiliary typing rules. The typing relation is denoted by
R;M ;∆; Γ ` e : τ & (γ;γ′), where R;M ;∆; Γ is the typing context, e is an expression, τ is the type
attributed to e, γ is the input effect, and γ′ is the output effect. In the typing context,M is a mapping
of constant locations to types, ∆ is a set of cell variables, and Γ is a mapping of term variables to
types. Lock operations and sequential application terms are annotated with the continuation effect.
This imposes the restriction that effects must flow backwards. The input effect γ to an expression
e is indeed the continuation effect; it represents the operations that follow the evaluation of e. On
the other hand, the output effect γ′ represents the combined operations of e and its continuation. The
typing relation guarantees that the input effect is always a prefix of the output effect.

The typing rules T-U , T-TR, T-FL, T-V , T-L, T-RF and T-RP are almost standard, except for the
occasional premise τ ' τ ′ which allows the type system to ignore the identifiers used for location
aliasing and, for example, treat the types ı@n1 and ı@n2 as equal. The typing rule T-F checks that,

83



M ;∆ ` ∅
M ; ∆ ` r M ;∆ ` γ1

M ;∆ ` γ1, rκ
M ;∆ ` γ1 M ;∆ ` γ2 M ;∆ ` γ3

M ;∆ ` γ1, γ2 ? γ3

r ∈ ∆ ∪ dom(M)

M ;∆ ` r
M ;∆ ` ı

M ;∆ ` ı@n
M ;∆ ` ρ

M ;∆ ` ρ@n

`M M ;∆ ` Γ M ;∆ ` γ1 M ; ∆ ` γ2 γ1 C γ2 seq(∅) ` γ2
`M ; ∆; Γ; γ1; γ2

M ;∆ ` bool

M ;∆, ρ ` τ
M ;∆ ` ∀ρ. τ

M ;∆ ` τ M ;∆ ` r
M ;∆ ` ref(τ, r)

min(γ1) defined
M ; ∆ ` τ1 M ;∆ ` γ1 M ;∆ ` τ2

M ;∆ ` τ1
γ1−→ τ2 M ;∆ ` 〈〉

M ;∆ ` ∅
M ;∆ ` τ x /∈ dom(Γ) M ;∆ ` Γ

M ;∆ ` Γ, x : τ

` ∅
`M ı /∈ dom(M) M ; ∅ ` τ

`M, ı 7→ τ

Figure 6.5:Well-formedness rules.

if the effect γb that is annotated in the function’s type is well formed, it is indeed the effect of the
function’s body. On the other hand, the typing rule T-A for function application has a lot more work
to do. It joins the input effect γ (i.e., the continuation effect) and the function’s effect γa, which
contains the entire history of events occurring in the function body; this is performed by the premise
ξ ` γ2 = γ ⊕ γa, which performs all the necessary checks to ensure that all the capabilities required
in the function’s effect γa are available, that pure capabilities are not aliased, and, in the case of
parallel application, that no lock capabilities are split and that the resulting capability of each location
is zero. Rule T-PP works as a bridge between the body of a function that is being executed and its
calling environment. Rule T-FX uses the function summary to summarize the effect of the function’s
body and to check that the type annotation indeed contains the right summary. The effect summary is
conservatively computed as the set of locks that are acquired within the function body; the unmatched
lock/unlock operations are also taken into account.

Rule T-NG for creating new cells passes the input effect γ to e2, the body of let, augmented
by ρ0,0. This means that, upon termination of e2, both references and locks of ρ must have been
consumed. The output effect of e2 is a γ1 such that ρ has capability (1, 1), which implies that when
e2 starts being evaluated ρ is live and locked. The input effect of the cell initializer expression e1 is
equal to the output effect of e2 without any occurrences of ρ. Rules T-AS and T-D check that, before
dereferencing or assigning to cells, a capability of at least (1, 1) is held. Rules T-SH , T-RL, T-LK and
T-UL are the ones that modify cell capabilities. In each rule, κ is the capability after the operation has
been executed. In the case of T-RL, if the reference count for a cell is decremented to zero, then all
locks must have previously been released. The last rule in Figure 6.8, and probably the least intuitive,
is T-IF. Suppose γ is the input (continuation) effect to a conditional expression. Then γ is passed as
the input effect to both branches. We know that the outputs of both branches will have γ as a common
prefix; if γ2 and γ3 are the suffixes, respectively, then γ2 ? γ3 is the combined suffix, which is passed
as the input effect to the condition e1.

84



r ' r (S0) r′ ' r
r ' r′

(S1) r ' r′

r ' r′@n2
(S2)

∅ ' ∅
(S3)

r1 ' r2 γ1 ' γ2
γ1, r1

κ ' γ2, r2
κ (S4)

γ1 ' γ4 γ2 ' γ5 γ3 ' γ6
γ1, γ2 ? γ3 ' γ4, γ5 ? γ6

(S5) τ ' τ (S6)

τ3 ' τ4
r1 ' r2

ref(τ3, r1) ' ref(τ4, r2)
(S7)

fresh ρ1@n
τ1[ρ1@n/ρ] ' τ2[ρ1@n/ρ′]

∀ρ. τ1 ' ∀ρ′. τ2
(S8)

τ1 ' τ3 τ2 ' τ4
γ1 ' γ3 γ2 ' γ4

τ1
γ1−→ τ2 ' τ3

γ3−→ τ4
(S9)

is pure(κ)=∃n1. ∃n2. κ = n1, n2

∀rκ ∈ γ. is pure(κ) ⇒ ∀r′κ′ ∈ γ. r′ 6= r ⇒ ¬(r ' r′)
ξ = par ⇒ ∀rκ.(rκ ∈ min(γ) ⇒ κ = (0, 0)) ∧ (rκ ∈ max(γ) ∧ ¬is pure(κ) ⇒ lk(κ) = 0)

ξ ` γ (OK)

r′ ' r γ′ = γ \ r′

γ′ = γ, rκ \ r′
(M0)

¬(r′ ' r) γ′ = γ \ r′

γ′, rκ = γ, rκ \ r′
(M1)

∅ = ∅ \ r
(M2)

is pure(κ3) ⇒ κ2 = (0, 0) ∧ is pure(κ1) is pure(κ1) ⇔ is pure(κ2)
κ1 = (n3 + n5, n4 + n6) κ3 = (n5, n6) κ2 = (n3, n4)

κ1 = κ2 + κ3
(K1)

γ = subtract(γ , ∅)
(ES1)

γ2 = subtract(γ, rκ2 , γ1) κ = κ2 + κ1

γ2 = subtract((γ, rκ) , (γ1, rκ1))
(ES2)

κ = γ(r) + κ2 γ′′ = add(γ , γ′)
γ′′, rκ = add(γ , (γ′, rκ2))

(AD1)
∅ = add(γ , ∅)

(AD2)

γ2 = add(subtract(max(γ) , min(γ1)) , γ1)
γ2 = min(γ2) :: γ3 seq(∅) ` γ

seq(γ) ` γ :: γ3 = γ ⊕ γ1
(D0)

par ` γ1
γ2 = add(subtract(max(γ) , min(γ1)) , max(γ1))

par ` γ :: γ2 = γ ⊕ γ1
(D1)

locked(γ, 1, r) lk(κ) = 0

locked((γ, rκ), 0, r)
(X1)

lk(κ) > 0

locked((γ, rκ), 1, r)
(X2)

r 6= r′ locked(γ, n, r)

locked((γ, r′κ), n, r)
(X3)

locked((γ :: γ1), n, r) ∨ locked((γ :: γ2), n, r)

locked((γ, γ1 ? γ2), n, r)
(X4)

γb = min(γa) γc = max(γa) γd = {rγc(r)+(0,1) | locked(γa, 0, r)}
γb :: γd :: γc = summary(γa)

(L0)

Figure 6.6: Auxiliary functions.

85



`M ;∆; Γ; γ; γ

M ;∆; Γ ` () : 〈〉& (γ;γ)
(T-U)

`M ;∆; Γ; γ; γ

M ;∆; Γ ` true : bool& (γ;γ)
(T-TR)

`M ;∆; Γ; γ; γ

M ;∆; Γ ` false : bool& (γ;γ)
(T-FL)

`M ;∆; Γ; γ; γ
(x : τ ′) ∈ Γ τ ' τ ′

M ; ∆; Γ ` x : τ & (γ;γ)
(T-V)

`M ;∆; Γ; γ; γ τ ′ ≡ τ1
γb−→ τ2 M ;∆ ` τ ′ τ ' τ ′

seq(∅) ` γb ⇒M ; ∆; Γ, x : τ1 ` e1 : τ2& (min(γb);γb)
M ;∆; Γ ` λx. e1 as τ ′ : τ & (γ;γ)

(T-F)

M ;∆, ρ; Γ ` f : τ & (γ;γ)

M ; ∆; Γ ` Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

M ; ∆ ` r M ;∆ ` τ [r/ρ]
M ;∆; Γ ` e1 : ∀ρ. τ & (γ;γ′)

M ;∆; Γ ` (e1) [r] : τ [r/ρ]& (γ;γ′)
(T-RP)

M ;∆; Γ ` e1 : τ1
γa−→ τ2& (γ3;γ

′) ξ ` γ2 = γ ⊕ γa
M ;∆; Γ ` e2 : τ1& (γ2;γ3) ξ = par ⇒ τ2 = 〈〉

M ;∆; Γ ` (e1 e2)
ξ : τ2& (γ;γ′)

(T-A)

M ;∆; Γ ` e : τ ′& (min(γb);γb) γb ' γ′b
seq(γ) ` γ′ = γ ⊕ γ′b τ ′ ' τ `M ;∆; Γ; γ; γ′

M ;∆; Γ ` popγ e : τ & (γ;γ′)
(T-PP)

τ ≡ τ1
γb−→ τ2 τ ′ ≡ τ ′1

γ′
a−→ τ ′2 τ ' τ ′ γa ' γ′a

M ;∆; Γ, x : τ ` f : τ ′& (γ;γ) γb = summary(γa)
M ;∆; Γ ` fix x : τ. f : τ & (γ;γ)

(T-FX)

Figure 6.7: Typing rules (part I).

6.5 Type safety

In this section we present proof sketches for the fundamental theorems that prove type safety of our
language.3 The type safety formulation is based on proving progress, deadlock freedom and preserva-
tion lemmata. Informally, a program written in our language is safe when for each thread of execution
either an evaluation step can be performed, or the thread is waiting to acquire a lock (blocked). In
addition, there must not exist any threads that have reached a deadlocked state. As discussed in Sec-
tion 6.3, a thread may become stuck when it performs an illegal operation, or when it references a
location that has been deallocated, or when it accesses a location that has not been locked.

Definition 6.1 (Thread Typing.) Let E[e] be the body of a thread and let θ be the thread’s access
list. Thread typing is defined by the rule:

M ;∆; Γ ` e : τ & (γa;γb) M ;∆; Γ ` E : τ
γa;γb−→ 〈〉& (γ1;γ2)

∀rκ ∈ γ1. κ = (0, 0) counts ok(E[popγb �], θ) lockset ok(E[popγb �], θ)
M ;∆; Γ `t θ;E[e] : 〈〉& (γ1;γ2)

(EA)

First of all, thread typing implies the typing of E[e].
Secondly, thread typing establishes an exact correspondence between counts of the access list

θ and counts of pop expression annotations that reside in the evaluation context E[popγb �] (i.e.,
counts ok(E[popγb �], θ) — defined in Figure 6.9). The typing derivations of e and E establish an

3 The complete proofs are given in the Appendix C.

86



`M ;∆; Γ; γ; γ (ı 7→ τ ′) ∈M τ ' ref(τ ′, ı)

M ;∆; Γ ` locı : τ & (γ;γ)
(T-L)

M ;∆; Γ ` e1 : τ1& (γ1 \ ρ;γ′) γ1(ρ) = (1, 1)
M ; ∆ ` τ M ;∆, ρ; Γ, x : ref(τ1, ρ) ` e2 : τ & (γ, ρ0,0;γ1)

M ;∆; Γ ` let ρ, x = ref e1 in e2 : τ & (γ;γ′)
(T-NG)

M ;∆; Γ ` e1 : ref(τ, r)& (γ1;γ
′)

M ;∆; Γ ` e2 : τ & (γ;γ1) γ(r) ≥ (1, 1)

M ; ∆; Γ ` e1 := e2 : 〈〉& (γ;γ′)
(T-AS)

M ;∆; Γ ` e1 : ref(τ, r)& (γ;γ′) γ(r) ≥ (1, 1)

M ;∆; Γ ` deref e1 : τ & (γ;γ′)
(T-D)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ−(1,0);γ′) κ ≥ (2, 0) γ(r) = κ

M ;∆; Γ ` share e : 〈〉& (γ;γ′)
(T-SH)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ+(1,0);γ′)
κ = (n1, n2) n1 = 0 ⇒ n2 = 0 γ(r) = κ

M ;∆; Γ ` release e : 〈〉& (γ;γ′)
(T-RL)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ−(0,1);γ′) κ ≥ (1, 1) γ(r) = κ

M ; ∆; Γ ` lockγ e : 〈〉& (γ;γ′)
(T-LK)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ+(0,1);γ′) κ ≥ (1, 0) γ(r) = κ

M ;∆; Γ ` unlock e : 〈〉& (γ;γ′)
(T-UL)

M ;∆; Γ ` e1 : bool& (γ, γ2 ? γ3;γ
′) max(γ :: γ2) = max(γ :: γ3)

M ;∆; Γ ` e2 : τ & (γ;γ :: γ2) M ; ∆; Γ ` e3 : τ & (γ;γ :: γ3)

M ;∆; Γ ` if e1 then e2 else e3 : τ & (γ;γ′)
(T-IF)

Figure 6.8: Typing rules (part II).

exact correspondence between the annotations of pop expressions and static effects. Therefore, for
each location ı in θ, the dynamic reference and lock counts of ı are identical to the static counts of ı
deduced by the type system.

Thirdly, thread typing enforces the invariant that the future lockset of an acquired lock at any
program point is always a subset of the future lockset computed when the lock was initially acquired
(i.e., lockset ok(E[popγb �], θ) — defined in Figure 6.9). This invariant is essential for establishing
deadlock freedom. Finally, all locations must be deallocated and released when a thread terminates
(∀rκ ∈ γ1. κ = (0, 0)).

Definition 6.2 (Process Typing.) A collection of threads T is well typed if each thread in T is well
typed and thread identifiers are distinct:

M ` ∅
M ; ∅; ∅ `t θ; e : 〈〉& (γ;γ′) M ` T n /∈ dom(T )

M ` T, n : θ; e

87



pure(γ) = {ı | ı ' r ∧ rn1,n2 ∈ γ ∧ n1 + n2 > 0}
counts ok(E, θ) = counts rok(E, θ, ∅, ∅)

θ′, ı 7→ n1;n2; ε1; ε2 = θ − γ κ = (n3, n4) ı ' r
(n1, n2) ≥ (n3, n4) is pure(κ) ⇒ n1 = n3 ∧ n2 = n4

θ′, ı 7→ n1 − n3;n2 − n4; ε1; ε2 = θ − γ, rκ
(B0)

θ = θ − ∅
(B1)

counts rok(E, θ′, γ, ε ∪ ε′) ε′ = pure(γ′′)
θ′ = θ − γ′′ ε ∩ ε′ = ∅ γ′′ = subtract(max(γ) , max(γ1))

counts rok(E[popγ �], θ, γ1, ε)
(C1)

∀ı.θ(ı) = (0, 0)

counts rok(�, θ, γ, ε) (C0)
F 6= popγ′ � counts rok(E, θ, γ, ε)

counts rok(E[F ], θ, γ, ε)
(C2)

lockset ok(E, θ) lockset(ı, n2, E) ∩ ε1 ⊆ ε2

lockset ok(E , θ, ı 7→ n1;n2; ε1; ε2)
(DL0)

lockset ok(E, ∅)
(DL1)

Figure 6.9: Type safety validity relations.

Definition 6.3 (Store Typing.) A store S is well typed if there is a one-to-one correspondence be-
tween S andM and all stored values are closed and well typed:

dom(M) = dom(S) ∀(ı 7→ τ) ∈M.M ; ∅; ∅ ` S(ı) : τ & (∅;∅)
M ` S

Definition 6.4 (Configuration Typing.) A configuration S;T is well typed when both T and S are
well typed, and locks are acquired by at most one thread (i.e., mutex(T ) holds).

mutex(T ) ≡ ∀T1, n : θ;E[e].T = T1, n : θ;E[e] ⇒ ∀ı.θ(ı) ≥ (1, 1) ⇒ ı /∈ locked(T1)

M ` T M ` S mutex(T )
M ` S;T

Definition 6.5 (Deadlocked State.) A set of threads n0, . . . , nk, where k > 0, has reached a dead-
locked state, when each thread nı has acquired lock `(ı+1) mod (k+1) and is waiting for lock `ı.

deadlocked(T ) ≡ T ⊇ T1, n0 : θ0;E[lockγ0 locı0 ], . . . nk : θk;Ek[lockγk locık ] ∧ k > 0 ⇒
∀m1 ∈ [0, k].m2 = (m1 + 1)mod(k + 1) ∧ θm1(ım2) ≥ (1, 1)

Definition 6.6 (Not Stuck.) A configuration S;T is not stuck when each thread in T can take one
of the evaluation steps in Figure 6.3 or it is trying to acquire a lock which (either itself or its future
lockset) is unavailable (i.e., blocked(T, n) holds).

blocked(T, n) ≡ T = T1, n : θ;E[lockγ2 locı] ∧ θ(ı) = (n1, n2) ∧ n1 > 0 ∧ n2 = 0∧
locked(T1) ∩ lockset(ı, 1, E[popγ2 �]) 6= ∅

∀T ′, n : θ; e.T = T ′, n : θ; e⇒ (T ′ ⊆ T ′′ ∧ S;T  S′;T ′′) ∨ blocked(T, n)
` S;T

Given these definitions, we can now present the main results of this chapter. Progress, dead-
lock freedom and preservation are formalized at the program level, i.e., for all concurrently executed
threads.

Lemma 6.1 (Deadlock Freedom) If the initial configuration takes n steps, where each step is well
typed, then the resulting configuration has not reached a deadlocked state.

88



Proof. Let us assume that z threads have reached a deadlocked state and let m ∈ [0, z − 1], k =
(m+1)mod z and o = (k+1)mod z. According to definition of deadlocked state, threadm acquires
lock ık and waits for lock ım, whereas thread k acquires lock ıo and waits for lock ık. Assume thatm
is the first of the z threads that acquires a lock so it acquires lock ık, before thread k acquires lock ıo.

Let us assume that Sy;Ty is the configuration once ıo is acquired by thread k for the first time,
ε1y is the corresponding lockset of ıo (ε1y = lockset(ıo, 1, E[popγy �])) and ε2y is the set of all heap
locations (ε2y = dom(Sy)) at the time ıo is acquired. Then, ık does not belong to ε1y, otherwise thread
k would have been blocked at the lock request of ıo as ık is already owned by threadm.

Let us assume that when thread k attempts to acquire ık, the configuration is of the form Sx;Tx.
According to the assumption of this lemma that all configurations are well typed so Sx;Tx is well-
typed as well. By inversion of the typing derivation of Sx;Tx, we obtain the typing derivation of thread
nk : θk;Ek[lockγ′

k
locık ]: lockγ′

k
locık is well-typed with input-output effect (γ′k; γ

′′
k ), where κ =

γ′k(ık@n
′), κ ≥ (1, 1), γ′′ = γ′k, (ık@n

′)κ−(1,0), and lockset ok(Ek[popγ′′
k
�], θk) holds, where θk is

the access list of thread k. lockset ok (Ek[popγ′′
k
�], θk) implies lockset(ıo, n2, Ek[popγ′′

k
�])∩ε1 ⊆ ε2,

where θk = θ′k, ıo 7→ n1;n2; ε1; ε2 (notice that n2 is positive, ε2 = ε1y and ε1 = ε2y — this is
immediate by the operational steps from Sy;Ty to Sx;Tx and rule E-LK0).

We have assumed thatm is the first thread to lock ık at some step before Sy;Ty, thus ık ∈ dom(Sy)
(the store can only grow — this is immediate by observing the operational semantics rules). By the
definition of lockset function and the definition of γ′′k we have that ık ∈ lockset(ıo, n2, Ek[popγ′′

k
�]).

Therefore, ık ∈ lockset(ıo, n2, Ek[popγ′′
k
�]) ∩ dom(Sy) ⊆ ε1y, which is a contradiction.

Lemma 6.2 (Progress) If S;T is a well typed configuration, then S;T is not stuck.

Proof. It suffices to show that for any thread in T , a step can be performed or block predicate holds
for it. Let n be an arbitrary thread in T such that T = T1, n : θ; e for some T1. By inversion of the
typing derivation of S;T we have thatM ; ∅; ∅ `t θ; e : 〈〉(γ;γ′), mutex(T ), andM ` S.

If e is a value then by inversion of M ; ∅; ∅ `t θ; e : 〈〉& (γ;γ′), we obtain that γ = γ′, E[e] =
�[()] and ∀ı.θ(ı) = (0, 0), as a consequence of ∀rκ ∈ γ.κ = (0, 0) and counts ok (�[popγ �], θ).
Thus, rule E-T can be applied.

If e is not a value then it can be trivially shown (by induction on the typing derivation of e) that
there exists a redex u and an evaluation contextE such that e = E[u]. By inversion of the thread typing
derivation for e we obtain thatM ; ∅; ∅ ` u : τ(γa;γb),M ; ∅; ∅ ` E : τ

γa;γb−→ 〈〉(γ;γ′) (the evaluation
context typing rules are provided in Figure 6.10 and Figure 6.11), counts ok(E[popγb �], θ) hold.

Then, we proceed by performing a case analysis on u (we only consider themost interesting cases):

Case (λx. e′ as τ v)par: it suffices to show that (θ1, θ2) = split(θ , max(γc)) is defined, where γc is
the annotation of type τ . If max(γc) is empty, then the proof is immediate from the base case of
split function. Otherwise, we must show that for all ı, the count θ(ı) is greater than or equal to
the sum of all (ı@n)κ in max(γc). This can be shown by considering par ` γb = γa ⊕ γc (i.e.,
themax counts in γc are less than or equal to themax counts in γb), which can be obtained by
inversion of the typing derivation of (λx. e′ as τ v)par, and the exact correspondence between
static (γb) and dynamic counts (i.e, counts ok(E[popγb �], θ)). Thus, rule E-SN can be applied
to perform a single step.

Case share locı: counts ok(E[popγb �], θ) establishes an exact correspondence between dynamic
and static counts. The typing derivation implies that γa(ı@n1) ≥ (2, 0), for somen1 existentially
bound in the premise of the derivation. Therefore, θ(ı) ≥ (1, 0). It is possible to perform a single
step using rule E-SH . The cases for release locı and unlock locı can be shown in a similar
manner.

Case lockγa locı: similarly to the case we can show that θ(ı) = (n1, n2) and n1 is positive. If n2
is positive, rule E-LK1 can be applied. Otherwise, n2 is zero. Let ε be equal to locked(T1) ∩
lockset(ı, 1, E[popγa �]). If ε is empty then rule E-LK0 can be applied in order to perform a
single step. Otherwise, blocked(T, n) predicate holds and the configuration is not stuck.

89



`M ;∆; Γ; γ1; γ2 M ;∆ ` τ
M ;∆; Γ ` � : τ

γ1;γ2−→ τ & (γ1;γ2)
(E0)

M ; ∆; Γ ` E : τ2
γ5;γ6−→ τ3& (γ1;γ2)

M ;∆; Γ ` F : τ1
γ3;γ4−→ τ2& (γ5;γ6)

M ;∆; Γ ` E[F ] : τ1
γ3;γ4−→ τ3& (γ1;γ2)

(E1)

γ3 C γ4 γ2 = γ1 ⊕ γa
M ;∆; Γ ` e2 : τ1& (γ2;γ3) M ;∆ ` τ1

γa−→ τ2
ξ ` γa ξ = seq(γ1) ∨ (ξ = par ∧ τ2 = 〈〉)

M ;∆; Γ ` (� e2)
ξ : (τ1

γa−→ τ2)
γ3;γ4−→ τ2& (γ1;γ4)

(F1)

M ;∆; Γ ` v1 : τ1
γa−→ τ2& (γ3;γ3)

γ2 = γ1 ⊕ γa γ2 C γ3 M ;∆ ` γ3
ξ ` γa ξ = seq(γ1) ∨ (ξ = par ∧ τ2 = 〈〉)

M ;∆; Γ ` (v1 �)ξ : τ1
γ2;γ3−→ τ2& (γ1;γ3)

(F2)

`M ;∆; Γ; γ; γ′ `M ;∆; Γ; γ1; γ2 M ;∆ ` τ
γ′ = γ ⊕ γ2 e = v ⇒ γ1 = min(γ1)

M ;∆; Γ ` popγ � : τ
γ1;γ2−→ τ & (γ;γ′)

(F3)

γ3 = γ2 \ ρ γ3 C γ′ γ1(ρ) = (1, 1) M ;∆ ` τ1 M ; ∆ ` τ
`M ;∆; Γ; γ; γ′ M ;∆, ρ; Γ, x : ref(τ1, ρ) ` e2 : τ & (γ, ρ0,0;γ1)

M ;∆; Γ ` let ρ, x = ref � in e2 : τ1
γ3;γ′
−→ τ & (γ;γ′)

(F4)

`M ; ∆; Γ; γ; γ′ M ;∆ ` ref(τ, r)
M ;∆; Γ ` e2 : τ & (γ;γ1) γ(r) ≥ (1, 1)

M ;∆; Γ ` � := e2 : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F5)

γ C γ′ γ(r) ≥ (1, 1)
M ;∆; Γ ` locı : ref(τ, r)& (γ′;γ′)

M ;∆; Γ ` locı := � : τ
γ;γ′
−→〈〉& (γ;γ′)

(F6)

`M ;∆; Γ; γ; γ′ γ(r) ≥ (1, 1) M ;∆ ` ref(τ, r)

M ;∆; Γ ` deref � : ref(τ, r)
γ;γ′
−→ τ & (γ;γ′)

(F7)

`M ;∆; Γ; γ1; γ
′ M ;∆ ` ref(τ, r)

κ ≥ (2, 0) γ(r) = κ γ1 = γ, rκ−(1,0)

M ;∆; Γ ` share � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F8)

n1 = 0 ⇒ n2 = 0 γ1 = γ, rκ+(1,0) κ = (n1, n2)
`M ;∆; Γ; γ1; γ

′ M ; ∆ ` ref(τ, r) γ(r) = κ

M ;∆; Γ ` release � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F9)

`M ;∆; Γ; γ1; γ
′ M ; ∆ ` ref(τ, r) κ ≥ (1, 0)

γ(r) = κ γ1 = γ, rκ+(0,1)

M ;∆; Γ ` unlock � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F10)

`M ;∆; Γ; γ1; γ
′ M ;∆ ` ref(τ, r)

κ ≥ (1, 1) γ(r) = κ γ1 = γ, rκ−(0,1)

M ;∆; Γ ` lockγ � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F11)

Figure 6.10: Evaluation context typing rules (part I).

90



γ3 = γ, γ1 ? γ2 M ; ∆ ` γ′ γ3 C γ′ max(γ :: γ1) = max(γ :: γ2)
M ;∆; Γ ` e2 : τ & (γ;γ :: γ1) M ;∆; Γ ` e3 : τ & (γ;γ :: γ2)

M ; ∆; Γ ` if � then e2 else e3 : bool
γ3;γ′
−→ τ & (γ;γ′)

(F12)

M ;∆; Γ ` e : τ & (γa;γb) M ;∆; Γ ` E : τ
γa;γb−→ 〈〉& (γ1;γ2)

∀rκ ∈ γ1. κ = (0, 0) counts ok(E[popγb �], θ) lockset ok(E[popγb �], θ)
M ;∆; Γ `t θ;E[e] : 〈〉& (γ1;γ2)

(EA)

Figure 6.11: Evaluation context typing rules (part II).

Case deref locı: it can be trivially shown (as in the previous case of share that we proved θ(ı) ≥
(1, 0)), that θ(ı) ≥ (1, 1) and since mutex(T1, n : θ;E[deref locı]) holds, then ı /∈ locked(T1)
and thus rule E-D can be used to perform a step. The case of locı := v can be shown in a similar
manner. �

Lemma 6.3 (Preservation) Let S;T be a well-typed configuration with M ` S;T . If the oper-
ational semantics takes a step S;T  S′;T ′, then there exists M ′ ⊇ M such that the resulting
configuration is well-typed withM ′ ` S′;T ′.

Proof. We proceed by case analysis on the thread evaluation relation (we only consider a few cases
due to space limitations):

Case E-A: Rule E-A implies S′ = S, T ′ = T, n : θ;E[popγa e1[v/x]] and e = (λx. e1 as τ0 v)
seq,

where τ0 ≡ τ1
γc−→ τ2. By inversion of the configuration typing assumption we have that

mutex(T, n : θ;E[e]) and M ; ∅; ∅ `t θ;E[e] : 〈〉& (γ;γ′) hold. It suffices to show that
mutex(T, n : θ;E[popγa e1[v/x]]) and M ; ∅; ∅ `t θ;E[popγa e1[v/x]] : 〈〉& (γ;γ′) hold. The
former is immediate from mutex(T, n : θ;E[e]) as no new locks are acquired. Now we proceed
with the latter, which can be shown by proving that M ; ∅; ∅ ` popγa e1[v/x] : τ

′
2& (γa;γb)

holds. By inversion on the thread typing derivation E[e] we have M ; ∅; ∅ ` v : τ ′1(γb;γb),

seq ` γb = γa ⊕ γ′c andM ; ∅; ∅ ` λx. e1 as τ1
γc−→ τ2 : τ ′1

γ′
c−→ τ ′2(γb;γb), where τ ′1

γ′
c−→ τ ′2 '

τ1
γc−→ τ2. We can use proof by induction on the expression typing relation to show that if v

is well typed with τ ′1, then it is also well typed with τ1 provided that τ1 ' τ ′1. Therefore,
M ; ∅; ∅ ` v : τ1(γb;γb) holds. By inversion of the function typing derivation we obtain that
seq ` γc ⇒ M ; ∅; ∅, x : τ1 ` e1 : τ2& (min(γc);γc). seq ` γ′c (premise of seq ` γb = γa ⊕ γ′c)
and γc ' γ′c imply that seq ` γc holds, thus M ; ∅; ∅, x : τ1 ` e1 : τ2& (min(γc);γc) holds.
By applying the standard value substitution lemma on the new typing derivation of v we ob-
tain thatM ; ∅; ∅ ` e1[v/x] : τ2& (min(γc);γc) holds. The application of rule T-PP implies that
M ; ∅; ∅ ` popγa e1[v/x] : τ

′
2& (γa;γb) holds.

Case E-LK0, E-LK1, E-UL, E-SH and E-RL: these rules generate side-effects as they modify the
reference/lock count of location ı. We provide a single proof for all cases. Hence, we are as-
suming here that u (i.e. in E[u]) has one of the following forms: lockγ1 locı, unlock locı
share locı or release locı. Rules E-LK0, E-LK1, E-UL, E-SH and E-RL imply that S′ = S,
T ′ = T, n : θ′;E[()], where () replaces u in context E and θ differs with respect to θ′ only in the
one of the counts of ı (i.e., θ′ = θ[ı 7→ θ(ı) + (n1, n2)] and γa(r) − κ = (n1, n2) — γa is the
input effect of E[u]).

By inversion of the configuration typing assumption we have that:

- mutex(T, n : θ;E[u]): In the case of E-UL, E-SH , E-LK1 and E-RL no new locks are
acquired. Thus, mutex(T, n : θ′;E[()]) holds. In the case of rule E-LK0, a new lock ı

91



is acquired (i.e., when the lock count of ı is zero) the precondition of E-LK0 sug-
gests that no other thread holds ı: locked(T ) ∩ lockset(ı, 1, E[popγa �]) = ∅. Thus,
mutex(T, n : θ′;E[()]) holds.

-M ; ∅; ∅ `t θ;E[u] : 〈〉& (γ;γ′): By inversion we have thatM ; ∅; ∅ ` E : 〈〉 γa;γb−→ 〈〉(γ;γ′)
and M ; ∅; ∅ ` u : 〈〉(γa;γb), where γb = γa, (ı@n′)κ for some n′. It can be trivially
shown from the latter derivation that M ; ∅; ∅ ` () : 〈〉(γa;γa). We can obtain from the
typing derivation of E (proof by induction) that M ; ∅; ∅ ` E : 〈〉 γa;γa−→ 〈〉(γ;γ′′), where
γ′ = γ′′, (ı@n′)κ.

- lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): By the definition of lockset
function it can be shown that lockset(j, nb, E[popγa �]) ⊆ lockset(j, nb, E[popγb �])
for all j 6= ı in the domain of θ′ (nb is the lock count of j in θ). The same ap-
plies for j = ı in the case of rules E-SH , E-RL as the lock count of ı is not af-
fected. In the case of rules E-LK0, E-LK1, E-UL we have lockset(ı, nb ± 1, E[popγa �]),
but this is identical to lockset(ı, nb, E[popγb �]) by the definition of lockset. Therefore
lockset ok(E[popγa �], θ′) holds. The predicate counts ok (E[popγb �], θ) enforces the
invariant that the static counts are identical to the dynamic counts (θ) of ı. The lock count
of θ is modified by ±1 and γa differs with respect to γb by (ı@n′)κ. We can use this fact
to show that counts ok(E[popγa �], θ′). �

Lemma 6.4 (Multi-step Program Preservation) Let S0;T0 be a closed well-typed configuration
for someM0 and assume that S0;T0 evaluates to Sn;Tn in n steps. Then for all ı ∈ [0, n]Mı ` Sı;Tı
holds.

Proof. Proof by induction on the number of steps n using Lemma 6.3.

Theorem 6.1 (Type Safety) Let expression e be the initial program and let the initial typing context
M0 and the initial program configuration S0;T0 be defined as follows:M0 = ∅, S0 = ∅, and T0 =
{0 : ∅; e}. If S0;T0 is well-typed in M0 and the operational semantics takes any number of steps
S0;T0  n Sn;Tn, then the resulting configuration Sn;Tn is not stuck and Tn has not reached a
deadlocked state.

Proof. The application of Lemma 6.4 to the typing derivation of S0;T0 implies that for all steps from
zero ton there exists anMı such thatMı ` Sı;Tı. Therefore, Lemma 6.1 implies that¬deadlocked(Tn)
and Lemma 6.2 implies Sn;Tn is not stuck.

Typing the initial configuration S0;T0 with the empty typing contextM0 guarantees that all func-
tions in the program are closed and that no explicit location values (locı) are used in the source of the
original program.

6.6 Concluding remarks

The main contribution of this work is type-based deadlock avoidance for a language with unstruc-
tured locking primitives and the meta-theory for the proposed semantics. The type system presented
in this chapter guarantees that well-typed programs will not deadlock at execution time. This is pos-
sible by statically verifying that program annotations reflect the order of future lock operations and
using the annotations at execution time to avoid deadlocks. The main advantage over purely static ap-
proaches to deadlock freedom is that our type system accepts a wider class of programs as it does not
enforce a total order on lock acquisition. The main disadvantages of our approach is that it imposes
an additional run-time overhead induced by the future lockset computation and blocking time (i.e.,
both the requested lock and its future lockset must be available). Additionally, in some cases threads
may unnecessarily block because our type and effect system is conservative. For example, when a

92



thread locks x and executes a lengthy computation (without acquiring other locks) before releasing x,
it would be safe to allow another thread to lock y even if x is in its future lockset.

We have shown that this is a non-trivial extension for existing type systems based on deadlock
avoidance. There are three significant sources of complexity: (i) lock acquisition and release oper-
ations may not be properly nested, (ii) lock-unlock pairs may span multiple contexts: function calls
that contain lock operations may not always increase the size of lockset, but instead limit the lockset
size. In addition, future locksets must be computed in a context-sensitive manner (stack traversal in
our case), and (iii) in the presence of location (lock) polymorphism and aliasing, it is very difficult for
a static type system even to detect the previous two sources of complexity. To address lock aliasing
without imposing restrictions statically, we defer lockset resolution until run-time.

93





Chapter 7

Effect inference for deadlock freedom

7.1 Overview

The type and effect system presented in the previous chapter, requires explicit and complex type
annotations from the programmer. Its effects contain elements that are pairs (n1, n2) associating mem-
ory cells with two capability counts:n1 is a cell reference count, denoting whether the cell is live, while
n2 is the lock count, denoting how many times the cell has been locked (as locks are re-entrant). In
addition, capabilities can be either unique or possibly aliased: the type system requires aliasing infor-
mation so as to determine whether it is safe to pass lock capabilities to new threads. As a result, that
type system is probably unsuitable for a language like C/pthreads; instead, it is relevant for a language
like Cyclone [Gros02] where it is commonplace for functions to have annotations.

In contrast, the type and effect system we develop in this chapter is much simpler. It focuses on
deadlock avoidance only, captures the temporal order of lock and unlock operations, and imposes
no restrictions with respect to aliasing. More importantly, its implementation is amenable to effect
inference, and there is no requirement that functions are annotated with explicit effects. Instead, the
type and effect system gathers effects and validates them at the beginning of the lexical scope of each
lock. This simpler system is thus directly applicable to C/pthreads programs.

7.2 Formal semantics and metatheory

The syntax of our language is illustrated in Figure 7.1, where x and ρ range over term and lock
variables, respectively, and ı ranges over lock constants. In this chapter, to make the presentation as
simple as possible, we do not include any mutable shared state in our language. In other words, we
study locks in isolation: locks do not serve any other purpose than thread synchronization (mutual
exclusion). Without shared mutable references, locks may seem a bit pointless. However, our primary
goal is to develop a simple and understandable type and effect system that guarantees deadlock avoid-
ance. Including shared memory and achieving other interesting properties, such as memory safety and
data race freedom, are goals which are more or less orthogonal to deadlock freedom and have already
been presented in the previous chapter.

The language core comprises of constants (true, false and () — the “unit” value), functions
(f ), and function application. Functions can be monomorphic (λx. e), lock polymorphic (Λρ. f ), and
recursive (fix x. f ). The application of lock polymorphic functions is explicit (e[r], where r is a
metavariable ranging over lock constants and variables). The application of monomorphic functions
is annotated with a calling mode (ξ), which is seq for normal sequential application and par for parallel
application.1 The semantics of parallel application is that, once the application term is evaluated to a
redex, it is moved to a new thread of execution and the spawning thread can proceedwith the remaining
computation in parallel with the new thread. Conditional expressions (if e then e1 else e2) are
standard.

The construct newlock ρ, x in e allocates a fresh lock, which is initially unlocked, and associates it
with variables ρ and xwithin expression e. The type variable ρ is bound to the type-level representation

1 Notice that sequential application terms are annotated with γ, the continuation effect.

95



Expression e ::= x | v | (e e)ξ | (e) [r] | popγ e
| newlock ρ, x in e
| lockγ e | unlock e
| if e then e else e

Value v ::= () | true | false | f | lkı
Function f ::= λx. e | Λρ. f | fix x. f
Type τ ::= 〈〉 | Bool | Lk(r) | τ γ−→ τ | ∀ρ. τ

Lock r ::= ρ | ı
Calling mode ξ ::= seq(γ) | par
Operation κ ::= + | −
Effect γ ::= ∅ | rκ, γ | γ ? γ, γ

Figure 7.1: Language and type syntax.

Lock Store S ::= ∅ | S, ı 7→ n;n; ε; ε

Threads T ::= ∅ | T, n : e
Configuration C ::= S;T

Lockset ε ::= ∅ | ε, ı

Context E ::= � | E[F ]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | popγ �
| lockγ1 � | unlock�
| if � then e else e

Figure 7.2: Operational semantics syntax and evaluation context.

of the fresh lock and allows the type system to statically track uses of it, whereas the term variable
x is bound to the fresh lock’s handle. Handles can be used as arguments in operations lockγ e and
unlock e. It is worth noting that run-time locks are re-entrant, so each lock is associated with a count
which is modified after each successful lock/unlock operation. As mentioned, the run-time system
inspects the lock annotation γ to determine whether it is safe to lock e.

The term popγ e encloses a function body e and cannot exist at the source-level; it only appears
during evaluation. The same applies to constant lock handles lkı.

The syntax of types is more or less standard; a function’s type is annotated with the function’s
effect. Effects (γ) are sequences of events. An atomic event can either be r+ or r−, representing
acquire and release operations on a lock handle of type Lk(r). Events also include γ1 ? γ2, where γ1
and γ2 are the continuation effects corresponding to the two branches of a conditional expression.

7.3 Operational semantics

We define a small-step operational semantics for our language in Figure 7.2 and 7.3.2 The evalu-
ation relation transforms configurations. A configuration C consists of an abstract lock store S and a
thread map T .3 A store S maps constant locks (ı) to tuples of the form (n1;n2; ε1; ε2). The first two
elements of the tuple are natural numbers representing the thread identifier that owns ı and the count
of ı, respectively. The remaining two elements are locksets; they bear no operational significance but
are necessary for the type safety proof. The first lockset (ε1) represents the set of all locks in S when
ı was last locked (when its n2 went from zero to one). The second lockset (ε2) represents the future
lockset of ı when it was last locked.

A thread map T associates thread identifiers to expressions (i.e., threads). A frame F is an expres-
sion with a hole, represented as �. The hole indicates the position where the next reduction step can
take place. A thread evaluation context E is defined as a stack of nested frames. Our notion of evalua-
tion context imposes a call-by-value evaluation strategy to our language. Subexpressions are evaluated
in a left-to-right order. We assume that concurrent reduction events can be totally ordered [Lamp79].
At each step, a random thread (n) is chosen from the thread list for evaluation. Therefore, the evalu-
ation rules are non-deterministic.

2 A full formalization is given in Appendix D.
3 The order of elements in comma-separated lists, e.g., in a store S or in a list of threads T , is unimportant; we consider

all list permutations as equivalent. However, in sequences (e.g., effects), order is important.

96



fresh n′

S;T, n :E[(v′ v)par]  S;T, n :E[()], n′ :�[(v′ v)seq(∅)]
(E-SN)

S;T, n :�[()]  S;T
(E-T)

S;T, n :E[((λx. e1) v)
seq(γ)]  S;T, n :E[popγ e1[v/x]]

(E-A)

S;T, n :E[popγ v]  S;T, n :E[v]
(E-PP)

S;T, n :E[(Λρ. f)[ı]]  S;T, n :E[f [ı/ρ]]
(E-RP)

v′ = fix x. f

S;T, n :E[(v′ v)seq(γ)]  S;T, n :E[(f [v′/x] v)seq(γ)]
(E-FX)

S;T, n :E[if true then e1 else e2]  S;T, n :E[e1]
(E-IT)

S;T, n :E[if false then e1 else e2]  S;T, n :E[e2]
(E-IF)

fresh ı S′ = S, ı 7→ n; 0; ∅; ∅
S;T, n :E[newlock ρ, x in e1]  S′;T, n :E[e1[ı/ρ][lkı/x]]

(E-NG)

S(ı) = n1; 0; ε1; ε2 S′ = S[ı 7→ n; 1; dom(S); ε]
ε = run(stack(E[popγ1 �]), ı, 1) ε ∪ {ı} ⊆ available(S, n)

S;T, n :E[lockγ1 lkı]  S′;T, n :E[()]
(E-LK0)

S(ı) = n;n2; ε1; ε2 n2 > 0 S′ = S[ı 7→ n;n2 + 1; ε1; ε2]

S;T, n :E[lockγ1 lkı]  S′;T, n :E[()]
(E-LK1)

S(ı) = n;n2; ε1; ε2 n2 > 0 S′ = S[ı 7→ n;n2 − 1; ε1; ε2]

S;T, n :E[unlock lkı]  S′;T, n :E[()]
(E-UL)

Figure 7.3: Operational semantics.

When a parallel function application redex is detected within the evaluation context of a thread, a
new thread is created (rule E-SN). The redex is replaced with the unit value in the currently executed
thread and a new thread is added to the thread list, with a fresh thread identifier. The calling mode of
the application term is changed from parallel to sequential, with an empty continuation effect. When
evaluation of a thread reduces to a unit value, the thread is removed from the thread list (rule E-T).
The sequential function application rule (E-A) reduces an application redex to a pop expression, which
contains the body of the function and is annotated with the same effect as the application term. Pop
expressions are used to form the run-time stack of continuation effects.When the expression contained
within a pop has been reduced to a value, then enclosing pop is removed and the value is returned to
the context (rule E-PP). The rules for evaluating the application of polymorphic functions (E-RP) and
recursive functions (E-FX ) are standard, as well as the rules for evaluating conditionals (E-IT and
E-IF). Rule E-NG appends to S a fresh lock ı, which is initially unlocked.

The most interesting rule is E-LK0, which dynamically computes the future lockset (ε) of lock ı.
To achieve this, function stack (defined in Figure 7.4) assembles the overall (stacked) continuation

97



run(γ, ı, n) =



∅ if n = 0
run(γ′, ı, n+ 1) if γ = ı+, γ′ and n > 0
run(γ′, ı, n− 1) if γ = ı−, γ′ and n > 0
run(γ′, ı, n) ∪ {j} if γ = j+, γ′ and n > 0
run(γ′, ı, n) if γ = j−, γ′ and n > 0
run((γ1 :: γ′), ı, n) ∪ run((γ2 :: γ′), ı, n) if γ = γ1 ? γ2, γ

′ and
n > 0

stack(E) =


∅ if E = �
stack(E′) if E = E′[F ] and F 6= popγ′ �
γ′ :: stack(E′) if E = E′[popγ′ �]

available(S, n) =


∅ if S = ∅
available(S′, n) ∪ {ı} if S = S′, ı 7→ n1;n2; ε1; ε2 and

n1 = n or n2 = 0
available(S′, n) if S = S′, ı 7→ n1, n2; ε1; ε2 and

n1 6= n and n2 > 0

dom(S) = {ı | ı 7→ n1;n2; εa; εb ∈ S}

Figure 7.4: Operational semantics helper relations.

effect by concatenating the continuation effect annotations of pop expressions that are found in the
stack of the evaluation context. The lockset computation is modeled by function run(γ, ı, k) (defined
in Figure 7.4), which accepts the stacked effect γ, the lock ı whose lockset is to be computed and the
number k of unmatched unlock events (ı−) in the stack. It returns a subset of the lock events (r+)
located in the stack, such that each element of the subset is locked before the last unmatched unlock
operation of ı. Function run is defined only when all unlock events for ı are found in the stacked effect.
The future lockset of ı (ε) is equal to run(γ, ı, 1). Rule E-LK0 also requires that both ı and its future
lockset are available— ε∪{ı} ⊆ available(S, n). Function available (also defined in Figure 7.4) takes
as input a lock store S and a thread identifier n and returns a set of locks, such that each element of
the set can be acquired by thread n (i.e., locks whose thread identifier either equals n or their count is
zero). If the availability premise holds, the lock count of ı is set to one and the thread identifier is set
to n. In addition, both ε1 and ε2 (the last two elements of S(ı)) are replaced with dom(S) (all locks
allocated in the program) and ε, respectively.

The rules for acquiring or releasing a held lock (E-LK1 or E-UL) require that the count of that lock
is positive and that it is owned by the thread that is performing the unlock/lock operation. Otherwise,
the semantics will get stuck. We will soon present a type system for this language and also the type
safety formulation that guarantees that well-typed programs cannot reach a stuck state.

Note that, although rule E-LK0 ensures that all locks in the future lockset ε are available before
proceeding, our semantics only acquires the requested lock ι and not any of the locks in ε. As a possible
optimization, an implementation could choose to acquire additionally some subset ε′ ⊆ ε. These locks
are all available at this point and an implementation might not want to recheck for their availability
and more importantly risk having to wait for them at the time they are needed, in case some other
thread has got hold of them until then. Pre-acquisition of locks, however, may reduce parallelism and
an implementation should use it only when an analysis shows that the locks will definitely be needed,
and not “too late” in the future. (Additional information could statically be placed in the effects to
guide such an implementation.) The type safety of our system, stated in Section 7.6, can be proved
even if the semantics pre-acquires a subset of the future lockset in this rule.

98



M ; ∆ ` Γ M ;∆ ` γ
M ;∆; Γ ` () : 〈〉& (γ;γ)

(T-U)

x : τ ∈ Γ
M ;∆ ` Γ M ;∆ ` γ
M ;∆; Γ ` x : τ & (γ;γ)

(T-V)

M ;∆ ` Γ M ;∆ ` γ
M ;∆; Γ ` true : Bool& (γ;γ)

(T-T)
M ;∆ ` Γ M ;∆ ` γ

M ;∆; Γ ` false : Bool& (γ;γ)
(T-F)

M ;∆ ` Γ M ;∆ ` γ τ ≡ τ1
γb−→ τ2

M ;∆ ` τ M ;∆; Γ, x : τ1 ` e1 : τ2& (∅;γb)
M ;∆; Γ ` λx. e1 : τ & (γ;γ)

(T-FN)

M ;∆, ρ; Γ ` f : τ & (γ;γ)

M ;∆; Γ ` Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

r ∈M ∪∆ M ;∆; Γ ` e1 : ∀ρ. τ & (γ;γ′)

M ; ∆; Γ ` (e1) [r] : τ [r/ρ]& (γ;γ′)
(T-RP)

M ;∆ ` γ M ;∆; Γ ` e : τ & (∅;γ′)
M ;∆; Γ ` popγ e : τ & (γ;γ′ :: γ)

(T-PP)

M ;∆ ` Γ M ;∆ ` γ ı ∈M

M ;∆; Γ ` lkı : Lk(ı)& (γ;γ)
(T-L)

M ;∆; Γ ` e : Lk(r)& (r+, γ;γ′)

M ;∆; Γ ` lockγ e : 〈〉& (γ;γ′)
(T-LK)

M ;∆; Γ ` e : Lk(r)& (r−, γ;γ′)

M ;∆; Γ ` unlock e : 〈〉& (γ;γ′)
(T-UL)

M ;∆; Γ ` e1 : τ1
γa−→ τ2& (γ1;γ

′)
M ;∆; Γ ` e2 : τ1& (γa :: γ;γ1)

M ; ∆; Γ ` (e1 e2)
seq(γ) : τ2& (γ;γ′)

(T-SA)

∀r ∈ dom(γa). r; 0 `ok γa
M ; ∆; Γ ` e1 : τ1

γa−→〈〉& (γ1;γ
′) M ;∆; Γ ` e2 : τ1& (γ;γ1)

M ;∆; Γ ` (e1 e2)
par : 〈〉& (γ;γ′)

(T-PA)

M ;∆ ` τ ρ /∈ dom(γ) ρ; 0 `ok γ′

M ;∆, ρ; Γ, x : Lk(ρ) ` e1 : τ & (γ;γ′)

M ;∆; Γ ` newlock ρ, x in e1 : τ & (γ;γ′ \ ρ)
(T-NG)

R;M ;∆; Γ, x : τa ` f : τb& (γ;γ)

τa ≡ τ1
γa−→ τ2 τb ≡ τ1

γb−→ τ2 γa = summary(γb)
R;M ;∆; Γ ` fix x. f : τa& (γ;γ)

(T-FX)

M ;∆; Γ ` e1 : Bool& (γ1 ? γ2, γ;γ
′)

M ;∆; Γ ` e2 : τ & (γ;γ1 :: γ) M ;∆; Γ ` e3 : τ & (γ;γ2 :: γ)

M ;∆; Γ ` if e1 then e2 else e3 : τ & (γ;γ′)
(T-IF)

Figure 7.5: Typing rules.

99



M ; ∆ ` ∅
r ∈M ∪∆ M ;∆ ` γ1

M ;∆ ` γ1, rκ
M ;∆ ` γ1 M ;∆ ` γ2 M ; ∆ ` γ3

M ;∆ ` γ1, γ2 ? γ3

M ;∆ ` Bool

M ;∆, ρ ` τ
M ;∆ ` ∀ρ. τ

r ∈M ∪∆
M ;∆ ` Lk(r)

M ;∆ ` τ1 M ;∆ ` γ1 M ;∆ ` τ2
M ;∆ ` τ1

γ1−→ τ2 M ;∆ ` 〈〉

M ;∆ ` ∅
M ;∆ ` τ1 x /∈ dom(Γ1) M ;∆ ` Γ1

M ; ∆ ` Γ1, x : τ1

Figure 7.6:Well formedness.

7.4 Static semantics

The syntax of types and effects is given in Figure 7.1 (on page 96). Basic types consist of the
boolean and the unit type, denoted by 〈〉; lock handle types Lk(r) are singleton types parameterized
by a type-level lock name r; and monomorphic function types carry the function’s effect. Effects (γ)
are used to statically track lock ownership information; they are ordered sequences of events, which
can be either rκ or γ1 ? γ2.

The typing relation is denoted byR;M ;∆; Γ ` e : τ & (γ;γ′). It takes an expression e, the typing
contextR;M ;∆; Γ, and an input effect γ, and produces the type τ assigned to expression e as well as
an output effect γ′. Here,M is a set of lock constants,∆ is a set of lock variables, and Γ is a mapping
of term variables to types.

As lock operations and application terms are annotated with their continuation effect, it is natural
that effects flow backwards through the type system: the input effect to an expression e represents the
events that follow in the future of e, that is, after e is evaluated. On the other hand, the output effect
represents the combined sequence of events caused by e and its future. In fact, the typing relation does
notmodify the input effect but rather appends to it: the input effect is always a suffix of the output effect,
in chronological order. (This is ensured by the typing relation and the typing context well-formedness.)
The typing rules are given in Figure 7.5.4 The typing rules T-U , T-T , T-F, T-V , T-L, T-RF, T-RP and
T-FN are standard. Notice, that in the case of rule T-FN , the input effect of the function’s body e1
is empty. The typing rule for sequential function application (T-SA) appends the input effect γ to the
function’s effect γa and propagates the new effect to expression e2, which in turn propagates its output
effect to e1. The output effect of the sequential function application is the output effect of expression
e1. The annotation of the application must match with the input effect γ. Rule T-PP acts as a bridge
between the body of a function that is being executed and its calling environment, by appending the
continuation effect to the effect of the function’s body. The rule for parallel application (T-PA) is similar
to the sequential application rule, except that the function’s effect (γa) is not combined with the input
effect (as the function will be evaluated in a new thread) and the function’s return type must be unit.
In addition, all locks in the function’s effect must be released before and after the function’s execution
— ∀r. r; 0 `ok γa. The relation r;n `ok γ checks that there exist exactly n unmatched unlock events
in γ for lock r (it is used at the same time to make sure that r is never released more times than it has
been acquired).

The rule for typing recursive functions (T-FX ) is the standard one, if we ignore the effects γa and
γb on the function types. As mentioned in Section 5.3, it may be impossible to assign the recursive
function variable x the same effect as the function body f (i.e., γb). The intuition here is that x must
be assigned an effect γa that summarizes γb, and this effect can be computed as a least fixed point with

4 A complete formalization appears in the Appendix D.

100



the procedure that was sketched in Section 5.3. We postpone the discussion on summaries for a little
longer, until Section 7.5.

The rule for creating new locks (T-NG) passes the input effect γ to e1, the body of let, assigns
the lock handle variable x the singleton type Lk(ρ) and adds ρ to the lock variable context for the
scope of e1. The output effect of the lock creation construct is equal to the output effect of e1 minus
any events of the form ρκ. The rule also requires that ρ is unlocked before and after the execution of
e1 — ρ; 0 `ok γ′. Rule T-LK prepends r+ to the input effect and propagates the resulting effect to
e1. Notice, that the input effect must match the lock annotation (the continuation effect of the lock
operation must be valid). The typing rule T-UL prepends r− to the input effect and propagates the
resulting effect to e1.

The typing rule for conditional expressions (T-IF) propagates the input effect of the conditional
expression to its branches e2 and e3 respectively. We know that γ is a common suffix of the output
effect of e2 and e3. Let us assume that γ1 and γ2 are the prefixes of the two branches respectively. Thus,
the input effect of the guard expression e1 is γ1 ? γ2, γ, which tells us that the type system records the
effects of both branches but it does not unify them.

The typing rules T-SA, T-LK and T-PP ensure that the effect annotations in sequential applications,
lock and pop expressions are equal to the expression’s input effect. This means that, even in this
language (and much more so in a language like C), programmers are not really expected to explicitly
annotate such expressions: it is easy for the type and effect system to infer the annotations.

7.5 Summarizing recursive functions

We have already discussed why it is necessary to summarize the effects of recursive functions.
However, the function summary can be correctly defined in different ways. In principle, any possible
definition will do, as long as it satisfies Lemmata 7.1 and 7.2.

Lemma 7.1 (Consistency of Summary) Let σ be a substitution of lock variables with lock con-
stants and γs be a continuation effect. If γa = summary(γb) then for all ı and n we have

run(σ(γb :: γs), ı, n) ⊆ run(σ(γa :: γs), ı, n)

Before we proceed to Lemma 7.2, we provide an informal definition for function startup. This
function takes an effect γ and finds all unmatched lock and unlock operations in γ. It produces an effect
γ′ which has all the unmatched lock operations, followed by all the unmatched unlock operations. E.g.

startup([x+, x−] ? [y+, y−]) = ∅
startup([z−, y+] ? [x+, y+, x−, z−]) = [y+, z−]

We can also define the notion of compositionality for functions on effects. Informally, a function F (γ)
is compositional if γ can only be used as a sub-effect in the result (i.e. in the way that our type and
effect system uses effects).

Lemma 7.2 (Fixed Point of Summary) LetF (γ) be a compositional function, γ0 = startup(F (∅)),
and γn+1 = summary(F (γn)). Then there exists a k such that for all n > k we have γk = γn.

If a summary function satisfies Lemma 7.2, then the procedure described in Section 5.3 can be
used to compute the fixed point of all recursive functions. This fixed point can be used by the type
system to determine type τa in rule T-FX . Furthermore, if a summary function satisfies Lemma 7.1,
then it is safe for the run-time system to use the summarized effect in the place of the real effect of a
function’s body. In all cases, the future lockset that will be computed based on the summary will be a
superset of the future lockset that would be computed based on the body’s real effect.

We use the conservative function summary (see Figure 7.7) that can be shown to satisfy Lem-
mata 7.1 and 7.2. For any effect γ, we define summary(γ) as follows. We take startup(γ) and split it

101



in two components: γ+, which contains the unmatched lock operations, and γ−, which contains the
unmatched unlock operations. We reorder the events in γ+ and γ− using any total order relation on
lock variables ρ. (This normalization is required for ensuring that a fixed point exists — Lemma 7.2.)
We then build a third component: γ0, which contains one pair of [x+, x−] for each lock x that is
acquired at any time in γ, excluding the ones that are in γ+. Again, we normalize γ0 by reordering the
events that it contains. Finally, we take summary(γ) = γ+ :: γ0 :: γ−.

As an example, consider the following conditional statement:

if e then (lock x; . . . lock y; . . . unlock y)
else (lock z; . . . lock x; . . . unlock z)

The corresponding effect is:

γ = [x+, y+, y−] ? [z+, x+, z−]

There is one unmatched lock operation (for x, which occurs in both branches of the conditional),
therefore startup(γ) = [x+]. We take γ+ = [x+] and γ− = ∅. Then, we build γ0 = [y+, y−, z+,
z−], by taking one matching pair for each of the lock operations that occur in γ and are not contained
in γ+ (these are y+ and z+, and we order lock variables lexicographically). Thus:

summary(γ) = [x+, y+, y−, z+, z−]

More accurate summary functions can also be constructed, not merging branching effects and
respecting the nested structure of lock/unlock operations. However, we are not convinced of their
practical importance and, in particular, whether the future locksets run(σ(γa :: γs), ı, n) that they
produce are indeed more accurate.

As a last note here, summarization is not only necessary for dealing with recursive functions. It is
useful for reducing the size of the effects of non-recursive functions, to improve the performance of
the run-time system.

7.6 Type safety and deadlock freedom

In this section we present the fundamental theorems that prove type safety for our language, to-
gether with very brief proof sketches.5 Type safety, which in this system implies deadlock freedom,
is based on proving the preservation, deadlock freedom and progress lemmata. Informally, a program
written in our language is safe when each thread of execution can perform an evaluation step or is
waiting for a lock (blocked). In addition, there must not exist threads that have reached a deadlocked
state.

As discussed in Section 7.3, a thread may become stuck when it performs an ill-typed operation,
or when it attempts to compute the future lockset of a malformed stack, or when it attempts to acquire
a non-existing lock, or when it attempts to release a lock whose count has already reached the value
zero, and so on.

Definition 7.1 (Thread Effect Consistency) The following rules define effect-consistent threads.

ı;n1 `ok γ ε3 = run(γ, ı, n1)
n; γ ` S ε1 ∩ ε3 ⊆ ε2
n; γ ` S, ı 7→ n;n1; ε1; ε2

ı; 0 `ok γ n 6= n1 n; γ ` S
n; γ ` S, ı 7→ n1;n2; ε1; ε2 n; γ ` ∅

Thread effect consistency (denoted by n; γ ` S) ensures that any lock acquired by thread n will
be released before thread n terminates. Furthermore, it establishes an exact correspondence between
locks in γ and S. In particular, for each lock ı in the domain of γ, ı;n1 `ok γ (see Figure 7.7) must
hold, where n1 must equal the reference count of ı in S for each thread n. Notice that only one thread

5 A full formalization of our language and complete proofs are given in Appendix D.

102



γ′ = γ \ r
γ′ = rκ, γ \ r

(M0)
r′ 6= r γ′ = γ \ r′

rκ, γ′ = rκ, γ \ r′
(M1)

∅ = ∅ \ r
(M3)

γ′1 = γ1 \ r′ γ′2 = γ2 \ r′ γ′3 = γ3 \ r′

γ′2 ? γ
′
3, γ

′
1 = γ2 ? γ3, γ1 \ r

(M4)

0 ≤ n r;n+ 1 `ok γ

r;n `ok r+, γ
(OK1)

r;n− 1 `ok γ n > 0

r;n `ok r−, γ
(OK2)

0 ≤ n r;n `ok γ r 6= r′

r;n `ok r′κ, γ
(OK3)

r; 0 `ok ∅
(OK4)

0 ≤ n r;n `ok γ1 :: γ r;n `ok γ2 :: γ

r;n `ok γ1 ? γ2, γ
(OK5)

r;na `ok γa :: (r−)
nb r ∈ dom(γa) ∀nc.¬ (r;na − 1 `ok γa :: (r−)

nc)
γ3 = {r+, r− | r+ ∈ γa} rsummary(γa \ r) = γ1; γ2; γ0

rsummary(γa) = γ3 :: γ1; (r
+)

nb :: γ2; (r
−)

na :: γ0
(PX0)

rsummary(∅) = ∅; ∅; ∅
(PX1)

summary(γa) = γ1 :: γ2 :: γ3 if rsummary(γa) = γ1; γ2; γ3

Figure 7.7: Summarization relation.

can have a positive reference count for ı. It also establishes that the future lockset of an acquired lock
at any program point (ε3 — modulo the locations that have been created after the lock was initially
acquired) is always a subset of the future lockset computed when the lock was initially acquired (ε2).

Definition 7.2 (Thread Typing) The following rules define well typed threads.

S;M ` ∅

M ; ∅; ∅ ` e : 〈〉& (∅;γ) S;M ` T
n /∈ dom(T ) n; γ ` S

S;M ` T, n : e

A collection of threads T is well typed w.r.t. a lock store S and a set of lock identifiersM , if for each
thread n : e, expression e is well-typed with an empty input effect and some output effect γ and the
lock store is consistent w.r.t. n and γ.

Definition 7.3 (Configuration Typing) A configuration S;T is well typed w.r.t.M (we denote this
byM ` S;T ) when S;M ` T andM = dom(S).

S;M ` T M = dom(S)
M ` S;T

Definition 7.4 (Deadlocked State) A configuration has reached a deadlocked statewhen there exist
a set of threads n0, . . . , nk, for k > 0, and a set of locks `0, . . . , `k, such that each thread nı has
acquired lock `(ı+1) mod (k+1) and is waiting for lock `ı.

locks(S, ı, n) =

{
n2 if S(ı) = (n;n2; ε1; ε2)
0 if S(ı) = (n1;n2; ε1; ε2) ∧ n1 6= n

deadlocked(T ) ≡ T ⊇ T1, n0 :E[lockγ0 lkı0 ], . . . , nk :Ek[lockγk lkık ] ∧ k > 0∧
∀m1 ∈ [0, k].m2 = (m1 + 1)mod(k + 1) ∧ locks(S, ım2 ,m1) > 0

103



Definition 7.5 (Not Stuck) A configuration S;T is not stuck when each thread in T can take one of
the evaluation steps in Figure 7.3 or is waiting for a lock held by some other thread.

Given these definitions, we can now present the main results of this chapter. The progress, dead-
lock freedom and preservation lemmata are formalized at the program level, i.e., for all concurrently
executed threads. Let expression e be the initial program. The initial program configuration S0;T0 is
defined by taking S0 = ∅, and T0 = {∅; e}.

Lemma 7.3 (Deadlock Freedom) If the initial configuration takes n steps, where each step is well-
typed for someM , then the resulting configuration has not reached a deadlocked state.

Proof. Let us assume that z threads have reached a deadlocked state and let m ∈ [0, z − 1], k =
(m+1)mod z and o = (k+1)mod z. According to definition of deadlocked state, threadm acquires
lock ık and waits for lock ım, whereas thread k acquires lock ıo and waits for lock ık. Assume thatm
is the first of the z threads that acquires a lock, so it acquires lock ık before thread k acquires lock ıo.

Let us assume that Sy;Ty is the configuration once ıo is acquired by thread k for the first time,
ε1y is the corresponding lockset of ıo (ε1y = run(stack(E[popγy �]), 1, ıo)) and ε2y is the set of all
heap locations (ε2y = dom(Sy)) at the time ıo is acquired. Then, ık does not belong to ε1y, otherwise
thread k would have been blocked at the lock request of ıo as ık is already owned by threadm.

Let us assume that when thread k attempts to acquire ık, the configuration is of the form Sx;Tx.
According to the assumption of this lemma that all configurations are well typed so Sx;Tx is well-
typed as well. By inversion of the typing derivation of Sx;Tx, we obtain the typing derivation of
thread nk : Ek[lockγ′

k
lkık ]: lockγ′

k
lkık is well-typed with input-output effect (γ′k; γ

′′
k ), where γ

′′
k =

ık
+, γ′k, Ek[lockγ′

k
lkık ] is well typed with input-output effect (∅; γk), where γk = ık

+, γ′′′k (for
some γ′′′k ), and nk; γk ` Sx holds. The latter derivation implies that run(γk, ıo, n2) ∩ ε1 ⊆ ε2, where
Sx = S′

x, ıo 7→ nk;n2; ε1; ε2 (notice that n2 is positive, ε2 = ε1y and ε1 = ε2y — this is immediate
by the operational steps from Sy;Ty to Sx;Tx and rule E-LK0).

We have assumed thatm is the first thread to lock ık at some step before Sy;Ty, thus ık ∈ dom(Sy)
(the store can only grow— this is immediate by observing the operational semantics rules). By the def-
inition of function run and the definition of γ′′k we have that ık ∈ run(γk, ıo, n2) = run(γ′′′k , ıo, n2) ∪
{ık}. Therefore, ık ∈ run(γk, ıo, n2) ∩ dom(Sy) ⊆ ε1y, which is a contradiction. �

Lemma 7.4 (Progress) dlslemma:thread-progress If S;T is a closed well-typed configuration with
M ` S;T , then S;T is not stuck.

Proof. It suffices to show that for any thread in T , a step can be performed or the thread is blocked. Let
n be an arbitrary thread in T such that T = T1, n : e for some T1. By inversion of the configuration
typing derivation we have that S;M ` T1, n : e, and M = dom(S). By inversion of the former
derivation we obtain that n; γ ` S and M ; ∅; ∅ ` e : 〈〉& (∅;γ). If e is a value then it can only be
the unit value and a step can be performed using rule E-T . If e is not value then e is of the form
E[u] (this can be shown by induction on the typing derivation of e). The application of the context
decomposition lemma (proof by induction on the shape of E) to the typing derivation of E[u] yields
that:M ; ∅; ∅ ` u : τ & (γa;γb) andM ; ∅; ∅ ` E′ : τ

γa;γb−→ 〈〉 & & (∅;γ) (the evaluation context typing
rules are provided in Figure 7.8). We proceed by a case analysis on u (we only consider the most
interesting cases):

Case (v′ v)seq: the typing derivation of u implies that v′ is of the form λx. e′ or fix x. e′. In the first
case rule E-A can be applied, whereas in the second case rule E-FX can be applied.

Case unlock v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). It is possible
to derive that γ = ı−, γ′, for some γ′. By inversion of the store typing premise (n; γ ` S) of
the derivation for thread n we have that ı;n2 `ok ı−, γ′, where n2 is the reference count of
lock ı. By inversion of the latter derivation (rule OK2) n2 is positive. Combined with the store

104



typing derivation, this tells us that the thread identifier of ı is n. Therefore, a single step can be
performed via rule E-UL.

Case lockγa v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). If the reference
count (n2) of lock ı is positive then the proof is similar to the case of unlock v and a step can
be performed via rule E-LK1. If n2 = 0, it is possible to derive γ = ı+, γa :: γ′ for some γ′.
By inversion of the store typing premise (n; γ ` S) of the derivation for thread n we have that
ı; 0 `ok ı+, γa :: γ′ and that the thread identifier of ı is n. Therefore ı; 0 `ok ı+, γa :: γ′ implies
ε = run(stack(E[popγa �]), ı, 1) is defined (here we are using the fact that the typing derivation
implies that γa :: γ′ = stack(E[popγa �]) and also the fact than when ok is defined so is run —
this can be trivially shown). Now, if ε ∪ {ı} ⊆ available(S, n), then rule E-LK0 can be applied.
Otherwise, the thread is considered to be blocked but not stuck (see the third rule of judgement
stuck). �

Lemma 7.5 (Preservation) Let S;T be a well-typed configuration withM ` S;T . If the operational
semantics takes a step S;T  S′;T ′, then there existsM ′ ⊇M such that the resulting configuration
is well-typed withM ′ ` S′;T ′.

Proof. By induction on the thread evaluation relation (we only consider the most interesting cases):

Case E-A: this rule is side-effect free so S′ = S and T ′ = T . Therefore, it suffices to show that
E[popγa e1[v/x]] is well-typed with the same effect as E[u], where u equals (v′ v)seq and v′
is equal to λx. e1. By inversion of the configuration typing we have that M ; ∅; ∅ ` E[e] :
〈〉& (∅;γ). The application of the context decomposition lemma (proof by induction on the shape
ofE) to the typing derivation ofE[u] yields that:M ; ∅; ∅ ` E : τ ′2

γa;γb−→ 〈〉& (∅;γ) andM ; ∅; ∅ `
e : τ ′2& (γa;γb). By inversion of the latter derivation we have thatM ; ∅; ∅ ` v : τ ′1& (γb;γb),

and M ; ∅; ∅ ` λx. e1 : τ ′1
γ′
c−→ τ ′2& (γb;γb), where γb = γ′c :: γa. We can apply inversion to

the latter derivation to obtain M ; ∅; ∅, x : τ ′1 ` e1 : τ ′2& (∅;γ′c). The standard substitution
lemma implies thatM ; ∅; ∅ ` e1[v/x] : τ

′
2& (∅;γ′c) holds. The application of rule T-PP yields

M ; ∅; ∅ ` popγa e1[v/x] : τ
′
2& (γa;γb) holds. Finally, the context composition lemma yields

M ; ∅; ∅ ` E[popγa e1[v/x]] : 〈〉& (∅;γ).

Case E-FX : as in the previous case, this rule is side-effect free. Redex u is equal to (fix x. f v)seq.
By inversion of the configuration typing derivation we obtain M ; ∅; ∅ ` E[e] : 〈〉& (∅;γ).
The context decomposition lemma yields M ; ∅; ∅ ` E : τ ′2

γa;γb−→ 〈〉& (∅;γ) and M ; ∅; ∅ ` e :
τ ′2& (γa;γb). By inversion of the latter derivation we have that M ; ∅; ∅ ` v : τ ′1& (γb;γb),

and M ; ∅; ∅ ` fix x. f : τ ′1
γ′
c−→ τ ′2& (γb;γb), where γb = γ′c :: γ′a. By inversion of the typ-

ing derivation of fix x. f we obtain that M ; ∅; ∅, x : τ ′1
γ′
c−→ τ ′2 ` f : τ ′1

γ′′
c−→ τ ′2& (γb;γb)

and summary(γ′′c ) = γ′c. The variable substitution lemma yields M ; ∅; ∅ ` f [fix x. f/x] :

τ ′1
γ′′
c−→ τ ′2& (γb;γb) holds. The effects of E can be strengthened and then weakened (proof by

induction on the shape of E) so that M ; ∅; ∅ ` E : τ ′2
γa;γ′′

c ::γa−→ 〈〉& (∅;γ′′c :: γ′) holds and γ′
is such that γ = γ′c :: γ′. Values, such as f [fix x. f/x] can be assigned any well-formed ef-
fect provided that the input effect is identical to the output effect (proof by induction on the
expression typing derivation). Therefore,M ; ∅; ∅ ` f [fix x. f/x] : τ ′1

γ′′
c−→ τ ′2& (γ′′c :: γa;γ

′′
c ::

γa) and M ; ∅; ∅ ` v : τ ′1& (γ′′c :: γa;γ
′′
c :: γa) hold. The application of rule T-SA yields

M ; ∅; ∅ ` (f [fix x. f/x] v)seq : τ ′2& (γa;γ
′′
c :: γa). The application context composition

lemma gives M ; ∅; ∅ ` E[(f [fix x. f/x] v)seq] : 〈〉& (∅;γ′′c :: γ′). Given that n; γ ` S and
γ′c = summary(γ′′c ) hold it is possible to show that n; γ′′c :: γ′ ` S. The key idea in this proof
is to show that summary preserves unmatched lock acquisition or release operations and that the
future lockset of any lock in γ′c is a superset of the corresponding lockset in γ′′c .

105



Case E-LK0: rule E-LK0 implies that T ′ = T, n :E[()], where () replaces u (u = lockγa lkı) in
context E. It also implies that ε = run(stack(E[popγa �]), ı, 1), ε ∪ {ı} ⊆ available(S, n)
and S′ = S[ı 7→ n; 1; dom(S); ε]. It suffices to show that M = dom(S′), n; γ′n ` S′, ∀n′ ∈
dom(T ). n′; γn′ ` S′, where γn′ is the output effect of threadn′ andM ; ∅; ∅ ` E[()] : 〈〉& (∅;γ′n),
where γn is the output effect of thread n and is defined as γn = ı+, γ′n.M = dom(S′) is imme-
diate fromM = dom(S) and the definition of S′. n; γ′n ` S′ can be shown by a case analysis
on location j of S′. If j 6= ı, then all premises of n; γn ` S also hold for S′ and γ′n. If j = ı,
then premise ı; 0 `ok ı+, γ′n implies ı; 1 `ok γ′n. In addition, stack(E[popγa �]) = γ′n, thus
ε = run(γ′n, ı, 1). The invariant n′; γn′ ` S′ holds for all threads n′ 6= n as S(j) = S′(j) for
all j 6= ı and ı is not locked by n′ in S′. By inversion of the thread typing derivation we have
that: M ; ∅; ∅ ` E[u] : 〈〉& (∅;γ). The application of the context decomposition lemma (proof
by induction on the shape of E) to the typing derivation of E[u] yields that: M ; ∅; ∅ ` E :

〈〉 γa;ı
+,γa−→ 〈〉& (∅;γn) andM ; ∅; ∅ ` u : 〈〉& (γa;ı

+, γa). The effects of E can be strengthened
(proof by induction on the shape ofE) so thatM ; ∅; ∅ ` E : 〈〉 γa;γa−→ 〈〉& (∅;γ′n) holds. Rule T-U
implies M ; ∅; ∅ ` () : 〈〉& (γa;γa). The application of the context composition lemma on the
derivations of E and () yields M ; ∅; ∅ ` E[()] : 〈〉& (∅;γ′n). Cases E-UL and E-LK1 can be
shown in a similar manner. �

Lemma 7.6 (Multi-step Preservation) Let S0;T0 be a closed well-typed configuration for some
M0 and assume that S0;T0 evaluates to Sn;Tn in n steps. Then for all ı ∈ [0, n]Mı ` Sı;Tı holds.

Proof. Proof by induction on the number of steps n using Lemma 7.5.

Theorem 7.1 (Type Safety) If the initial configuration S0;T0 is closed and well-typed (∅ ` S0;T0)
and the operational semantics takes any number of steps S0;T0  n Sn;Tn, then the resulting con-
figuration Sn;Tn is not stuck and Tn has not reached a deadlocked state.

Proof. The application of Lemma 7.6 to the typing derivation of S0;T0 implies that for all steps from
zero to n there exists an Mı such that Mı ` Sı;Tı. Therefore, Lemma 7.3 implies that Tn has not
reached a deadlocked state and Lemma 7.4 implies Sn;Tn is not stuck.

Using an empty typing context for typing the initial configuration S0;T0 guarantees that all func-
tions in the program are closed and that no explicit lock values (lkı) are used in the source of the
original program.

7.7 Concluding remarks

Similarly to the previous chapter, we utilize statically computed information regarding lock usage
at execution time in order to avoid deadlocks. As opposed to the language presented in the previous
chapter, we proposed a language that does not require explicit and complex annotations from the
programmer. Additionally, the proposed type and effect system is less complicated and can accept
a wider class of programs as it imposes no restrictions with respect to aliasing. More importantly,
it is able to automatically infer program effects and therefore it is more suitable for a language like
C. We also presented a semantics for the proposed language, a sound type and effect system that
guarantees that well-typed programs cannot reach a deadlocked state, and a proof sketch for the type
safety theorem and related lemmata.

106



Sub-effect γ C γ′ ≡ ∃γ′′.γ′ = γ′′ :: γ

M ;∆ ` Γ M ;∆ ` γ1 M ;∆ ` γ2 M ;∆ ` τ
M ;∆; Γ ` � : τ

γ1;γ2−→ τ & (γ1;γ2)
(E0)

M ;∆; Γ ` E : τ2
γ5;γ6−→ τ3& (γ1;γ2)

M ;∆; Γ ` F : τ1
γ3;γ4−→ τ2& (γ5;γ6)

M ;∆; Γ ` E[F ] : τ1
γ3;γ4−→ τ3& (γ1;γ2)

(E1)

M ;∆ ` γ2 γ1 C γ2 M ; ∆ ` τ2
M ;∆; Γ ` e2 : τ1& (γa :: γ;γ1)

M ;∆; Γ ` (� e2)
seq(γ) : (τ1

γa−→ τ2)
γ1;γ2−→ τ2& (γ;γ2)

(F1)

γ2 C γ3 M ; ∆ ` τ1
γa−→〈〉

M ;∆; Γ ` e2 : τ1& (γ1;γ2)

M ;∆; Γ ` (� e2)
par : (τ1

γa−→〈〉) γ2;γ3−→ 〈〉& (γ1;γ3)
(F2)

γ2 = γ1 :: γa M ;∆ ` γ3 γ2 C γ3
M ;∆; Γ ` v1 : τ1

γa−→ τ2& (γ3;γ3)

M ;∆; Γ ` (v1 �)seq(γ1) : τ1
γ2;γ3−→ τ2& (γ1;γ3)

(F3)

M ;∆ ` γ2 γ1 C γ2
M ;∆; Γ ` v1 : τ1

γa−→〈〉& (γ2;γ2)

M ;∆; Γ ` (v1 �)par : τ1
γ1;γ2−→ 〈〉& (γ1;γ2)

(F4)

M ;∆ ` τ M ;∆ ` γ′ γ′ = γ2 :: γ

M ;∆; Γ ` popγ � : τ
∅;γ2−→ τ & (γ;γ′)

(F5)

M ;∆ ` Γ M ;∆ ` γ′
M ; ∆ ` Lk(r) γ1 = r−, γ γ1 C γ′

M ;∆; Γ ` unlock� : Lk(r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F6)

M ;∆ ` Γ M ;∆ ` γ′
M ; ∆ ` Lk(r) γ1 = r+, γ γ1 C γ′

M ;∆; Γ ` lockγ � : Lk(r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F7)

γ3 = γ1 ? γ2, γ M ;∆ ` γ′ γ3 C γ′
M ;∆; Γ ` e2 : τ & (γ;γ1 :: γ) M ;∆; Γ ` e3 : τ & (γ;γ2 :: γ)

M ;∆; Γ ` if � then e2 else e3 : Bool
γ3;γ′
−→ τ & (γ;γ′)

(F8)

M ;∆ ` γ′ M ;∆ ` ∀ρ. τ r ∈M ∪∆ γ C γ′

M ;∆; Γ ` (�) [r] : ∀ρ. τ γ;γ′
−→ τ [r/ρ]& (γ;γ′)

(F9)

Figure 7.8: Evaluation context typing rules.

107





Chapter 8

Deadlock avoidance tool

8.1 Overview

Deadlocks can have devastating effects in systems code. In the previous chapters we presented two
type and effect systems that provably avoid deadlocks and in this chapter we present a tool that uses a
sound static analysis based on the type system of Chapter 7 to instrument multithreaded C programs
and then links these programs with a run-time system that avoids possible deadlocks. In contrast to
most other purely static tools for deadlock freedom, our tool does not insist that programs adhere to
a strict lock acquisition order or use lock primitives in a block-structured way, thus it is appropriate
for systems code and OS applications. We also report some very promising benchmark results which
show that all possible deadlocks can automatically be avoided with only a small run-time overhead.
More importantly, this is done without having to modify the original source program by altering the
order of resource acquisition operations or by adding annotations.

8.2 Deadlock avoidance analysis

Our analysis is performed in two phases. The first phase takes place at compile-time and performs
a field-sensitive and context-sensitive pointer analysis followed by continuation effect (as defined
in Chapter 5) inference, and source code instrumentation with effects; finally, the instrumented pro-
gram is linked with the runtime system. The second phase is purely dynamic and takes place when the
original program requests a lock. The future lockset (as defined in Chapter 5) of the requested lock
is computed by utilizing the inserted effects and the lock is only granted when both the lock and its
future lockset are available. In this chapter, we extend the analysis for deadlock avoidance for mul-
tithreaded C programs presented in the previous chapter, so that it can handle locks residing in data
structures allocated in the heap or the stack and introduce new optimizations that reduce the size of
effects, thereby reducing the size of future locksets and the blocking time of lock operations.

8.2.1 Static analysis

The analysis takes as input the program’s abstract syntax tree and constructs a call-graph, which
is visited bottom-up. There are four main stages involved in the analysis of function declarations (i.e.,
nodes of the call graph) described in the following paragraphs.

Pointer analysis. First, a standard, off-the-shelf field-sensitive intra-procedural pointer analysis
based on symbolic execution [Voun07] is employed so as to formulate an abstract heap and stack
state at each program point. We have customized the analysis so that it treats heap allocation in a
context-sensitive manner. At the end of the first stage, we obtain a mapping for each expression to
a set of abstract locations. Each abstract location r can be a formal parameter, a global variable or a
heap-allocated location.

109



Effect inference. The effect for each function is computed by running a standard forward data flow
algorithm on the function’s control flow graph. Each node in the control flow graph is associated
with an input, a current and an output effect. The input effect of a node is formulated by joining
effects flowing from all its front edges. For instance, a node associated with effects γ1 . . . γk, will be
assigned an input effect γ1 ? . . . ? γk, which denotes a choice between the alternative effects γ1 . . . γk.
A distinction is made when encountering back edges; we defer the discussion regarding the treatment
of back edges until the next paragraph.

The current effect of a node can be r+ or r−, when a lock or unlock operation is found, respec-
tively. It can be malloc ρ, when a new reference is allocated dynamically and bound to the variable
ρ. It can also be call r ( r1, . . . , rn ) : r′ when a function is called, where r is a reference to the func-
tion, r1 . . . rn are references to the function’s arguments, and r′ is a reference that corresponds to the
function’s result. In this case, if our standard points-to analysis cannot determine a unique target for
r (e.g., if a function is called indirectly through a pointer), then the original effect is replaced by a
joined effect consisting of several alternative branches of the form call fi ( r1, . . . , rn ) : r

′
i, for each

alternative target function fi.
The output effect is computed by appending the current effect to the input effect and is propagated

to a node’s successors until a fixed point is reached. A function’s effect is computed by joining the
output effects of nodes having no successors.

Loops. Effects flowing from back edges must be equivalent (with respect to the lock counts) to the
input effect of the same node. This restriction allows us to soundly encode loop effects: a loop may
have any number of lock or unlock operations provided that upon exit of a loop the counts of each lock
match the counts before the loop was executed. Assuming that the effect of the loop body is γ, then we
take (γ ? ∅), (γ ? ∅) as the effect of the entire loop. The empty effect on both branches compensates for
the case where a loop is not executed. The duplication of (γ ? ∅) is required so that lock operations can
match between successive loop iterations. In cases where a loop effect does not contain unmatched
lock operations, this duplication may be optimized away.

Effect optimizations. While computing effects, several optimizations are performed so as to com-
pact/elide effects and in general minimize the repetitions of the identical effect segments in a func-
tion’s effect. One of the optimizations for compacting an effect computes the common prefix and
suffix of the effects included in a join operator, to decrease the size of branches. Another kind of op-
timization is to flatten effects that consist of nested join operators. For example, an effect of the form
(γ1 ? γ2) ? (γ3 ? γ4) can be reduced to γ1 ? γ2 ? γ3 ? γ4. In addition, multiple occurrences of the empty
effect in alternative effects γ1 . . . γn are substituted with a single empty effect. These two optimiza-
tions are run alternately until a fixed point is reached in the size of the effect.

Eventually, call effects are substituted by a summary of the effect corresponding to the function
being called. In summarized effects multiple lock/unlock pairs for the same reference are redundant.
The intuition behind this optimization is that the future lockset that will be computed dynamically will
be the same, regardless of the number of times that a lock operation occurs.

Another important optimization attempts to minimize the size of the runtime effect stack, so that
the future lockset calculation algorithm visits as few stack frames as possible. One way to achieve this
is by disabling code instrumentation for functions that do not directly perform any lock operations
and do not contain calls to functions that will visit their effect frame at run time. Finally, we invoke
the data flow algorithm, which is CPU-intensive, only for functions that are known to contain lock
operations (by performing an in-advance linear search), to avoid additional overheads.

8.2.2 Code generation

Ourmain goal was to minimize the overhead induced by “effect accounting”. A näive implementa-
tion of the informal description provided in earlier sections would simply allocate and initialize effect

110



frames for each function call or lock operation, which would be unacceptable in terms of performance.
The code generation phase statically creates a single block of initialization code for the effect of each
function and inserts effect index update instructions (i.e., a single assignment) before each call and
lock operation. Therefore, the overhead imposed for such operations is minimal. Each function is also
instrumented with instructions for pushing and popping effects from the run-time stack at function
entry and exit points respectively. This imposes a constant overhead to function calls.

Finally, mappings for stack and heap pointers are generated at run-time as such locations cannot
be known statically. A mapping binds an abstract location to a run-time address. An inverse mapping
is also maintained for abstract heap locations. When a deallocation operation is performed such as
free, the inverse mapping is searched using the physical address to be deallocated and the binding
between the abstract heap location and the physical address is removed from the heap mapping. In
this way, our analysis is able to deal with locks that are dynamically deallocated and thereby avoid
invalid accesses to deallocated locks.

8.2.3 Current limitations

Non C code. Our analysis can strictly handle the C language. Library code cannot be analyzed as
it is not C code. We have assumed that by default library functions have an empty effect. However, it
is possible to provide user-defined effect annotations for library functions. The analysis cannot deal
with non-local jumps (including signals) and inline assembly.

Pointer analysis. The off-the-shelf pointer analysis module fails when encountering programs with
pointer arithmetic involving locks (including arrays) and recursive data structures that contain or point
to locks. Even though our analysis extends the standard pointer analysis with context-sensitive track-
ing of fresh heap locations, it fails to track heap allocation (for data structures containing or pointing
to locks) at recursive functions and loops. This limitation is dual to the aforementioned limitation
regarding unbounded data structures. In addition, expressions passed in lock functions must be as-
signed a unique abstract location. Finally, we require that lock pointers are mutated only before they
are shared between threads, and that locks referenced with at least two levels of indirection (e.g., via
double pointers) are not aliased at function calls.

Conditional execution. The analysis also currently rejects programs in which lock and their match-
ing unlock operations are conditionally executed in distinct conditional statements having equivalent
guards. For instance, the following program is rejected:

if (condition) lock(z);

if (condition) unlock(z);

8.2.4 Runtime system

The runtime system overrides the standard implementation of locking functions, e.g., the pthreads
functions pthread mutex lock and pthread cond wait.1 If a lock is already held by the requesting
thread then the lock’s count is simply incremented. (This occurs only when re-entrant locks are used;
however, re-entrant locks are needed in languages that support unrestricted lock aliasing.) Otherwise,
the runtime system performs two steps: it computes the future lockset of the requested lock and verifies
that all locks in the future lockset are available when the lock is acquired.

The future lockset calculation algorithm uses the effect index inserted by the instrumentation phase
to calculate the future lockset of the requested lock. When the matching unlock operation is not found

1 Currently our tool has built-in support only for overriding the functions of the pthreads library, but it can easily be
extended to support other locks. Its implementation and the set of benchmarks we used are available from http://www.

softlab.ntua.gr/~pgerakios/deadlocks/.

111

http://www.softlab.ntua.gr/~pgerakios/deadlocks/
http://www.softlab.ntua.gr/~pgerakios/deadlocks/


benchmark run in user system elapsed ratio

curlftpfs
C 0.002 0.758 33.450

0.982
C+da 0.000 0.680 32.862

flam3
C 63.660 3.910 49.050

1.003
C+da 67.860 3.640 49.200

migrate-n
C 5545.311 4631.341 4138.070

1.118
C+da 5334.921 5020.346 4625.670

ngorca
C 124.846 0.126 8.270

0.996
C+da 124.467 0.126 8.240

sshfs-fuse
C 0.000 0.890 20.880

1.000
C+da 0.000 0.950 20.880

tgrep
C 13.238 11.639 5.190

1.191
C+da 14.801 11.655 6.180

Table 8.1: Performance of C vs. C+da (C plus deadlock avoidance).

in the function’s effect, the algorithm visits the effects on the runtime stack. Locks held by the request-
ing thread are excluded from the lockset. Effect traversal is performed efficiently as the majority of
effects are represented by arrays. Each atomic effect is represented by two machine words.

The next step is to acquire the lock provided that all locks in its future lockset are available. We
have implemented three different strategies for dealing with unavailable locks. The first one employs
futexes [Fran02], which in general allow a thread to wait in the kernel for an event. The remaining two
strategies employ busy waiting or yield control to other threads. As the performance of futexes was
clearly superior in almost all benchmarks, we quickly focused on this strategy and used it exclusively
for all the results that we present in the next section.

Our algorithm initially checks if all locks in the future lockset are available. If some lock is un-
available, we perform a wait operation on it (using one of the above strategies) and retry. If all locks
in the future lockset are available, we tentatively acquire the requested lock. Then, we check again the
future lockset. If any lock in the future lockset is unavailable, we release the acquired lock, we perform
a wait operation on the unavailable lock and repeat all the steps from the beginning. Otherwise, the
lock acquisition operation is considered successful. This approach allows our locking algorithm to be
more permissive compared to versioning schemes that check future locksets atomically and thereby
yields a higher degree of concurrency for instrumented programs.

8.3 Performance evaluation

Wedescribe some experimental results, aiming to demonstrate that our approach can achieve dead-
lock freedom with low run-time overhead. The experiments were performed on a machine with four
Intel Xeon E7340 CPUs (2.40 GHz), having a total of 16 cores and 16 GB of RAM, running Linux
2.6.26-2-amd64 and GCC 4.3.2.

We used a total of seven benchmark programs. The first one is written by us (this is a program
from the literature known to exhibit deadlocks), whereas the remaining six are real applications, whose
source code is publicly available. Their performance results are shown in Table 8.1; the order is al-
phabetical.

dining philosophers: a program implementing the obvious and deadlock-prone attempt to solve the
classic multi-process synchronization problem. Each philosopher first picks up the stick on his
left, then the stick on his right. The original program deadlocks with a probability that decreases
as the number of philosophers increases (for five philosophers, the probability for deadlock
was roughly 70%) but increases again when the number of philosophers exceeds the number
of available cores. For the performance comparison that we discuss below, we only used the
deadlock-free runs of the original program.

112



n original instrumented improvement
5 126,536 126,961 0.34%
10 224,536 230,981 2.87%
15 284,150 298,563 5.07%
31 536,889 587,051 9.34%
63 1,080,322 1,193,509 10.48%
127 1,603,880 2,219,022 38.35%
255 1,480,183 4,220,603 185.14%

Figure 8.1: Performance comparison for the dining philosophers. We measure the total number of
times that the n philosophers ate.

The performance of the original and the instrumented versions are shown in Figure 8.1. For a
given elapsed time (2 secs) we measured the total number of times that the philosophers ate
(using a per-thread random number generator that was identical in both versions). It is inter-
esting to see that in the instrumented program, the number grows linearly with the number of
philosophers, i.e., each philosopher eats for a (more or less) constant number of times during
the 2 secs (this number is determined by the ratio of eating time versus sleeping time, which
was chosen to be 0.1 in both programs). On the other hand, in the original program, the linear
growth seems to last only as long as the number of philosophers is small and we do not run out
of cores.

curlftpfs [CURL] and sshfs-fuse [SSHF]: are file system clients that access hosts via the FTP and SSH
network protocol respectively. Both applications create threads on demand so as to serve con-
current read and write requests to the file systems, using two and three distinct locks respec-
tively to synchronize data structures, logging and access to non thread-safe functions. In our
experiments, we mount a remote directory over the corresponding file system and start a fixed

113



number of concurrent threads, each of which is trying to download a number of large files. The
total volume of data that is copied over the file systems is linear w.r.t. to the number of threads.
In both cases, the instrumented program has almost identical performance to the original pro-
gram. Both programs have approximately zero user time as they mainly invoke the kernel space
API of FUSE [FUSE].

flam3: a multithreaded program which creates “cosmic recursive fractal flames”, i.e., (animations
consisting of) algorithmically generated images based on fractals [flam]. A single lock is used to
synchronize access to a shared bucket accumulator that merges computations of distinct threads.
We measured the time required to generate a long sequence of fractal images. The results again
were almost identical for the original and the instrumented version of flam3.

migrate-n: estimates population parameters, effective population sizes and migration rates of n pop-
ulations using genetic data [MIGR]. The program maintains a work list of Markov chains and
uses a thread pool to execute tasks until the work list becomes empty. Two locks are employed
for implementing the thread pool and for accessing shared variables. It is worth mentioning that
locks are dynamically allocated and several billion lock operations were executed during the
program run. The instrumented program ran 11% slower than the original.

ngorca: a multithreaded password recovery tool using exhaustive key search for DES-encrypted pass-
words in Oracle databases [NGOR]. The program achieves speedup by splitting the search space
of each encrypted password across threads, using multiple locks for implementing logging,
counters and condition variables. The results again were almost identical for the original and
the instrumented version of ngorca.

tgrep: a multithreaded version of the utility program grep which is part of the SUNWdev suite of
Solaris 10 [tgre]. The program achieves speedup by splitting the search space across threads,
using multiple locks for implementing thread-safe queues, logging and counters. In our exper-
iment, we looked for an occurrence of a six-letter word in a directory tree containing 100,000
files. The instrumented program is 19% slower than the original program. This is due to the
fact that tgrep is not only lock-intensive (about 1.5million lock operations were executed in our
test run), but also it is by far the benchmark with the longest effects that we could find. The
maximum effect size for a function is 54 and the average effect size is 19.5, which are both
about five times higher than the second next benchmark (ngorca). Furthermore, the program
employs seven distinct global locks; the dynamically calculated future lockset had a maximum
size of five elements and an average size of 1.3, which again were about five times higher than
the second next benchmark.

8.4 Concluding remarks

Deadlocks are an important problem especially for systems code written in languages that employ
non block-structured locking. In this chapter, we presented implementation aspects of a novel tool that
dynamically avoids deadlock states for multithreaded C programs. The key idea is to utilize statically
computed information regarding lock usage at runtime in order to avoid deadlocks. We described
the main aspects of our static analysis and its obvious limitations: it is necessarily imprecise and
cannot support unbounded data structures containing locks. However, we showed that our approach
is applicable to several multithreaded C programs containing systems code and our evaluation results
reveal that it imposes only a modest runtime overhead, induced by the future lockset computation and
by blocking threads more often (i.e., when the requested lock is available but something in its future
lockset is not). Nevertheless, we think that its runtime overhead is reasonable for guaranteed deadlock
avoidance.

114



Chapter 9

Related work

The work presented in this dissertation is related to multiple research areas such as safe systems
programming languages, safe region-based memory management, data race freedom and deadlock
avoidance techniques. In the following sections, we discuss related works in each of these areas.

9.1 Safe systems programming languages

Systems programming languages (SPLs), such as C, can be differentiated from high-level lan-
guages with respect to their high run-time performance, the explicit memory management and the
low-level memory representation. The lack of strong safety guarantees regarding the behavior of SPL
programs is responsible for a large number of vulnerabilities and serious security breaches (e.g., sys-
tem crashes and/or intrusions). Austin et al. have identified two kinds of memory access errors in
sequential programs [Aust94]: spatial access errors (e.g., dereferencing a pointer or a subscripted ar-
ray reference outside the object’s bounds) and temporal access errors (e.g., dereferencing a memory
location outside the lifetime of the referent). Weakly-typed SPLs, which enable arbitrary type casts
and unsafe use of memory, accept programs which generate memory access errors. Multithreaded
systems programs, which produce random execution interleavings, may introduce additional memory
access errors as well as concurrency hazards such as deadlocks and data races.

Research has focused on providing strong static guarantees for safe SPLs. Two promising ap-
proaches towards this goal are the use of type systems and the use of explicit logics, e.g., separation
logic [Reyn02]. Advanced type systems have been employed so as to provide safety for SPLs at the
C-level of abstraction. For instance, Cyclone adopts static region-based memory management to guar-
antee the absence of temporal access errors [Jim02, Gros02]. CQual uses type qualifiers to enrich the
C language type system in a user-extensible way to achieve similar goals [Fost02]. Vault supports
linear types to track object usages at compile time [DeLi01]. Furthermore, Vault’s linear type system
also allows state to be attached to object types. Such state can statically enforce resource management
protocols on the tracked objects. CCured performs a whole-program analysis to infer pointer kinds
and then optimizes away run-time checks when it can statically guarantee that a pointer use will not
cause memory access errors [Necu05]. Deputy, the successor of CCured, uses a dependent type sys-
tem to enable modular type checking andmaintains explicit memory object representations (i.e. avoids
the inclusion of meta-data information along with pointers) by taking advantage of the dependencies
generated by the type system [Cond07].

However, state-of-the-art safe SPLs achieve absence of memory access errors by sacrificing ex-
plicit memory representations, thereby preventing interoperability with legacy code and deteriorating
run-time performance. The type systems of safe SPLs are often unable to encode common C idioms
and therefore make automated porting of legacy code hard. None of the above safe SPLs have full sup-
port for safe concurrency. For instance, the type systems of both Cyclone [Jim02] and Vault [DeLi01]
are unsound in concurrent program settings. There are numerous languages at the C level of abstrac-
tion with explicit concurrency features [Frig98, Gay03, Ande08a] but to the best of our knowledge
none of them provides both memory safety and race freedom guarantees.

In contrast with type systems, separation logic permits finer-grained program specifications at the

115



cost of undecidability. For instance, Concurrent C minor [Hobo08] is a concurrent version of C with
threads, shared memory and first-class locks, which uses a variant of separation logic to reason about
programs.

9.2 Region-based memory management

The first statically checked stack-based region systemwas developed by Tofte and Talpin [Toft94].
Since then, several memory-safe systems enabling early region deallocation were proposed [Heng01,
Walk01, Flue06, DeLi01]. These works use linear types to guarantee memory safety. The proposed
memory safety guarantees only hold for sequential languages, place severe restrictions on memory
aliasing and ignore issues such as minimizing annotations or providing control to the user. In contrast
with these works, we achieve a higher degree of aliasing and extend memory safety guarantees to
multi-threaded programs such that shared memory can be concurrently accessed or released by any
thread.

RC [Gay01] and Cyclone [Gros02] were the first imperative languages to allow safe region-based
management with explicit constructs. Both allowed early region deallocation and RC also introduced
the notion of multi-level region hierarchies. RC employs reference counting to dynamically detect
that no external references to a region exist, when that region is deallocated. RC programs can make
use of more memory-management idioms as all checks are dynamic. On the downside, this imposes
a run-time overhead as such programs may throw region-related exceptions as opposed to our ap-
proach which is purely static. For instance, RC’s region-creation construct requires a parent region.
The invariant that the parent region must live longer than its children is enforced dynamically via the
means of run-time checks. RC does not guarantee memory safety or race freedom for multithreaded
programs.

The Real-Time Specification for Java [Boll02] extends Java with regions in the form of libraries,
using ”ScopedMemory” objects. To ensure soundness, dynamic checks are performed when accessing
regions or references to regions. Statically checked region systems have also been proposed for real-
time Java to rule out dynamic checks imposed by its specification. Boyapati et al. have introduced
hierarchical regions in ownership types [Boya03]. In contrast with our work, Boyapati et al. do not
enable early release of regions or locks and provide no support for data migration or lock transfers
between threads. In addition, variables must be declared either as “thread-local” or “shared” but cannot
alternate between the two states. Additionally, their type system only allows sub-regions for shared
regions, whereas our approach does not have this limitation. In previous work, Boyapati et al. also
proposed an ownership-based type system that prevents deadlocks and data races [Boya02]. In contrast
to that system, we support locking of arbitrary nodes in the region hierarchy.

Zhao et al. [Zhao04] proposed Scoped Types, where lexically-scoped regions are wrapped by
special kind of objects called scopes. Static region hierarchies (depth-wise) can be used by nesting
scoped objects. The main advantage of their approach is that programs require fewer annotations
compared to programs with explicit region constructs, scopes can be shared at any program point and
region handles are implicit. In the same track, Zhao et al. proposed implicit ownership annotations
for regions [Zhao08]. Thus, classes that have no explicit owner can be allocated in any static region
without requiring explicit owner annotations. This is a form of existential ownership. In contrast with
Zhao’s et al. proposals, the proposed type system of Chapter 3 allows regions to be released before
the end of their lexical scope and provides additional data-race freedom guarantees for programs that
concurrently access shared memory by employing reader/writer locks.

116



9.3 Safe concurrency

9.3.1 Data race freedom

Several tools and techniques have been developed for detecting data races using static analysis,
dynamic analysis or a combination of the two. The main advantage of dynamic data race analyses
[Sava97, Agar05, OCal03, Choi02] is that they do not require manual intervention from the user. On
the other hand, dynamic analyses incur runtime overheads as they instrument the original program
with additional code, and can only identify some but not all possible data races.

Several type systems have been developed for checking race freedom statically [Flan00, Flan99b,
Boya01, Boya02, Flan02] in Java programs. Such systems associate lock handles with singleton types
or unique abstract locations and effect systems in order to track their uses throughout the program.
Most of these type systems require the insertion of explicit type annotations in programs. In the same
spirit, a type system for safe multi-threading in Cyclone [Gros03] was proposed by Grossman. His
type system does not enable early release of regions and provides no support for data migration or
lock transfers between threads. In addition, variables must be declared either as “thread-local” or
“shared” but cannot alternate between the two states. In the context of Java, Cunningham et al. pro-
posed a universe type system to guarantee race freedom in a calculus of objects [Cunn07]. Similarly
to our system, object hierarchies can be atomically locked at any level. Unlike our system, the work of
Cunningham et al. does not support early lock releases and lock ownership transfers between threads.

More recently, tools that automatically infer type annotations for data race freedom have been
developed for Java [Flan01] and C [Prat06, Voun07]. The latter two analyses use context and flow
sensitive propagation of locksets and verify that all accessed locations are consistently protected by
the same lock through the program. Like our analyses, they handle unstructured locking, but do not
validate/match lock and unlock operations. Consequently, data racesmay occur as a result of undefined
behavior of pthreads library. In addition, static analysis tools for C can only recognize certain locking
primitives, thus data races may occur when unknown primitives are encountered. In contrast, our
approach integrates locking primitives in the language so it is impossible to allow a data race to occur.

Terauchi [Tera08] proposed a technique that reduces the problem of race detection to linear pro-
gramming. Other static methods for finding data races are proposed in the literature such as abstract
interpretation [Gots07] or model checking [Henz04, Qade04]. Other tools such as RacerX [Engl03]
are unsound for common C programming idioms such as the use of wrapper functions that perform
lock operations.

Data races may result from unintentional data sharing. Recent work on static analysis for C pro-
grams [Ande08b, Ande09] infers data sharability and therefore it can report programs that share data
unintentionally. More recently, Bocchino et al. proposed a type and effect system for DPJ (Determin-
istic Parallel Java [Bocc09]) that partitions the heap into distinct hierarchical segments and uses those
segments to disambiguate accesses to distinct objects. DPJ’s type system ensures non-interference by
enforcing the invariant that concurrent accesses are read-only or theymust refer to disjoint locations for
write operations. The segment disjointness invariant places significant constraints on segment alias-
ing, which is not permitted at the level of types. In contrast, in our system region aliasing is possible
at all times. In order to allow race-free writes and reads, the work on DJP was recently extended with
non deterministic constructs such as atomic, which provides strong isolation guarantees [Bocc11].
The “read-only” and “read-write” region capabilities of our system can encode the non-interference
constraints as well as the ability to mutate shared data without introducing data races. (However, our
region locking operations have blocking semantics.) Moreover, low-level languages such as the one
we are proposing, often constitute the target language of high-level languages like Java and DPJ. In
this respect, our type system is not bound to any specific programming paradigm, but instead it is
applicable to any language at its implementation level.

Matsakis and Gross recently proposed another variant of Java with static race freedom guaran-
tees using the notion of intervals [Mats10]. Intervals are first-class objects representing time spans in
which a certain piece of code executes. Intervals can be partially ordered and/or hierarchically nested.

117



Similarly to our regions, hierarchically nested intervals inherit access rights to data from their ancestor
intervals. Concurrent read operations that happen after write operations to shared data as well as con-
current write operations to shared data protected by a lock are permitted. However, to guarantee type
safety, the type system requires explicit lock specifications as well as happens-before annotations.
Locks are also first-class objects but are never acquired explicitly. Instead, the run-time system uses
lock specifications of methods to implicitly acquire locks required by an interval.

9.3.2 Deadlock freedom

Themajority of literature for language-based approaches to deadlock freedom falls under deadlock
prevention and deadlock detection and recovery. In the deadlock prevention category, one finds type
and effect systems [Flan99b, Boya02, Koba06, Suen08, Vasc10] that guarantee deadlock freedom by
statically enforcing a global lock acquisition ordering, which must be respected by all threads. In this
setting, starting with the influential work of Flanagan andAbadi [Flan99b], lock handles are associated
with type-level lock names via the use of singleton types. Thus, handle lkı is of type lk(ı). The same
applies to lock handle variables. The effect system tracks the order of lock operations on handles or
variables and determines whether all threads acquire locks in the same order. This can be too restrictive
for some programs, where the analysis may be imprecise. It is not hard to come up with an example
that shows this point.:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a fewwords, there are two parallel threadswhich acquire two distinct locks,x and y, in reverse order.
When trying to find a partial order≤ on locks for this program, the type system or static analysis tool
will deduce that x ≤ y must be true, because of the first thread, and that y ≤ x must be true, because
of the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which
requires annotations [Flan99b] and in the system of Kobayashi which employs inference [Koba06] as
there is no single lock order for both threads. Similar considerations apply to the more recent works
of Suenaga [Suen08] and Vasconcelos et al. [Vasc10] dealing with unstructured locking primitives. A
notable exception in the deadlock prevention research is the type system of Boyapati et al. [Boya02]
which allows for some form of dynamism. Namely, it allows programmers to partition locks into a
fixed number of equivalence classes (lock levels), use recursive tree-based data structures to describe
their partial order, and also perform a limited set of mutations to these data structures which can change
the partial order of locks within a given lock level at runtime. Even in this system though, to guarantee
soundness, the partial order between lock levels is fixed statically. In contrast, our system does not
impose any partial order on locks at compile time, but instead naturally grants locks of different threads
during runtime based on the actual program needs and lock contention.

Purely static tools to deadlock prevention employ flow-sensitive static analysis [Engl03] and the-
orem proving [Flan02] to identify places in the code where programs do not adhere to some global
lock acquisition order for all threads. In theory, such static approaches are attractive because they do
not incur run-time overhead. In practice however, adhering to a strict lock acquisition order is rarely
easy and seems unsuitable for systems programming. Even in simpler application domains, experience
has shown that a global lock ordering is inflexible and difficult to enforce in complex, multi-layered
software written by large teams of programmers. More importantly, because purely static approaches
are by definition conservative, they often reject programs unnecessarily or result in a large number of
false alarms.

Recently, Boudol developed a type and effect system for deadlock freedom [Boud09], which is
based on deadlock avoidance. The effect system calculates for each expression the set of acquired
locks and annotates lock operations with the “future” lockset. The run-time system utilizes the in-
serted annotations so that each lock operation can only proceed when its “future” lockset is unlocked.
The main advantage of Boudol’s type system is that it allows a larger class of programs to type check
compared to purely static approaches to deadlock freedom and thus increases the programming lan-
guage expressiveness as well as concurrency by allowing arbitrary locking schemes.

118



The previous example can be rewritten in Boudol’s language as follows, assuming that the only
lock operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type systemwhich, in general, allows locks to be acquired in any
order. At run-time, the first lock operation of the first thread must ensure that y has not been acquired
by the second (or any other) thread, before granting x. The second lock operation need not ensure
anything special, as its future lockset is empty. (The handling is symmetric for the second thread.).
However, Boudol’s work does not handle programs with unstructured locking.

From deadlock avoidance approaches, besides Boudol’s proposal, a tool that is quite similar to
ours is Gadara [Wang08]. Gadara employs whole program analysis to model programs and discrete
control theory to synthesize a concurrent logic that avoids deadlocks at run time [Wang09]. Like our
work, Gadara targets C/pthreads programs and is claimed to avoid deadlocks quite efficiently because
it performs the majority of its deadlock avoidance computations offline. (The tool is not publicly
available.) Similarly to our future locksets, Gadara uses the notion of control places to decide whether
it is safe to admit a lock acquisition. More precisely, a lock acquisition can only proceed when all the
control places associated with the lock are available. The mostly static approach followed by Gadara,
as well as the lack of alias analysis, results in an over-approximation of the set of run-time locks
associated with a control place.

Purely dynamic approaches to deadlock detection [Qin07, Jula08] do not suffer from false posi-
tives, but they are often inflexible because when a deadlock is detected it is quite often too late to react
on or recover from it. (The programs may have already performed some irrevocable operations such
as I/O.)

9.3.3 Other approaches to safe concurrency

Transactional memory. Concurrency errors, such as data races can be eliminated in shared mem-
ory systems by the means of transactional memory [Harr03, Harr05, Herl03, Ring05, Welc04] imple-
mented with optimistic concurrency techniques. In addition, lock-related deadlocks can be avoided as
the use locks is not required in systems supporting transactional memory. They main idea of transac-
tional memory is that memory accesses within a transaction are logged and the write operations are
committed when the log is consistent with the current state of memory. Otherwise, the transaction is
rolled back and restarted. Transactions do not interact well with I/O operations, and in some cases,
performance can be worse than locking due to the overhead introduced by logging and rollback.

Message passing. Message passing is an alternative form of communication to shared memory. The
key idea is that all necessary synchronization is implicitly handled by the message passing abstraction
and relieves the programmer from explicit managing synchronization via low-level primitives. Con-
currency errors such as data races are eliminated by design in the message passing communication
model, but it should be noted that deadlocks cannot be eliminated.

The most simple, and most coarse grain, form of message passing is separate, sequential pro-
cesses which exchange data via a communication channel. A minimalistic formal description of those
communicating sequential processes is the π-calculus [Miln99].

In general the support for spawning new processes is not directly included in mainstream pro-
gramming languages such as C and is rather provided via libraries such as the Message Passing In-
terface [Grop96]. Such libraries define a rich set of communication abstractions, ranging from syn-
chronous and asynchronous point-to-point operations to complex collective operations.

Erlang [Arms07] is one of the few programming languages that has built-in support for process
creation and communication channel between processes. The language specification prohibits shared
memory communication, but it seems that the language implementation and libraries may introduce
data races [Chri10].

119





Chapter 10

Conclusion

In this thesis, we proposed a number of sound static analyses and type systems that guarantee
absence of memory access violations and data races for well-typed multithreaded programs. We also
proposed a technique that combines a static analysis and dynamic checks to avoid deadlocks in well-
typed programs. Let us summarize the main aspects and contributions of this work:

− We presented a multithreaded language that requires explicit type annotations and employs ad-
vanced hierarchical region-based management and lock-based synchronization primitives. That
language gives explicit control over the lifetime of regions and locks. We then introduced an
improved language, which does not require type annotations in source programs and employs
reader-writer locks for region hierarchies. Both languages support common multithreaded pro-
gramming idioms such as data migration and lock transfers between threads. In addition, data
can alternate between “thread-local” and “shared” state. We specified an operational semantics
and a type system for these languages and proved the theorems that guarantee well-typed pro-
grams are free of memory access violations and data races. To the best of our knowledge, this
is the first approach that soundly combines the aforementioned features in a language.

− We integrated our formalisms in two concurrent variants of Cyclone and compared the perfor-
mance of concurrent Cyclone programs against C/pthreads programs. In most cases, concurrent
Cyclone programs had negligible overheads.

− We presented an explicitly annotated language with unstructured locking primitives, recursion,
mutable references and explicit deallocation primitives.We then presented a simplified language
with unstructured locking primitives and recursion that does not require explicit annotations.
We specified an operational semantics and a type system for the languages discussed above that
guarantees deadlock freedom for well-typed programs. In the case of the former language the
type system guarantees that well-typed programs are also memory safe and race free. To the
best of our knowledge, this is the first type-based deadlock avoidance technique that soundly
guarantees deadlock freedom for languages with unstructured locking.

− We implemented our type system for deadlock avoidance as a static analysis for C/pthreads,
and described the design decisions, adjustments and optimizations that we found necessary.
Our evaluation results show modest runtime overhead in instrumented C programs.

Overall, we supported the thesis that software reliability can be improved by eliminating invalid
memory accesses and concurrency errors such as data races and deadlocks by the means of mostly
static analyses in a practical and efficient way. There are possible extensions and improvements to the
theories and implementations presented in this thesis that are subject of future work:

Recursive effect inference: regarding the region system, there are several restrictions applying to
“external” regions (i.e. regions that exist before a recursive function is called as opposed to
regions that are created in a recursive function’s body), when computing recursive function
effects. For instance, recursive functions are unable to deallocate external regions and in fact
when a recursive function returns, the counts of all external regions must be equal to the counts

121



when the function was called. If a recursive function spawns new threads, it cannot pass to them
any locks to external regions and finally recursive functions cannot presume any existing locks
on external regions. Similarly to the region system, the deadlock avoidance system requires
recursive functions to return the same lock counts as the lock counts prior to the function call.
During the benchmarking process, where we ported several programs from C to Cyclone, we
did not encounter any programs that could not be handled by our inference algorithm. It would
be interesting to further investigate if it is possible to develop a new inference algorithm that
lifts the aforementioned restrictions.

Concurrent Cyclone there are plenty of optimizations and improvements that could be done to our
implementation. Here, we identify the threemost important ones according to our current bench-
marking experiences. First, a lexically-scoped Cilk-like [Frig98] construct for allowing parent
threads to wait for the children threads to terminate would be highly desirable:

join {
for (int i = 0 ; i < size ; i++)

spawn worker(a[i]);
}

Second, for certain applications it would be preferable to associate locks to individual references
as opposed to regions. It is possible to extend our system to support finer-grained locking by
blurring the distinction between regions and references. That is, a fresh region effect could
be assigned to new lockable references. In turn, this could be implemented by introducing a
new language construct or utilizing existing methods such as tracked pointers and existential
types (i.e. a similar mechanism to dynamic regions). At run-time, the new reference would be
allocated in the parent region’s space and explicit deallocation would still be possible by using
reaps [Swam06]. Third, in some of the C benchmarks that outperformed our implementations
such as chameneos-redux, distinct parts of shared arrays were concurrently mutated. Extending
our type system and run-time region system so that a single array or a recursive data structure
can be distributed over a set of regions would be an interesting extension of our work.

Type-based deadlock avoidance for C/pthreads: the process of benchmarking and testing our tool
for deadlock avoidance revealed that in a large number of real-world C language projects, locks
were used in arrays and recursive data structures. The type systems for deadlock avoidance pre-
sented in this thesis are insufficient for programs with recursive data structures and arrays that
contain or point to locks. A conservative solution to this problem would require future locksets
to contain all possible locks in the program. (Dynamically allocated locks in arrays and recursive
data structures can be tracked by overriding the memory allocation functions at run-time.). Less
conservative solutions require further investigation. Second, the run-time overhead induced by
our technique can be attributed to the elapsed time during lockset computation and the blocking
time when a lockset is unavailable. In benchmarks using a large number of nested locks, the
lockset computation runtime amounts to half of the overall overhead. The worst-case lockset
computation runtime depends on the effect size of the top-level function performing the lock
operation as well as the effect sizes of the functions on the call stack. One way of eliminating
this overhead is by caching locksets that have already been computed. Another possibility is to
statically compute locksets in a context-sensitive manner. The key idea is to maintain a map-
ping from contexts (i.e. call stacks) to locksets: given the signature of a call stack it would be
possible to recover the statically computed lockset. Of course, recursive functions need special
treatment and this is subject of future work. Third, our pointer analysis could be improved so that
pointer mutations from other threads are tracked. Currently, our analysis requires that pointers
are mutated only before they are shared between threads. Finally, systems code involves inline
assembly, non-local jumps and special instructions for performing locking. Extending our tool
to fully support systems code is target of future work.

122



Bibliography

[Adve90] Sarita V. Adve and Mark D. Hill, “Weak Ordering – A New Definition”, in Proceedings
of the Annual International Symposium on Computer Architecture, pp. 2–14, New York,
NY, USA, 1990, ACM.

[Agar05] Rahul Agarwal, Amit Sasturkar, Liqiang Wang and Scott D. Stoller, “Optimized run-time
race detection and atomicity checking using partial discovered types”, in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software Engineering, pp.
233–242, New York, NY, USA, 2005, ACM.

[Ande08a] Todd Anderson, Neal Glew, Peng Guo, Brian T. Lewis, Wei Liu, Zhanglin Liu, Leaf Pe-
tersen, Mohan Rajagopalan, James M. Stichnoth, Gansha Wu and Dan Zhang, “Pillar:
A Parallel Implementation Language”, in Proceedings of the International Workshop
on Languages and Compilers for Parallel Computing, vol. 5234 of LNCS, pp. 141–155,
Springer, 2008.

[Ande08b] Zachary R. Anderson, David Gay, Robert Ennals and Eric Brewer, “SharC: Checking data
sharing strategies for multithreaded C”, in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 149–158, New York, NY,
USA, 2008, ACM.

[Ande09] Zachary R. Anderson, David Gay and Mayur Naik, “Lightweight Annotations for Con-
trolling Sharing in Concurrent Data Structures”, in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 98–109, New
York, NY, USA, 2009, ACM.

[Arms07] Joe Armstrong, “Erlang - Software for a Concurrent World”, in European Conference on
Object-Oriented Programming, pp. 1–1, Springer, 2007.

[Aust94] Todd M. Austin, Scott E. Breach and Gurindar S. Sohi, “Efficient detection of all pointer
and array access errors”, in Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 290–301, ACM, 1994.

[Bocc09] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung and Mohsen Vak-
ilian, “A Type and Effect System for Deterministic Parallel Java”, in Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 97–116, New York, NY, USA, 2009, ACM.

[Bocc11] Robert L. Bocchino, Jr., Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S.
Adve, Adam Welc and Tatiana Shpeisman, “Safe Nondeterminism in a Deterministic-
by-default Parallel Language”, in Conference Record of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 535–548, NewYork, NY,USA,
2011, ACM.

[Boeh05] Hans-Juergen Boehm, “Threads cannot be implemented as a library”, in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 261–268, New York, NY, USA, 2005, ACM Press.

123



[Boll02] Gregory Bollella and James Gosling, “The real-time specification for Java”, Computer,
vol. 33, no. 6, pp. 47–54, 2002.

[Boud09] Gérard Boudol, “A Deadlock-Free Semantics for Shared Memory Concurrency”, in
Martin Leucker and Carroll Morgan, editors,Proceedings of the International Colloquium
on Theoretical Aspects of Computing, vol. 5684 of LNCS, pp. 140–154, Springer, 2009.

[Boya01] Chandrasekhar Boyapati andMartin Rinard, “A Parameterized Type System for Race-free
Java Programs”, in Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 56–69, New York, NY, USA,
2001, ACM Press.

[Boya02] Chandrasekhar Boyapati, Robert Lee and Martin Rinard, “Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks”, in Proceedings of the ACM SIGPLAN
Conference onObject-Oriented Programming, Systems, Languages, and Applications, pp.
211–230, New York, NY, USA, November 2002, ACM Press.

[Boya03] Chandrasekhar Boyapati, Alexandru Salcianu, William S. Beebee and Martin Rinard,
“Ownership Types for Safe Region-based Memory Management in Real-Time Java”, in
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 324–337, New York, NY, USA, June 2003, ACM Press.

[Boyl03] John Boyland, “Checking Interference with Fractional Permissions”, in Radhia Cousot,
editor, Static Analysis: Proceedings of the 10th International Symposium, vol. 2694 of
LNCS, pp. 55–72, Springer, 2003.

[Choi02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar and
Manu Sridharan, “Efficient and precise datarace detection for multithreaded object-
oriented programs”, in Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, pp. 258–269, ACM, 2002.

[Chri10] Maria Christakis and Konstantinos Sagonas, “Static Detection of Race Conditions in
Erlang”, in Practical Aspects of Declarative Languages, vol. 5937 of LNCS, pp. 119–133,
Springer, 2010.

[Coff71] Edward G. Coffman, Jr., Michael J. Elphick and Arie Shoshani, “System Deadlocks”,
ACM Comput. Surv., vol. 3, no. 2, pp. 67–78, 1971.

[Cond07] JeremyCondit, MatthewHarren, Zachary R. Anderson, David Gay and George C. Necula,
“Dependent Types for Low-level Programming”, in Rocco De Nicola, editor, Program-
ming Language and Systems: Proceedings of the European Symposium on Programming,
vol. 4421 of LNCS, pp. 520–535, Springer, 2007.

[Cunn07] David Cunningham, Sophia Drossopoulou and Susan Eisenbach, “Universes for Race
Safety”, in Proceedings of the Workshop on Verification and Analysis of Multi-threaded
Java-like Programs, pp. 20–51, 2007.

[CURL] “A FTP filesystem based on cURL and FUSE”, http://curlftpfs.sourceforge.

net/.

[DeLi01] Robert DeLine and Manuel Fähndrich, “Enforcing High-level Protocols in Low-level
Software”, in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 59–69, New York, NY, USA, 2001, ACM Press.

[Engl03] Dawson Engler and Ken Ashcraft, “RacerX: effective, static detection of race conditions
and deadlocks”, in Proceedings of ACM Symposium on Operating Systems Principles,
pp. 237–252, New York, NY, USA, 2003, ACM.

124

http://curlftpfs.sourceforge.net/
http://curlftpfs.sourceforge.net/


[flam] flam3.com, “Cosmic Recursive Fractal Flames”, http://flam3.com/.

[Flan99a] Cormac Flanagan and Mart́ın Abadi, “Object Types Against Races”, in Jos C. M. Baeten
and Sjouke Mauw, editors, International Conference on Concurrency Theory, vol. 1664
of LNCS, pp. 288–303, Springer, 1999.

[Flan99b] Cormac Flanagan and Mart́ın Abadi, “Types for Safe Locking”, in Programming Lan-
guage and Systems: Proceedings of the European Symposium on Programming, vol. 1576
of LNCS, pp. 91–108, Springer, 1999.

[Flan00] Cormac Flanagan and Stephen N. Freund, “Type-based race detection for Java”, in Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, pp. 219–232, ACM, 2000.

[Flan01] Cormac Flanagan and K. Rustan M. Leino, “Houdini, an Annotation Assistant for ESC/-
Java”, in Formal Methods Europe, vol. 2021 of LNCS, pp. 500–517, Springer, 2001.

[Flan02] Cormac Flanagan, K. RustanM. Leino,Mark Lillibridge, Greg Nelson, James B. Saxe and
Raymie Stata, “Extended Static Checking for Java”, inProceedings of the ACMSIGPLAN
Conference on Programming Language Design and Implementation, pp. 234–245, New
York, NY, USA, 2002, ACM.

[Flue06] Matthew Fluet, GregoryMorrisett andAmal Ahmed, “Linear Regions AreAll YouNeed”,
in Peter Sestoft, editor, Programming Language and Systems: Proceedings of the Euro-
pean Symposium on Programming, vol. 3924 of LNCS, pp. 7–21, Springer, 2006.

[Fost02] Jeffrey S. Foster, Type qualifiers: lightweight specifications to improve software quality,
Ph.D. thesis, Berkeley, 2002.

[Fran02] Hubertus Franke, Rusty Russell and Matthew Kirkwood, “Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux”, in Proceedings of the Ottawa Linux Summit, pp.
479–495, 2002.

[Frig98] Matteo Frigo, Charles E. Leiserson and Keith H. Randall, “The Implementation of the
Cilk-5 Multithreaded Language”, in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 212–223, New York, NY, USA,
1998, ACM Press.

[FUSE] “A filesystem in userspace”, http://fuse.sourceforge.net/.

[Gay01] David Gay and Alexander Aiken, “Language Support for Regions”, in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 70–80, New York, NY, USA, 2001, ACM Press.

[Gay03] David Gay, Philip Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer and David E.
Culler, “The nesC Language: A Holistic Approach to Networked Embedded Systems”, in
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1–11, New York, NY, USA, 2003, ACM.

[Ghar90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta
and John Hennessy, “Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors”, in Proceedings of the Annual International Symposium on
Computer Architecture, pp. 15–26, New York, NY, USA, 1990, ACM Press.

[Gots07] Alexey Gotsman, Josh Berdine, Byron Cook and Mooly Sagiv, “Thread-modular shape
analysis”, in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 266–277, ACM, 2007.

125

http://flam3.com/
http://fuse.sourceforge.net/


[Grop96] William Gropp, Ewing L. Lusk, Nathan E. Doss and Anthony Skjellum, “A High-
Performance, Portable Implementation of the MPI Message Passing Interface Standard”,
Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[Gros02] Dan Grossman, Gregory Morrisett, Trevor Jim, Michael Hicks, Yanling Wang and James
Cheney, “Region-based Memory Management in Cyclone”, in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pp.
282–293, New York, NY, USA, 2002, ACM Press.

[Gros03] Dan Grossman, “Type-safe Multithreading in Cyclone”, in Proceedings of the ACM
SIGPLAN International Workshop on Types in Languages Design and Implementation,
pp. 13–25, New York, NY, USA, 2003, ACM Press.

[Harr03] Timothy L. Harris and Keir Fraser, “Language Support for Lightweight Transactions”, in
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 388–402, New York, NY, USA, 2003, ACM
Press.

[Harr05] Tim Harris, Simon Marlow, Simon L. Peyton Jones and Maurice Herlihy, “Composable
Memory Transactions”, in Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 48–60, ACM, 2005.

[Heng01] Fritz Henglein, Henning Makholm and Henning Niss, “A Direct Approach to Control-
flow Sensitive Region-based Memory Management”, in Proceedings of the International
Conference on Principles and Practice of Declarative Programming, pp. 175–186, New
York, NY, USA, 2001, ACM.

[Henz04] Thomas A. Henzinger, Ranjit Jhala and Rupak Majumdar, “Race Checking by Context
Inference”, in Proceedings of the ACM SIGPLANConference on Programming Language
Design and Implementation, pp. 1–13, ACM, 2004.

[Herl03] Maurice Herlihy, Victor Luchangco, Mark Moir and William N. Scherer III, “Software
transactional memory for dynamic-sized data structures”, in Proceedings of the Sympo-
sium on Principles of Distributed Computing, pp. 92–101, ACM, 2003.

[Hobo08] Aquinas Hobor, Andrew W. Appel and Francesco Zappa Nardelli, “Oracle Semantics for
Concurrent Separation Logic”, in Programming Language and Systems: Proceedings of
the European Symposium on Programming, vol. 4960 of LNCS, pp. 353–367, Springer,
2008.

[Jim02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney and Yanling
Wan, “Cyclone: A safe dialect of C”, in Usenix Annual Technical Conference, USENIX
Association, 2002.

[Jula08] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir and George Candea, “Deadlock Immu-
nity: Enabling Systems to Defend Against Deadlocks”, in Richard Draves and Robbert
van Renesse, editors, Proceedings of the Symposium on Operating Systems Design and
Implementation, pp. 295–308, USENIX Association, 2008.

[Koba06] Naoki Kobayashi, “A New Type System for Deadlock-Free Processes”, in C. Baier and
H. Hermanns, editors, International Conference on Concurrency Theory, vol. 4137 of
LNCS, pp. 233–247, Springer, 2006.

[Lamp79] Leslie Lamport, “A New Approach to Proving the Correctness of Multiprocess Pro-
grams”, ACM Transactions on Programming Languages and Systems, vol. 1, no. 1, pp.
84–97, 1979.

126



[Mats10] Nicholas D.Matsakis and Thomas R. Gross, “A time-aware type system for data-race pro-
tection and guaranteed initialization”, in Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 634–651,
New York, NY, USA, 2010, ACM.

[MIGR] “A tool that estimates population size and migration rate”, http://popgen.sc.fsu.

edu/Migrate/Migrate-n.html.

[Miln99] Robin Milner, Communicating and mobile systems - the Pi-calculus, Cambridge Univer-
sity Press, 1999.

[Necu05] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak and Westley Weimer,
“CCured: Type-safe Retrofitting of Legacy Software”, ACM Transactions on Program-
ming Languages and Systems, vol. 27, no. 3, pp. 477–526, 2005.

[NGOR] “A password recovery tool for Oracle Database”, http://code.google.com/p/

ngorca/.

[OCal03] Robert O’Callahan and Jong-Deok Choi, “Hybrid Dynamic Data Race Detection”, in
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 167–178, New York, NY, USA, 2003, ACM Press.

[Prat06] Polyvios Pratikakis, Jeffrey S. Foster. and Michael Hicks, “Locksmith: context-sensitive
correlation analysis for race detection”, in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 320–331, New York, NY,
USA, 2006, ACM.

[Qade04] Shaz Qadeer and DinghaoWu, “KISS: Keep It Simple and Sequential”, in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 14–24, ACM, 2004.

[Qin07] Feng Qin, Joseph Tucek, Yuanyuan Zhou and Jagadeesan Sundaresan, “Rx: Treating
bugs as allergies — a safe method to survive software failures”, ACM Transactions on
Computer Systems, vol. 25, no. 3, p. 7/2, 2007.

[Reyn02] John C. Reynolds, “Separation logic: A logic for shared mutable data structures”, in
Proceedings of the IEEE Symposium on Logic in Computer Science, pp. 55–74, IEEE
Computer Society Press, 2002.

[Ring05] Michael F. Ringenburg and Dan Grossman, “AtomCaml: first-class atomicity via roll-
back”, in Proceedings of the ACM SIGPLAN International Conference on Functional
Programming, pp. 92–104, ACM, 2005.

[Sava97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro and Thomas E. An-
derson, “Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs”, in Pro-
ceedings of ACM Symposium on Operating Systems Principles, pp. 27–37, ACM, 1997.

[SSHF] “SSH FileSystem”, http://fuse.sourceforge.net/sshfs.html.

[Stal11] Richard M. Stallman and the GCC Developer Community, Using the GNU Compiler
Collection, 2011. http://gcc.gnu.org/onlinedocs/ (version 4.6.0).

[Suen08] Kohei Suenaga, “Type-Based Deadlock-Freedom Verification for Non-Block-Structured
Lock Primitives and Mutable References”, in G. Ramalingam, editor, Asian Symposium
on Programming Languages and Systems, vol. 5356 of LNCS, pp. 155–170, Springer,
2008.

127

http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://code.google.com/p/ngorca/
http://code.google.com/p/ngorca/
http://fuse.sourceforge.net/sshfs.html
http://gcc.gnu.org/onlinedocs/


[Swam06] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman and Trevor Jim, “Safe
Manual Memory Management in Cyclone”, Science of Computer Programming, vol. 62,
no. 2, pp. 122–144, 2006.

[Tera08] Tachio Terauchi, “Checking race freedom via linear programming”, in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 1–10, ACM, 2008.

[tgre] “Multithreaded grep”, Part of Sun Microsystems’ Multithreaded Programming Guide,
available at http://docs.sun.com/app/docs/doc/806-5257.

[Toft94] Mads Tofte and Jean-Pierre Talpin, “Implementation of the Typed Call-by-value λ-
calculus using a Stack of Regions”, in Conference Record of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 188–201, New York, NY,
USA, 1994, ACM Press.

[Vasc10] Vasco Vasconcelos, Francisco Martin and Tiago Cogumbreiro, “Type Inference for Dead-
lock Detection in a Multithreaded Polymorphic Typed Assembly Language”, in Alas-
tair R. Beresford and Simon Gay, editors, Proceedings of the Workshop on Programming
Language Approaches to Concurrency and Communication-cEntric Software, vol. 17 of
EPTCS, pp. 95–109, 2010.

[Voun07] Jan Wen Voung, Ranjit Jhala and Sorin Lerner, “RELAY: static race detection on mil-
lions of lines of code”, in Proceedings of the joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, pp. 205–214, New York, NY, USA, 2007, ACM.

[Walk01] David Walker and Kevin Watkins, “On Regions and Linear Types”, in Proceedings of
the ACM SIGPLAN International Conference on Functional Programming, pp. 181–192,
New York, NY, USA, October 2001, ACM Press.

[Wang08] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune and Scott Mahlke,
“Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs”, in Richard Draves
and Robbert van Renesse, editors, Proceedings of the Symposium on Operating Systems
Design and Implementation, pp. 281–294, USENIX Association, 2008.

[Wang09] YinWang, Stéphane Lafortune, Terence Kelly,Manjunath Kudlur and ScottMahlke, “The
theory of deadlock avoidance via discrete control”, in Conference Record of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 252–263,
New York, NY, USA, 2009, ACM.

[Welc04] Adam Welc, Suresh Jagannathan and Antony L. Hosking, “Transactional Monitors for
Concurrent Objects”, in European Conference on Object-Oriented Programming, pp.
519–542, Springer, 2004.

[Zhao04] Tian Zhao, James Noble and Jan Vitek, “Scoped Types for Real-Time Java”, in Proceed-
ings of the 25th IEEE International Real-Time Systems Symposium, pp. 241–251, IEEE
Computer Society, 2004.

[Zhao08] Tian Zhao, Jason Baker, James Hunt, James Noble and Jan Vitek, “Implicit ownership
types for memory management”, Science of Computer Programming, vol. 71, no. 3, pp.
213–241, 2008.

128

http://docs.sun.com/app/docs/doc/806-5257


Appendix A

Formal semantics and proof of soundness for Chapter 2

A.1 Language syntax

Value v ::= f | c | rgnı | locl
Expression e ::= x | c | f | (e e)ξ | e[r]

| new e@ e | e := e | deref e
| newrgnr ρ, x@ e in e
| caprη e | rgnı | locl | popγ e

Capability kind ψ ::= rg | lk
Capability op η ::= ψ + | ψ−
Capability κ ::= n, n | n, n
Region parent π ::= r | ⊥
Effect γ ::= ∅ | γ, rκ. π
Type τ ::= b | 〈〉 | τ γ→γ−→ τ | ∀ρ. τ

| ref(τ, r) | rgn(r)
Function f ::= λx. e as τ

γ→γ−→ τ | Λρ. f
Calling mode ξ ::= seq | par
Region r ::= ρ | ı | ı@n

A.2 Operational semantics

Auxiliary syntax for operational semantics

Stack σ ::= ∅ | σ; γ
Hierarchy δ ::= ∅ | δ, n 7→ σ

Contents H ::= ∅ | H, ` 7→ v

Region list S ::= ∅ | S, ı 7→ H

Threads T ::= ∅ | T, n : e
Configuration C ::= δ;S;T

Evaluation context E ::= � | (E e)ξ | (v E)ξ | E [r]
| newrgnr ρ, x@ E in e | caprη E
| new v @ E | deref E | E := e
| v := E | new E @ e | popγ E

129



Evaluation relation C → C ′

δ = δ′′, n 7→ σ σ;S; e→ σ′;S′; e′ δ′ = δ′′, n 7→ σ′ ` δ′

δ;S;T, n : E[e]  δ′;S′;T, n :E[e′]
(E-S)

v1 ≡ λx. e as τ1
γ1→γ2−→ τ2 δ = δ′′, n 7→ σ; γ fresh n′

par ` γ′ = ∅ ⊕ (γ 	 γ1) δ′ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1
δ;S;T, n : E[(v1 v)

par]  δ′;S;T, n :E[()], n′ : (v1 v)
seq (E-SN)

σ = σ′; γ is live(γ, r) γ = γ′, rκ. π

κ′ = [[η]] (κ) σ′′ = σ′; live(γ′, rκ′
. π)

σ;S; caprη rgnr̄ → σ′′;S; ()
(E-C)

δ = δ′, n 7→ (∅; ∅)
δ;S;T, n : ()  δ′;S;T

(E-T)

σ = σ′; γ seq ` γ = γ1 ⊕ γr σ′′ = σ′; γr; γ1

σ;S; ((λx. e as τ1
γ1→γ2−→ τ2) v)

seq
→ σ′′;S; popγr e[v/x]

(E-A)

fresh n′
σ;S; (Λρ. f)[r] → σ;S; f [r̄@n′/ρ]

(E-RP)

σ = σ′; γ is accessible(γ, r) (` 7→ v) ∈ S(r̄)

σ;S; deref loc` → σ;S; v
(E-D)

σ = σ′; γ is live(γ, r) fresh `
σ;S; new v @ rgnr̄ → σ;S[r̄ 7→ S(r̄), ` 7→ v]; loc`

(E-NR)

σ = σ′; γ is accessible(γ, r) (` 7→ v1) ∈ S(r̄)

σ;S; loc` := v → σ;S(r̄)[` 7→ v]; ()
(E-AS)

σ = σ′; γ is live(γ, r) fresh ı σ′′ = σ′; γ, ı1,1. r

σ;S; newrgnr ρ, x@ rgnr̄ in e→ σ′′;S, ı 7→ ∅; e[ı/ρ][rgnı/x]
(E-NG)

σ = σ′; γr; γ
′ seq ` γ′′ = γ′ ⊕ (γr 	 ∅) σ′′ = σ′; γ′′

σ;S; popγr v → σ′′;S; v
(E-E)

Helper predicates and functions

(rκ.⊥) ∈ γ rg(κ) > 0

is live(γ, r)
γ = γ′, rκ. r′ rg(κ) > 0 is live(γ′, r′)

is live(γ, r)

(rκ. π) ∈ γ lk(κ) > 0 is live(γ, r)
is accessible(γ, r)

130



γ = γ′, rκ. r′ lk(κ) = 0 rg(κ) > 0 is accessible(γ′, r′)
is accessible(γ, r)

σ ' σ1; γ, ı
κ. π + σ2

lk(κ) > 0 ∨ (π = r ∧ is accessible(σ, r̄))
is accessible(σ, ı)

σ ' σ1; γ, ı
κ. π ⇒ is pure(κ) ∧ rg(κ) = 0∧

ı /∈ dom(∅; γ) ∧ σ1 6= ∅ ⇒ zero pure(σ1, ı)
zero pure(σ, ı)

` δ σ ` δ
` δ, n 7→ σ ` ∅

σ ` δ
∀ı ∈ dom(σ).is accessible(σ, ı) ⇒ ¬is accessible(σ′, ı)

σ ` δ, n 7→ σ′

∀ı ∈ dom(σ).σ ' σ1; γ, ı
κ. π + σ2 ∧ rg(κ) > 0 ∧ is pure(κ)

⇒ zero pure(σ1, ı) ∧ ı /∈ dom(σ2; γ)
σ ` ∅

r̄ =

{
ı if r = ı

r̄′ if r = r′@n′

σ ' σ′ =

{
σ1 ' σ2 ∧ γ1 ' γ2 if σ = σ1; γ1 ∧ σ′ = σ2; γ2
σ1 ≡ σ2 otherwise

rg(κ) = n1 if κ = n1, n2 ∨ κ = n1, n2
lk(κ) = n2 if κ = n1, n2 ∨ κ = n1, n2
live(γ) = { rκ. π | (rκ. π) ∈ γ ∧ is live(γ, r) }

σ1 + σ2 =

{
(σ1 + σ); γn if σ2 ≡ σ; γn
σ1 if σ2 ≡ ∅

γ1 + γ2 =

{
(γ1 + γ), rκ. π if γ2 ≡ γ, rκ. π
γ1 if γ2 ≡ ∅

dom(γ) = { r | (rκ. π) ∈ γ }

dom(σ) =

{
{r̄ | (rκ. π) ∈ γ} ∪ dom(σ′) if σ = σ′; γ
∅ if σ = ∅

A.3 Static semantics

Static semantics syntax

Region List R ::= ∅ | R, ı
Type variable list � ::= ∅ | ∆, ρ
Memory List M ::= ∅ | M, ` 7→ (τ, ı)

Variable list � ::= ∅ | Γ, x : τ

131



Helper functions and predicates

is pure(κ) = ∃n1. ∃n2. κ = n1, n2

[[η]] (κ) =

if η ≡ ψ ± ∧is pure(κ) ⇔ is pure(κ′)∧
κ′ (ψ = rg ⇒ rg(κ′) = rg ± 1 ∧ lk(κ′) = lk(κ))∧

(ψ = lk ⇒ lk(κ′) = lk ± 1 ∧ rg(κ′) = rg(κ))
valid pure(γ) = ∀rκ. π ∈ γ.∃γ1.γ = γ1, r

κ. π ∧ is pure(κ) ⇒ ∀r′ ' r.r′ /∈ dom(γ1)
ok(γ1; γ2) = valid pure(γ1) ∧ valid pure(γ2)
valid(γ1; γ2) = (∀(rκ. π) ∈ γ1. ∀(rκ

′
. π′) ∈ γ2. π = π′ ∧ (is pure(κ) ⇔

is pure(κ′))) ∧ live(γ1) = γ1 ∧ live(γ2) = γ2 ∧ dom(γ2) ⊆ dom(γ1)

r1 ' r2 ≡
{
ı1 ≡ ı2 if r1 ≡ ı1@n1 ∧ r2 ≡ ı2@n2
r1 ≡ r2 otherwise

π1 ' π2 ≡
{
r1 ' r2 if π1 ≡ r1 ∧ π1 ≡ r2
π1 ≡ π2 otherwise

γ1 ' γ2 ≡
{
γ3 ' γ4 ∧ r1 ' r2 ∧ π1 ' π2 if γ1 = γ3, r

κ
1. π1 ∧ γ2 = γ4, r

κ
2. π2

γ1 ≡ γ2 otherwise

τ1 ' τ2 ≡



τ1 ≡ τ2 if ({τ1} ∪ {τ2}) ∩ {〈〉, b}
τ3 ' τ4 ∧ r1 ' r2 if τ1 = ref(τ3, r1) ∧ τ2 = ref(τ4, r2)

r1 ' r2 if τ1 = rgn(r1) ∧ τ2 = rgn(r2)

τ3 ' τ5 ∧ τ4 ' τ6 ∧ γ1 ' γ3 ∧ γ2 ' γ4 if τ1 ≡ τ3
γ1→γ2−→ τ4 ∧ τ2 ≡ τ5

γ3→γ4−→ τ6
τ3[ρ/ρ1] ' τ4[ρ/ρ2] if τ1 ≡ ∀ρ1. τ3 ∧ τ2 ≡ ∀ρ2. τ4 ∧ fresh ρ

set(γ; γ′) = (∀(rκ. π) ∈ γ.∃γ1.γ = γ1, r
κ. π ∧ r /∈ dom(γ1))

∧(∀(rκ. π) ∈ γ′.∃γ1.γ′ = γ1, r
κ. π ∧ r /∈ dom(γ1))

Well-formedness rules

R;∆ ` ∅
R;∆ ` γ1 R;∆ ` r1 r1 6= π π = r2 ⇒ R;∆ ` r2

R;∆ ` γ1, rκ1. π

r ∈ ∆ ]R
R;∆ ` r

R;∆ ` ı
R;∆ ` ı@n

R;∆ ` b
R;∆ ` r

R;∆ ` rgn(r)

R;∆, ρ ` τ
R;∆ ` ∀ρ. τ

R;∆ ` τ R;∆ ` r
R;∆ ` ref(τ, r) R;∆ ` 〈〉

valid(γ1; γ2)
R;∆ ` τ1 R;∆ ` γ1 R;∆ ` τ2 R;∆ ` γ2

R;∆ ` τ1
γ1→γ2−→ τ2

R; ∆ ` τ1 x /∈ dom(Γ1)
R; ∆ ` Γ1

R;∆ ` Γ1, x : τ1

R `M1 ` /∈ dom(M1)
R; ∅ ` ref(τ1, ı)

R `M1, ` 7→ (τ1, ı)

132



set(γ; γ′) ok(γ; γ′)
R `M R;∆ ` Γ R;∆ ` γ R;∆ ` γ′

` R;M ;∆; Γ; γ; γ′

Typing rules

` R;M ;∆; Γ; γ; γ (x : τ) ∈ Γ τ ' τ ′

R;M ;∆; Γ ` x : τ ′& (γ;γ)
(T-V)

` R;M ;∆; Γ; γ; γ

R;M ;∆; Γ ` c : b& (γ;γ)
(T-I)

` R;M ;∆; Γ; γ; γ

R;M ;∆; Γ ` () : 〈〉& (γ;γ)
(T-U)

` R;M ;∆; Γ; γ; γ R;∆ ` ı r ' ı

R;M ;∆; Γ ` rgnı : rgn(r)& (γ;γ)
(T-R)

` R;M ;∆; Γ; γ; γ (` 7→ (τ, ı)) ∈M
τ ′ ' ref(τ, ı)

R;M ;∆; Γ ` locl : τ
′& (γ;γ)

(T-L)

R;M ;∆, ρ; Γ ` f : τ & (γ;γ)

R;M ;∆; Γ ` Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

` R;M ;∆; Γ; γ; γ τ ≡ τ1
γ1→γ2−→ τ2 set(γ1; γ2)

τ ' τ ′ ok(γ1; γ2) ⇒ R;M ; ∆; Γ, x : τ1 ` e : τ2& (γ1;γ2)

R;M ;∆; Γ ` λx. e as τ : τ ′& (γ;γ)
(T-F)

R;M ;∆; Γ ` e1 : τ1
γ1→γ2−→ τ2& (γ;γ′) ξ = par ⇒ τ2 = 〈〉

R;M ;∆; Γ ` e2 : τ1& (γ′;γ′′) ξ ` γ′′′ = γ2 ⊕ (γ′′ 	 γ1)

R;M ;∆; Γ ` (e1 e2)
ξ : τ2& (γ;γ′′′)

(T-AP)

R;∆ ` r
R;M ;∆; Γ ` e : ∀ρ. τ & (γ;γ′)

R;M ;∆; Γ ` e [r] : τ [r/ρ]& (γ;γ′)
(T-RP)

R;M ;∆; Γ ` e1 : rgn(r)& (γ;γ′) is live(γ′, r) R;∆ ` τ
R;M ;∆, ρ; Γ, x : rgn(ρ) ` e2 : τ & (γ′, ρ1,1. r;γ′′) ρ 6∈ dom(γ′′)

R;M ;∆; Γ ` newrgnr ρ, x@ e1 in e2 : τ & (γ;γ′′)
(T-NG)

R;M ;∆; Γ ` e1 : τ & (γ;γ′) is live(γ′′, r)
R;M ;∆; Γ ` e2 : rgn(r)& (γ′;γ′′)

R;M ;∆; Γ ` new e1 @ e2 : ref(τ, r)& (γ;γ′′)
(T-NR)

R;M ;∆; Γ ` e1 : ref(τ, r)& (γ;γ′)
R;M ;∆; Γ ` e2 : τ & (γ′;γ′′)

is accessible(γ′′, r)
R;M ;∆; Γ ` e1 := e2 : 〈〉& (γ;γ′′)

(T-A)

seq ` γ′ = γ2 ⊕ (γr 	 ∅) R;∆ ` γr ok(γr; ∅)
R;M ; ∆; Γ ` e : τ ′& (γ1;γ2) τ ' τ ′ set(γr; ∅)

R;M ;∆; Γ ` popγr e : τ & (γ1;γ
′)

(T-E)

133



is live(γ′, rκ. π, r) γ′′ = live(γ′, rκ′
. π)

R;M ;∆; Γ ` e1 : rgn(r)& (γ;γ′, rκ. π) κ′ = [[η]] (κ)

R;M ;∆; Γ ` caprη e1 : 〈〉& (γ;γ′′)
(T-CP)

R;M ;∆; Γ ` e : ref(τ, r)& (γ;γ′) is accessible(γ′, r)
R;M ;∆; Γ ` deref e : τ & (γ;γ′)

(T-D)

Auxiliary typing rules

ξ ` γ = γ1 ⊕ γr ξ ` γ′ = γ2 ⊕ γr
γ′′ = live(γ′) ok(γ1; γ2) ξ = par ⇒ γ2 = ∅

ξ ` γ′′ = γ2 ⊕ (γ 	 γ1)
(ESJ)

ξ ` γ, rκ2. π = γ1 ⊕ γ2
ξ ` κ = κ1 + κ2 π ' π′ r′ ' r

ξ ` γ, rκ. π = γ1, r
′κ1. π′ ⊕ γ2

(ES-C)

ξ ` γ = ∅ ⊕ γ
(ES-N)

rg(κ) = rg(κ1) + rg(κ2) lk(κ) = lk(κ1) + lk(κ2) is pure(κ) ⇔ is pure(κ2)
is pure(κ1) ⇒ κ = κ1 ξ = par ∧ ¬is pure(κ1) ⇒ lk(κ1) = 0

ξ ` κ = κ1 + κ2
(CS)

A.4 Type safety

Type safety rules

pops(σ : e) =



pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ (e1 e2)
ξ ∧ e1 6= v

pops(σ : e2) ∧ pops(∅; ∅ : v) if e ≡ (v e2)
ξ

pops(σ : e1) if e ≡ (e1) [v]
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ newrgnr ρ, x@ e1 in e2
pops(σ : e1) if e ≡ capr

′
η e1

pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ new v @ e1
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ new e1 @ e2 ∧ e1 6= v
pops(σ : e1) if e ≡ deref e1
pops(σ : e1) ∧ pops(∅; ∅ : e2) if e ≡ e1 := e2 ∧ e1 6= v
pops(σ : e1) ∧ pops(∅; ∅ : v) if e ≡ v := e1
pops(σ′ : e1) if e ≡ popγr e1 ∧ σ = ∅; γr + σ′

σ ≡ ∅; γ ∧ pops(∅; ∅ : e′) if e ≡ λx. e′ as τ
σ ≡ ∅; γ ∧ pops(∅; ∅ : f) if e ≡ Λρ. f
σ ≡ ∅; γ if e ∈ {loc`, rgnı, ()}

nolock(δ, n, e) ≡ e = E[capr+lk
rgnj] ∧ ∃δ′′, π, κ, κ′. δ = δ′′, n 7→ σ; γ, rκ. π∧

κ′ = [[lk+]] (κ) ∧ ¬ ` δ′′, n 7→ σ; γ, rκ
′
. π

redex(e) = (∃ σ, σ′, S, S′, e′, n. σ;S; e→ σ′;S′; e′) ∨ (∃v1, v2, γ1.e = (v1 v2)
par)

134



∪
(ı 7→H)∈S{` | (` 7→ v) ∈ H} = {` | (` 7→ (τ, )) ∈M}

M ` S

R = {ı | (ı 7→ H) ∈ S}
R ` S

∀(n 7→ σ) ∈ δ.∀γ ∈ σ.∀(rκ. π) ∈ γ.
r̄ ∈ R ∧ (π = r′ ⇒ r̄′ ∈ R)

R ` δ

M ` S R ` S
∀(` 7→ (τ, ı)) ∈M.R;M ; ∅; ∅ ` S(ı)(`) : τ & (∅;∅)

R;M ` S
` δ R;M ` S R ` δ

R;M ` δ;S

R;M ; ∅ ` ∅

R;M ; ∅; ∅ ` e : 〈〉& (γ;∅)
R;M ; δ′ ` T ∀(n′ : e′) ∈ T.n′ 6= n
δ = δ′, n 7→ σ; γ pops(σ; γ : e)

R;M ; δ ` T, n : e
R;M ; δ ` T R;M ` δ;S

R;M ` δ;S;T

∀(n : e) ∈ T. (δ;S;T  δ;S′;T ′ ∧ (n : e) /∈ T ′) ∨ nolock(δ, n, e)
` δ;S;T

Multi-step evaluation rules

n > 0 δ;S;T  n−1 δn−1;Sn−1;Tn−1

δn−1;Sn−1;Tn−1  δn;Sn;Tn
δ;S;T  n δn;Sn;Tn

(E-M1)
δ;S;T  0 δ;S;T

(E-M2)

A.5 Proof of soundness

Definition A.1 Type Safety Initial Environment

R0 = {ιH}
δ0 = {1 7→ ι1,0H .⊥}
S0 = {ιH 7→ ∅}
T0 = {1 : (main[ιH ] rgnιH )

seq}

Theorem A.1 (Type safety) Let R0, δ0, S0 and T0 be defined as in Definition A.1. If the opera-
tional semantics takes any number of steps δ0;S0;T0  n δn;Sn;Tn, then the resulting configuration
δn;Sn;Tn is not stuck.

Proof. The proof is trivial: Lemma A.1 is applied to the assumptions δ;S;T is well-typed and the
operational semantics performs n steps, to obtain that δn;Sn;Tn is well-typed for someRn;Mn. Then,
lemma A.53 is applied to the latter fact to prove that δn;Sn;Tn is not stuck.

135



Lemma A.1 (Multi-step Program Preservation ) Let δ;S;T be a closed well-typed configuration
such that R;M ` δ;S;T for some R;M. If the operational semantics evaluates δ;S;T to δ′;S′;T ′ in
n steps then there exists a closed well-typed configuration such thatR′;M ′ ` δ′;S′;T ′, whereR′ and
M ′ are supersets of R andM respectively.

Proof. Proof by induction on the number of steps n. When no steps are performed the proof is
immediate from the assumption. If n steps are performed, we have that δ;S;T  n δ′;S′;T ′ or
δ;S;T  n−1 δn−1;Sn−1;Tn−1 and δn−1;Sn−1;Tn−1  δ′;S′;T ′. By applying the induction hy-
pothesis on the fact that δ;S;T is well-typed and that n− 1 steps are performed we obtain that there
exist Rn−1;Mn−1 such that Rn−1;Mn−1 ` δn−1;Sn−1;Tn−1. We complete the proof by applying
lemma A.2 on the latter fact and δn−1;Sn−1;Tn−1  δ′;S′;T ′.

Lemma A.2 (Preservation — Program) Let δ;S;T be a well-typed configuration with R;M `
δ;S;T . If the operational semantics takes a step δ;S;T  δ′;S′;T ′, then there exist R′ ⊇ R and
M ′ ⊇M such that the resulting configuration is well-typed with R′;M ′ ` δ′;S′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : The premise of this rule are T1, n : () = T and δ1, n 7→ (∅; ∅) = δ, for some δ1 and T1.
By applying lemma A.3 to the configuration typing assumption we have that R;M ` δ1, n 7→
(∅; ∅);S;T1, n : () holds.
By inversion of the latter configuration typing derivation we obtain the store (R;M ` δ1, n 7→
(∅; ∅);S), and thread (R;M ; δ1, n 7→ (∅; ∅) ` T1, n : ()) typing derivations. By inversion of the
thread typing derivation, we have that R;M ; δ1 ` T1 is well-typed. Lemma A.9 is applied to
the store typing derivation (R;M ` δ1, n 7→ (∅; ∅);S) to obtain that R;M ` δ1;S holds. The
new store and thread typing derivations give us R;M ` δ1;S;T1.

Case E-S : The premises of this rule are T1, n : E[e] = T , δ = δ1, n 7→ σ, ` δ′, δ′ = δ1, n 7→ σ′ and
σ;S; e → σ′;S′; e′. The resulting configuration is δ′;S′;T1, n :E[e′]. By applying lemma A.3
to the latter configuration typing derivation, we have that R;M ` δ;S;T1, n : E[e] holds. By
inverting the configuration typing we obtain that R;M ; δ ` T1, n : E[e] and R;M ` δ;S
holds. By inversion of the thread typing derivation we have that R;M ; ∅; ∅ ` E[e] : 〈〉&(γ; ∅),
σ = σ′′; γ, pops(σ′′; γ : E[e]) holds, and R;M ; δ1 ` T1 holds. By applying lemma A.11 to
the typing derivation of E[e] we obtain that R;M ; ∅; ∅ ` e : τ, (γ; γ′) for some γ′ and τ . By
applying lemma A.29 to ` δ[n 7→ σ′] (rule E-S), the typing derivation of e, the expression
evaluation step (σ;S; e → σ′;S′; e′) and the store typing derivation (R;M ` δ;S), we obtain
that e′ is also well-typed (R′;M ′; ∅; ∅ ` e′ : τ&(γ′′; γ′)), where γ′′ is the top stack frame for
thread n (σ′ = σ′′′; γ′′ for some σ′′′), for some R ⊆ R′, M ⊆ M ′, and the resulting store
δ[n 7→ σ′];S′ is also well-typed (R′;M ′ ` δ[n 7→ σ′];S′). By applying lemma A.12 to the
typing derivation of e′ we have that ` R′;M ′; ∅; ∅; γ′′; γ′. By inversion of the latter derivation
we have that R′ ` M ′. By applying lemma A.4 to R;M ; δ ` T1, n : E[e], R ⊆ R′,M ⊆ M ′

and R′ `M ′, we have that R′;M ′; δ ` T1, n : E[e] holds. By inversion of the latter derivation
we have that R′;M ′; ∅; ∅ ` E[e] : 〈〉&(γ; ∅). By lemma A.23 we can substitute e′ for e in the
evaluation context E (all well-typed in R′;M ′) to obtain R′;M ′; ∅; ∅ ` E[e′] : 〈〉&(γ′′; ∅).
The application of lemma A.6 to pops((σ′′; γ) : E[e]) implies that ∃σ1, σ2.σ′′; γ = σ1 + σ2 ∧
pops(σ2 : e)). The application of lemma A.7 to pops((σ′′; γ) : E[e]), (σ′′; γ);S; e→ σ′;S′; e′,
σ′′; γ = σ1 + σ2, and pops(σ2 : e), gives us that pops(σ1 + σ′2 : E[e′]), where σ′ = σ1 + σ′2.

By inversion of R′;M ′; δ ` T1, n : E[e] we have that R′;M ′; δ1 ` T1 and ∀(n′ : e′) ∈
T1.n

′ 6= n. We can reconstruct a similar derivation by using the latter derivations along with
pops(σ1 + σ′2 : E[e′]), δ′ = δ1, n 7→ σ1 + σ′2 and R′;M ′; ∅; ∅ ` E[e′] : 〈〉&(γ′′; ∅):
R′;M ′; δ′ ` T1, n : E[e′]. Both R′;M ′ ` δ′;S′ and R′;M ′; δ′ ` T1, n : E[e′] imply that
R′;M ′ ` δ′;S′;T1, n :E[e′] holds.

136



Case E-SN : The program evaluation assumption gives us that e ≡ E[e′], such that e′ is a parallel
application redex, and its premise asserts that e′ is moved to a new thread as a local application
redex e′′. It also gives that T1, n : E[e′] = T and that n′ is fresh. The resulting store map δ′ is
equal to δ′′, n 7→ σ; γ′, n′ 7→ γ1, where δ equals δ′′, n 7→ σ; γ and par ` γ′ = ∅ ⊕ (γ 	 γ1)
holds. By applying lemma A.3 to the configuration typing derivation, R;M ` δ;S;T , T1, n :
E[e′] = T and δ = δ′′, n 7→ σ; γ, we have that R;M ` δ′′, n 7→ σ; γ;S;T1, n : E[e′] holds.
We need to prove thatR;M ` δ′;S;T1, n :E[()], n′ : e′′ holds. It suffices to prove thatR;M ; δ′ `
T1, n :E[()], n′ : e′′ and R;M ` δ′;S.
Thread typing: The following obligations must be proved:

– R;M ; ∅; ∅ ` E[()] : 〈〉& (γ′;∅): we must prove that R;M ; δ′′, n 7→ σ; γ ` T1, n : E[e′].
By inversion of this obligation it suffices to prove that R;M ; ∅; ∅ ` E[e′] : 〈〉&(γ; ∅)
holds. By applying lemma A.11 to the typing derivation of E[e′], we obtain that e′ is
well-typed in the context R;M ; ∅; ∅ with effect (γ; γ′′) for some γ′′. The application of
lemma A.10 to the latter derivation implies that par ` γ′′ = ∅⊕ (γ	 γ′1), where γ′1 ' γ1.
The application of lemma A.33 implies that par ` γ′′ = ∅⊕(γ	γ1) holds. The capability
addition derivation rule is deterministic thus, that γ′′ is equal to γ′. Thus, e′ is well-typed
with effect (γ; γ′).
By applying lemma A.12 to the typing derivation of e′, we have that ` R;M ; ∅; ∅; γ; γ′.
Thus, ` R;M ; ∅; ∅; γ′; γ′ also holds (trivial). Consequently, by rule T-U we have that
R;M ; ∅; ∅ ` () : 〈〉&(γ′; γ′) holds. Now we can substitute the well-typed unit value
described above for e′ in the evaluation context E, by using lemma A.23, to obtain that
E[()] is well-typed in the typing context R;M ; ∅; ∅ with effect (γ′; ∅).

– ∀(n′′ : e′′′) ∈ T1.n
′′ 6= n: immediate from the thread typing assumption (premise), which

can be obtained by inversion of the original configuration typing derivation.
– δ = δ′′, n 7→ σ; γ′: immediate.
– pops(σ; γ′ : E[()]): this is immediate by the application of lemma A.8 to the fact that
pops(σ; γ : E[e′]).

– R;M ; ∅; ∅ ` e′′ : 〈〉& (γ1;∅): the application of lemma A.24 to the fact that e′ is well-
typed in the contextR;M ; ∅; ∅with effect (γ; γ′), yields that e′′ is well-typed in the context
R;M ; ∅; ∅ with effect (γ1; ∅).

– ∀(n′′ : e′′′) ∈ T1.n
′′ 6= n′ and n′ 6= n: immediate from the fact that n′ is fresh.

– δ = δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1: immediate.
– pops(∅; γ1 : e′′): the assumption that pops(σ; γ : E[e′]) and lemma A.7 imply that σ; γ =
σa+σb and pops(σb : e′). Expression e′ comprises of values thus by the definition of pops
we have that σb = ∅; γ. The definition of pops also allows us to derive pops(∅; γ1 : e′).
Thus, pops(∅; γ1 : e′′) also holds.

Store typing: by applying lemma A.12 to the typing derivation (as shown earlier) of e′ implies
that ok(γ; γ′) holds. The proof is immediate by the application of lemma A.28 to the fact that
ok(γ; γ′) holds, R;M ` δ;S holds, δ′ is equal to δ′′, n 7→ σ; γ′, n′ 7→ γ1, live(γ1) = γ1 (by
inversion of the function type well-formedness derivation, which is a premise of the function
typing derivation) and par ` γ′ = ∅ ⊕ (γ 	 γ1).

Lemma A.3 (Reordering) R;M ` δ;S;T ∧ T ′ = T ∧ δ′ = δ ⇒ R;M ` δ′;S;T ′

Proof. Trivial.

Lemma A.4 (Thread Weakening) R;M ; δ ` T ∧R ⊆ R′ ∧M ⊆M ′ ∧R′ `M ′ ⇒ R′;M ′; δ ` T

137



Proof. Proof by induction on the shape of T .

- ∅: R′;M ′; δ ` ∅ trivially holds.

- T ′, n : e: By inversion of this derivation we have that

– R;M ; ∅; ∅ ` e : 〈〉& (γ;∅): The application of lemma A.21 to R ⊆ R′ and the typing
derivation of e gives us R′;M ; ∅; ∅ ` e : 〈〉& (γ;∅). The application of lemma A.22 to
the latter derivation,M ⊆M ′ and R′ `M ′ gives us R′;M ′; ∅; ∅ ` e : 〈〉& (γ;∅).

– R;M ; δ′ ` T ′: By the induction hypothesis R′;M ′; δ′ ` T ′ holds.
– ∀(n′ : e′) ∈ T ′.n′ 6= n

– δ = δ′, n 7→ σ; γ

– pops(σ; γ : e)

We can use the above facts to derive R′;M ′; δ ` T ′, n : e holds.

Lemma A.5 (pops expression preservation) σ0;S; e→ σ′0;S
′; e′∧pops(σ2 : e)∧σ0 = σ1+σ2 ⇒

∃σ′2. ∧ σ′0 = σ1 + σ′2 ∧ pops(σ′2 : e′)

Proof. Proof by case analysis on the operational rules.

Case E-C: the premises of this rule tell us that σ0 = σ; γ and σ′0 = σ; live(γ′, rκ′
. π). Thus, σ; γ =

σ + ∅; γ and σ′0 = σ + ∅; live(γ′, rκ′
. π). By the definition of predicate pops we can derive

pops(∅; live(γ′, rκ′
. π) : ()).

Case E-A: the premises of this rule tell us that σ0 = σ; γ and σ′0 = σ; γr; γ1. Thus, σ; γ = σ + ∅; γ
and σ′0 = σ + ∅; γr; γ1. By inversion of the assumption that pops(σ : (λx. e as τ v)seq) holds
we have that pops(∅; ∅ : e). It is trivial to show that pops(∅; γ1 : e) also holds by induction on
predicate pops. We combine the latter fact with ∅; γr; γ1 = ∅; γr+∅; γ1 to derive pops(∅; γr; γ1 :
popγr e).

Case E-NG: the premises of this rule tell us that σ0 = σ; γ and σ′0 = σ; γ, r1,1. r′. Thus, σ; γ = σ+
∅; γ and σ′0 = σ + ∅; γ, r1,1. r′. By inversion of the assumption that pops(σ : newrgnr

′
ρ, x@

rgnr̄′ in e) holds we have that pops(∅; ∅ : e). It is trivial to show that pops(∅; γ, r1,1. r′ : e) also
holds by induction on predicate pops. Thus, the proof is completed if σ2 is equal to ∅; γ, r1,1. r′.

Case E-E: the premises of this rule tell us that σ0 = σ; γr; γ
′ and σ′0 = σ; γ′′. Thus, σ; γ = σ +

∅; γr; γ′ and σ′0 = σ + ∅; γ′′. By inversion of the assumption pops(∅; γr; γ′ : popγr v) we have
that pops(∅; γ′ : v) holds. By the definition of predicate pops we can rewrite the latter fact as
pops(∅; γ′′ : v). Thus, the proof is completed if σ2 is equal to ∅; γ′′.

Case E-RP: this rule implies that σ0 = σ′0 = σ. The assumption that pops(σ2 : (f) [r]) holds tells
us that σ2 = ∅; γ for some γ. Thus, σ = σ1 + ∅; γ. σ′0 = σ = σ1 + ∅; γ. Thus σ′2 = ∅; γ. The
assumption that pops(σ2 : (f) [r]) also tells us that pops(∅; ∅ : f) holds. By the definition of
pops, pops(∅; γ : f) also holds. Thus, pops(σ′2 : f) holds.

Case E-D,E-NR,E-AS: similar to the previous case.

Lemma A.6 (pops implication) pops(σ : E[e]) ⇒ ∃σ1, σ2.σ = σ1 + σ2 ∧ pops(σ2 : e))

Proof. We perform induction on the shape of E:

138



Case �[e]: Let σ1 and σ2 be equal to ∅ and σ respectively. By the latter facts and the assumption
pops(: E[e])

we have that pops(σ : e) (assumption) holds.

Case ((E′ e2)
ξ)[e]: this is equivalent to (E′[e] e2)

ξ. By inversion of the assumption we have that
pops(σ : E′[e]) holds (E′[e] is not value; this is dealt with in the next case). By the induction
hypothesis there exists σ1 and σ2 such that σ = σ1 + σ2 and pops(σ2 : e).

Case ((v1 E
′)ξ)[e]: this is equivalent to (v1 E

′[e])ξ. By inversion of the assumption we have that
pops(σ : E′[e]) holds By the induction hypothesis there exists σ1 and σ2 such that σ = σ1+σ2
and pops(σ2 : e).

Case (popγ E
′))[e],(E′ [r])[e]: this is equivalent to popγr E

′[e]. By inversion of the assumption we
have that σ = 0; γr + σ′ and pops(σ′ : E′[e]). By applying the induction hypothesis we have
that σ′ = σ′1 + σ2 and pops(σ2 : e). Thus, the proof is completed if σ1 equals ∅; γr + σ′1.

Case (caprη E
′)[e],(derefE′)[e],(E′ := e2)[e], (loc` := E′)[e], (newE′@ e2))[e], (new v@E′))[e],

(newrgnr ρ, x@ E′ in e2)[e]: Similar to the above proof structure.

Lemma A.7 (pops evaluation context preservation) pops(σ1 + σ2 : E[e]) ∧ pops(σ2 : e) ∧ σ1 +
σ2;S; e→ σ′;S′; e′ ⇒ ∃σ3.σ′ = σ1 + σ3 ∧ pops(σ′ : E[e′]).

Proof. We proceed by induction on the structure of E:

Case �[e]: the application of lemma A.5 to pops(σ2 : e) and σ1 + σ2;S; e → σ′;S′; e′ implies that
there exists an σ3 such that σ′ = σ1 + σ3 and pops(σ3 : e′) holds. The assumption implies that
pops(σ1 + σ2 : �[e]) and pops(σ2 : e). This can only hold if σ1 = ∅. We have shown that
pops(σ3 : e′) holds. Thus, pops(σ1 + σ3 : �[e′]) holds.

Case ((E′ e2)
ξ)[e]: By the definition of the evaluation context and the assumption that pops(σ1+σ2 :

E[e]) holds, we have that pops(σ1 + σ2 : (E
′[e] e2)

ξ) holds. E′[e] is not a value as e is a redex
(operational step assumption). Therefore, by inversion of pops(σ1 + σ2 : (E′[e] e2)

ξ) and the
latter fact we obtain that pops(σ1 + σ2 : E′[e]) and pops(∅; ∅ : e2). By applying the induction
hypothesis we have that there exists an σ′3 such that pops(σ′ : E′[e′]) and σ′ = σ1 + σ′3
holds. Therefore, we can combine pops(σ′ : E′[e′]) and pops(∅; ∅ : e2) to derive pops(σ′ :
(E′[e] e2)

ξ).

Case ((v1 E
′)ξ)[e]: By the definition of the evaluation context and the assumption that pops(σ1+σ2 :

E[e]) holds, we have that pops(σ1 + σ2 : (v1 E
′[e])ξ) holds. By inversion of pops(σ1 + σ2 :

(v1 E
′[e])ξ) and the latter fact we obtain that pops(σ1 + σ2 : E′[e]) and pops(∅; ∅ : v1). By

applying the induction hypothesis we have that there exists an σ′3 such that pops(σ′ : E′[e′])
and σ′ = σ1 + σ′3 holds. Therefore, we can combine pops(σ′ : E′[e′]) and pops(∅; ∅ : v1) to
derive pops(σ′ : (v1 E′[e′])ξ).

Case (popγ E
′))[e]: By the definition of the evaluation context and the assumption that pops(σ1+σ2 :

E[e]) holds, we have that pops(σ1 + σ2 : popγr E
′[e]) holds. By inversion of the latter fact we

obtain that σ1 + σ2 = ∅; γr + σx and pops(σx;E′[e]). σ2 is a postfix of σx as pops(σ2 : e)
would not hold otherwise (definition of pops predicate). Thus, there exists an σ′x such that
σx = σ′x + σ2 and σ1 = 0; γr + σ′x. By applying the induction hypothesis we obtain that
pops(σ′x + σ3 : E′[e′]) for some σ3. We can combine the latter fact with σ1 = 0; γr + σ′x to
derive pops(σ1 + σ3 : E

′[e′]).

Case (E′ [r])[e],(caprη E′)[e],(deref E′)[e],(E′ := e2)[e], (loc` := E′)[e], (new E′ @ e2))[e],
(new v @ E′))[e], (newrgnr ρ, x@ E′ in e2)[e]: Similar to the above proof structure.

139



Lemma A.8 (pops—Replace value) pops(σ; γ : E[(v v′)ξ]) ⇒ ∀γ′.pops(σ; γ′ : E[()])

Proof. Proof by induction on the shape of E:

Case �: this is immediate by the definition of pops for the unit value.

Case (E′ e2)
ξ′ : By the definition of the evaluation context and the assumption that pops(σ; γ :

E[(v v′)ξ
′
]) holds, pops(σ; γ : (E′[(v v′)ξ] e2)

ξ′

) also holds. By inversion of the latter judge-
ment and the fact that the hole does not contain a value we obtain that pops(σ; γ : E′[(v v′)ξ])
and pops(∅; ∅ : e2). By applying the induction hypothesis we obtain that ∀γ′.pops(σ; γ′ :

E′[()]). We can use the latter fact and pops(∅; ∅ : e2) to derive ∀γ′.pops(σ; γ′ : (E′[()] e2)
ξ′).

Case (v1 E
′)ξ

′
: By the definition of the evaluation context and the assumption that pops(σ; γ :

E[(v v′)ξ
′
]) holds, pops(σ; γ : (v1 E

′[(v v′)ξ])
ξ′

) also holds. By inversion of the latter judge-
ment we obtain that pops(σ; γ : E′[(v v′)ξ]) and pops(∅; ∅ : v1). By applying the induction
hypothesis we obtain that ∀γ′.pops(σ; γ′ : E′[()]). We can use the latter fact and pops(∅; ∅ : v1)

to derive ∀γ′.pops(σ; γ′ : (v1 E′[())ξ
′
).

Case (popγ E
′))[e]: By the definition of the evaluation context and the assumption that pops(σ; γ :

E[(v v′)ξ
′
]) holds, pops(σ; γ : popγr E

′[(v v′)ξ]) also holds. By inversion of the latter judge-
ment we obtain that σ; γ = ∅; γr + σ′ and pops(σ′ : E′[(v v′)ξ]). σ; γ = ∅; γr + σ′ implies
that there exists a σ′′ such that σ′ = σ′′; γ. Thus, pops(σ′ : E′[(v v′)ξ]) becomes pops(σ′′; γ :
E′[(v v′)ξ]). The application of the induction hypothesis to the latter fact gives us that∀γ′.pops(σ′′; γ′ :
E′[(v v′)ξ]). Thus, we can derive from the above facts that pops(σ; γ′ : popγr E

′[()]) holds.

Case (E′ [r])[e],(caprη E′)[e],(deref E′)[e],(E′ := e2)[e], (loc` := E′)[e], (new E′ @ e2))[e],
(new v @ E′))[e], (newrgnr ρ, x@ E′ in e2)[e]: Similar to the above proof structure.

Lemma A.9 (Store Strengthening — Empty γ ) If store δ, n 7→ (∅; ∅);S is well-typed in the con-
text R;M , then δ;S is also well-typed in the same context.

Proof. By inversion of the store typing assumption we have that

- R;M ` S

- R ` δ, n 7→ (∅; ∅)

- ` δ, n 7→ (∅; ∅)

R ` δ trivially holds by observing the premise of R ` δ, n 7→ (∅; ∅). By inversion of ` δ, n 7→
(∅; ∅), we obtain that ` δ holds.

Therefore, the latter facts and R;M ` S imply that R;M ` δ;S also holds.

Lemma A.10 (Inversion)
R;M ; ∆; Γ ` x : τ ′& (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ (x : τ) ∈ Γ ∧ τ ' τ ′

∧
R;M ; ∆; Γ ` c : τ & (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ τ = b
∧
R;M ; ∆; Γ ` () : τ & (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ τ = 〈〉
∧

140



R;M ;∆; Γ ` rgnı : τ & (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ τ ' rgn(ı) ∧ R;∆ ` ı
∧
R;M ;∆; Γ ` locl : τ & (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ τ ' refM(`)
∧
R;M ;∆; Γ ` caprη e1 : τ & (γ;γ′′) ⇒ τ = 〈〉 ∧ R;M ; ∆; Γ ` e1 : rgn(r)& (γ;γ′, rκ. π) ∧ κ′ =

[[η]] (κ) ∧ γ′′ = live(γ′, rκ′
. π) ∧ is live(γ′, rκ. π)

∧
R;M ;∆; Γ ` λx. e as τ : τ ′& (γa;γb) ⇒ γa = γb = γ ∧ ` R;M ;∆; Γ; γ; γ ∧ R;∆ ` τ ∧ τ ≡
τ1

γ1→γ2−→ τ2 ∧ γ′ = γ1 ∧ set(γ1; γ2) ∧ (ok(γ1; γ2) ⇒ R;M ;∆; Γ, x : τ1 ` e : τ2& (γ1;γ2)) ∧ τ ′ ' τ
∧
R;M ;∆; Γ ` Λρ. f : τ & (γa;γb) ⇒ γa = γb = γ ∧ τ = ∀ρ. τ ′ ∧ R;M ;∆, ρ; Γ ` f : τ ′& (γ;γ)
∧
R;M ;∆; Γ ` e [r] : τ & (γ;γ′) ⇒ τ = τ ′[r/ρ] ∧ R;∆ ` r ∧ R;M ;∆; Γ ` e : ∀ρ. τ ′& (γ;γ′)
∧
R;M ;∆; Γ ` (e1 e2)

ξ : τ2& (γ;γ5) ⇒ R;M ;∆; Γ ` e1 : τ1
γ1→γ2−→ τ2& (γ;γ3) ∧ par ⇒ τ2 =

〈〉 ∧ R;M ;∆; Γ ` e2 : τ1& (γ3;γ4) ∧ ξ ` γ5 = γ2 ⊕ (γ4 	 γ1)
∧
R;M ;∆; Γ ` newrgnr

′
ρ, x@ e1 in e2 : τ & (γ;γ′′) ⇒ R;M ;∆; Γ ` e1 : rgn(r)& (γ;γ′) ∧ r′ ≡

r ∧ is live(γ′, r) ∧ R;∆ ` τ ∧ R;M ;∆, ρ; Γ, x : rgn(ρ) ` e2 : τ & (γ′, ρ1,1. r;γ′′) ∧ ρ 6∈ dom(γ′′)
∧
R;M ;∆; Γ ` new e1 @ e2 : τ & (γ;γ′′) ⇒ τ = ref(τ ′, r) ∧ R;M ; ∆; Γ ` e1 : τ ′& (γ;γ′) ∧
is live(γ′′, r) ∧ R;M ;∆; Γ ` e2 : rgn(r)& (γ′;γ′′)
∧
R;M ;∆; Γ ` e1 := e2 : τ ′& (γ;γ2) ⇒ τ ′ = 〈〉 ∧ R;M ;∆; Γ ` e1 : ref(τ, r)& (γ;γ′) ∧
R;M ;∆; Γ ` e2 : τ & (γ′;γ′′) ∧ is accessible(γ′′, r)
∧
R;M ;∆; Γ ` deref e : τ & (γ;γ′) ⇒ R;M ;∆; Γ ` e : ref(τ, r)& (γ;γ′) ∧ is accessible(γ′, r)
∧
R;M ;∆; Γ ` popγr e : τ & (γ;γ′) ⇒ ok(γr; ∅) ∧ R;M ;∆; Γ ` e : τ & (γ1;γ2) ∧ seq ` γ′ =
γ2 ⊕ (γr 	 ∅) ∧ R;∆ ` γr ∧ τ ' τ ′ ∧ set(γr; ∅)

Proof. Straightforward pattern matching on the typing derivations.

Lemma A.11 (Context Inversion) IfE[e] is a well-typed expression in the typing contextR;M ;∆; Γ
with effect (γ1; γ2), then e is also a well-typed expression for some type τ , in the same typing context
with effect (γ1; γ3) for some γ3.

Proof. By straightforward induction on the shape of the evaluation context. The

Case �[e] then proof is immediate.

Case ((E′ e2)
ξ)[e]: An equivalent expression for this case is (E′[e] e2)

ξ. By the assumption, (E′[e] e2)
ξ

is a well-typed application term. Lemma A.10 implies thatE[e] is well-typed in the same typing
context with effect (γ1; γ′), where γ′ is its output effect. The application of the induction hy-
pothesis to the the latter typing derivation yields that e is a well-typed term in the same typing
context with effect (γ1; γ′′) for some γ′′.

Case ((v1 E
′)ξ)[e]: An equivalent expression for this case is (v1 E′[e])ξ. Lemma A.10 implies that

(v1 E
′[e])ξ, E′[e] and v1 are well-typed. In addition, v1 is a value with effect (γ1; γ1) (this is

immediate by performing a case analysis on v and applying lemma A.10). Thus, the input effect
of E′[e] is γ1. The application of the induction hypothesis to the latter fact implies that e is
well-typed for some type τ with effect (γ1; γ3), for some γ3.

141



Case (caprη E
′)[e],(derefE′)[e], (E′ := e2)[e], (loc` := E′)[e], (newE′@ e2))[e], (new v@E′))[e],

(popγ E
′))[e],(E′ [r])[e], (newrgnr ρ, x@ E′ in e2)[e]:

Similar to the above proof structure.

Lemma A.12 (Well-Formedness) If an expression e is well-typed in the typing contextR;M ;∆; Γ,
with effect (γ; γ′), then ` R;M ;∆; Γ; γ; γ′ holds.

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting
cases are the ones of rules T-AP and T-E:

- T-A: By applying lemma A.10 to the typing derivation of e we have that e1 is well-typed with
effect (γ; γx), e2 is well-typed with effect (γx; γy) and ξ ` γ′ = γ2⊕ (γ	γy). By applying the
induction hypothesis to e1 and e2 we obtain that ` R;M ;∆; Γ; γ; γx and ` R;M ;∆; Γ; γx; γy
respectively. It suffices to prove the following obligations:

– R `M : immediate by inversion of ` R;M ;∆; Γ; γ; γx.

– R;∆ ` Γ: immediate by inversion of ` R;M ; ∆; Γ; γ; γx.

– R;∆ ` γ: immediate by inversion of ` R;M ;∆; Γ; γ; γx.

– R;∆ ` γ′: the effect addition assumption implies that the regions of γ′ is a subset of the
regions of γ. Thus, R;∆ ` γ′ follows from the fact that R;∆ ` γ holds as shown earlier.

– set(γ; γ′): by inversion of ` R;M ;∆; Γ; γ; γx we obtain that set(γ; ∅) holds. The effect
addition assumption implies that the regions of γ′ are contained in the regions of γ. Thus,
set(γ′; ∅) is immediate from the fact that set(γ; ∅). Hence set(γ; γ′).

– ok(γ; γ′): by inversion of ` R;M ;∆; Γ; γ; γx we obtain that ok(γ; ∅) holds. The effect
addition assumption implies that the regions of γ′ are contained in the regions of γ and the
purity of each atomic effect of γ′ is identical to the purity of the same effect in γ. Thus,
ok(γ; γ′) holds.

Case T-E: By applying lemma A.10 to the typing derivation of e we obtain that e1 is well-typed with
effect (γ; γ2), seq ` γ′ = γ2 ⊕ (γr 	 ∅), ok(γr; ∅), set(γr; ∅) and R;∆ ` γr. By applying the
induction hypothesis to e1 we obtain that ` R;M ;∆; Γ; γ; γ2. It suffices to prove the following
obligations:

– R `M : immediate by inversion of ` R;M ;∆; Γ; γ; γ2.

– R;∆ ` Γ: immediate by inversion of ` R;M ; ∆; Γ; γ; γ2.

– R;∆ ` γ: immediate by inversion of ` R;M ;∆; Γ; γ; γ2.

– R;∆ ` γ′: the effect addition assumption implies that the regions of γ′ is a subset of the
regions of γr. Thus, R;∆ ` γ′ follows from the fact that R;∆ ` γr.

– set(γ; γ′): the effect addition assumption implies that the regions of γ′ are contained in
the regions of γr. Thus, set(γ′; ∅) is immediate from the fact that set(γr; ∅). By inversion
of ` R;M ;∆; Γ; γ; γ2 we obtain that set(γ; ∅) holds. Hence set(γ; γ′).

– ok(γ; γ′): we have shown that ok(γr; ∅) holds. The effect addition assumption implies that
the regions of γ′ are contained in the regions of γr and the purity of each atomic effect of
γ′ is identical to the purity of the same effect in γr. Hence, ok(γ′; ∅) holds. By inversion
of ` R;M ;∆; Γ; γ; γ2 we obtain that ok(γ; ∅) holds. Thus, ok(γ; γ′) holds.

142



Lemma A.13 (Value-Effect — Using well-formedness ) If value v is well-typed in the typing con-
text R;M ;∆; Γ, with effect (γ; γ) and ` R;M ;∆; Γ; γ1; γ2, then v is well-typed in the same typing
context with effect (γ1; γ1) and (γ2; γ2).

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies that
` R;M ; ∆; Γ; γ1; γ1 and also ` R;M ;∆; Γ; γ2; γ2 hold (trivial). By lemma A.10 we obtain the well-
formedness derivation as well as some other premises (in the case of rules T-L,T-R,T-V,T-F). We may
use the latter premises of value typing, which still hold (same typing context), along with the latter
two well-formedness derivations to formulate the new value typing derivations with effect (γ1; γ1)
and (γ2; γ2) respectively. The case for rule T-RF can be shown trivially by induction (the base case is
the same as for rule T-F).

Lemma A.14 (Value-Effect) If value v is well-typed in the typing context R;M ; ∆; Γ, with effect
(γ; γ), and e is well-typed in the same typing context with effect (γ′; γ′′), then v is well-typed in the
same typing context with effect (γ′′; γ′′) and (γ′; γ′).

Proof. By applying lemma A.10 to the typing derivation of v, we have that ` R;M ; ∆; Γ; γ; γ. Sim-
ilarly, the application of lemma A.12 to the typing derivation of e implies that ` R;M ; ∆; Γ; γ′; γ′′.
The proof is completed by applying lemma A.13.

Lemma A.15 (R Well-Formedness Weakening) R;∆ ` r ∧R ⊆ R′ ⇒ R′;∆ ` r

Proof. We proceed by performing a case analysis on r:

- ı@n: By inversion of this derivation we have thatR;∆ ` ı. We can use the induction hypothesis
to complete the proof.

- r 6= ı@n: By inversion of this derivation r̄ ∈ R ]∆ holds. Thus, r̄ ∈ R′ ]∆ also holds.

Lemma A.16 (Effect Well-formedness Weakening) R;∆ ` γ ∧R ⊆ R′ ⇒ R′;∆ ` γ

Proof. We proceed by performing a case analysis on γ:

- ∅: R′;∆ ` ∅ trivially holds.
R;∆ ` γ′, rκ. π:R′;∆ ` γ′ holds by the induction hypothesis.R′;∆ ` r holds by lemmaA.15.
If π = r′, then R′;∆ ` r′ holds by lemma A.15.

Lemma A.17 (Type Context Well-formedness Weakening) R;∆ ` τ ∧R ⊆ R′ ⇒ R′;∆ ` τ

Proof. We proceed by performing a case analysis on τ :

- b: R′; ∆ ` b trivially holds.

- 〈〉: R′;∆ ` 〈〉 trivially holds.

- rgn(r): R′;∆ ` r holds by lemma A.15.

- ref(τ ′, r): R′;∆ ` r holds by lemma A.15. R′;∆ ` τ ′ holds by the induction hypothesis.

- ∀ρ. τ ′: R′;∆, ρ ` τ ′ holds by the induction hypothesis.

143



- τ ′ γ1→γ2−→ τ ′′: R′;∆ ` τ ′ holds by the induction hypothesis. R′;∆ ` τ ′′ holds by the induction
hypothesis. R′;∆ ` γ1 holds by lemma A.16. R′;∆ ` γ2 holds by lemma A.16.

Lemma A.18 (Variable context well-formedness weakening) R;∆ ` Γ ∧R ⊆ R′ ⇒ R′; ∆ ` Γ

Proof. We proceed by performing a case analysis on Γ:

- ∅: R′; ∆ ` ∅ trivially holds.
R;∆ ` Γ′, x : τ :R′;∆ ` Γ′ holds by the induction hypothesis.R′;∆ ` τ holds by lemmaA.17.

Lemma A.19 (Memory Context Well-formedness Weakening — R) R ` M ∧ R ⊆ R′ ⇒ R′ `
M

Proof. We proceed by performing a case analysis onM :

- ∅: R′ ` ∅ trivially holds.
R ` M ′, ` 7→ (τ, ı): R′ ` M ′ holds by the induction hypothesis. R′; ∅ ` ref(τ, ı) holds by
lemma A.17.

Lemma A.20 (Typing Context Well-formedness Weakening) ` R;M ; ∆; Γ; γ1; γ2∧R ⊆ R′ ⇒`
R′;M ;∆; Γ; γ1; γ2

Proof. Immediate by lemmas A.19, A.18, A.16.

Lemma A.21 (Typing Context Weakening — R) If expression e is well-typed in the typing context
R;M ; ∆; Γ and R′ is a superset of R, then e is well-typed in the context R′;M ; ∆; Γ with the same
type and effect.

Proof. By applying lemma A.12 to the typing derivation of e we have that ` R;M ;∆; Γ; γ1; γ2.
Lemma A.20 implies that ` R′;M ;∆; Γ; γ1; γ2 holds.

- T-I: Immediate by applying rule T-I to ` R′;M ;∆; Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ` R′;M ;∆; Γ; γ1; γ2.

- T-R: By applying lemma A.10 to this derivation we have that R;∆ ` ı and r ' ı. Lemma A.15
implies that R′;∆ ` ı holds. Thus, we can apply rule T-R to the latter fact, r ' ı and `
R′;M ;∆; Γ; γ1; γ2 to complete the proof.

- T-L: By applying lemmaA.10 to this derivationwe have that (` 7→ (τ ′, ı)) ∈M and refM(`) '
τ . Thus, we can apply rule T-L to ` R′;M ;∆; Γ; γ1; γ2 , (` 7→ (τ ′, ı)) ∈M and refM(`) ' τ
to complete the proof.

- T-V : By applying lemma A.10 to this derivation we have that (x : τ ′) ∈ Γ and τ ′ ' τ . Thus,
we can apply rule T-V to ` R′;M ;∆; Γ; γ1; γ2 , (x : τ ′) ∈ Γ and τ ′ ' τ to complete the proof.

- T-F: By applying lemma A.10 to this derivation we have that

– ` R;M ;∆; Γ; γ; γ: We have shown that ` R′;M ; ∆; Γ; γ1; γ2 holds.

144



– R;∆ ` τ : R′;∆ ` τ holds by lemma A.17.
– τ ′ ' τ

– τ ≡ τ1
γ1→γ2−→ τ2

– set(γ1; γ2)
– ok(γ1; γ2) ⇒ R;M ;∆; Γ, x : τ1 ` e′ : τ2& (γ1;γ2): Assuming that ok(γ1; γ2) holds, we
apply the induction hypothesis to the derivation of e′ to derive that R′;M ;∆; Γ, x : τ1 `
e′ : τ2& (γ1;γ2) holds.

We then apply rule T-F to the above facts to derive R′;M ;∆; Γ ` λx. e′ as τ : τ ′& (γ;γ).

Case T-AP, T-CP, T-RP, T-NG, T-NR, T-D, T-RF, T-E, T-A: similar reasoning is performed to prove
the remaining cases. Lemmas A.15 and A.17 can be used for premises of the form R; ∆ ` r
and R;∆ ` τ respectively.

Lemma A.22 (Memory Context Weakening) If expression e is well-typed in the typing context
R;M ;∆; Γ,R `M ′ holds, andM ′ is a superset ofM , then e is well-typed in the contextR;M ′;∆; Γ
withthe same type and effect.

Proof. By applying lemma A.12 to the typing derivation of v we have that ` R;M ;∆; Γ; γ1; γ2.
Thus, we can substitute premise R `M with R `M ′ to obtain ` R;M ′;∆; Γ; γ1; γ2.

- T-I: Immediate by applying rule T-I to ` R;M ′;∆; Γ; γ1; γ2.

- T-U : Immediate by applying rule T-U to ` R;M ′;∆; Γ; γ1; γ2.

- T-R: By applying lemma A.10 to this derivation we have that R;∆ ` ı. The proof is completed
by applying rule T-R to R;∆ ` ı. and ` R;M ′;∆; Γ; γ1; γ2.

- T-L: By applying lemmaA.10 to this derivationwe have that (` 7→ (τ ′, ı)) ∈M and refM(`) '
τ . Thus, (` 7→ (τ ′, ı)) ∈M ′ and refM ′(`) ' τ also hold asM ⊆M ′. We can apply rule T-L
to ` R;M ′;∆; Γ; γ1; γ2 , (` 7→ (τ ′, ı)) ∈M ′ and refM ′(`) ' τ to complete the proof.

- T-V : By applying lemma A.10 to this derivation we have that (x : τ ′) ∈ Γ and τ ′ ' τ . Thus,
we can apply rule T-V to ` R;M ′; ∆; Γ; γ1; γ2 , (x : τ ′) ∈ Γ and τ ′ ' τ to complete the proof.

- T-F: By applying lemma A.10 to this derivation we have that

– ` R;M ;∆; Γ; γ; γ: We have shown that ` R;M ′;∆; Γ; γ1; γ2 holds.
– set(γ1; γ2)
– R;∆ ` τ
– τ ′ ' τ

– τ ≡ τ1
γ1→γ2−→ τ2

– ok(γ1; γ2) ⇒ R;M ;∆; Γ, x : τ1 ` e′ : τ2& (γ1;γ2): assume that ok(γ1; γ2) holds. By
applying the induction hypothesis to this derivation we have that R;M ′;∆; Γ, x : τ1 `
e′ : τ2& (γ1;γ2) holds.

We can apply rule T-F to the above facts to derive R;M ′; ∆; Γ ` λx. e′ as τ : τ ′& (γ;γ).

Case T-AP, T-CP, T-RP, T-NG, T-NR, T-D, T-RF, T-E, T-A: We can perform similar reasoning to prove
the remaining cases.

145



Lemma A.23 (Replacement) If expressions E[e1], e1 and e2 are well-typed in the typing context
R;M ; ∆; Γ, with effects (γ1; γ2),(γ1; γ3) and (γ4; γ3) respectively, then expressionE[e2] is also well-
typed in the same typing context with effect (γ4; γ2).

Proof. By straightforward induction on the shape of the evaluation context. The intuition behind this
proof is that the substitution of e2 for e1 in the evaluation contextE will not surpise its environment as
both e1 and e2 yield the same output effect. In regards to the input effect, we know that the environment
will not be surprised as the expressions preceding e1 will definitely be values and can be given the
input effect of e2 (by lemma A.14).

Case �[e] then proof is immediate.

Case (new v @ E′)[e]: Lemma A.10 implies that R;M ;∆; Γ ` v : τ1&(γ1; γ1). The application
of lemma A.14 to the latter judgement and the fact e2 is well-typed with effect (γ4; γ3) yields
R;M ;∆; Γ ` v : τ1&(γ4; γ4). By applying lemma A.10 to the memory allocation construct
typing derivation yields is live(γ3, r) and R;M ;∆; Γ ` E′[e] : rgn(r)&(γ1; γ2). The applica-
tion of the induction hypothesis on the derivation ofE′[e2] and the derivation of e2 (assumption)
yields R;M ;∆; Γ ` E′[e2] : τ1& (γ4;γ2). Now, T-NR can be applied to the latter judgment,
the new derivation of v, and the fact that is live(γ3, r) to obtainR;M ;∆; Γ ` new v@E′[e2] :
ref(τ1, r)& (γ4;γ2) or equivalently R;M ;∆; Γ ` (new v @ E′)[e2] : ref(τ1, r)& (γ4;γ2) .

Case ((E′ e2)
ξ)[e], ((v E′)ξ)[e], (caprη E′)[e],(derefE′)[e],(E′ := e2)[e], (loc` := E′)[e], (newE′

@ e2))[e], (popγ E′))[e],(E′ [r])[e], (newrgnr ρ, x@ E′ in e2)[e]: Similar to the above proof
structure.

Lemma A.24 (Parallel-Sequential typing implication) If a parallel application term is well-typed
(R;M ;∆; Γ ` (v1 v2)

par : 〈〉&(γ; γ′)), where v1 ≡ λx. e as τ1
γ1→∅−→ 〈〉, then the corresponding

sequential application term ((v1 v2)seq) is also well-typed in the same typing context, with effect
(γ1; ∅).

Proof. Lemma A.10 implies that v1 and v2 are well typed in the same typing context R;M ;∆; Γ,
with effects (γ; γ) and (γ; γ) respectively. It also implies thatR;M ;∆; Γ, x : τ1 ` e : 〈〉&(γ1; ∅). By
applying lemma A.14 to the typing derivations of v1,v2, and the fact that e is well-typed with effect
(γ1; ∅), we obtain that v1 and v2 are well-typed in the same typing context with effect (γ1; γ1). We
can derive seq ` ∅ = ∅ ⊕ (γ1 	 γ1). By applying T-AP to the latter facts, we have that R;M ;∆; Γ `
(v1 v2)

seq : 〈〉&(γ1; ∅) holds.

Lemma A.25 (Store Typing Preservation for ` δ—Helper 1) If σ; γ ` δ′′, ok(γ; γ′) and par `
γ′ = ∅ ⊕ (γ 	 γ1) hold, δy ⊆ δ′′ then σ; γ′ ` δy also holds.

Proof. Proof by induction on the structure of δy:

- ∅: given that σ; γ′ ' σ1; γx, ı
κ. π + σ2, rg(κ) > 0 and is pure(κ) hold, it suffices to prove

that zero pure(σ1, ı) and ı /∈ dom(σ2; γx) for all ı in the domain of σ; γ′. The assumption that
σ; γ ` δ′′ holds implies that σ; γ ' σ3; γy, ı

κ′
. π′ + σ4, ı /∈ dom(σ4; γy) and zero pure(σ3, ı).

We proceed by performing a case analysis:

– ı belongs in the domain of ∅; γ: the following constraints hold from the above facts: σ2 =
σ4 = ∅ and σ1 ' σ3 ' σ, γ ' γy, ı

κ′
. π′ and γ′ ' γx, ı

κ. π. Thus, zero pure(σ1, ı) holds
and the assumption ok(γ; γ′) implies that ı /∈ dom(σ2; γx).

146



– ı does not belong in the domain of ∅; γ: the following constraints hold from the above facts:
σ1; γx, ı

κ. π ' σ3; γy, ı
κ′
. π′, σ2 ' σa; γ

′, σ4 ' σb; γ and σa ' σb. Thus, zero pure(
σ1, ı) is immediate. The equalties and ı /∈ dom(σ4; γy) imply that ı /∈ dom(σb) and thus
ı /∈ dom(σa). It suffices to show that ı /∈ γx. This is immediate by the fact that ı /∈
dom(σ2; γy) and dom(∅; γy) ⊆ dom(∅; γx) (by the capability addition assumption).

Case δ1, n1 7→ σ1: by applying the induction hypothesis we have that σ; γ′ ` δ1 holds. Given that
is accessible(σ; γ′, ı) holds for all ı that belong in the domain of σ; γ′, it suffices to prove that
¬is accessible(σ1, ı) holds. The assumption that σ; γ ` δ′′ holds implies that is accessible(σ
; γ, ı) ⇒ ¬is accessible(σ1, ı). The capability addition assumption implies that if is accessible(
σ; γ′, ı), then is accessible(σ; γ, ı). Thus, the latter two facts imply that ¬is accessible(σ1, ı).

Lemma A.26 (Store Typing Preservation for ` δ—Helper 2) If ` δ′′, n 7→ σ; γ, par ` γ′ = ∅ ⊕
(γ 	 γ1) hold and δy ⊆ δ′′, n 7→ σ; γ′, then ∅; γ1 ` δy holds.

Proof. Proof by induction on the shape of δy.

- ∅: given that ∅; γ1 ' σ1; γx, ı
κ. π+σ2, rg(κ) > 0 and is pure(κ) hold, then it suffices to prove

that zero pure(σ1) and ı /∈ dom(σ2; γ). for all ı in the domain of ∅; γ1. This is immediate by
the fact that σ1 and σ2 are empty and ok(γ1; γ2) (obtained by inversion of the effect addition
assumption).

- δ1, n1 7→ σ1: ∅; γ1 ` δ1 is immediate by applying the induction hypothesis. It suffices to prove
¬is accessible(σ1, ı) holds for all ı that belong in the domain of γ1 given that is accessible(0; γ1, ı)
holds. If ı exists in the domain of γ1, then the effect addition assumption tells us that ı ex-
ists in γ and is accessible(γ, ı) holds. Thus, by inversion of ` δ′′, n 7→ σ; γ we have that
¬is accessible(σ1, ı) holds, when n1 6= n.
To complete the proof it must be proved that ¬is accessible(σ; γ′, ı) holds. The capability ad-
dition assumption implies that ı or at least one of its ancestors has a positive pure capability
in both γ and γ1. It also tells us that there exists no positive impure capability in γ1. Assume
 is a region protecting ı (may be equal to ı) with a positive and pure capability. By inversion
of ` δ′′, n 7→ σ; γ we have that σ; γ ` ∅ holds. By inversion of the latter derivation we have
that zero pure(σ1, ) and  /∈ dom(σ2; γ3). Region  is positive in γ thus, σ1 = σ, σ2 = ∅ and
γ = γ3, 

κ′
. π′. Consequently, ¬is accessible(σ; γ′, ) holds by the latter fact and the effect

addition assumption.

Lemma A.27 (Store Typing Preservation for ` δ— Spawn) If δ = δ′′, n 7→ σ; γ, δ = δ′′, n 7→
σ; γ′, n′ 7→ ∅; γ1, ok(γ; γ′), ` δ and par ` γ′ = ∅ ⊕ (γ 	 γ1) hold, then ` δ′ holds.

Proof. It suffices to show that:

- ` δ′′: immediate by inversion of ` δ.

- σ; γ′ ` δ′′: by inversion of ` δ we obtain that σ; γ ` δ′′. The proof for this case is completed
by the application of lemma A.25.

- ∅; γ1 ` δ′′, n 7→ σ; γ′: the proof for this case is immediate by lemma A.26.

Lemma A.28 (Store Typing Preservation — Spawn) If δ;S is a well-typed store in respect toR;M
where δ equals δ′′, n 7→ σ; γ, ok(γ; γ′) holds, par ` γ′ = ∅ ⊕ (γ 	 γ1) holds, live(γ1) = γ1, and δ′
equals δ′′, n 7→ σ; γ′, n′ 7→ ∅; γ1 (fresh n′), then δ′;S is well-typed in respect to R;M .

147



Proof. By inversion of the store typing assumption, we have that:

- R ` δ

- R;M ` S

- ` δ

The capability addition assumption implies that the regions of γ1 and γ′ are subsets of the regions
of γ. Therefore R ` δ implies that R ` δ′ holds. We have that R;M ` S, thus it suffices to show that
` δ and par ` γ′ = ∅ ⊕ (γ 	 γ1) imply that ` δ′ holds. This is immediate by lemma A.27.

Lemma A.29 (Preservation — Expressions) Let e be awell-typed expressionwith,` δ[n 7→ σ′; γ′],
δ(n) = σ; γ, R;M ; ∅; ∅ ` e : τ & (γ;γ′′) and R;M ` δ;S. If the operational semantics takes a step
δ(n);S; e→ (σ′; γ′);S′; e′, then there exist R′ ⊇ R andM ′ ⊇M , such that the resulting expression
and the resulting store are well-typed with R′;M ′; ∅; ∅ ` e′ : τ & (γ′;γ′′), R;M ` δ[n 7→ σ′; γ′];S′

Proof. By induction on the typing derivation. It is worth noting that e is a redex, which is immediate
by the definition of evaluation relation. Henceforth, we use u where e should be used to stress that u
is a redex.

Case T-I , T-U , T-F, T-L, T-R, T-V , T-RF: the proof is immediate as u is a value and the assumption
that we perform a single operational step does not hold.

Case T-E: The shape of u is popγr v for some value v. By applying lemma A.10 to rule T-E, we have
that ok(γr; ∅), seq ` γ′ = γ2⊕(γr	∅) andR;M ; ∅; ∅ ` v : τ ′&(γ1; γ2), where γ1 and γ′ is the
input and output effect of popγr v respectively, and τ

′ ' τ . By applying lemmaA.10 to the latter
fact we have that γ1 = γ2. Thus, the earlier facts can be rewritten as seq ` γ′ = γ1 ⊕ (γr 	 ∅)
and R;M ; ∅; ∅ ` v : τ ′&(γ1; γ1). The application of lemma A.34 to the latter derivation and
τ ' τ ′ implies that R;M ; ∅; ∅ ` v : τ&(γ1; γ1) holds.

The operational rule that matches the shape of u is E-E and gives us that δ;S; popγr v evaluates
to δ′;S; v. The premises of rule E-E are seq ` γ′′ = γ1 ⊕ (γr 	 ∅), where δ and δ′ equal
δ′′, n 7→ σ; γr; γ1 and δ′′, n 7→ σ; γ′′ respectively. The capability addition rule is deterministic,
thus γ′′ equals γ′. The application of lemma A.13 to ` R;M ; ∅; ∅; γ′; γ′ and R;M ; ∅; ∅ ` v :
τ&(γ1; γ2), yields R;M ; ∅; ∅ ` v : τ&(γ′; γ′). To complete the proof, we need to show that
R;M ` δ′;S. This is immediate by the application of lemma A.52 to R;M ` S, ok(γr; γ1)
(obtained by ok(γr; ∅) and ok(γ1; γ2); ok(γ1; γ2) is immediate by applying lemma A.12 to the
typing derivation of v), seq ` γ′′ = γ1⊕(γr	∅), δ = δ′′, n 7→ σ; γr; γ1 and δ′ = δ′′, n 7→ σ; γ′′.

Case T-RP: The typing derivation of T-RP gives us that u is of the form (e) [r]. The operational rule
that matches the shape of u isE-RP. Thus, u is of the form (Λρ. f) [r]. We can apply lemmaA.10
to the latter derivation to obtain that R;M ; ∅, ρ; ∅ ` f : τ&(γ; γ), where γ equals δ(n). The
application of lemma A.35 to the latter fact, r̄@n′ ∈ R (premise R; ∅ ` r of rule T-RP), the
fact that r̄@n′ is fresh (premise of rule E-RP), R; ∅ ` γ (premise of ` R;M ; ∅; ∅; γ; γ; the
well-formedness fact is immediate by the application of lemma A.12 to the typing derivation
of type application), r̄@n′ ' r (by the premise of rule E-RP and the definition of relation '),
gives us that R;M ; ∅; ∅ ` f [r̄@n′/ρ] : τ [r/ρ]&(γ; γ).

Therefore, typing is preserved. The resulting store is identical to the input store, thus it is also
well-typed by the assumption of this lemma.

Case T-CP: Expression typing: The application of lemma A.12 to the typing derivation of the as-
sumption gives us that` R;M ; ∅; ∅; γ; γ′′, where γ is the equal to δ(n). Thus,` R;M ; ∅; ∅; γ′′; γ′′
also holds. The application of rule T-U to the latter fact gives us R;M ; ∅; ∅ ` () : 〈〉&(γ′′; γ′′).

148



Store typing: The operational rule E-C matches the shape of u. Thus, we need to prove that
R;M ` δ′;S holds, where δ′ = δ[n 7→ σ′; γ′]. It suffices to show that ` δ′ holds. This is
immediate by the assumptions of this lemma.

Case T-NG: Rule E-NG matches the shape of u. This rule implies that
σ;S; newrgnr ρ, x@ rgnr̄ in e1 → (σ; γ, ı1,1. r);S′; e2[ı/ρ][rgnı/x], σ = σ0; γ, is live(γ, r),
S′ = S, ı 7→ ∅, fresh ı and δ′ = δ, n 7→ σ; γ, ı1,1. r hold.

Store typing: Wemust prove thatR, ı;M ` δ′;S′ hold given thatR;M ` δ;S holds. The
latter derivation gives us that R;M ` S, R ` S and ` δ.

– R, ı;M ` S′:
∗ M ` S′: Trivially holds asM ` S holds and S′ = S, ı 7→ ∅.
∗ R, ı ` S′: Trivially holds as R ` S holds and S′ = S, ı 7→ ∅.

– R, ı ` δ′: R ` δ holds and the only new region introduced in δ′ is ı.
– ` δ[n 7→ σ0; γ, ı

1,1. r]: immediate by the assumption of this lemma.

Expression typing: The store typing derivation of δ′;S′ implies that ı /∈ R. Lemma A.10
implies that R;M ; ∅, ρ; ∅, x : rgn(ρ) ` e2 : τ&(γ, ρ1,1. r; γ′′), such that ρ /∈ dom(γ′′).
The application of lemma A.21 to the typing derivation of e2 and the fact that ı /∈ R yields
R, ı;M ; ∅, ρ; ∅, x : rgn(ρ) ` e2 : τ&(γ, ρ1,1. r; γ′′). By applying lemma A.12 to the original
typing derivation of newrgn construct we obtain the well-formedness derivation. By inversion
of the latter derivation we have that ok(γ; γ′′), thus ok(γ; ∅) holds. ρ is a fresh type variable so
it does not exist in the domain of γ. Thus, ok(γ, ρ1,1. r) also holds. We then apply lemma A.46
on the latter fact, the derivation of e2 and the fact that ı is fresh to obtain R, ı;M ; ∅; ∅, x :
rgn([ı/ρ]) ` e2[ı/ρ] : τ [ı/ρ]&(γ[ı/ρ], ı1,1. r; γ′′[ı/ρ]). By applying lemmaA.12 to the original
typing derivation of newrgn construct we have that the typing the context (including γ and
γ′′) is not defined in terms of ρ (i.e. ρ is fresh). Further, the premise of newrgn derivation
suggests that τ is also independent of ρ (i.e.R; ∅ ` τ ). Hence, the above facts and the definition
of the substitution relation imply that the typing derivation of e2 becomes R, ı;M ; ∅; ∅, x :
rgn(ı) ` e2[ı/ρ] : τ&(γ, ı1,1. r; γ′′). By the application of lemma A.12 to the fact that e2
is well-typed, we have that ` R, ı;M ; ∅; ∅; γ, ρ1,1. r; γ′′ is well formed. By the definition of
well-formedness, ` R, ı;M ; ∅; ∅; ∅; ∅ also holds. The definition of the typing rule T-R, the latter
fact and the fact that R, ı ` ı holds imply that rgnı is well-typed (with type rgn(ı)) in the
context R, ı;M ; ∅; ∅ with effect (∅; ∅). By applying lemma A.36 to the latter derivation and
the fact that R, ı;M ; ∅; ∅, x : rgn(ı) ` e2[k/ρ] : τ&(γ, ı1,1. r; γ′′) we obtain R, ı;M ; ∅; ∅ `
e2[ı/ρ][rgnı/x] : τ&(γ, ı1,1. r; γ′′).

Case T-D: Rule E-D matches the shape of u. Its premises also imply that the value read from the
store is equal to S(r̄)(`), for some r such that r̄ = ı. The store typing assumption yields that
R;M ; ∅; ∅ ` v : τ ′&(∅; ∅), where v = S(ı)(`) andM(`) = (τ ′, ı).
The application of lemma A.12 to the typing derivation of deref gives us ` R;M ; ∅; ∅; γ; γ.
By applying lemma A.13 to the latter derivation and R;M ; ∅; ∅ ` v : τ ′&(∅; ∅) gives us that
R;M ; ∅; ∅ ` v : τ ′&(γ; γ). By applying lemma A.10 to the typing derivation of deref we
have that if ref(τ ′′, r) is the type assigned to loc`, then ref(τ ′′, r) ' refM(`) holds. Thus
τ ′′ ' τ ′ also holds. We can use lemma A.34, the latter fact and R;M ; ∅; ∅ ` v : τ ′&(γ; γ)
(lemma A.10) to derive R;M ; ∅; ∅ ` v : τ ′′&(γ; γ). The output store is identical to the input
store hence it is also well-typed.

Case T-A:
Expression typing: The application of lemma A.12 to the typing derivation of e yields that
R;M ; ∅; ∅; γ; γ′ holds. Thus, R;M ; ∅; ∅; γ′; γ′ holds. The application of rule T-U to the latter
fact yields that R;M ; ∅; ∅ ` () : 〈〉&(γ′; γ′).

149



Store typing:The store preservation proof is as follows: LemmaA.10 implies that the following
hold:R;M ; ∅; ∅ ` loc` : ref(τ, r)&(γ; γ), where γ is equal to δ(n),R;M ; ∅; ∅ ` v : τ&(γ; γ)
and ref(τ, r) ' ref M(`) (this also implies that ref(τ, r) contains no type variables). Let
M(`) be equal to (τ ′, r′) for some τ ′ and r′, then we also have that τ ' τ ′.

By applying lemma A.34 to τ ' τ ′ and R;M ; ∅; ∅ ` v : τ&(γ; γ), we have that R;M ; ∅; ∅ `
v : τ ′&(γ; γ). The application of lemma A.12 to the latter derivation implies ` R;M ; ∅; ∅; γ; γ.
Thus,` R;M ; ∅; ∅; ∅; ∅ also holds. The application of lemmaA.13 to the latter fact andR;M ; ∅; ∅
` v : τ ′&(γ; γ) gives us R;M ; ∅; ∅ ` v : τ ′&(∅; ∅).

The premise of the operational rule E-AS implies that if the input store is δ;S, then the output
store is δ;S[r̄ 7→ S(r̄), ` 7→ v]. We have from the original store typing assumption that:

– ` δ
– R ` δ
– R;M ` S: R ` S andM ` S

Thus, it suffices to show that R;M ` S′ holds. R ` S′ holds as R ` S holds as no regions are
added to S′.M ` S′ holds asM ` S holds for all other locations than `, and ` itself contains
now the updated value v with typing derivation R;M ; ∅; ∅ ` v : τ ′&(∅; ∅). Thus, M ` S′

holds.

Case T-NR: The rule that matches this case is rule E-NR. This rules implies that the new store S′ =
S[n 7→ S(r̄), ` 7→ v], where v is the new value that is stored in S′, δ is constant and ` is a fresh
location (i.e. ` does not exist in S). Therefore, store typing assumption (R;M ` S) implies that
` does not belong in the domain ofM .

By applying lemma A.10 to the typing derivation of construct new we have that:

– R;M ; ∅; ∅ ` v : τ&(γ; γ)

– R;M ; ∅; ∅ ` rgnr̄ : rgn(r
′)&(γ; γ)

– r′ ' r̄

Let τ ′ be such that τ ′ ' τ and τ ′ contains no region names of the form ı@n. By applying
lemma A.34 to the latter fact we have that R;M ; ∅; ∅ ` v : τ ′&(γ; γ).

The application of lemma A.30 to the latter typing derivation of v tells us that R; ∅ ` τ ′ holds.
The application of lemma A.10 to the typing derivation of rgnr̄ gives us that R; ∅ ` ı. Thefore,
R; ∅ ` ref(τ ′, ı) holds. By applying lemma A.12 to the typing derivation of v we have that
` R;M ; ∅; ∅; γ; γ. By inversion of the latter derivation R ` M holds. Location ` is fresh so it
does not belong to the domain ofM . Consequently, we can combine the latter facts to derive
that R ` M, ` 7→ (τ ′, r̄). Expression typing: The latter derivation is substituted for R ` M
in the premises of ` R;M ; ∅; ∅; γ; γ to derive that ` R;M, ` 7→ (τ ′, r̄); ∅; ∅; γ; γ holds. By
applying rule T-L to the latter fact,M, ` 7→ (τ ′, r̄) and ref(τ, r) ' ref (τ ′, r̄) we obtain that
R;M, ` 7→ (τ ′, r̄); ∅; ∅ ` loc` : ref(τ, r)&(γ; γ).

Store typing: By applying lemma A.12 to the typing derivation of construct new we have
that ` R;M ; ∅; ∅; γ; γ′′, where γ′′ equals γ. Thus, ` R;M ; ∅; ∅; ∅; ∅ also holds. By applying
lemma A.13 to the latter fact and R;M ; ∅; ∅ ` v : τ ′&(γ; γ) we have that R;M ; ∅; ∅ ` v :
τ ′&(∅; ∅) holds. By applying lemma A.22 to the latter derivation R ` M, ` 7→ (τ ′, r̄) and
M ⊆M, ` 7→ (τ ′, r̄) we have that R;M, ` 7→ (τ ′, r̄); ∅; ∅ ` v : τ ′&(∅; ∅).

By inversion of the store typing assumption we have that M ` S and ∀(`′ 7→ (τ ′′, )) ∈
M.R;M ; ∅; ∅ ` S()(`′) : τ ′′& (∅;∅). We must show thatR;M, ` 7→ (τ ′, r̄) ` δ;S′. It suffices
to show that the following hold:

150



– M, ` 7→ (τ ′, r̄) ` S′: The locations contained in storeS′ are equal to the location contained
in S except for an additional location `. Thus, the latter fact andM ` S imply thatM, ` 7→
(τ ′, r̄) ` S′ holds.

– ∀(`′ 7→ (τ ′′, )) ∈ M, ` 7→ (τ ′, r̄).R;M ; ∅; ∅ ` S′()(`′) : τ ′′& (∅;∅): immediate by
∀(`′ 7→ (τ ′′, )) ∈M.R;M ; ∅; ∅ ` S()(`′) : τ ′′& (∅;∅) andR;M, ` 7→ (τ ′, r̄); ∅; ∅ ` v :
τ ′&(∅; ∅).

Case T-AP: The only operational rule that matches the shape of the application term is rule E-A:

– ξ = seq

– seq ` γ = γ1 ⊕ γr

– δ = δ′′, n 7→ σ; γ

– δ′ = δ′′, n 7→ σ; γr; γ1

– δ(n);S; ((λx. e as τ) v)seq → δ(n)′;S; popγr e[v/x]

Expression typing: The proof for the typing preservation is similar to the previous proofs. By
applying lemmaA.10 to the derivation of the application termwe obtain the following premises:

– R;M ; ∅; ∅ ` λx. e1 as τx : τ ′1
γ′
1→γ′

2−→ τ ′2&(γ; γ): γ is equal to δ(n). by applying lemmaA.10
to this derivation we obtain that:
∗ ok(γ1; γ2) ⇒ R;M ; ∅; ∅, x : τ1 ` e1 : τ2&(γ1; γ2)

∗ τx ≡ τ1
γ1→γ2−→ τ2.

∗ τ ′ ' τ : by inversion of this fact we obtain that γ1 ' γ′1, γ2 ' γ′2, τ ′1 ' τ1 and
τ ′2 ' τ2.

– seq ` γ′′ = γ′2⊕(γ	γ′1): by applying lemma A.33 to seq ` γ′′ = γ′2⊕(γ	γ′1), γ1 ' γ′1
and γ2 ' γ′2, we have that seq ` γ′′ = γ2⊕ (γ	γ1). By inversion of the latter derivation
we obtain that ok(γ1; γ2) holds. By applying lemma A.31 to seq ` γ = γ1 ⊕ γr and the
latter fact we have that seq ` γ′′ = γ2 ⊕ (γr 	 ∅). R; ∅ ` γr holds as R; ∅ ` γ holds
(premise of ` R;M ; ∅; ∅; γ; γ′′, which is immediate by lemma A.12) and the regions of
γr is a subset of the of regions γ (by seq ` γ = γ1 ⊕ γr). ` R;M ; ∅; ∅; γ; γ′′ also tells us
that ok(γ; γ′′) holds. As mentioned earlier, γr is a subset of γ, thus set(γr; ∅) holds.

– R;M ; ∅; ∅ ` v : τ ′1&(γ; γ): the application of lemma A.12 to the typing derivation of
the application term gives us that ` R;M ; ∅; ∅; γ; γ′′. Thus, ` R;M ; ∅; ∅; ∅; ∅ also holds.
We can use the latter fact and the derivation of value v along with lemma A.13 to obtain
R;M ; ∅; ∅ ` v : τ ′1&(∅; ∅). The application of lemma A.34 to the latter derivation and
τ ′1 ' τ1 gives us R;M ; ∅; ∅ ` v : τ1&(∅; ∅).

We have shown that ok(γ1; γ2) ⇒ R;M ; ∅; ∅, x : τ1 ` e1 : τ2&(γ1; γ2) and ok(γ1; γ2) holds,
thusR;M ; ∅; ∅, x : τ1 ` e1 : τ2&(γ1; γ2) holds. LemmaA.36 is applied to the typing derivation
of v and e yields: R;M ; ∅; ∅ ` e[v/x] : τ2&(γ1; γ2).

The application of rule T-E to τ ′2 ' τ2, set(γr; ∅), seq ` γ′′ = γ2 ⊕ (γr 	 ∅), R; ∅ ` γr and
R;M ; ∅; ∅ ` e[v/x] : τ2&(γ1; γ2). gives us R;M ; ∅; ∅ ` popγr e[v/x] : τ

′
2&(γ1; γ

′′).

Store typing: The application of lemma A.49 to the store typing assumption (R;M ` δ;S),
seq ` γ = γ1⊕ γr and ok(γ; γ1) (obtained by ok(γ1; γ2) and ok(γ; γ′′) holds as shown earlier)
implies that R;M ` δ′;S holds.

151



Lemma A.30 (Type Well-formedness) R;M ;∆; Γ ` e : τ&(γ; γ′) ⇒ R; ∆ ` τ

Proof. Straightforward induction on the typing rules.

Lemma A.31 (Capability Addition Implication) ξ ` γ = γ1⊕γr ∧ ξ ` γ′ = γ2⊕ (γ	γ1) ⇒ ξ `
γ′ = γ2 ⊕ (γr 	 ∅)

Proof. By inversion of ξ ` γ′ = γ2 ⊕ (γ 	 γ1) we have that:

- ξ ` γ = γ1 ⊕ γr′ : the capability addition rule ES-C is determistic, thus γr′ = γr.

- ξ ` γ′ = γ2 ⊕ γr′ : similarly ξ ` γ′ = γ2 ⊕ γr holds. rule ES-N implies that ξ ` γr = ∅ ⊕ γr
holds.

- γ′′ = live(γ′)

- ok(γ1; γ2): ok(γ2; ∅) trivially holds.

- ξ = par ⇒ γ2 = ∅

Rule ESJ is applied to the above facts to derive ξ ` γ′ = γ2 ⊕ (γr 	 ∅).

Lemma A.32 ( Effect Addition Implication) ξ ` γ′ = γ′1 ⊕ γr ∧ γ1 ' γ′1 ⇒ ξ ` γ = γ1 ⊕ γr

Proof. If γ1 is empty then the conclusion holds by rule ES-N . Otherwise,rule ES-C applies and gives
us the following facts:

- γ = γ′, rκ. π

- γ1 = γ′′, r′′κ1. π′′: γ1 ' γ′1 implies that γ′1 = γ′′1 , r
′′′κ1. π′′′, r′′′ ' r′′, π′′′ ' π′′ and γ′′ ' γ′′1 .

- ξ ` γ′, rκ2. π = γ′′ ⊕ γr: we can apply the induction hypothesis to this fact and γ′′ ' γ′′1 to
obtain ξ ` γ′, rκ2. π = γ′′1 ⊕ γr.

- ξ ` κ = κ1 + κ2

- π ' π′′: we use the fact that π′′′ ' π′′ to obtain π ' π′′′.

- r ' r′′: we use the fact r′′′ ' r′′, and that to obtain r′′′ ' r.

Thus, ξ ` γ = γ′1 ⊕ γr holds by applying rule E-SC to the above facts.

Lemma A.33 ( Effect Addition/Subtraction Implication) ξ ` γ′′ = γ′2⊕(γ	γ′1)∧γ1 ' γ′1∧γ2 '
γ′2 ⇒ ξ ` γ′′ = γ2 ⊕ (γ 	 γ1)

Proof. By inversion of the effect addition/subtraction assumption we have that

- ξ ` γ = γ′1 ⊕ γr: the application of lemma A.32 to ξ ` γ = γ′1 ⊕ γr and γ1 ' γ′1 implies that
ξ ` γ = γ1 ⊕ γr.

- ξ ` γ′ = γ′2 ⊕ γr: the application of lemma A.32 to ξ ` γ′ = γ′2 ⊕ γr and γ2 ' γ′2 implies
ξ ` γ′ = γ2 ⊕ γr.

- γ′′ = live(γ′)

- ξ = par ⇒ γ2 = ∅

- ok(γ′1; γ′2): ok(γ′1; γ′2) trivially holds.

152



Lemma A.34 (Value Type Implication) R;M ; ∆; Γ ` v : τ&(γ; γ) ∧ τ ' τ ′ ⇒ R;M ; ∆; Γ ` v :
τ ′&(γ; γ)

Proof. Trivial proof by case analysis on the shape of value v.

Lemma A.35 ( Polymorphic value substitution) R, r̄; ∅ ` γ ∧ R, r̄;M ;∆, ρ; ∅ ` f : τ&(γ; γ) ∧
fresh r ∧ r ' r′ ⇒ R, r̄;M ;∆; ∅ ` f [r/ρ] : τ [r′/ρ]&(γ; γ)

Proof. We proceed by performing a case analysis on the shape of f :

Case f ≡ λx. e as τ ′: By inversion (lemma A.10) of the assumption typing derivation we have
that ok(γ1; γ2) ⇒ R, r̄;M ;∆, ρ; ∅ ` λx. e as τ ′ : τ&(γ; γ) holds. If ok(γ1[r/ρ]; ∅) does not
hold then the proof is immediate. Otherwise, the application of lemma A.46 to the latter deriva-
tion, the fact that r is fresh, and ok(γ1[r/ρ]; ∅) gives us R, r̄;M ;∆; ∅ ` (λx. e as τ ′)[r/ρ] :
τ [r/ρ]&(γ[r/ρ]; γ[r/ρ]). The assumption implies that γ is defined independently of ρ (R, r̄; ∅ `
γ). Thus, R, r̄;M ;∆; ∅ ` (λx. e as τ ′)[r/ρ] : τ [r/ρ]&(γ; γ) also holds. By lemma A.10 we
obtain the premises of the latter derivation. We can use rule T-F, the premises and the fact that
τ [r/ρ] ' τ [r′/ρ] (r ' r′) to derive R, r̄;M ;∆; ∅ ` (λx. e as τ ′)[r/ρ] : τ [r′/ρ]&(γ; γ).

Case f ≡ Λρ′. f ′: By inversion (lemma A.10) of the typing derivation of the assumption we have
that R, r̄;M ;∆, ρ, ρ′; ∅ ` f ′ : τ&(γ; γ). We can use the induction hypothesis to derive that
R, r̄;M ; ∆, ρ′; ∅ ` f ′[r/ρ] : τ [r′/ρ]&(γ; γ). The application of rule T-RF to the latter deriva-
tion yields R, r̄;M ;∆; ∅ ` Λρ′. f ′[r/ρ] : ∀ρ′. τ [r′/ρ]&(γ; γ).

Lemma A.36 (Variable substitution) R;M ; ∆; Γ, x : τ1 ` e : τ2& (γ1;γ2) ∧ R;M ; ∅; ∅ ` v :
τ1& (∅;∅) ⇒ R;M ; ∆; Γ ` e[v/x] : τ2& (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma A.37 ( Region substitution preserves ok ) ξ ` γ3 = γ2 ⊕ γ1 ∧ ok(γ3; ∅) ∧ ok(γ2; ∅) ∧
ok(γ3[rx/ρ]; ∅) ⇒ ok(γ2[rx/ρ]; ∅)

Proof. If ρ does not exist in γ2 then the proof is immediate by the assumption that ok(γ2; ∅). Otherwise
we assume that ρ must exist in both γ2 and γ3 (by ξ ` γ3 = γ2 ⊕ γ1 we have that the domain of γ2 is
a subset of the domain of γ3). Assume that rx belongs in the domain of γ3. This is a contradiction as
the assumption ok(γ3[rx/ρ]; ∅) does not hold. We have mentioned that the regions of γ2 are a subset
of the regions of γ3. Therefore, rx does not belong in the domain of γ2 either. By the assumption that
ok(γ2; ∅) holds, the definition of predicate ok and the fact that rx does not occur in the domain of γ2
implies that ok(γ2[rx/ρ]; ∅) holds.

Lemma A.38 ( Region substitution preserves ⊕ ) ξ ` γ3 = γ2 ⊕ γ1 ⇒ ξ[r/ρ] ` γ3[r/ρ] =
γ2[r/ρ]⊕ γ1[r/ρ]

Proof. If γ1 is empty then rule ES-N implies that γ3 equals γ1. Thefore, ξ[r/ρ] ` γ1[r/ρ] = ∅ ⊕
γ1[r/ρ] holds. It can be trivially shown that if ξ ` κ = κ1 + κ2, then for any r, ρ, ξ[r/ρ] ` κ =
κ1 + κ2 also holds. If γ1 is not empty then rule ES-C applies. By inversion of this rule we have that
the following hold:

- π ' π′: π[r/ρ] ' π′[r/ρ] is immediate.

- r′ ' r: r′[r/ρ] ' r[r/ρ] is immediate.

- ξ ` γ31, r
′κ2. π = γ12 ⊕ γ1: ξ[r/ρ] ` (γ31, r

′κ2. π)[r/ρ] = γ12[r/ρ] ⊕ γ1[r/ρ] holds by the
induction hypothesis.

153



- γ3 = γ31, r
′κ2. π′: γ3[r/ρ] = (γ31, r

′κ2. π′)[r/ρ] is immediate.

- γ1 = γ12, r
κ1. π: γ1[r/ρ] = (γ12, r

κ1. π)[r/ρ] is immediate.

By using rule ES-C we obtain that: ξ[r/ρ] ` γ3[r/ρ] = γ2[r/ρ]⊕ γ1[r/ρ]

Lemma A.39 ( Valid implication — ⊕) ξ ` γ = γ1 ⊕ γr ∧ valid(γa; γb) ∧ γ1 ⊆ γa ∧ γ2 ⊆ γb ∧
dom(γ2) ⊆ dom(γ1) ⇒ ξ ` γ = γ2 ⊕ γ′r

Proof. Proof by induction on the structure of γ2:

- ∅: immediate by rule ES-N .

- γ2 = γ21, r
κ3. π: valid(γa; γb), γ1 ⊆ γa, γ2 ⊆ γb and dom(γ2) ⊆ dom(γ1) imply that γ1 =

γ12, r
κ1. π and is pure(κ1) ⇔ is pure(κ3). By inversion of the assumption ξ ` γ = γ1 ⊕ γr

we have that:

– γ3 = γ31, r
′κ2. π′.

– π ' π′ and r′ ' r.
– ξ ` κ = κ1 + κ2: ξ ` κ = κ3 + κ′2 also holds for some κ′2 as a result of is pure(κ1) ⇔
is pure(κ3).

– ξ ` γ31, r′κ2. π = γ12 ⊕ γ′r: ξ ` γ31, r′κ2. π = γ21 ⊕ γ′′r holds by induction hypothesis.

By applying rule ES-C to the latter facts we obtain that ξ ` γ = γ2 ⊕ γ′′r .

Lemma A.40 ( Region substitution preserves ⊕/	 ) ξ ` γ3 = γ2⊕(γ	γ1)∧ok(γ; γ3)∧ok(γ[r/ρ]; ∅)
∧ valid(γ1; γ2) ∧ fresh r ⇒ ξ[r/ρ] ` γ3[r/ρ] = γ2[r/ρ]⊕ (γ[r/ρ]	 γ1[r/ρ])

Proof. The assumption that ok(γ; γ3) holds implies that ok(γ; ∅) and ok(γ3; ∅) hold. By inversion of
the first assumption we obtain the following facts:

- ok(γ1; γ2): this fact implies that ok(γ1; ∅) and ok(γ2; ∅) hold. The application of lemma A.37
to ξ ` γ = γ1 ⊕ γr, ok(γ1; ∅), ok(γ; ∅) and ok(γ[r/ρ]; ∅) implies that ok(γ1[r/ρ]; ∅) holds.
The application of lemma A.39 to valid(γ1; γ2), γ1 ⊆ γ1, γ2 ⊆ γ2 and dom(γ2) ⊆ dom(γ1)
(by inversion of valid(γ1; γ2)), we have that ξ ` γ = γ2 ⊕ γ′r, for some γ′r. The application of
lemmaA.37 to ξ ` γ = γ2⊕γ′r, ok(γ2; ∅), ok(γ; ∅) and ok(γ[r/ρ]; ∅) implies that ok(γ2[r/ρ]; ∅)
holds. Thus, ok(γ1[r/ρ]; γ2[r/ρ]) holds.

- ξ ` γ = γ1 ⊕ γr: ξ[r/ρ] ` γ[r/ρ] = γ1[r/ρ] ⊕ γr[r/ρ] immediate by the application of
lemma A.38 to ξ ` γ = γ1 ⊕ γr.

- ξ ` γa = γ2 ⊕ γr: ξ[r/ρ] ` γa[r/ρ] = γ2[r/ρ] ⊕ γr[r/ρ] immediate by the application of
lemma A.38 to ` γa = γ2 ⊕ γr.

- γ3 = live(γa): it suffices to prove that (live(γa))[r/ρ] = live(γa[r/ρ]). This is trivial to show
given that r is fresh (i.e. it does not belong in the domain of γa).

- ξ = par ⇒ γ2 = ∅: ξ[r/ρ] = par ⇒ γ2[r/ρ] = ∅ trivially holds.

Lemma A.41 (R Well-Formedness substitution) R, r̄′;∆, ρ ` r ⇒ R, r̄′;∆ ` r[r′/ρ]

Proof. We proceed by performing a case analysis on r:

154



- ı@n: By inversion of this derivation we have that R, r̄′;∆, ρ ` ı. The proof is completed by
applying the induction hypothesis.

- r 6= ı@n: By inversion of this derivationwe have that r̄ ∈ R, r̄′]∆, ρ. Thus, r̄[r′/ρ] ∈ R, r̄′]∆
also holds as r̄[r′/ρ] cannot be contained in∆. Therefore, R, r̄′;∆ ` r[r′/ρ] holds.

Lemma A.42 (Effect Well-formedness substitution) R, r̄′′;∆, ρ ` γ ⇒ R, r̄′′;∆ ` γ[r′′/ρ]

Proof. We proceed by performing a case analysis on γ:

- ∅: R, r̄′′;∆ ` ∅ trivially holds.
R, r̄′′; ∆, ρ ` γ′, rκ. π: R, r̄′′;∆ ` γ′[r′′/ρ] holds by the induction hypothesis. R, r̄′′;∆ `
r[r′′/ρ] holds by lemma A.41. If π = r′, then R, r̄′′;∆ ` r′[r′′/ρ] holds by lemma A.41.

Lemma A.43 (Type Context Well-formedness substitution) R, r̄′;∆, ρ ` τ∧fresh r′ ⇒ R, r̄′;∆ `
τ [r′/ρ]

Proof. We proceed by performing a case analysis on τ :

- b: R, r̄′;∆ ` b trivially holds.

- 〈〉: R, r̄′;∆ ` 〈〉 trivially holds.

- rgn(r): R, r̄′;∆ ` r[r′/ρ] holds by lemma A.41.

- ref(τ ′, r): R, r̄′;∆ ` r[r′/ρ] holds by lemma A.41. R, r̄′; ∆ ` τ ′[r′/ρ] holds by the induction
hypothesis.

- ∀ρ′. τ ′: R, r̄′;∆, ρ′ ` τ ′[r′/ρ] holds by the induction hypothesis.

- τ ′ γ1→γ2−→ τ ′′:R, r̄′;∆ ` τ ′[r′/ρ] holds by the induction hypothesis.R, r̄′; ∆ ` τ ′′[r′/ρ] holds by
the induction hypothesis. R, r̄′;∆ ` γ1[r

′/ρ] holds by lemma A.42. R, r̄′;∆ ` γ2[r
′/ρ] holds

by lemma A.42. We have that valid(γ1; γ2) and we must prove that valid(γ1[r′/ρ]; γ2[r′/ρ])
holds. It suffices to show that:

– if (r[r′/ρ]κ. π[r′/ρ]) ∈ γ1[r
′/ρ] and (r[r′/ρ]κ

′
. π′[r′/ρ]) ∈ γ2[r

′/ρ] for some r, then
π = π′ ∧ (is pure(κ) ⇔ is pure(κ′)): this is immediate by (rκ. π) ∈ γ1 and (rκ

′
. π′) ∈

γ2, then π = π′ ∧ (is pure(κ) ⇔ is pure(κ′)), which can be obtained by inversion of
valid(γ1; γ2).

– live(γ1[r′/ρ]) = γ1[r
′/ρ] and live(γ2[r′/ρ]) = γ2[r

′/ρ]: immediate by inversion of valid(γ1; γ2),
the definition of substitution and the fact that r′ is fresh.

– dom(γ2) ⊆ dom(γ1): dom(γ2[r′/ρ]) ⊆ dom(γ1[r′/ρ]) is immediate.

Lemma A.44 (Variable Context Well-formedness substitution) R, r̄;∆, ρ ` Γ∧fresh r ⇒ R, r̄;∆
` Γ[r/ρ]

Proof. We proceed by performing a case analysis on Γ:

155



- ∅: R′; ∆ ` ∅ trivially holds.
R;∆ ` Γ′, x : τ : R′;∆ ` Γ′[r/ρ] holds by the induction hypothesis. R′;∆ ` τ [r/ρ] holds by
lemma A.43 and the fact that r is fresh.

Lemma A.45 (Well-formedness substitution) R, r̄;M ;∆, ρ; Γ; γ1; γ2∧ fresh r∧ok(γ1[r/ρ]; γ2[r/ρ]) ⇒
R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ]

Proof. By inversion of the first typing context and effect well-formedness assumption we have that

- R, r̄ `M

- R, r̄;∆, ρ ` Γ: R, r̄;∆ ` Γ[r/ρ] immediate by lemma A.44 and the fact that r is fresh.

- R, r̄;∆, ρ ` γ1: R, r̄; ∆ ` γ1[r/ρ] immediate by lemma A.42.

- R, r̄;∆, ρ ` γ2: R, r̄; ∆ ` γ2[r/ρ] immediate by lemma A.42.

- ok(γ1; γ2): ok(γ1[r/ρ]; γ2[r/ρ]) immediate from the assumption.

Lemma A.46 (Region substitution) R, r̄;M ;∆, ρ; Γ ` e : τ & (γ1;γ2)∧ fresh r∧ok(γ1[r/ρ]; ∅) ⇒
R, r̄;M ;∆; Γ[r/ρ] ` e[r/ρ] : τ [r/ρ]& (γ1[r/ρ];γ2[r/ρ])

Proof. Proof by induction on the expression typing derivation.

Case T-I: by applying lemma A.10 to the derivation of e we have that γ1 = γ2. Thus, ok(γ2[r/ρ]; ∅)
is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. The application of
lemma A.45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that
` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds. The proof for this case is completed by applying
rule T-I .

Case T-U , by applying lemma A.10 to the derivation of e we have that γ1 = γ2. Thus, ok(γ2[r/ρ]; ∅)
is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅) holds. The application of
lemma A.45 to the latter derivation, the fact that r is fresh and ok(γ1[r/ρ]; γ2[r/ρ]) implies that
` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds. The proof for this case is completed by applying
rule T-U .

Case T-R: the application of lemma A.10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅)
holds. the application of lemma A.45 to the latter derivation, the fact that r is fresh and
ok(γ1[r/ρ]; γ2[r/ρ]) implies that ` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ` R, r̄;M ;∆, ρ,Γ; γ; γ: we have already shown that` R, r̄;M ;∆; Γ[r/ρ]; γ[r/ρ]; γ[r/ρ]
holds.

– R;∆ ` ı: R, r̄;∆ ` ı[r/ρ] holds by lemma A.41.
– r′ ' ı: r′[r/ρ] ' ı[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-R to the derived facts.

Case T-L: the application of lemma A.10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅)
holds. The application of lemma A.45 to the latter derivation, the fact that r is fresh and
ok(γ1[r/ρ]; γ2[r/ρ]) implies that ` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

156



– ` R, r̄;M ;∆, ρ,Γ; γ; γ: we have already shown that` R, r̄;M ;∆; Γ[r/ρ]; γ[r/ρ]; γ[r/ρ]
holds.

– (` 7→ (τ, ı)) ∈M

– τ ′ ' ref(τ, ı): τ ′[r/ρ] ' ref(τ, ı)[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-L to the derived facts.

Case T-V : the application of lemma A.10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅)
holds. The application of lemma A.45 to the latter derivation, the fact that r is fresh and
ok(γ1[r/ρ]; γ2[r/ρ]) implies that ` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ` R, r̄;M ;∆, ρ,Γ; γ; γ: we have already shown that` R, r̄;M ;∆; Γ[r/ρ]; γ[r/ρ]; γ[r/ρ]
holds.

– (x : τ) ∈ Γ: (x : τ [r/ρ]) ∈ Γ[r/ρ] trivially holds.

– τ ' τ ′: τ [r/ρ] ' τ ′[r/ρ] trivially holds.

The proof for this case is completed by applying rule T-V to the derived facts.

Case T-F: the application of lemma A.10 to the derivation of e yields:

– γ1 = γ2: ok(γ2[r/ρ]; ∅) is immediate from γ1 = γ2 and the assumption that ok(γ1[r/ρ]; ∅)
holds. The application of lemma A.45 to the latter derivation, the fact that r is fresh and
ok(γ1[r/ρ]; γ2[r/ρ]) implies that ` R, r̄;M ;∆; Γ[r/ρ]; γ1[r/ρ]; γ2[r/ρ] holds.

– ` R, r̄;M ;∆, ρ,Γ; γ; γ: we have already shown that` R, r̄;M ;∆; Γ[r/ρ]; γ[r/ρ]; γ[r/ρ]
holds.

– R, r̄;∆, ρ ` τ : lemma A.43 and the fact that r is fresh imply that R, r̄;∆ ` τ [r/ρ] holds.
– τ ′ ' τ : τ ′[r/ρ] ' τ [r/ρ] trivially holds.

– τ ≡ τ1
γa→γb−→ τ2: the function type after substitution is

τ [r/ρ] ≡ τ1[r/ρ]
γa[r/ρ]→γb[r/ρ]−→ τ2[r/ρ].

– set(γa; γb): set(γa[r/ρ], γb[r/ρ]) trivially holds as r is fresh.

– ok(γa; γb) ⇒ R, r̄;M ;∆, ρ; Γ, x : τ1 ` e : τ2& (γa;γb): Let us assume that ok(γa[r/ρ];
γb[r/ρ]) holds, then,
R, r̄;M ; ∆; (Γ, x : τ1)[r/ρ] ` e[r/ρ] : τ2[r/ρ]& (γa[r/ρ];γb[r/ρ]) holds by the induction
hypothesis.

The proof for this case is completed by applying rule T-F to the derived facts.

Case T-AP: the application of lemma A.10 to the derivation of e yields:

– R, r̄;M ; ∆, ρ; Γ ` e1 : τ1
γa→γb−→ τ2& (γ1;γ3): By applying lemma A.30 to the derivation

of e1 we obtain that R, r̄; ∆, ρ ` τ1
γa→γb−→ τ2. By inversion of the latter fact valid(γa; γb)

holds.
R, r̄;M ; ∆; Γ[r/ρ] ` e1[r/ρ] : (τ1

γa→γb−→ τ2)[r/ρ]& (γ1[r/ρ];γ3[r/ρ]) holds by the in-
duction hypothesis, the assumption that r is fresh and ok(γ1[r/ρ]; ∅). By applying lemmaA.12
to the latter fact and performing inversion to the resulting well-formedness derivation we
have that ok(γ3[r/ρ]; ∅).

– par ⇒ τ2 = 〈〉: par ⇒ τ2[r/ρ] = 〈〉 trivially holds.

157



– R, r̄;M ;∆, ρ; Γ ` e2 : τ1& (γ3;γ4):
R, r̄;M ;∆; Γ[r/ρ] ` e2[r/ρ] : τ1[r/ρ]& (γ3[r/ρ];γ4[r/ρ]) holds by the induction hy-
pothesis and ok(γ3[r/ρ]; ∅). By applying lemma A.12 to the latter fact and performing
inversion to the resulting well-formedness derivation we have that ok(γ4[r/ρ]; ∅).

– ξ ` γ2 = γb ⊕ (γ4 	 γa): we have shown that ok(γ4[r/ρ]; ∅) and valid(γa; γb). ξ `
γ2[r/ρ] = γb[r/ρ] ⊕ (γ4[r/ρ] 	 γa[r/ρ]) is immediate by lemma A.40, ok(γ4[r/ρ]; ∅),
valid(γa; γb) and ok(γ4; γ2), which can be obtained by applying lemma A.12 to the typing
derivation of e, and the fact that r is fresh.

Case T-CP, T-RP, T-NG, T-NR, T-D, T-RF, T-E, T-A: We can perform similar reasoning to prove
the remaining cases. The key point is to prove in the remaining cases that (live(γx))[r/ρ] =
live(γx[r/ρ]), where γx is the effect of interest. The proof can be summarized as follows:

– ρ is a leaf element in γx: liveness for this regions is unaffected as its parents are unaffected.
– ρ is an intermediate node in γx: assuming that there exist an immediate and live descendant
r′, then its parent annotation is ρ. Thus after substitution r′ will still be live.

Lemma A.47 (Store typing preservation — Push Helper 2) σ; γ ` δ ∧ ok(γ; γ1) ∧ seq ` γ =
γ1 ⊕ γr ⇒ σ; γr; γ1 ` δ

Proof. Proof by induction on the shape of δ:

- ∅: it must be shown that for all ı that belong in the domain of dom(σ; γr; γ1), an given that
σ; γr; γ1 ' σ1; γx, ı

κ. π + σ2, rg(κ) > 0 and is pure(κ) hold, then both zero pure(σ1) and
ı /∈ dom(σ2; γx) hold. We proceed by performing a case analysis as follows:

– ı does belong in the domain of ∅; γ: stack σ1 ' σ and σ2 = ∅. By inversion of σ; γ ` ∅
(obtained by σ; γ ` δ) we have that zero pure(σ) (or zero pure(σ1)) and ı /∈ dom(∅; γx).
The assumption that ok(γ; γ1) holds implies that ı, which is associated with a pure capa-
bility, belongs in the domain of either ∅; γr or ∅; γ1 with a pure and positive capability. If
it does belong in the domain of ∅; γr, then γr ' γx, ı

κ. π and ı /∈ dom(∅; γ1; γx) trivially
hold from the above fact, the assumption that ok(γ; γ1) and seq ` γ = γ1⊕γr. Otherwise,
γ1 ' γx, ı

κ. π, zero pure(σ; γr) and ı /∈ dom(∅; γx) trivially hold from the above facts
and the assumption that ok(γ; γ1).

– ı does not belong in the domain of ∅; γ: stack σ2 ' σ′2; γr; γ1 for some stack σ′2 (the
assumption that seq ` γ = γ1 ⊕ γr holds implies that dom(∅; γr) ⊆ dom(∅; γ) and
dom(∅; γ1) ⊆ dom(∅; γ) ). By inversion of σ; γ ` ∅ (obtained by σ; γ ` δ) we have
that zero pure(σ1) and ı /∈ dom(σ2). (or ı /∈ dom(σ′2; γ; γx)). The latter fact implies that
ı /∈ dom(σ′2; γr; γ1; γx).

Case δ1, n1 7→ σ1: it suffices to show that

– σ; γr; γ1 ` δ1: by inversion of σ; γ ` δ we obtain σ; γ ` δ1. The proof for this case is
completed by applying the induction hypothesis.

– Given that is accessible(σ; γr; γ1, ı), then prove that ¬is accessible(σ1, ı) for all regions
ı that belong in the domain of σ; γr; γ1: the capability addition assumption implies that
is accessible(σ; γr; γ1, ı) implies is accessible(σ; γ, ı). By inversion of σ; γ ` δ and the
latter fact, and the fact that ı belongs in the domain of ∅; γ (capability addition assumption),
we obtain that is accessible(σ; γ, ı) and thus ¬is accessible(σ1, ı).

158



Lemma A.48 ( Store typing preservation — Push Helper 1) ` δ, n 7→ σ; γ ∧ ok(γ; γ1) ∧ seq `
γ = γ1 ⊕ γr ⇒` δ, n 7→ σ; γr; γ1

Proof. It suffices to prove that:

- ` δ: immediate by inversion inversion of the assumption ` δ, n 7→ σ; γ.

- σ; γr; γ1 ` δ: by inversion of the assumption ` δ, n 7→ σ; γ we have that σ; γ ` δ. The
application of lemma A.47 completes the proof for this case.

Lemma A.49 ( Store typing preservation — Push ) R;M ` δ;S ∧ ok(γ; γ1) ∧ seq ` γ = γ1 ⊕
γr ∧ δ = δ′′, n 7→ σ; γ ⇒ δ′ = δ′′, n 7→ σ; γr; γ1 ∧R;M ` δ′;S

Proof. The store typing assumption implies that the following hold:

- R;M ` S

- R ` δ: immediate by the fact that the regions of γ1 and γr are a subset of γ (by the effect
addition assumption).

- ` δ: by inversion of R;M ` δ;S we have that ` δ′′, n 7→ σ; γ. The proof is immediate by the
application of lemma A.48 to the latter fact, ok(γ; γ1) and seq ` γ = γ1 ⊕ γr.

Lemma A.50 ( Store typing preservation — Pop Helper 2) σ; γr; γ1 ` δ∧ok(γr; γ1)∧seq ` γ =
γ1 ⊕ (γr 	 ∅) ⇒ σ; γ ` δ

Proof. Proof by induction on the shape of δ:

- ∅: it must be shown that for all ı that belong in the domain of dom(σ; γ), an given that σ; γ '
σ1; γx, ı

κ. π+σ2, rg(κ) > 0 and is pure(κ) hold, then both zero pure(σ1) and ı /∈ dom(σ2; γx)
hold. By inversion of σ; γr; γ1 ` ∅ (obtained by the assumption σ; γr; γ1 ` δ) we have that
σ; γr; γ1 ' σ3; γy, ı

κ′
. π + σ4, zero pure(σ3) and ı /∈ dom(σ2; γy).

Region ı cannot be contained as a positive and pure effect in both γr and γ1 as the effect addition
assumption would not hold. We proceed by performing a case analysis as follows:

– ı does belong in the domain of γ1: σ1 ' σ3 ' σ; γr, σ2 = σ4 = ∅, and γ1 ' γy, ı
κ′
. π.

Thus, we have that zero pure(σ3, ı) (or zero pure(σ, ı)) and ı /∈ dom(∅; γy). The effect
addition assumption and the assumption that ok(γr; γ1) imply that ok(γ) holds. Thus,
ı /∈ dom(∅; γx).

– ı does belong in the domain of γr: σ1 ' σ3 ' σ, σ2 ' ∅, σ4 ' ∅; γ1, and γr ' γy, ı
κ′
. π.

Thus, we have that zero pure(σ3, ı) (or zero pure(σ, ı)) and ı /∈ dom(∅; γ1; γy). The effect
addition assumption and the assumption that ok(γr; γ1) imply that ok(γ) holds. Thus,
ı /∈ dom(∅; γx).

– ı does not belong in the domain of ∅; γr; γ1: σ2 ' σ′2; γr; γ1, σ4 ' σ′2; γ, for some stack
σ′2, σ3; γy, ıκ

′
. π ' σ1; γx, ı

κ. π. Thus, we have that zero pure(σ3, ı) (or zero pure(σ1, ı))
and ı /∈ dom(σ′2; γ1; γr; γy). The effect addition assumption implies that dom(∅; γ) ⊆
dom(∅; γr). Thus, ı /∈ dom(σ′2; γ; γx).

Case δ1, n1 7→ σ1: it suffices to show that

– σ; γ ` δ1: by inversion of σ; γr; γ1 ` δ we obtain that σ; γr; γ1 ` δ1. The proof for this
case is completed by applying the induction hypothesis.

159



– Given that is accessible(σ; γ, ı), then prove that ¬is accessible(σ1, ı) for all regions ı
that belong in the domain of σ; γr; γ1: the capability addition assumption implies that
is accessible(σ; γ, ı) implies is accessible(σ; γr; γ1, ı). By inversion of σ; γr; γ1 ` δ and
the latter fact, and the fact that ı belongs in the domain of ∅; γr; γ1 (capability addition
assumption), we obtain that is accessible(σ; γr; γ1, ı) and thus, ¬is accessible(σ1, ı).

Lemma A.51 ( Store typing preservation — Pop Helper 1) ` δ, n 7→ σ; γr; γ1∧ok(γr; γ1)∧seq `
γ = γ1 ⊕ (γr 	 ∅) ⇒` δ, n 7→ σ; γ

Proof. It suffices to prove that:

- ` δ: immediate by inversion inversion of the assumption ` δ, n 7→ σ; γr; γ1.

- σ; γr; γ1 ` δ: by inversion of the assumption ` δ, n 7→ σ; γr; γ1 we have that σ; γr; γ1 ` δ. The
application of lemma A.50 completes the proof for this case.

Lemma A.52 ( Store typing preservation — Pop ) R;M ` δ;S ∧ ok(γ; γ′) ∧ seq ` γ′′ = γ′ ⊕
(γ 	 ∅) ∧ δ = δ′′, n 7→ σ; γ; γ′ ∧ δ′ = δ′′, n 7→ σ; γ′′ ⇒ R;M ` δ′;S

Proof. The store typing assumption implies that the following hold:

- R;M ` S

- R ` δ: immediate as the regions of γ′′ are a subset of γ′ and γ (by the effect addition assump-
tion).

- ` δ′: by inversion of R;M ` δ;S we have that ` δ′′, n 7→ σ; γ; γ′. The proof is immediate by
the application of lemma A.51 to the latter fact, ok(γ; γ′) and seq ` γ′′ = γ′ ⊕ (γ 	 ∅).

Lemma A.53 (Progress — Program) Let S;T be a closed well-typed configuration with R;M `
δ;S;T , then S;T is not stuck (` S;T ).

Proof. In order to prove that the configuration is not stuck, we need to prove that each of the executing
threads can either perform a step or nolock predicate holds for it. Without loss of generality, we choose
a random thread from the thread list, namely n : e and show that it is not stuck. Thus, T = T1, n : e for
some T1. We use lemma A.3 to obtainR;M ` δ;S;T1, n : e. By inversion of the configuration typing
derivation we have that R;M ; δ ` T1, n : e and R;M ` δ;S. By inversion of the former derivation
we obtain that R;M ; ∅; ∅ ` e : 〈〉&(γ; ∅), pops(σ; γ : e), δ = δ1, n 7→ σ; γ and R;M ; δ1 ` T1.

If e is a value then lemma A.56 tells us that e is (). pops(σ; γ : ()) implies that σ; γ ≡ ∅; ∅.
We already have that T = T1, n : e for some T1. Thus, a single step can be performed via rule E-T .
Otherwise, e is not a value. The application of lemma A.55 to the latter fact and the typing derivation
of e implies that ∃e1, E. E[e1] = e and redex(e1). Thus, R;M ; ∅; ∅ ` E[e1] : 〈〉&(γ; ∅) is also well-
typed. The application of lemma A.54 to redex(e1), δ = δ1, n 7→ σ; γ, the typing derivation of E[e1],
pops(σ; γ : E[e1]) and R;M ` δ;S implies that one of the following holds:

- nolock(δ, n, e1): the proof is trivially completed as nolock(δ, n,E[e1]) also holds.

- ` δ[n 7→ σ′] ∧ ∃ δ′, S′, e′. σ;S; e1 → σ′;S′; e′: A single step can be performed via rule E-S.

- ∃e2, v, τ, γ1. e1 ≡ (λx. e2 as τ v)
par: A step can only be performed via rule E-SN . Thus, it

suffices to show that the premises of that rule are satisfied:

160



– T1, n : e = T : we have shown that this property holds.
– fresh n′: it is possible to find a thread identifier n′ that has never been used previously.
– v1 ≡ λx. e2 as τ : immediate from the assumption.
– e1 ≡ (v1 v)

par: immediate from the assumption.
– e′ ≡ (v1 v)

seq: the language syntax allows us to formulate this term.
– δ = δ1, n 7→ σ; γ: we have shown that this property holds.
– par ` γ′ = ∅⊕ (γ	 γ1): The application of lemma A.11 to the typing derivation of E[e1]
implies that R;M ; ∅; ∅ ` e1 : τ&(γ; γ′′) for some τ and γ′′. By applying lemma A.10 to
the latter derivation we obtain that v1 is a well-typed abstraction and par ` γ′′ = ∅⊕ (γ	
γ′1), where γ′1 is the effect embedded in the type assigned to v1. By applying lemma A.10
to the typing derivation of v1 we have that if γ1 the type ascribed on v1, then γ1 ' γ′1. The
application of lemma A.33 to the latter facts give us that par ` γ′′ = ∅ ⊕ (γ 	 γ1). The
effect addition derivation is deterministic thus γ′′ = γ′.

– δ′ = δ1, n 7→ σ; γ′, n′ 7→ ∅; γ1: the syntax of δ allows us to formulate this context.

Lemma A.54 (Progress — Expressions) redex(e) ∧ δ = δ1, n 7→ σ; γ ∧ R;M ; ∅; ∅ ` E[e] :
〈〉& (γ;∅)∧ pops(σ; γ : E[e])∧R;M ` δ;S ⇒ nolock(δ, n, e)∨(` δ[n 7→ σ′]∧∃σ′, S′, e′. (σ; γ);S; e
→ σ′;S′; e′) ∨ (∃e1, τ, v. e ≡ (λx. e1 as τ v)

par)

Proof. The application of lemma A.11 to the typing derivation of E[e] gives us that R;M ; ∅; ∅ ` e :
τ & (γ;γ′) for some γ′ and τ . We proceed by perfoming induction on the typing derivation of e.

Case T-I , T-U , T-F, T-L, T-R, T-RF,T-V : this is a contradiction as e should be a value, but we have
assumed that e is a redex.

Case T-E: The conclusion of rule T-E implies that shape of e is of the form popγr e
′. We have assumed

that e is a redex, thus e is of the form popγr v. The assumption that pops(σ; γ : popγr v) implies
that σ = σ′; γr. By applying lemma A.10 to the derivation of e we obtain that seq ` γ′ = γ ⊕
(γr	∅) holds.We can apply ruleE-E to the latter fact and the fact that∃ δ1. δ = δ1, n 7→ σ′; γr; γ
to perform a single step. Lemma A.51, ok(γr; γ1)1 and seq ` γ′ = γ ⊕ (γr 	 ∅) we have that
` δ[n 7→ σ′] holds, where σ′ = σ; γ′.

Case T-AP: The conclusion of rule T-AP implies that shape of e is of the form (e1 e2)
ξ. We have

assumed that e is a redex, thus e is of the form (v1 v2)
ξ. Thus,R;M ; ∅; ∅ ` (v1 v2)

ξ : τ&(γ; γ′)
holds. If ξ equals par then the proof is trivially completed. Otherwise, ξ = seq and we can use

lemma A.10 to derive that ξ ` γ′ = γ′2 ⊕ (γ 	 γ′1), if τ ′1
γ′
1→γ′

2−→ τ is the type assigned to v1. The
application of lemma A.10 to v1 typing derivation, implies that γ1 ' γ′1 and γ2 ' γ′2. Thus,
by lemma A.33 we have that ξ ` γ′ = γ2 ⊕ (γ 	 γ1), where γ1 and γ2 are the types ascribed
on v1. The latter derivation implies that ξ ` γ = γ1 ⊕ γr, for some γr. Consequently, rule E-A
can be used to perform a single step. Lemma A.48, ` δ (immediate by R;M ` δ;S), ok(γ; γ1)
(obtained by ok(γ1; γ2) and ok(γ; γ′′) holds2) and ξ ` γ = γ1 ⊕ γr imply that ` δ[n 7→ σ′]
holds, where σ′ = σ; γr; γ1.

Case T-RP: rule E-RP can be used to perform a single step. ` δ holds by the assumptionR;M ` δ;S.

1 ok(γr; γ1) can be obtained in the same way as in lemma A.29 case T-E.
2 we can obtain ok(γ1; γ2) and ok(γ; γ′′) in the same way as in lemma A.29 case T-AP.

161



Case T-NG: Lemma A.11 implies that the region allocation construct is well-typed. Lemma A.10
implies that is live(γ, r) holds, where r is the parent region. Therefore, we can perform a single
step by rule E-NG. ` δ[n 7→ σ′′; γ, ı1,1. r], where σ = σ′′; γ, trivially holds as ı is a fresh
region.

Case T-NR: Similar to the previous case. The store and redex typing gives us that region r̄ exists in
S. Rule E-NR can be used to perform a single step. ` δ holds by the assumption R;M ` δ;S.

Case T-D: Similar to the previous case. The store and redex typing gives us that region r̄ and lo-
cation ` exist in S. The application of lemma A.10 to the typing derivation of e implies that
is accessible(γ, r) holds. Rule E-D can be used to perform a single step. ` δ holds by the as-
sumption R;M ` δ;S.

Case T-A: Similar to the previous case. Rule E-AS can be used to perform a single step. ` δ holds by
the assumption R;M ` δ;S.

Case T-CP: LemmaA.11 implies that the cap construct is well-typed. LemmaA.10 implies that region
is live(γ, r). If nolock(δ, n, e) holds and the proof is immediate. Otherwise, ¬nolock(δ, n, e)
holds and we have that at least one of the following holds:

– δ 6= δ′′, n 7→ σ; γ, rκ. π: this case does not hold as it contradicts an assumption of this
lemma and is live(γ, r).

– η 6= lk+: the proof is completed by applying lemma A.57 to δ = δ′′, n 7→ σ; γ, rκ. π,
δ′ = δ′′, n 7→ σ′, where σ′ = σ; live(γ, rκ′

. π), ` δ (store typing assumption), κ′ =
[[η]] (κ) (premise of rule E-C) and η 6= lk+.

– ` δ[n 7→ σ′]: if this case holds the proof is trivially completed.

Lemma A.55 (Expression — Redex) R;M ;∆; Γ ` e : τ1& (γ1;γ2) ∧ e 6≡ v1 ⇒ ∃ e′, E.E[u] ≡
e ∧ redex(e)

Proof. Straightforward proof by induction on the typing derivation.

Case T-I , T-U , T-F, T-L, T-R, T-RF then the proof is immediate as e is a value.

Case T-V : Immediate as it holds for E ≡ � and u ≡ x 6≡ v.

Case T-NR: By observing the shape of the expression of T-NR typing derivation, e ≡ new e1 @ e2.
If e1 and e2 are both values then the proof is immediate (E ≡ � and u ≡ new e1 @ e2).
Otherwise, if e1 is not a value the application of the induction hypothesis on the typing derivation
of e1 (obtained from T-NR inversion) yields that ∃E[u].E[u] ≡ e1 ∧ u 6≡ v2. Consequently,
∃E.new E[u] @ e2 ≡ e ∧ u 6≡ v2 or equivalently, ∃E.(new E @ e2)[u] ≡ e ∧ u 6≡ v2. The
last case is that e1 is a value and e2 is not. By applying similar reasoning we can prove that
∃E.(new e1 @ E)[u] ≡ e ∧ u 6≡ v2.

Case T-AP, T-RP, T-NG, T-CP, T-D, T-A,T-E: We can perform similar reasoning to prove the remain-
ing cases.

Lemma A.56 (Cannonical Forms) R;M ;∆; Γ ` v : τ & (γ1;γ2) ⇒
τ ≡ 〈〉 ⇒ v ≡ () ∧
τ ≡ rgn(r̄) ⇒ (v ≡ rgnr̄ ∧ r̄ ∈ R) ∧
τ ≡ ref(τ, r) ⇒ (v ≡ loc` ∧ ` 7→ (τ, r̄) ∈M) ∧
τ ≡ b⇒ v ≡ n ∧
τ ≡ τ1

γ1→γ2−→ τ2 ⇒ v ≡ λx. e as τ1
γ1→γ2−→ τ2 ∧

τ ≡ ∀ρ. τ ⇒ v ≡ Λρ. f

162



Proof. Straightforward proof by observation of the value typing derivations.

Lemma A.57 (Store Progress — ` δ) δ = δ′′, n 7→ σ; γ, rκ. π∧δ′ = δ′′, n 7→ σ; live(γ, rκ′
. π)∧ `

δ ∧ κ′ = [[η]] (κ) ∧ η 6= lk+ ⇒` δ′.

Proof. To prove that ` δ′ holds it suffices to show that its premises hold. By inversion of ` δ′ we
have that:

- ` δ′′: The assumption tells us that ` δ′′, n 7→ σ; γ, rκ. π holds. By inversion of the latter fact
we have that ` δ′′ holds.

- σ; live(γ, rκ′
. π) ` δ′′: Let γ0 be equal to γ, rκ. π and γ′0 be equal to live(γ, rκ′

. π). The
proof is completed by the application of lemma A.58 to κ′ = [[η]] (κ), δ = δ′′, n 7→ σ; γ0,
δ′ = δ′′, n 7→ σ; γ′0, σ; γ0 ` δ′′ (by inversion of ` δ), δ′′ ⊆ δ′′ and η 6= lk+.

Lemma A.58 (Store Progress — Helper lemma 1) κ′ = [[η]] (κ)∧δ = δ′′, n 7→ σ; γ∧δ′ = δ′′, n 7→
σ; γ′ ∧ γ = γ′′, rκ. π ∧ γ′ = live(γ′′, rκ′

. π) ∧ σ; γ ` δ′′ ∧ δ0 ⊆ δ′′ ∧ η 6= lk+ ⇒ σ; γ′ ` δ0.

Proof. We proceed by induction on the derivation of δ0.

- ∅: given that σ; γ′ ' σ1; γx, ı
κ1. π+σ2 and rg(κ1) > 0 and is pure(κ1), it suffices to prove that

zero pure(σ1, ı) and ı /∈ dom(σ2; γx) for all regions ı that belong in the domain of σ; γ′. By in-
version of σ; γ ` ∅ (derived by the assumption σ; γ ` δ′′), we have that σ; γ ' σ3; γy, ı

κ2. π+
σ4, rg(κ2) > 0 and is pure(κ2), zero pure(σ3, ı), and ı /∈ dom(σ4; γy). We proceed by per-
forming a case analysis:

– If ı does not belong in the domain of ∅; γ, then σ3 ' σ1, γy ' γx and there exists a stack
σ′4 such that σ2 ' σ′4; γ

′ and σ4 ' σ′4; γ. Hence, zero pure(σ1, ı) holds. The assumption
that γ′ = live(γ′′, rκ′

. π) and γ = γ′′, rκ. π holds implies that dom(∅; γ′) ⊆ dom(∅; γ).
Consequently, ı /∈ dom(σ′4; γ′; γx) holds.

– If ı does belong in the domain of ∅; γ, then σ4 = σ2 = ∅ and σ1 ' σ3 ' s. Hence,
zero pure(σ1, ı) trivially holds. The assumption that γ′ = live(γ′′, rκ′

. π) and γ = γ′′, rκ. π
holds implies that dom(∅; γ′) ⊆ dom(∅; γ) and thus, dom(∅; γx) ⊆ dom(∅; γy). Conse-
quently, ı /∈ dom(∅; γx) holds.

Case δ1, n1 7→ σ1: it suffices to prove that

– σ; γ′ ` δ1: is immediate by applying the induction hypothesis.
– Given that is accessible(σ; γ′, ı) holds for all ı that belong in the domain of σ; γ′, it suf-
fices to prove that ¬is accessible(σ1, ı) holds. The assumption that σ; γ ` δ′′ holds,
the fact that ı is accessible in γ′ and η 6= lk+ imply that is accessible(σ; γ, ı) and thus
¬is accessible(σ1, ı).

163





Appendix B

Formal semantics and proof of soundness for Chapter 3

B.1 Language syntax

Expression e ::= x | f | () | true | false | e e | e [r] | if e then e else e
| newrgn ρ, x@ e in e | new e@ e | e := e | deref e | capη e
| spawnξ e | loc` | rgnı

Function f ::= λx. e | Λρ. f | fix x. f
Value v ::= f | () | true | false | loc` | rgnı
Region r ::= ρ | ı
Count vector η ::= (n, n, n)

Spawn effect ξ ::= ∅ | ξ, r 7→ η

B.2 Operational semantics

Auxiliary syntax for operational semantics

Hierarchy θ ::= ∅ | θ, ı 7→ (η, ı)

Heap H ::= ∅ | H, ` 7→ v

Store S ::= ∅ | S, ı 7→ H

Threads T ::= ∅ | T, 〈θ; e〉
ConfigurationC ::= S;T

Stack E ::= � | E[F ]

Frame F ::= � e | v � | � [r] | if � then e else e | newrgn ρ, x@ � in e
| new �@ e | new v @ � | � := e | v := � | deref � | capη �

Redex u ::= (λx. e) v | capη rgnı | deref loc` | loc` := v | new v @ rgnı
| newrgn ρ, x@ rgnı in e2 | (Λρ. f) [r] | spawnξ e1 | (fix x. f) v
| if true then e1 else e2 | if false then e1 else e2

Evaluation relation C  C ′

live(θ) = ∅
S;T, 〈θ; ()〉  S;T

(E-T)

merge(ξ) ` θ = θ′ ⊕ θ′′ dom(θ′′) ⊆ live(θ)
S;T, 〈θ;E[spawnξ e]〉  S;T, 〈θ′;E[()]〉, 〈θ′′;�[e]〉

(E-SP)

165



f ≡ λx. e

S;T, 〈θ;E[f v]〉  S;T, 〈θ;E[e[v/x]]〉
(E-A)

f ≡ Λρ. f ′

S;T, 〈θ;E[f [ı]]〉  S;T, 〈θ;E[f ′[ı/ρ]]〉
(E-RP)

f ≡ fix x. f ′

S;T, 〈θ;E[f v]〉  S;T, 〈θ;E[f ′[f/x] v]〉
(E-FX)

S;T, 〈θ;E[if true then e1 else e2]〉  S;T, 〈θ;E[e1]〉
(E-IT)

S;T, 〈θ;E[if false then e1 else e2]〉  S;T, 〈θ;E[e2]〉
(E-IF)

 ∈ live(θ) ∪ {⊥} fresh ı θ′ = θ, ı 7→ ((1, 1, 0), )

S;T, 〈θ;E[newrgn ρ, x@ rgn in e]〉  S, ı 7→ ∅;T, 〈θ′;E[e[ı/ρ][rgnı/x]]〉
(E-NR)

ı ∈ live(θ) fresh `
S;T, 〈θ;E[new v @ rgnı]〉  S[ı 7→ S(ı), ` 7→ v];T, 〈θ;E[loc`]〉

(E-NL)

` 7→ v′ ∈ S(ı) ı ∈ wlocked(θ) ı /∈ rwlocked(T )
S;T, 〈θ;E[loc` := v]〉  S[ı 7→ S(ı)[` 7→ v]];T, 〈θ;E[()]〉

(E-AS)

` 7→ v ∈ S(ı) ı ∈ rwlocked(θ) ı /∈ wlocked(T )
S;T, 〈θ;E[deref loc`]〉  S;T, 〈θ;E[v]〉

(E-D)

ı ∈ live(θ) θ′ = θ, ı 7→ (η + η′, ) mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T})
S;T, 〈θ, ı 7→ (η, );E[capη′ rgnı]〉  S;T, 〈θ′;E[()]〉

(E-CP)

Auxiliary functions and predicates

merge(∅) = ∅
merge(ξ, r 7→ η) = merge(ξ), r 7→ η if r 6∈ {r′ | r′ 7→ η′ ∈ ξ}
merge(ξ, r 7→ η, r 7→ η′) = merge(ξ, r 7→ (η1 + η2))

ok(n1, n2, n3) = n1 ≥ 0 ∧ n2 ≥ 0 ∧ n3 ≥ 0

(c1, w1, z1)⊕ (c2, w2, z2) = (c1+c2, w1+w2, z1+z2) if ok(c1, w1, z1)∧ok(c2, w2, z2)∧
(w1 = 0∨w2 = 0)∧(c2 > 0)∧
(c1 = 0 =⇒ w1 = z1 = 0)∧
(w1 > 0 =⇒ z2 = 0) ∧
(w2 > 0 =⇒ z1 = 0)

ancestors(θ,⊥) = ∅
ancestors(θ, ı) = {ı} ∪ ancestors(θ′, ) if θ = θ′, ı 7→ (η, )

live(θ) = {ı | ∀ ∈ ancestors(θ, ı). ∃ 7→ (η, ′) ∈ θ. ok(η − (1, 0, 0))}

wlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ.  ∈ ancestors(θ, ı) ∧ ok(η − (0, 1, 0))}
rlocked(θ) = {ı | ı ∈ live(θ) ∧ ∃ 7→ (η, ′) ∈ θ.  ∈ ancestors(θ, ı) ∧ ok(η − (0, 0, 1))}
rwlocked(θ) = rlocked(θ) ∪ wlocked(θ)

wlocked(T ) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ wlocked(θ)}
rwlocked(T ) = {ı | ∃〈θ, e〉 ∈ T. ı ∈ rwlocked(θ)}

mutex({θ1, . . . , θn}) = ∀ı 6= . rwlocked(θı) ∩ wlocked(θ) = wlocked(θı) ∩ rwlocked(θ) = ∅

166



∅ ` θ = θ ⊕ ∅

η = η1 ⊕ η2 ξ ` θ = θ1 ⊕ θ2
∀ı′ ∈ dom(ξ). ı /∈ ancestors(θ, ı′) ′ = if  ∈ dom(ξ) then  else ⊥

ξ, ı 7→ η2 ` θ, ı 7→ (η, ) = θ1, ı 7→ (η1, )⊕ θ2, ı 7→ (η2, 
′)

B.3 Static semantics

Syntax for types, effects and contexts

Type τ ::= unit | bool | τ γ−→ τ | ∀ρ. τ | Ref(τ, r) | Rgn(r)
Constraint δ ::= R | W | ¬RW | ¬W | Live | ¬Live
Event ζ ::= Cap ξ | δ r | Spawn ξ γ | Join γ γ
Effect γ ::= ∅ | ζ :: γ

Type context � ::= ∅ | Γ, x : τ

Region context � ::= ∅ | ∆, ρ
Heap context M ::= ∅ | M, ` 7→ (τ, ı)

Store context R ::= ∅ | R, ı
Variable list substitution �[r/ρ] ::= ∅ | Γ1[r/ρ], x : τ [r/ρ]

Typing rules

x : τ ∈ Γ ` R;M ;∆; Γ

R;M ;∆; Γ ` x : τ & ∅
(T-V)

` R;M ;∆; Γ

R;M ;∆; Γ ` () : unit& ∅
(T-U)

` R;M ; ∆; Γ

R;M ;∆; Γ ` true : bool& ∅
(T-TR)

` R;M ;∆; Γ

R;M ;∆; Γ ` false : bool& ∅
(T-FL)

ı ∈ R ∪ {⊥} ` R;M ; ∆; Γ

R;M ;∆; Γ ` rgnı : Rgn(ı)& ∅
(T-R)

` 7→ (τ, ı) ∈M ` R;M ;∆; Γ

R;M ;∆; Γ ` loc` : Ref(τ, ı)& ∅
(T-L)

R;M ;∆; Γ, x : τ1 ` e : τ2& γ
R;M ; ∆; Γ ` λx. e : τ1

γ−→ τ2& ∅
(T-F)

R;M ;∆; Γ ` e1 : τ1
γ−→ τ2& γ1 R;M ;∆; Γ ` e2 : τ1& γ2

R;M ;∆; Γ ` e1 e2 : τ2& γ1 :: γ2 :: γ
(T-A)

R;∆ ` Γ R;M ;∆, ρ; Γ ` f : τ & ∅
R;M ;∆; Γ ` Λρ. f : ∀ρ. τ & ∅

(T-RF)

R;M ;∆; Γ ` e : ∀ρ. τ & γ R;∆ ` r r 6= ⊥
R;M ;∆; Γ ` e [r] : τ [r/ρ]& γ

(T-RP)

R;M ;∆; Γ ` e : bool& γ R;M ; ∆; Γ ` e1 : τ & γ1 R;M ;∆; Γ ` e2 : τ & γ2
R;M ; ∆; Γ ` if e then e1 else e2 : τ & γ :: Join γ1 γ2

(T-IF)

R; ∆ ` ξ R;M ;∆; Γ ` e : unit& γ dom(ξ) = dom(γ)
R;M ;∆; Γ ` spawnξ e : unit& Spawn ξ γ

(T-SP)

γL = {Live r | r ∈ dom(φ(∅))} γs = summary(φ(γL))

R;M ;∆; Γ, x : τ1
γs−→ τ2 ` f : τ1

φ(γs)−→ τ2& ∅
R;M ;∆; Γ ` fix x. f : τ1

γs−→ τ2& ∅
(T-FX)

167



R;M ; ∆; Γ ` e : Rgn(r)& γ r 6= ⊥
R;M ;∆; Γ ` capη e : unit& γ :: Cap {r 7→ η}

(T-CP)

R;M ; ∆; Γ ` e1 : Ref(τ, r)& γ1 R;M ; ∆; Γ ` e2 : τ & γ2 r 6= ⊥
R;M ;∆; Γ ` e1 := e2 : unit& γ1 :: γ2 :: W r

(T-AS)

R;M ;∆; Γ ` e : Ref(τ, r)& γ r 6= ⊥
R;M ;∆; Γ ` deref e : τ & γ :: R r

(T-D)

R;M ; ∆; Γ ` e1 : τ & γ1 R;M ;∆; Γ ` e2 : Rgn(r)& γ2 r 6= ⊥
R;M ;∆; Γ ` new e1 @ e2 : Ref(τ, r)& γ1 :: γ2 :: Live r

(T-NL)

R;M ;∆; Γ ` e1 : Rgn(r)& γ1 R;M ;∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ & γ2
R;∆ ` τ translate(γ2, ρ, (1, 1, 0), r) = γ′2
R;M ;∆; Γ ` newrgn ρ, x@ e1 in e2 : τ & γ1 :: Live r :: γ′2

(T-NR)

Auxiliary functions and predicates

ξ(r) =

{
η if r 7→ η ∈ ξ
(0, 0, 0) otherwise

ξ1 − ξ2 = {r 7→ ξ1(r)− ξ2(r)}
ok(ξ) = ∀ı 7→ η ∈ ξ. ok(η)
ok(θ) = ∀ı 7→ (η, ) ∈ θ. ok(η) ∧ ancestors(θ, ı) defined
hierarchy ok(θ1; θ2) = ∀ı 7→ (η, ) ∈ θ1. ∃′. ı 7→ (η′, ′) ∈ θ2 ∧ ( = ′ ∨ ( = ⊥ ∧ ′ /∈ dom(θ1)))

Summary

ok(ξ)
recursive(ξ; ∅) = ξ

δ /∈ {¬RW,¬W,¬Live} recursive(ξ; γ) = ξ′

recursive(ξ; δ r :: γ) = ξ′

ok(ξ) recursive(ξ − ξ′; γ) = ξ′′

recursive(ξ; Cap ξ′ :: γ) = ξ′′

ok(ξ) ξr = ξ − ξs
∀r 7→ η ∈ ξs. rd(η) = wr(η) = 0 recursive(ξr; γ) = ξ′r

recursive(ξ; Spawn ξs γs :: γ) = ξ′r

recursive(ξ; γ1) = ξ′ recursive(ξ; γ2) = ξ′ recursive(ξ′; γ) = ξ′′

recursive(ξ; Join γ1 γ2 :: γ) = ξ′′

recursive(ξ1; γ) = ξ1
ξ1 = {r 7→ (1, 0, 0) | r ∈ dom(γ)} ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(γ)}

summary(γ) = Cap ξ1 :: Spawn ξ1 (γ :: Cap ξ2)

168



Effect validation and transformation

wr(n1, n2, n3) = n2
rd(n1, n2, n3) = n3
rg(n1, n2, n3) = n1
bot(δ,⊥) = ∅ if δ 6∈ {R, W}
bot(δ, r) = δ r if r 6= ⊥

solve(R, r, η) = bot(Live, r) if ok(η− (1, 0, 0))∧wr(η)+ rd(η) > 0
solve(R, r, η) = bot(R, r) if ok(η− (1, 0, 0))∧wr(η)+ rd(η) = 0
solve(W, r, η) = bot(Live, r) if ok(η − (1, 0, 0)) ∧ wr(η) > 0
solve(W, r, η) = bot(W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(¬RW, r, η) = bot(¬RW, r) if ok(η−(1, 0, 0))∧wr(η) = rd(η) = 0
solve(¬W, r, η) = bot(¬W, r) if ok(η − (1, 0, 0)) ∧ wr(η) = 0
solve(Live, r, η) = bot(Live, r) if ok(η − (1, 0, 0))
solve(¬Live, r, η) = ∅ if ok(η) ∧ rg(η) = 0
solve(¬Live, r, η) = ¬Live r if ok(η − (1, 0, 0)) ∧ r 6= ⊥

p-constraint(r, η) = bot(¬RW, r) if wr(η) > 0
p-constraint(r, η) = bot(¬W, r) if wr(η) = 0 ∧ rd(η) > 0
p-constraint(r, η) = ∅ if wr(η) = rd(η) = 0

solve(¬Live, r′, η) = γ

translate(∅, r, η, r′) = γ
(TR-E)

r 6∈ dom(ξ) translate(γ, r, η, r′) = γ′

translate(Cap ξ :: γ, r, η, r′) = Cap ξ :: γ′
(TR-CN)

merge(ξ) = ξ′, r 7→ η′ γs = solve(Live, r′, η) :: Cap ξ′

translate(γ, r, η + η′, r′) = γ′ ok(η + η′)

translate(Cap ξ :: γ, r, η, r′) = γs :: γ
′ (TR-CT)

r1 6= r2 translate(γ, r2, η, r′) = γ′

translate(δ r1 :: γ, r2, η, r′) = δ r1 :: γ
′ (TR-DN)

solve(δ, r′, η) = γs translate(γ, r, η, r′) = γ′

translate(δ r :: γ, r, η, r′) = γs :: γ
′ (TR-DT)

translate(γ1 :: γ, r, η, r′) = γ′1 translate(γ2 :: γ, r, η, r′) = γ′2
translate(Join γ1 γ2 :: γ, r, η, r′) = Join γ′1 γ

′
2

(TR-J)

r 6∈ dom(ξ) translate(γ, r, η, r′) = γ′

translate(Spawn ξ γs :: γ, r, η, r′) = Spawn ξ γs :: γ
′ (TR-SN)

merge(ξ) = ξ′, r 7→ ηs η = ηr ⊕ ηs rs = if r′ ∈ dom(ξ) then r′ else ⊥
p-constraint(rs, ηr) = γ′s translate(γs, r, ηs, rs) = γ′′s

p-constraint(r′, ηs) = γ′r translate(γ, r, ηr, r′) = γ′′r γ′′′r = bot(Live, r′)
translate(Spawn ξ γs :: γ, r, η, r′) = γ′′′r :: Spawn ξ′ (γ′s :: γ

′′
s ) :: γ

′
r :: γ

′′
r

(TR-ST)

169



Well-formedness

Region well-formedness

r ∈ ∆ ∪R ∪ {⊥}
R;∆ ` r

Constraint well-formedness

R;∆ ` ∅
R; ∆ ` r R;∆ ` γ

R;∆ ` δ r :: γ

∀(r, η) ∈ ξ.ok(η) ∧ R;∆ ` r
R; ∆ ` γ1 R;∆ ` γ2
R;∆ ` Spawn ξ γ1 :: γ2

R;∆ ` γ1 R;∆ ` γ2 R;∆ ` γ3
R; ∆ ` Join γ1 γ2 :: γ3

∀r ∈ dom(ξ). R;∆ ` r R;∆ ` γ1
R;∆ ` Cap ξ :: γ1

Type well-formedness

R;∆ ` r
R;∆ ` Rgn(r)

R;∆, ρ ` τ
R;∆ ` ∀ρ. τ

R;∆ ` τ R;∆ ` r
R;∆ ` Ref(τ, r)

R; ∆ ` τ1 R;∆ ` γ1 R;∆ ` τ2
R; ∆ ` τ1

γ1−→ τ2 R;∆ ` unit R;∆ ` bool

Context well-formedness

R `M R;∆ ` Γ ⊥ /∈ R

` R;M ;∆; Γ

Γ well-formedness

R;∆ ` ∅
R;∆ ` τ x /∈ dom(Γ) R;∆ ` Γ

R;∆ ` Γ, x : τ

M Well-formedness

R ` ∅
R `M ` /∈ dom(M) ı ∈ R R; ∅ ` τ

R `M, ` 7→ (τ, ı)

170



B.4 Type safety

Type Safety: Evaluation Context Typing

` R;M ;∆; Γ R;∆ ` τ

R;M ;∆; Γ ` � : τ −→ τ & ∅
(E0)

R;M ;∆; Γ ` E : τ2 −→ τ3 & γ2
R;M ;∆; Γ ` F : τ1 −→ τ2 & γ1

R;M ;∆; Γ ` E[F ] : τ1 −→ τ3 & γ1 :: γ2
(E1)

τ ≡ τ1
γa−→ τ2 R;∆ ` τ

R;M ;∆; Γ ` e2 : τ1& γ1
R;M ;∆; Γ ` � e2 : τ −→ τ2& γ1 :: γa

(F1)

τ ≡ τ1
γa−→ τ2

R;M ;∆; Γ ` v1 : τ & ∅
R;M ;∆; Γ ` v1 � : τ1 −→ τ2& γa

(F2)

R;M ;∆, ρ; Γ, x : Rgn(ρ) ` e2 : τ & γ1 R;∆ ` r
R; ∆ ` τ Live r :: translate(γ1, ρ, (1, 1, 0), r) = γ2

R;M ;∆; Γ ` newrgn ρ, x@ � in e2 : Rgn(r) −→ τ & γ2
(F3)

` R;M ;∆; Γ R;∆ ` ∀ρ. τ R; ∆ ` r r 6= ⊥
R;M ;∆; Γ ` � [r] : ∀ρ. τ −→ τ [r/ρ]& ∅

(F4)

R;M ;∆; Γ ` e2 : Rgn(r)& γ2 R; ∆ ` τ r 6= ⊥
R;M ;∆; Γ ` new �@ e2 : τ −→ Ref(τ, r)& γ2 :: Live r

(F5)

R; ∆ ` r R;M ;∆; Γ ` v : τ & ∅ r 6= ⊥
R;M ;∆; Γ ` new v @ � : Rgn(r) −→ Ref(τ, r)& Live r

(F6)

R; ∆ ` r R;M ;∆; Γ ` e2 : τ & γ1 r 6= ⊥
R;M ;∆; Γ ` � := e2 : Ref(τ, r) −→ unit& γ1 :: W r

(F7)

R;M ;∆; Γ ` loc` : Ref(τ, ı)& ∅ ı 6= ⊥
R;M ; ∆; Γ ` loc` := � : τ −→ unit& W ı

(F8)

` R;M ;∆; Γ R;∆ ` Ref(τ, r) r 6= ⊥
R;M ;∆; Γ ` deref � : Ref(τ, r) −→ τ & R r

(F9)

` R;M ; ∆; Γ R;∆ ` Rgn(r) r 6= ⊥
R;M ;∆; Γ ` capη � : Rgn(r) −→ unit& Cap {r 7→ η}

(F10)

R;M ;∆; Γ ` e1 : τ & γ2 R;M ;∆; Γ ` e2 : τ & γ3
R;M ; ∆; Γ ` if � then e1 else e2 : bool −→ τ & Join γ2 γ3

(F11)

Predicate “cvalid”

cvalid(Live;⊥; θ)
(C-T)

θ = θ′, ı 7→ (η, ) solve(δ, , η) = ∅
cvalid(δ; ı; θ)

(C-B)

θ = θ′, ı 7→ (η, ) solve(δ, , η) = δ′  cvalid(δ′; ; θ′)
cvalid(δ; ı; θ)

(C-R)

171



Predicate “valid”

xvalid(∅; θ) = θ
(X-E)

ok(η + η′) cvalid(Live ; ı; θ, ı 7→ (η, ))
xvalid(ξ; θ, ı 7→ (η + η′, )) = θ′

xvalid(ξ, ı 7→ η′; θ, ı 7→ (η, )) = θ′
(X-S)

ok(θ)
gvalid(∅; θ) = θ

(V-E)
ok(θ1) evalid(ζ; θ1) = θ2 gvalid(γ; θ2) = θ3

gvalid(ζ :: γ; θ1) = θ3
(V-K)

cvalid(δ; ı; θ)
evalid(δ ı; θ) = θ

(V-D)
xvalid(merge(ξ); θ) = θ′

evalid(Cap ξ; θ) = θ′
(V-C)

gvalid(γ1; θ) = θ′ gvalid(γ2; θ) = θ′

evalid(Join γ1 γ2; θ) = θ′
(V-J)

∀ı ∈ dom(θs). cvalid(Live ; ı; θ)
merge(ξ) ` θ = θr ⊕ θs valid(γs; θs) mutex({θs, θr})

evalid(Spawn ξ γs; θ) = θr
(V-S)

gvalid(γ; θ) = θ′ live(θ′) = ∅
valid(γ; θ)

(V-V)

Configuration typing

R;M ` ∅

R;M ` T R;M ; ∅; ∅ ` e : unit& γ valid(γ; θ)
∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}

R;M ` T, 〈θ; e〉

R = {ı | ı 7→ H ∈ S} {(`, ı) | ` 7→ (τ, ı) ∈M} = {(`, ı) | ` 7→ v ∈ H ∧ ı 7→ H ∈ S}
∀` 7→ (τ, ı) ∈M. R;M ; ∅; ∅ ` S(ı)(`) : τ & ∅

R;M ` S

R;M ` T R;M ` S mutex({θ | 〈θ; e〉 ∈ T})
R;M ` S;T

Predicate “Not stuck”

S;T, 〈θ; e〉  S′;T ′ T ⊆ T ′

running(S;T, 〈θ; e〉; 〈θ; e〉)

172



ı ∈ live(θ, ı 7→ (η, )) mutex({θ, ı 7→ (η, )} ∪ {θ′ | 〈θ′; e′〉 ∈ T})
¬mutex({θ, ı 7→ (η + η′, )} ∪ {θ′ | 〈θ′; e′〉 ∈ T})

blocked(T ; 〈θ, ı 7→ (η, );E[capη′ rgnı]〉)

∀〈θ; e〉 ∈ T. running(S;T ; 〈θ; e〉) ∨ blocked(T ; 〈θ; e〉)
` S;T

Multi-step evaluation
n > 0 S;T  n−1 Sn−1;Tn−1 Sn−1;Tn−1  Sn;Tn

S;T  n Sn;Tn
(E-M1)

S;T  0 S;T
(E-M2)

Other predicates

∅ − ∅ = ∅
(DF-0)

η1 ≥ η2 θ1 − θ2 = θ′

θ1, r 7→ η1 − θ2 7→ η2 = θ′, r 7→ η1 − η2
(DF-1)

B.5 Proof of soundness

Assume that e is the expression that represents the initial program. Let S0 = ∅ be the initial empty
store and T0 = ∅, 〈∅; e〉 be the initial set of threads, consisting of just ewith an empty region hierarchy.
We are interested only in programs that are closed, well typed and whose effect is consistent with the
initial empty region hierarchy.

Theorem B.1 (Type Safety) Let e be such that ∅; ∅; ∅; ∅ ` e : unit& ∅. If the operational semantics
takes any number of steps S0;T0  n Sn;Tn, then the resulting configuration Sn;Tn is not stuck.

Proof. Given ∅; ∅; ∅; ∅ ` e : unit& ∅, S0 = T0 = ∅ and the definitions of store typing and thread
typing it is immediate that ∅; ∅ ` ∅; ∅, 〈∅; e〉 holds (i.e, the initial configuration is well-typed). The
application of Lemma B.1 to the assumption implies thatRn;Mn ` Sn;Tn. Therefore, Sn;Tn is well-
typed for some Rn;Mn. The application of Lemma B.27 to Rn;Mn ` Sn;Tn implies Sn;Tn is not
stuck.

Lemma B.1 (Multi-step Program Preservation) LetS0;T0 be awell-typed configuration for some
R0;M0 and assume that S0;T0 evaluates to Sn;Tn in n steps. Then Rn;Mn ` Sn;Tn holds.

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0)
the proof is immediate from the assumption. When some steps are performed (i.e., n > 0), we have
that S0;T0  n Sn;Tn or S0;T0  n−1 Sn−1;Tn−1 and Sn−1;Tn−1  Sn;Tn. By applying the
induction hypothesis on the fact that S0;T0 is well-typed and that n−1 steps are performed we obtain
that Rn−1;Mn−1 ` Sn−1;Tn−1. The application of Lemma B.2 to Rn−1;Mn−1 ` Sn−1;Tn−1 and
Rn−1;Sn−1;Tn−1  Sn;Tn. implies that Rn;Mn ` Sn;Tn. Therefore, Rn;Mn ` Sn;Tn.

173



Lemma B.2 (Preservation) Let S;T be a well-typed configuration with R;M ` S;T . If the oper-
ational semantics takes a step S;T  S′;T ′, then there exist R′ ⊇ R and M ′ ⊇ M such that the
resulting configuration is well-typed with R′;M ′ ` S′;T ′.

Proof. By induction on the thread evaluation relation:

Case E-T : Rule E-T implies that θ;E[e] = θ;�[()], S′ = S and T ′ = T , live(θ) = ∅. By inversion of
the configuration typing assumption we have that:

- R;M ` T, 〈θ;�[()]〉: by inversion of this derivation we have R;M ` T .
- R;M ` S
- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ;�[()]}〉): implies that mutex({θ′ | 〈θ′; e′〉 ∈ T}).

Given the above facts, R;M ` S;T holds.

Case E-A: Rule E-A implies that θ′ = θ, S′ = S, T ′ = T, 〈θ;E[e1[v/x]]〉 and u = (λx. e1) v.

By inversion of the configuration typing assumption we have that:

- R;M ` S
- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ;E[u]}〉): no new locks are acquired (θ′ = θ). Thus,mutex({θ′ |
〈θ′; e′〉 ∈ T, 〈θ;E[e1[v/x]]}〉) holds.

- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:
– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : τ2 −→ unit& γb, R;M ; ∅; ∅ ` u : τ2& γa,
where γ = γa :: γb. By inversion of the latter derivation we have that R;M ; ∅; ∅ `
v : τ1& ∅, R;M ; ∅; ∅ ` λx. e1 : τ1

γa−→ τ2& ∅. By inversion of the function typing
derivation we obtain that R;M ; ∅; ∅, x : τ1 ` e1 : τ2& γa. Lemma B.12 implies
that R;M ; ∅; ∅ ` e1[v/x] : τ2& γa holds. The application of Lemma B.22 yields
R;M ; ∅; ∅ ` E[e1[v/x]] : unit& γ.

Case E-FX : Rule E-FX implies S;T, 〈θ;E[u]〉  S;T, 〈θ;E[u′]〉 holds, where u = (fix x. f) v
and u′ = f [fix x. f/x] v. By inversion of the configuration typing assumption we have that:

- R;M ` S
- mutex({θ′ | 〈θ′; e′〉 ∈ T, 〈θ;E[u]}〉): no new locks are acquired. Thus,mutex({θ′ | 〈θ′; e′〉 ∈
T, 〈θ;E[u′]}〉) holds.

- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we obtain
– R;M ` T and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : τ2 −→ unit& γc and R;M ; ∅; ∅ ` u : τ2& γa,
where γ = γa :: γc. By inversion of the latter derivation we have that R;M ; ∅; ∅ `
v : τ1& ∅, and R;M ; ∅; ∅ ` fix x. f : τ & ∅, where τ equals τ1

γa−→ τ2. By inversion
of the typing derivation of fix x. f we obtain that R;M ; ∅; ∅, x : τ ` f : τ ′& ∅,
where γa = summary(γb) and τ ′ = τ1

γb−→ τ2. Lemma B.12 implies that R;M ; ∅; ∅ `
f [fix x. f/x] : τ ′& ∅ holds. The typing derivation of f [fix x. f/x] and v and rule T-A
imply that R;M ; ∅; ∅ ` (f [fix x. f/x]) v : τ2& γb. The application of Lemma B.22
yields R;M ; ∅; ∅ ` E[(f [fix x. f/x]) v] : unit& γb :: γc holds.

– valid(γ; θ): it suffices to prove that valid(φ(γs) :: γc; θ) holds. The assumptions imply
that γ = summary(φ(γL)) :: γc and therefore valid(summary(φ(γL)) :: γc; θ) holds.
The application of Lemma B.3 completes the proof.

174



Case E-SP: Rule E-SP implies that S′ = S, T ′ = T, 〈θ′;E[()]〉, θ′′;�[e1], where merge(ξ) ` θ =
θ′ ⊕ θ′′ and u = spawnξ e1 hold.
By inversion of the configuration typing assumption we have that:

- R;M ` S
- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:

– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : unit −→ unit& γb, R;M ; ∅; ∅ ` spawnξ e1 :
unit& γa, where γ1 is the effect of expression e1, γa = Spawn ξ γ1 and γ = γa :: γb.
The typing derivation for the unit value can be obtained by establishing that the typing
context is well-formed (i.e., by the application of Lemma B.11 to the typing of deriva-
tion of u). The application of Lemma B.22 yields R;M ; ∅; ∅ ` E[()] : unit& γb.

– R;M ; ∅; ∅ ` e1 : unit& γ1: by inversion of R;M ; ∅; ∅ ` spawnγ1 e1 : unit& γa
we obtain that R;M ; ∅; ∅ ` e1 : unit& γ1. The application of rules E0,D0 implies
that R;M ; ∅; ∅ ` �[e1] : unit& γ1.

– mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉): by inversion of valid(γ; θ)we have thatmutex({θ′
, θ′′}) and merge(ξ) ` θ = θ′ ⊕ θ′′. Notice that the above imply that rwlocked(θ′) ∪
rwlocked(θ′′) ⊆ rwlocked(θ). Therefore, mutex({θ0 | 〈θ0; e0〉 ∈ T ′}) holds by the
above facts and the assumption mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉).

– valid(γ1; θ′′): immediate by inversion of valid(γ; θ).
– valid(γb; θ′): immediate by inversion of valid(γ; θ).

Case E-NR: Rule E-NR implies that ı is fresh (i.e., it does not belong in R), θ′ = θ, ı 7→ ((1, 1, 0), )
S′ = S, ı 7→ ∅,  ∈ live(θ) ∪ {⊥} holds, T ′ = S′;T, 〈θ′;E[e2[ı/ρ][rgnı/x]]〉, where u equals
newrgn ρ, x@ rgn in e2.
By inversion of the configuration typing assumption we have that:

- R, ı;M ` S′ is immediate from R;M ` S, the fact that ı is fresh and its heap is empty.
- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉):
mutex({θ0 | 〈θ0; e0〉 ∈ T ′}) holds from mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉) and the fact
that no other thread inT has ı in its local hierarchy (i.e., even if one of ı’s ancestors is locked
by a thread in T , ı is not locked by that thread as it does not exist in its local hierarchy).

- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:
– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : τ1 −→ unit& γb, R;M ; ∅; ∅ ` u : τ1& γa,
where γa equals Live  :: translate(γ2, ρ, 1, 1, 0, ) and γ = γa :: γb. By inversion
of the derivation of u we have that R; ∅ ` τ1, R;M ; ∅; ∅ ` rgn : Rgn()& ∅ and
R;M ; ∅, ρ; ∅, x : Rgn(ρ) ` e2 : τ1& γ2. Lemma B.16 implies that R, ı;M ; ∅, ρ; ∅, x :
Rgn(ρ) ` e2 : τ1& γ2. Lemmata B.15 andB.12 imply thatR, ı;M ; ∅; ∅ ` e2[ı/ρ][rgnı/x] :
τ1& γ2[ı/ρ] (notice that R; ∅ ` τ1 implies that τ1[ı/ρ] = τ1). The application of
Lemma B.17 to the typing derivation of E implies that R, ı;M ; ∅; ∅ ` E : τ1 −→
unit& γb. The application of LemmaB.22 yieldsR, ı;M ; ∅; ∅ ` E [e2[ı/ρ][rgnı/x]] :
unit& γ2[ı/ρ] :: γb holds.

– by inversion of valid(Live  :: translate(γ2, ρ, (1, 1, 0), ) :: γb; θ) we have that there
exists a θ′′ such that gvalid (translate(γ2, ρ, (1, 1, 0), ) :: γb; θ) = θ′′ and live(θ′′) = ∅.
Therefore, valid (translate (γ2, ρ, (1, 1, 0) , ) :: γb; θ) holds. Hence valid (translate
(γ2[ı/ρ], ı, (1, 1, 0) , ) :: γb; θ) holds. The translation function transforms effects con-
taining ı. Such effects only exist in γ2[ı/ρ] (this can be shown by lemma B.14) and not

175



in γb. Therefore, valid(translate(γ2[ı/ρ] :: γb, ı, (1, 1, 0), ); θ) also holds. LemmaB.26
implies that valid(γ2[ı/ρ] :: γb; θ, ı 7→ ((1, 1, 0), )).

Case E-CP: Rule E-CP implies that ı ∈ live(θ), θ = θ′′, ı 7→ (η, ), θ′ = θ′′, ı 7→ (η + η0, ),
mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T}), S′ = S, T ′ = T, 〈θ;E[()]〉, and u = capη rgnı.

By inversion of the configuration typing assumption we have that:

- R;M ` S
- mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T}): immediate by the premises of rule E-CP.
- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:

– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : unit −→ unit& γb, R;M ; ∅; ∅ ` capη0 rgnı :
unit& γa, where γa = Cap {ı 7→ η0} and γ = γa :: γb. The typing derivation for the
unit value can be obtained by establishing that the typing context is well-formed (i.e.,
by the application of Lemma B.11 to the typing of derivation of u). The application of
Lemma B.22 yields R;M ; ∅; ∅ ` E[()] : unit& γb.

– by inversion of valid(Cap {ı 7→ η0} :: γb; θ) we have that xvalid (Cap {ı 7→ η0}; θ)
= θ′, gvalid(γb; θ′) = θ′′ and live(θ′′) = ∅ for some θ′′. Therefore, valid(γb; θ′) holds.

Case E-AS: Rule E-AS implies that θ′ = θ, S′ = S[ı : S(ı)[` 7→ v]], ` 7→ v′ ∈ S(ı), T ′ =
T, 〈θ;E[()]〉, and u = loc` := v.

By inversion of the configuration typing assumption we have that:

- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉):mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[()]}〉) trivially holds
as no new locks are acquired.

- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:
– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : unit −→ unit& γb, R;M ; ∅; ∅ ` locı := v :
unit& γa, where γa = W ı and γ = γa :: γb. The typing derivation for the unit
value can be obtained by establishing that the typing context is well-formed (i.e., by
the application of Lemma B.11 to the typing of derivation of u). The application of
Lemma B.22 yields R;M ; ∅; ∅ ` E[()] : unit& γb.

– by inversion of valid(γ; θ) and the fact that θ′ = θ it is immediate that valid(γb; θ′)
holds.

- R;M ` S: By inversion ofR;M ; ∅; ∅ ` locı := v : unit& γa we obtain thatR;M ; ∅; ∅ `
v : τ & ∅ and R;M ; ∅; ∅ ` loc` : Ref(τ, ı)& ∅ (i.e., ` 7→ (τ, ı) ∈ M ). Given the above
facts, the definition of S′ and R;M ` S we can conclude that R;M ` S′ holds.

Case E-D: similar to the previous case.

Case E-NL: similar to the previous case.

Case E-RP: Rule E-RP implies that θ′ = θ, S′ = S, T ′ = T, 〈θ;E[f [ı/ρ]]〉, where u is equal to
(Λρ. f) [ı].

By inversion of the configuration typing assumption we have that:

- R;M ` S
- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉): mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[f [ı/ρ]]}〉) trivially
holds as no new locks are acquired.

176



- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:
– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion of E[u] yields R;M ; ∅; ∅ ` E : τ [ı/ρ] −→ unit& γ, R;M ; ∅; ∅ ` (Λρ. f) [ı] :
τ [ı/ρ]& ∅. By inversion of the latter derivation we obtain that R;M ; ∅, ρ; ∅ ` f :
τ & ∅ and R; ∅ ` ı. Lemma B.15 implies that R;M ; ∅; ∅ ` f [ı/ρ] : τ [ı/ρ]& ∅. The
application of Lemma B.22 yields R;M ; ∅; ∅ ` E[f [ı/ρ]] : unit& γ.

Case E-IT : RuleE-IT implies that θ′ = θ,S′ = S,T ′ = T, 〈θ;E[e1]〉, whereu is equal to if true then e1 else e2.
By inversion of the configuration typing assumption we have that:

- R;M ` S
- mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[u]}〉):mutex({θ0 | 〈θ0; e0〉 ∈ T, 〈θ;E[e1]}〉) trivially holds
as no new locks are acquired.

- R;M ` T, 〈θ;E[u]〉: by inversion of this derivation we have that:
– R;M ` T , valid(γ; θ) and ∀ı 7→ (η, ) ∈ θ. ı ∈ R ∧  ∈ R ∪ {⊥}.
– R;M ; ∅; ∅ ` E[u] : unit& γ: The application of Lemma B.23 to the typing deriva-
tion ofE[u] yieldsR;M ; ∅; ∅ ` E : τ −→ unit& γb,R;M ; ∅; ∅ ` if true then e1 else e2 :
τ & γa, where γa = Join γ1 γ2, and γ = γa :: γb. By inversion of the latter deriva-
tion we obtain the typing derivation for e1. The application of Lemma B.22 yields
R;M ; ∅; ∅ ` E[e1] : unit& γ1 :: γb.

– valid(γ1 :: γb; θ): immediate by inversion of valid(γ; θ).

Case E-IF: similar to the previous case.

Lemma B.3 (Recursion preserves valid) If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)),
and valid(γs :: γ; θ), then valid(φ(γs) :: γ; θ).

Proof. By inversion of the second assumption, we have recursive(ξ1;φ(γL)) = ξ1, where ξ1 = {r 7→
(1, 0, 0) | r ∈ dom(φ(γL))}. Also, by inversion of the third assumption, we have that gvalid(γs ::
γ; θ) = θ′ for some θ′ such that live(θ′) = ∅, and the former easily implies ok(θ). Lemma B.5 implies
that there exists a θ′′ such that gvalid(γs; θ) = θ′′ and gvalid(γ; θ′′) = θ′. Lemma B.6 implies that
θ′′ = θ and therefore gvalid(γs; θ) = θ. Lemma B.7 then implies that there exists a θlive such that
live(θlive) ⊆ live(θ), gvalid(φ(γL); θlive) = θlive, hierarchy ok(θlive; θ), and ∀ı 7→ (η, ) ∈ θlive. η =
(1, 0, 0). By taking θr to be the same as θ but with all region counts of the regions in the domain
of θlive reduced by one, it is easy to verify that θr = θ − θlive. We can now apply Lemma B.8 and
deduce that there exists a θx such that gvalid(φ(γL); θ) = θx and θr = θx − θlive. By the definition of
hierarchy subtraction, it is easy to prove that θx = θ, and therefore gvalid(φ(γL); θ) = θ. Lemma B.9
then easily yields gvalid(φ(γs); θ) = θ, and Lemma B.4 yields gvalid(φ(γs) :: γ; θ) = θ′. The proof
is completed by rule V-V.

Lemma B.4 (Composition of gvalid) If gvalid(γ1; θ1) = θ2 and gvalid(γ2; θ2) = θ3, then gvalid(γ1 ::
γ2; θ1) = θ3.

Proof. Simple proof by induction on γ1.

Lemma B.5 (Decomposition of gvalid) If gvalid(γ1 :: γ2; θ) = θ′, then there exists a θ′′ such that
gvalid(γ1; θ) = θ′′ and gvalid(γ2; θ′′) = θ′.

Proof. Simple proof by induction on γ1.

Lemma B.6 (Summary preserves hierarchy) If γs = summary(γ) and gvalid(γs; θ1) = θ2 then
θ1 = θ2.

177



Proof. Using the definition of summary, it suffices to prove that if xvalid(ξ; θ1) = θ′ and ξ ` θ′ =
θ2 ⊕ θs then θ1 = θ2. This is easy by induction on the derivation of ξ ` θ′ = θ2 ⊕ θs.

Lemma B.7 (Summary preserves gvalid backwards) If γL = {Live r | r ∈ dom(φ(∅))},
γs = summary(φ(γL)), and gvalid(γs; θ) = θ, then there exists θ′ such that live(θ′) ⊆ live(θ),
gvalid(φ(γL); θ′) = θ′, hierarchy ok(θ′; θ), and ∀ı 7→ (η, ) ∈ θ′. η = (1, 0, 0).

Proof. By inversion of the second assumption, we take that γs = Cap ξ1 ::
Spawn ξ1 (φ(γL) :: γn :: Cap ξ2) and recursive(ξ1;φ(γL)) = ξ1, where ξ1 = {r 7→ (1, 0, 0) |
r ∈ dom(φ(γL))}, ξ2 = {r 7→ (−1, 0, 0) | r ∈ dom(φ(γL))}, and γn = {¬RW r | r ∈ dom(φ(γL))}.
By a series of inversions on the third assumption, there exists some θ′′ such that evalid(Cap ξ1; θ) = θ′′

and evalid(Spawn ξ1 φ(γL) :: γn :: Cap ξ2; θ
′′) = θ. By inversion of the latter, there exists a θs such

that merge(ξ1) ` θ′′ = θ⊕ θs and valid(φ(γL) :: γn :: Cap ξ2; θs). We take θ′ = θs, which is basically
equal to the hierarchy θ restricted to dom(φ(γL)) and with all counts equal to (1, 0, 0). It is easy to
verify live(θ′) ⊆ live(θ), hierarchy ok(θ′; θ), and ∀ı 7→ (η, ) ∈ θ′. η = (1, 0, 0). Also, by inversion of
valid(φ(γL) :: γn :: Cap ξ2; θ

′) and Lemma B.5, there exists a θx such that gvalid(φ(γL); θ′) = θx. We
can deduce θx = θ′ and thus conclude our proof by showing that, in general, if recursive(γ; ξ) = ξ
and gvalid(γ; θ) = θ′ then θ = θ′. This can easily be proved by induction on the derivation of the first
assumption.

Lemma B.8 (Preservation of gvalid for a greater θ) If gvalid(γ; θ1) = θ2, recursive(ξ; γ) = ξ′,
θ = θ3 − θ1, ok(θ3), and live(θ1) ⊆ live(θ3), then there exists a θ4 such that gvalid(γ; θ3) = θ4,
θ = θ4 − θ2, ok(θ4) and live(θ2) ⊆ live(θ4).

Proof. By induction on the length of γ. If γ is empty, then θ1 = θ2; we take θ4 = θ3 and the proof
is immediate. Otherwise, if γ is of the form ζ :: γ′, we know from the first assumption that ok(θ1),
evalid(ζ; θ1) = θ5, and gvalid(γ′; θ5) = θ2, for some θ5. By a case analysis on ζ, we will show that
there exists a θ6 such that evalid(ζ; θ3) = θ6, θ = θ6 − θ5, ok(θ6) and live(θ5) ⊆ live(θ6).

Case Cap ξc: By inversion of evalid(ζ; θ1) = θ5 we have xvalid(merge(ξc); θ1) = θ5, and therefore
for each ı such that cvalid(Live ; ı; θ1), ı 7→ (η, ) in θ1 and ı 7→ η′ in merge(ξc), we know
that ok(η + η′) and ı is live in θ1. Assuming that ı 7→ (η′′, ) exists in θ3, then θ = θ3 − θ1
implies that η′′ ≥ η therefore ok(η′′ + η′). cvalid(Live ; ı; θ1) and live(θ1) ⊆ live(θ3) imply that
cvalid(Live ; ı; θ3). We take θ6 to be identical to θ3, except for the counts which are taken equal
to η′′ + η′. It follows easily that θ = θ6 − θ5, evalid(ζ; θ3) = θ6, ok(θ6) and live(θ5) ⊆ live(θ6).

Case Spawn ξs γs: By inversion of evalid(ζ; θ1) = θ5 we obtain θs and θ′s, such that gvalid(γs; θs) = θ′s,
live(θ′s) = ∅, merge(ξs) ` θ1 = θ5 ⊕ θs (this implies that θ5 = θ1 − θs), and mutex({θs, θ5}).
From recursive(ξ; γ) = ξ′, as the spawn event was an element of this γ, we know that ∀ı 7→
η ∈ ξs. rd(η) = wr(η) = 0. We take θ6 to be identical to θ3, except for the counts which are
incremented by the respective η in ξs. It is easy to deduce that merge(ξs) ` θ3 = θ6 ⊕ θs,
(equivalently θ6 = θ3− θs) and mutex({θs, θ6}). Therefore, θ = θ6− θ5 and evalid(ζ; θ3) = θ6,
ok(θ6) and live(θ5) ⊆ live(θ6).

Case δ ı: By inversion of evalid(ζ; θ1) = θ5 we have θ1 = θ5 and cvalid(δ; ı; θ1). Therefore, we take
θ6 = θ3 and it easily follows that θ = θ6 − θ5, because of θ = θ3 − θ1. It suffices to show
cvalid(δ; ı; θ3). We proceed by performing case analysis on δ. From recursive(ξ; γ) = ξ′, as the
constraint event was an element of this γ, we know that δ cannot be one of ¬Live, ¬RW, or ¬W.
The remaining cases for δ are R, W and Live, which are all satisfied with θ3, as all counts of θ3
are greater than or equal to the counts of θ1 and live(θ1) ⊆ live(θ3).

Case Join γ1 γ2: By inversion of evalid(ζ; θ1) = θ5 we have that gvalid(γ1; θ1) = θ5 and gvalid(γ2; θ1)
= θ5. The application of the induction hypothesis on these two yields gvalid(γ1; θ3) = θx1 and
gvalid(γ2; θ3) = θx2, for some θx1 and θx2 such that θ = θx1 − θ5, θ = θx2 − θ5, ok(θx1),

178



live(θ5) ⊆ live(θx1) , ok(θx2) and live(θ5) ⊆ live(θx2) . It easily follows that θx1 = θx2 and we
take θ6 to be equal to these two. Therefore, evalid(ζ; θ3) = θ6, ok(θ6) and live(θ5) ⊆ live(θ6).

We have now shown that there exists a θ6 such that evalid(ζ; θ3) = θ6, θ = θ6 − θ5, ok(θ6) and
live(θ5) ⊆ live(θ6). We also know that gvalid(γ′; θ5) = θ2. By application of the induction hypothesis,
there exists a θ4 such that gvalid(γ′; θ6) = θ4 and θ = θ4 − θ2. The proof is completed by rule V-K.

Lemma B.9 (Recursion preserves gvalid) If γL = {Live r | r ∈ dom(φ(∅))}, γs = summary(φ(γL)),
gvalid(γs; θ0) = θ0, hierarchy ok(θ1; θ0), and gvalid(φ′(γL); θ1) = θ2, then gvalid(φ′(γs); θ1) = θ2.

Proof. We suppose that φ′ is a “compositional” function on effects, which can use its parameter in a
number of places to synthesize its result. We proceed by induction on the structure of φ′.

Case φ′(γ) = ∅: Then φ′(γs) = φ′(γL) and the proof is immediate.

Case φ′(γ) = γ :: φ′′(γ): Lemma B.5 implies that gvalid(γL; θ1) = θ1 (the resulting hierarchy is
necessarily equal to θ1, as γL contains only liveness constraints) and gvalid(φ′′(γL); θ1) = θ2.
gvalid(γL; θ1) = θ1 implies dom(γs) ⊆ live(θ1). Lemma B.10 implies that gvalid(γs; θ1) =
θ1. The induction hypothesis yields gvalid(φ′′(γs); θ1) = θ2. The application of Lemma B.4
completes the proof.

Case φ′(γ) = ψ(γ) :: φ′′(γ), for some compositional function ψ producing events: By inversion of
gvalid(φ′(γL); θ1) = θ2, we know that there exists a θ3 such that ok(θ1) holds, evalid(ψ(γL); θ1) =
θ3, and gvalid(φ′′(γL); θ3) = θ2. From evalid(ψ(γL); θ1) = θ3 and hierarchy ok(θ1; θ0) it is
easy to deduce that hierarchy ok(θ3; θ0). By applying the induction hypothesis, we have that
gvalid(φ′′(γs); θ3) = θ2 holds. To complete the proof it suffices to show that evalid(ψ(γs); θ1) =
θ3. We proceed by performing a case analysis on the structure of ψ:

Case ψ(γ) = Cap ξ or ψ(γ) = δ ı: The proof is immediate, as ψ(γs) = ψ(γL).
Case ψ(γ) = Spawn ξ1 φ

′′′(γ): By inversion of evalid(ψ(γL); θ1) = θ3 we obtain θs and θ′s such
thatmerge(ξ1) ` θ1 = θ3⊕θs, gvalid(φ′′′(γL); θs) = θ′s, live(θ′s) = ∅, andmutex({θs, θ3}).
From merge(ξ1) ` θ1 = θ3 ⊕ θs and hierarchy ok(θ1; θ0) we can easily deduce that
hierarchy ok(θs; θ0). The application of the induction hypothesis on gvalid(φ′′′(γL); θs) =
θ′s yields gvalid(φ′′′(γs); θs) = θ′s. It follows that evalid(ψ(γs); θ1) = θ3.

Case ψ(γ) = Joinφ1(γ)φ2(γ): By inversion of evalid(ψ(γL); θ1) = θ3we have that gvalid(φ1(γL)
; θ1) = θ3 and gvalid(φ2(γL); θ1) = θ3. Applying the induction hypothesis on these two, we
have gvalid(φ1(γs); θ1) = θ3 and gvalid(φ2(γs); θ1) = θ3. It follows that evalid(ψ(γs); θ1)
= θ3.

Lemma B.10 (Preservation of gvalid for a smaller θ) If γL = {Live r | r ∈ dom(φ(∅))},
γs = summary(φ(γL)), gvalid(γs; θ) = θ, hierarchy ok(θ′; θ), ok(θ′), and dom(γs) ⊆ live(θ′), then
gvalid(γs; θ′) = θ′.

Proof. Immediate by the definition of function summary and the validity of γs, which only require
all regions in γs are live in θ′ and that the ancestors of each region in θ′ are identical to the ancestors
of this region in θ. These requirements are satisfied by the assumptions that dom(γs) ⊆ live(θ′) and
hierarchy ok(θ′; θ).

Lemma B.11 (Well-typed expressions have well-formed contexts) If an expression e is well-typed
in the typing context R;M ;∆; Γ then ` R;M ;∆; Γ holds.

Proof. Straightforward proof by induction on the expression typing derivation.

Lemma B.12 (Value substitution preserves typing) IfR;M ;∆; Γ, x : τ1 ` e : τ2& γ1 andR;M ; ∅; ∅
` v : τ1& ∅, then R;M ; ∆; Γ ` e[v/x] : τ2& γ1

179



Proof. Straightforward induction on the expression typing derivation.

Lemma B.13 (Well-typed expressions have well-formed types) R;M ;∆; Γ ` e : τ & γ ⇒ R;∆ `
τ

Proof. Straightforward induction on the typing rules.

Lemma B.14 (Well-typed expressions have well-formed effects) R;M ;∆; Γ ` e : τ & γ ⇒
R;∆ ` γ

Proof. Straightforward induction on the typing rules.

Lemma B.15 (Region substitution preserves typing) IfR, ı;M ; ∆, ρ; Γ ` e : τ & γ, thenR, ı;M ; ∆;
Γ[ı/ρ] ` e[ı/ρ] : τ [ı/ρ]& γ[ı/ρ].

Proof. Proof by induction on the typing derivation of e.

Lemma B.16 (Region context expansion preserves expression typing) R;M ;∆; Γ ` e : τ & γ
and ı /∈ R ∪ {⊥}, then R, ı;M ;∆; Γ ` e : τ & γ.

Proof. Proof by induction on the typing derivation of e.

Lemma B.17 (Region context expansion preserves evaluation context typing) R;M ;∆; Γ ` E :
τ −→ τ ′& γ and ı /∈ R ∪ {⊥}, then R, ı;M ; ∆; Γ ` E : τ −→ τ ′& γ.

Proof. Proof by induction on the derivation ofE. In the case of ruleE1, whereE = E′[F ], LemmaB.18
is used.

Lemma B.18 (Region context expansion preserves frame typing) R;M ;∆; Γ ` F : τ −→ τ ′& γ
and ı /∈ R ∪ {⊥}, then R, ı;M ;∆; Γ ` F : τ −→ τ ′& γ.

Proof. Proof by induction on the derivation of F .

Lemma B.19 (Memory context expansion preserves expression typing) R;M ;∆; Γ ` e : τ & γ,
` /∈ dom(M), ı ∈ R and R;∆ ` τ , then R;M, ` 7→ (τ, ı);∆; Γ ` e : τ & γ.

Proof. Proof by induction on the typing derivation of e.

Lemma B.20 (Memory context expansion preserves evaluation context typing) R;M ;∆; Γ ` E :
τ −→ τ ′& γ, ` /∈ dom(M), ı ∈ R and R;∆ ` τ , then R;M, ` 7→ (τ, ı);∆; Γ ` E : τ −→ τ ′& γ.

Proof. Proof by induction on the derivation ofE. In the case of ruleE1, whereE = E′[F ], LemmaB.21
is used.

Lemma B.21 (Memory context expansion preserves frame typing) R;M ;∆; Γ ` F : τ −→
τ ′& γ, ` /∈ dom(M), ı ∈ R and R;∆ ` τ , then R;M, ` 7→ (τ, ı);∆; Γ ` F : τ −→ τ ′& γ.

Proof. Proof by induction on the derivation of F .

Lemma B.22 (Evaluation Context Composition — E) IfR;M ;∆; Γ ` e : τ & γa andR;M ;∆; Γ `
E : τ −→ τ ′& γb, then R;M ;∆; Γ ` E[e] : τ ′& γa :: γb

Proof. Proof by induction on typing derivation of E. The base case is immediate as �[e] = e. The
inductive case whereE = E′[F ], the proof is immediate by inversion of the derivation ofE (rule E1)
and the application of Lemma B.24.

180



Lemma B.23 (Evaluation Context Decomposition — E) If R;M ;∆; Γ ` E[e] : τ ′& γ, then
there exists a γa,γb and τ such that R;M ;∆; Γ ` e : τ & γa and R;M ;∆; Γ ` E : τ −→ τ ′& γb
and γ = γa :: γb.

Proof. Proof by induction on the structure of E. The base case is immediate by using the well-
formedness derivation for the type and typing context of e (i.e., Lemmata B.11 and B.13) and the
application rule E0. The inductive case, where E[e] = E′[F ][e] is immediate by Lemma B.25 and
rule E1.

Lemma B.24 (Evaluation Context Composition — F ) IfR;M ;∆; Γ ` e : τ & γa andR;M ;∆; Γ `
F : τ −→ τ ′& γb, then R;M ;∆; Γ ` F [e] : τ ′& γa :: γb.

Proof. Proof by case analysis on typing derivation ofF . The premises required to construct the typing
derivation of F [e] are given as premises of the typing derivation of F .

Lemma B.25 (Evaluation Context Decomposition — F ) IfR;M ;∆; Γ ` F [e] : τ ′& γ, then there
exists a γa,γb and τ such that R;M ;∆; Γ ` e : τ & γa and R;M ;∆; Γ ` F : τ −→ τ ′& γ1 and
γ = γa :: γb.

Proof. Proof by case analysis on the structure ofF . The premises required for each case (i.e., rulesF1-F11)
are given by the premises of the typing derivation of F [e].

Lemma B.26 (Translate implies valid) If valid(translate(γ, ı, η), ); θ) and ı /∈ dom(θ), then valid(γ
; θ, ı 7→ (η, )).

Proof. Let θ′ be equal to θ, ı 7→ (η, ). We proceed by induction on the structure of γ.

Case γ = ∅: the assumption and the definition of function translate imply that valid(translate(∅, ı, η, ); θ)
holds, where γs = solve(¬Live ; ; η) = valid(γs; θ) . If γs is empty, then valid(∅; θ), ok(η) and
rg(η) = 0 hold. The former fact implies that live(θ) = ∅ and ok(θ). Therefore, live(θ′) = ∅ and
ok(θ′) hold. Hence gvalid(∅; θ′) = θ′ and valid(∅; θ′) hold.
If γs is non-empty, then by the definition of solve, γs = ¬Live  and thus, valid(γs; θ) holds.
By inversion of the latter derivation we have that ok(θ), live(θ) = ∅ and cvalid(¬Live ; ; θ).
Therefore, live(θ′) = ∅ and ok(θ′) hold. Thus, valid(γs; θ′) holds.

Case γ = Join γ1 γ2 :: γ3: the assumption and the definition of translate imply that valid(Join γa γb; θ),
where γa = translate(γ1 :: γ3, ı, η, ) and γa = translate(γ2 :: γ3, ı, η, ). By inversion of the
derivation of valid(Join γa γb; θ) we have gvalid(γa; θ) = θ′′, gvalid(γb; θ) = θ′′ and live(θ′′) =
∅. Therefore, valid(γa; θ) and valid(γb; θ) hold. Using the induction hypothesis we obtain that
valid(γ1 :: γ3; θ′) and valid(γ2 :: γ3; θ′). Hence, valid(Join (γ1 :: γ3) (γ2 :: γ3); θ

′) .

Case γ = Cap ξ :: γa: let us assume that θ′′ equals θ, ı 7→ (η+η0, ). The assumption and the definition
of translate imply that merge(ξ) = ξ′, ı 7→ η0, valid(γs :: γb; θ), where γs = solve(Live, , η) ::
Cap ξ′ and γb = translate(γa, ı, η + η0, ). By inversion of the initial validity assumption we
have that ok(θ), xvalid(ξ′; θ), if  is not ⊥ then evalid(Live ; θ) = θ, gvalid(γa; θ) = θ0 and
live(θ0) = ∅. The latter two facts yield valid(γa; θ) and the application of the induction hypothesis
implies valid(γa; θ′′). The definition of function translate implies that ok(η+η0) and the definition
of γs yields ok(η − (1, 0, 0)). Hence, ok(θ′′) holds by ok(η − (1, 0, 0)), ok(θ′′) and ı /∈ dom(θ).
cvalid(Live ; ı; θ′′) holds by using the facts ok(η−(1, 0, 0)) (and evalid(Live ; θ) = θ if  6= ⊥).
Therefore valid(γ; θ′′) holds by the above facts.

Case γ = δ ı :: γa: the assumption and the definition of translate imply that valid(γs :: γb; θ), where
γs = solve(δ , , η) and γb = translate(γa, ı, η, ). To complete the proof it suffices to show that
cvalid(δ ; ı; θ′) and valid(γa; θ′) hold. We proceed by a case analysis on γs. If γs is empty, then

181



cvalid(δ; ı; θ′) is immediate by using ruleC-B and the definition of γs. Otherwise, γs is non-empty
and by the definition of solve we have that, γs = δ′ . By inversion of valid(γs :: γb; θ) we have
that cvalid(δ′; ; θ). The application of rule C-R to the latter fact and the definition of γs implies
cvalid(δ; ı; θ′). valid(γa; θ′) is immediate by applying the induction hypothesis to valid(γb; θ),
which can be derived from valid(γ; θ).

Case γ = Spawn ξ γs :: γa: the assumption and the definition of translate imply that valid(γ′′′r ::
Spawn ξ′ (γ′s :: γ

′′
s ) :: (γ′r :: γ′′r )), where γ′′′r = bot(Live, ), merge(ξ) = ξ′, ı 7→ ηs, η =

ηr ⊕ ηs, ′ = if  ∈ dom(ξ) then  else ⊥, γ′s = p-constraint(′, ηr), γ′′s = translate(γs, ı, ηs, ′),
γ′r = p-constraint(, ηs) and γ′′r = translate(γa, ı, ηr, ).
By inversion of valid(γ′′′r :: Spawn ξ′ (γ′s :: γ

′′
s ) :: (γ′r :: γ′′r )) we have that cvalid(Live ; ; θ)

(if  6= ⊥), ∀ı′ ∈ dom(θs). cvalid(Live ; ı′; θ), merge(ξ′) ` θ = θr ⊕ θs, mutex({θr, θs}),
valid(γ′s :: γ

′′
s ; θs) and valid(γ′r :: γ

′′
r ; θr). By inversion of the latter two derivations, we have that

gvalid(γ′s; θs) = θs, gvalid(γ′′s ; θs) = θ′s, live(θ′s) = ∅, gvalid(γ′r; θr) = θr, gvalid(γ′′r ; θr) = θ′r
and live(θ′r) = ∅.
It suffices to prove the following obligations:

Case ∀ı′ ∈ dom(θs, ı 7→ (ηs, 
′)). cvalid(Live ; ı′; θ, ı 7→ (η, )): immediate by the assumptions

cvalid(Live ; ; θ) (if  6= ⊥), η = ηr ⊕ ηs and ∀ı′ ∈ dom(θs). cvalid(Live ; ı′; θ).
Case merge(ξ) ` θ, ı 7→ (η, ) = θr, ı 7→ (ηr, ) ⊕ θs, ı 7→ (ηs, 

′): merge(ξ) = ξ′, ı 7→ ηs and
the definition of function merge imply that merge(ξ′) = ξ′. Therefore, merge(ξ′) ` θ =
θr ⊕ θs can be rewritten as ξ′ ` θ = θr ⊕ θs. The latter derivation, the definition of ′ and
η = ηr ⊕ ηs complete the proof for this case.

Case mutex({(θr, ı 7→ (ηr, )), (θs, ı 7→ (ηs, 
′))}): if at least one of the threads has read or

write capabilities on ı, then the mutex invariant may be violated once ı is added to the
hierarchy of each thread. Assuming that the new thread has read or write access to ı, then
gvalid(γ′r; θr) = θr and η = ηr⊕ηs imply that the main thread has no write or no read/write
access to ı and its ancestors ancestors respectively. Similarly, if the main thread has read
or write access to ı, then gvalid(γ′s; θs) = θs and η = ηr ⊕ ηs imply that the new thread has
no write or no read/write access to ı and its ancestors respectively. We also have from the
assumptions thatmutex({θr, θs}). Therefore,mutex({(θr, ı 7→ (ηr, )), (θs, ı 7→ (ηs, 

′))})
holds.

Case valid(γa; θr, ı 7→ (ηr, )): we have shown that valid(γ′r :: γ′′r ; θr) holds. If γ′r is empty, then
the proof is immediate by the application of the induction hypothesis. If γ′r is non-empty,
then the definition of p− constraint implies that γ′r = δ . By inversion of the derivation
of valid (using rule V-K) valid(γ′′r ; θr) holds. The proof is completed by the application of
the induction hypothesis to the latter fact.

Case valid(γs; θs, ı 7→ (ηs, 
′)): similar to the previous case; here we use valid(γ′s :: γ

′′
s ; θs).

Lemma B.27 (Progress) Let S;T be a well-typed configuration withR;M ` S;T then S;T is not
stuck (` S;T ).

Proof. It suffices to show that for any thread in T , a step can be performed or block predicate holds
for it. Let e be an arbitrary thread in T such that T = T1, 〈θ; e〉 for some T1. By inversion of the typing
derivation of S;T we have that R;M ; ∅; ∅ ` e : unit& γ, valid(γ; θ), mutex({θ0 | 〈θ0; e0〉 ∈ T}),
and R;M ` S.

If e is a value then e = () and γ = ∅ and valid(∅; θ), which implies live(θ) = ∅. Thus, rule E-T
can be applied.

If e is not a value then according to Lemma B.32, there exists a redex u and an evaluation con-
text E such that e = E[u]. The application of Lemma B.23 to the typing derivation of E[u] yields
R;M ; ∅; ∅ ` u : τ & γa, R;M ; ∅; ∅ ` E : τ −→ unit& γ′, where γ = γa :: γ′. Then, we proceed
by performing a case analysis on u:

182



Case (λx. e′) v: a step can be taken by rule E-A.

Case (Λρ. f) [ı]: a step can be taken by rule E-RP.

Case (fix x. f) v: a step can be taken by rule E-FX .

Case if true then e1 else e2: a step can be taken by rule E-IT .

Case if false then e1 else e2: a step can be taken by rule E-IF.

Case newrgn ρ, x @ rgn in e2: it suffices to prove  ∈ live(θ) ∪ {⊥}. The typing derivation of u
implies γa = Live  :: translate(γ2, ρ, (1, 1, 0), ), where γ2 is the effect of e2. The application
of Lemma B.29 to valid(γa :: γ′; θ) implies that  ∈ live(θ) ∪ {⊥}. Rule E-NR can be applied to
perform a step.

Case new v @ rgnı: identical to the previous case. Rule E-NL can be applied to perform a step.

Case deref loc`: it suffices to prove ı ∈ rwlocked(θ), ` 7→ v ∈ S(ı) and ı /∈ wlocked(T ). ` 7→ v ∈
S(ı) is immediate byR;M ` S and the fact that ` 7→ (τ, ı) belongs inM by the typing derivation
of u. The typing derivation of u also implies γa = R ı. Lemma B.30 and valid(γa :: γ′; θ) imply
that ı ∈ rwlocked(θ). We also have the assumption that mutex({θ0 | 〈θ0; e0〉 ∈ T}), which
implies ı /∈ wlocked(T ) = ∅. Rule E-D can be applied to perform a step.

Case locı := v: it suffices to prove ` 7→ v′ ∈ S(ı), ı ∈ wlocked(θ) and ı /∈ rwlocked(T ). ` 7→ v′ ∈ S(ı)
is immediate by R;M ` S and the fact that ` 7→ (τ, ı) belongs inM by the typing derivation of
u. The typing derivation of u also implies γa = W ı. Lemma B.31 and valid(γa :: γ′; θ) imply that
ı ∈ wlocked(θ). We also have the assumption that mutex({θ0 | 〈θ0; e0〉 ∈ T}), which implies
ı /∈ rwlocked(T ). Rule E-AS can be applied to perform a step.

Case capη′ rgnı: given that θ = θ1, ı 7→ (η′, r′) it suffices to prove θ′ = θ1, ı 7→ (η+η′, r′), ı ∈ live(θ)
andmutex({θ′}∪{θ′′ | 〈θ′′; e′〉 ∈ T}) or blocked(T ; θ;E[capη′ rgnı]) holds. The typing deriva-
tion of u implies γa = Cap {ı 7→ η}. Lemma B.29 and valid(γa :: γ′; θ) imply that ı ∈ live(θ). If
mutex({θ′} ∪ {θ′′ | 〈θ′′; e′〉 ∈ T1}) holds, then rule E-CP can be used to perform a single step.
Otherwise, blocked(T ; θ;E[capη′ rgnı]) holds using the assumptionmutex({θ0 | 〈θ0; e0〉 ∈ T}).

Case spawnγ1 e1: it suffices to prove merge(ξ) ` θ = θ′ ⊕ θ′′ and dom(θ′′) ⊆ live(θ) hold. The
typing derivation of u implies γa = Spawn ξ γ1. By inversion of valid(γa :: γ′; θ) we have
that merge(ξ) ` θ = θ′ ⊕ θ′′ and ∀ı ∈ dom(θ′′). cvalid(Live ; ı; θ) hold. The latter fact and
Lemma B.28 imply that dom(θ′′) ⊆ live(θ). Rule E-SP can be applied to perform a single step.

Lemma B.28 (Cvalid implies live, wlocked and rwlocked) If cvalid(δ, ı, θ) and δ 6= ¬Live then
ı ∈ live(θ) ∪ {⊥}, δ = W ⇒ ı ∈ wlocked(θ) and δ = R ⇒ ı ∈ rwlocked(θ).

Proof. We perform case analysis on cvalid derivation:

Case C-T : the proof is immediate.

Case C-B then the following hold θ = θ′, ı 7→ (η, ) and solve(δ, , η) = ∅ . We have assumed that
δ 6= ¬Live, therefore solve(δ, , η) = ∅ implies that  = ⊥ and ok(η−(1, 0, 0)). Thus ı ∈ live(θ)
holds. If δ = W, then solve also implies that rw(η) > 0 hence ı ∈ wlocked(θ). If δ = R, then
solve also implies that rw(η) ≥ 0, rw(η) ≥ 0 and rw(η) + rw(η) > 0 hence ı ∈ rwlocked(θ).

Case C-R then θ = θ′, ı 7→ (η, ), solve(δ, , η) = δ′  and cvalid(δ′; ; θ′) hold. Function solve implies
that δ′ 6= ¬Live and ok(η− (1, 0, 0)). In fact δ′ is equal to Live if δ equals Live. If δ is equal to
R, then δ′ can be either R and rd(η) = 0 or Live when rd(η) > 0. If δ is equal to W, then δ′ can be
either W and rd(η) = wr(η) = 0 or Live and rw(η) ≥ 0, rw(η) ≥ 0 and rw(η) + rw(η) > 0. The

183



application of the induction hypothesis to cvalid(δ′; ; θ′) yields  ∈ live(θ)∪{⊥}, δ′ = W ⇒  ∈
wlocked(θ) and δ′ = R ⇒  ∈ rwlocked(θ).

ok(η− (1, 0, 0)) and  ∈ live(θ)∪{⊥} imply that ı ∈ live(θ). If δ is Live the proof is completed.
Otherwise, if δ′ = δ = W, then  ∈ wlocked(θ) implies ı ∈ wlocked(θ) and the proof is completed.
Otherwise, if δ′ = δ = R, then  ∈ rwlocked(θ) implies ı ∈ rwlocked(θ) and the proof is
completed. The last case is δ′ = Live. This can only be the case when R or W are satisfied in
solve(δ, , η) and therefore the proof is immediate.

Lemma B.29 (Valid implies live) If valid(δ ı :: γ; θ) and δ 6= ¬Live then ı ∈ live(θ) ∪ {⊥}.

Proof. By inversion of valid we obtain cvalid(δ, ı, θ). The proof is immediate by using Lemma B.28.

Lemma B.30 (Valid implies rwlocked) If valid(R r :: γ; θ), then r ∈ rwlocked(θ).

Proof. By inversion of valid we obtain cvalid(R, ı, θ). The proof is immediate by using Lemma B.28.

Lemma B.31 (Valid implies wlocked) If valid(W r :: γ; θ), then r ∈ wlocked(θ).

Proof. By inversion of valid we obtain cvalid(W, ı, θ). The proof is immediate by using Lemma B.28.

Lemma B.32 (Well-typed expressions contain a well-typed redeces) If R;M ;∆; Γ ` e : τ & γ1
and e is not a value then R;M ; ∆; Γ ` E′[u] : τ & γ1 such that E′[u] = e.

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is
not a redex, to typing derivations of the form E′[e′] and apply induction for e′.

184



Appendix C

Formal semantics and proof of soundness for Chapter 6

C.1 Summary of additional functions and relations

run(γ, ı, n) computes the future lockset for a lock ı operation, by travers-
ing the continuation effect γ until n matching unlock opera-
tions for ı are found.

stack(E) computes the continuation effect that corresponds to the eval-
uation context E, by concatenating the annotations found in
stacked pop expressions.

available(S, n) computes the set of locks that are available to thread n in the
lock store S; the locks that are not currently owned by some
thread other than n.

γ1 :: γ2 appends the two effects γ1 and γ2, so that all operations in γ2
chronologically follow those in γ1.

γ \ r removes all occurrences of r from effect γ.
r;n `ok γ checks that γ contains exactly n unmatched unlock operations

for r, i.e. that the effect γr :: γ is well balanced, where γr
contains exactly n lock operations for r.

M ;∆ ` Γ well formedness relation for typing environments.
M ;∆ ` γ well formedness relation for effects.
M ;∆ ` τ well formedness relation for types.
summary(γ) the effect summarization function.

M ;∆; Γ ` E : τ
γa;γb−→ τ ′& (γ1;γ2) typing relation for evaluation contexts; τ is the expected type

for the innermost hole in E, γa and γb are the hole’s input and
output effects, τ ′ is the type of the expression computed by E,
and γ1 and γ2 are the input and output effects.

C.2 Language syntax

Language syntax

Value v ::= f | () | locı | true | false
Expression e ::= x | f | (e e)ξ | (e) [r] | e := e

| deref e | let ρ, x = ref e in e
| share e | release e | lockγ e
| unlock e | () | popγ e | locı
| if e then e else e | true | false

Function f ::= λx. e as τ
γ−→ τ | Λρ. f | fix x : τ. f

185



Type τ ::= 〈〉 | τ γ−→ τ | ∀ρ. τ
| ref(τ, r) | bool

Location r ::= ρ | ı@n | ρ@n
Calling modeξ ::= seq(γ) | par
Capability κ ::= n, n | n, n
Effect γ ::= ∅ | γ, rκ | γ, γ ? γ

C.3 Operational semantics

Auxiliary syntax for operational semantics

Access Lists θ ::= ∅ | θ, ı 7→ n;n; ε; ε

Store S ::= ∅ | S, ı 7→ v

Threads T ::= ∅ | T, n : θ; e
Configuration C ::= S;T

Locations ε ::= ∅ | ε, ı

Evaluation context

Stack E ::= � | E[F ]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v := � | share � | release �
| lockγ � | unlock � | popγ �
| if � then e1 else e2

Redex u ::= (λx. e as τ v)ξ | lockγ1 locı | unlock locı | share locı
| release locı | deref locı | locı := v | let ρ, x = ref v in e2
| popγ v | if v then e1 else e2 | (Λρ. f) [r] | (fix x : τ. f v)seq(γb)

Generic predicates and functions

set(γ) = ∀α, γ1, γ2. γ = (γ1, α) :: γ2 ⇒ α = rκ ∧ r /∈ dom(γ1) ∪ dom(γ2)

γ :: ∅ = γ

γ :: γ′ = γ′′

γ :: γ′, rκ = γ′′, rκ
γ :: γ′ = γ′′

γ :: γ′, (γ1 ? γ2) = γ′′, (γ1 ? γ2)

dom(γ) = ε

dom(γ, rκ) = ε ∪ {r}

dom(γ) = ε
dom(γ′) = ε′ dom(γ′′) = ε′′

dom(γ, γ′ ? γ′′) = ε ∪ ε′ ∪ ε′′ dom(∅) = ∅

max(∅) = ∅
γ2 = {r′κ ∈ max(γ1) | r′ 6= r}

max(γ1, rκ) = γ2, r
κ

γ4 = max(γ1 :: γ2) = max(γ1 :: γ3)
max(γ1, γ2 ? γ3) = γ4

set(γ1) γ2 = γ1 :: γ3
dom(γ2) = dom(γ1)

min(γ2) = γ1

γ1 = γ2 :: γ3
γ2 C γ1

max(γ) = (γ1, r
κ) :: γ2

γ(r) = κ

186



Helper rules & predicates

locked(T ) = { ı | (n : θ; e) ∈ T ∧ θ(ı) ≥ (1, 1)}
lk(κ) = n2 if κ = (n1, n2)

θ +ı (n1, n2) = θ[ı 7→ n1 + n3;n2 + n4; ε1; ε2] if (ı 7→ n3;n4; ε1; ε2) ∈ θ

θ(ı) = (n1, n2) if (ı 7→ n1;n2; ε1; ε2) ∈ θ

κ = (n1, n2) (θa, θb) = split(θ , γ)
(θc, θd) = (θa +ı (−n1,−n2) , θb +ı (n1, n2))

(θc, θd) = split(θ , γ, (ı@n0)κ)
(A1)

(θ, ∅) = split(θ , ∅)
(A2)

(∅, n) = frame lockset(ı, n, ∅)
(W0)

(∅, 0) = frame lockset(ı, 0, γ)
(W1)

n1 > 0 n2 = lk(κ)− lk(γ(ı@n0))
(ε, n3) = frame lockset(ı, n1 + n2, γ)

(ε, n3) = frame lockset(ı, n1, γ, (ı@n0)κ)
(W2)

n1 > 0 (ε, n2) = frame lockset(ı, n1, γ1 :: γ2)
(ε′, n2) = frame lockset(ı, n1, γ1 :: γ3)

(ε ∪ ε′, n2) = frame lockset(ı, n1, γ1, γ2 ? γ3)
(W3)

n1 > 0 (ε, n2) = frame lockset(ı, n1, γ) j 6= ı
ε′ = {j | lk(κ)− lk(γ(j@n0)) < 0}

(ε ∪ ε′, n2) = frame lockset(ı, n1, γ, (j@n0)κ)
(W4)

{ı} = lockset(ı, n,�) (L1)

n1 > 0 ε′ = lockset(ı, n2, E) (ε, n2) = frame lockset(ı, n1, γ)
ε ∪ ε′ = lockset(ı, n1, E[popγ �])

(L2)

E 6= �
{ı} = lockset(ı, 0, E)

(L3)
F 6= popγ � ε = lockset(ı, n1, E) n1 > 0

ε = lockset(ı, n1, E[F ])
(L4)

187



Reduction relation C  C ′

v′ ≡ λx. e1 as τ1
γa−→ τ2 fresh n′ (θ1, θ2) = split(θ , max(γa))

S;T, n : θ;E[(v′ v)par]  S;T, n : θ1;E[()], n′ : θ2;�[(v′ v)seq(min(γa))]
(E-SN)

∀ı. θ(ı) = (0, 0)

S;T, n : θ; ()  S;T
(E-T)

v′ ≡ λx. e1 as τ
′

S;T, n : θ;E[(v′ v)seq(γb)]  S;T, n : θ;E[popγb e1[v/x]]
(E-A)

θ(ı) ≥ (1, 1) ı /∈ locked(T )
S;T, n : θ;E[locı := v]  S[ı 7→ v];T, n : θ;E[()]

(E-AS)

θ(ı) ≥ (1, 1) ı /∈ locked(T )
S;T, n : θ;E[deref locı]  S;T, n : θ;E[S(ı)]

(E-D)

fresh ı@n1 S′ = S, ı 7→ v θ′ = θ, ı 7→ 1; 1; ∅; ∅
S;T, n : θ;E[let ρ, x = ref v in e2]  S′;T, n : θ′;E[e2[ı@n1/ρ][locı/x]]

(E-NG)

S;T, n : θ;E[if true then e1 else e2]  S;T, n : θ;E[e1]
(E-IT)

θ(ı) ≥ (1, 1) θ′ = θ +ı (0,−1)

S;T, n : θ;E[unlock locı]  S;T, n : θ′;E[()]
(E-UL)

S;T, n : θ;E[if false then e1 else e2]  S;T, n : θ;E[e2]
(E-IF)

ε = lockset(ı, 1, E[popγ1 �]) θ = θ′′, ı 7→ n1; 0; ε1; ε2
θ′ = θ′′, ı 7→ n1; 1; dom(S); ε n1 ≥ 1 locked(T ) ∩ ε = ∅

S;T, n : θ;E[lockγ1 locı]  S;T, n : θ′;E[()]
(E-LK0)

θ(ı) ≥ (1, 1) θ′ = θ +ı (0, 1)

S;T, n : θ;E[lockγ1 locı]  S;T, n : θ′;E[()]
(E-LK1)

S;T, n : θ;E[(fix x : τ. f v)seq(γa)]  S;T, n : θ;E[(f [fix x : τ. f/x] v)seq(γa)]
(E-FX)

θ(ı) ≥ (1, 0) θ′ = θ +ı (1, 0)

S;T, n : θ;E[share locı]  S;T, n : θ′;E[()]
(E-SH)

θ(ı) ≥ (1, 0) θ(ı) = (n1, n2)
n1 = 1 ⇒ n2 = 0 θ′ = θ +ı (−1, 0)

S;T, n : θ;E[release locı]  S;T, n : θ′;E[()]
(E-RL)

fresh n2
S;T, n : θ;E[(Λρ. f)[ı@n1]]  S;T, n : θ;E[f [ı@n2/ρ]]

(E-RP)

S;T, n : θ;E[popγ v]  S;T, n : θ;E[v]
(E-PP)

188



C.4 Static semantics

Static semantics syntax

Type variable list � ::= ∅ | ∆, ρ
Memory List M ::= ∅ | M, ı 7→ τ

Variable list � ::= ∅ | Γ, x : τ

Type equivalence

r ' r (S0) r′ ' r
r ' r′

(S1) r ' r′

r ' r′@n2
(S2)

∅ ' ∅
(S3)

r1 ' r2 γ1 ' γ2
γ1, r1

κ ' γ2, r2
κ (S4)

γ1 ' γ4 γ2 ' γ5 γ3 ' γ6
γ1, γ2 ? γ3 ' γ4, γ5 ? γ6

(S5) τ ' τ (S6)

τ3 ' τ4
r1 ' r2

ref(τ3, r1) ' ref(τ4, r2)
(S7)

fresh ρ1@n
τ1[ρ1@n/ρ] ' τ2[ρ1@n/ρ′]

∀ρ. τ1 ' ∀ρ′. τ2
(S8)

τ1 ' τ3 τ2 ' τ4
γ1 ' γ3 γ2 ' γ4

τ1
γ1−→ τ2 ' τ3

γ3−→ τ4
(S9)

Capability-related rules

is pure(κ)=∃n1. ∃n2. κ = n1, n2

∀rκ ∈ γ. is pure(κ) ⇒ ∀r′κ′ ∈ γ. r′ 6= r ⇒ ¬(r ' r′)
ξ = par ⇒ ∀rκ.(rκ ∈ min(γ) ⇒ κ = (0, 0)) ∧ (rκ ∈ max(γ) ∧ ¬is pure(κ) ⇒ lk(κ) = 0)

ξ ` γ (OK)

r′ ' r γ′ = γ \ r′

γ′ = γ, rκ \ r′
(M0)

¬(r′ ' r) γ′ = γ \ r′

γ′, rκ = γ, rκ \ r′
(M1)

∅ = ∅ \ r
(M2)

is pure(κ3) ⇒ κ2 = (0, 0) ∧ is pure(κ1) is pure(κ1) ⇔ is pure(κ2)
κ1 = (n3 + n5, n4 + n6) κ3 = (n5, n6) κ2 = (n3, n4)

κ1 = κ2 + κ3
(K1)

γ = subtract(γ , ∅)
(ES1)

γ2 = subtract(γ, rκ2 , γ1) κ = κ2 + κ1

γ2 = subtract((γ, rκ) , (γ1, rκ1))
(ES2)

189



κ = γ(r) + κ2 γ′′ = add(γ , γ′)
γ′′, rκ = add(γ , (γ′, rκ2))

(AD1)
∅ = add(γ , ∅)

(AD2)

γ2 = add(subtract(max(γ) , min(γ1)) , γ1)
γ2 = min(γ2) :: γ3 seq(∅) ` γ

seq(γ) ` γ :: γ3 = γ ⊕ γ1
(D0)

par ` γ1
γ2 = add(subtract(max(γ) , min(γ1)) , max(γ1))

par ` γ :: γ2 = γ ⊕ γ1
(D1)

locked(γ, 1, r) lk(κ) = 0

locked((γ, rκ), 0, r)
(X1)

lk(κ) > 0

locked((γ, rκ), 1, r)
(X2)

r 6= r′ locked(γ, n, r)

locked((γ, r′κ), n, r)
(X3)

locked((γ :: γ1), n, r) ∨ locked((γ :: γ2), n, r)

locked((γ, γ1 ? γ2), n, r)
(X4)

γb = min(γa) γc = max(γa) γd = {rγc(r)+(0,1) | locked(γa, 0, r)}
γb :: γd :: γc = summary(γa)

(L0)

190



Well-formedness relation

Constraint Well-formedness

M ;∆ ` ∅
M ;∆ ` r M ;∆ ` γ1

M ;∆ ` γ1, rκ
M ;∆ ` γ1 M ;∆ ` γ2 M ;∆ ` γ3

M ;∆ ` γ1, γ2 ? γ3

Region Well-formedness

r ∈ ∆ ∪ dom(M)

M ;∆ ` r
M ;∆ ` ı

M ;∆ ` ı@n
M ;∆ ` ρ

M ;∆ ` ρ@n

Program Typing Context Well-formedness

`M M ;∆ ` Γ M ; ∆ ` γ1 M ;∆ ` γ2 γ1 C γ2 seq(∅) ` γ2
`M ;∆; Γ; γ1; γ2

Type Well-formedness

M ;∆ ` bool

M ;∆, ρ ` τ
M ;∆ ` ∀ρ. τ

M ;∆ ` τ M ;∆ ` r
M ;∆ ` ref(τ, r)

min(γ1) defined
M ; ∆ ` τ1 M ;∆ ` γ1 M ;∆ ` τ2

M ;∆ ` τ1
γ1−→ τ2 M ;∆ ` 〈〉

ΓWell-formedness

M ;∆ ` ∅
M ;∆ ` τ x /∈ dom(Γ) M ;∆ ` Γ

M ;∆ ` Γ, x : τ

M Well-formedness

` ∅
`M ı /∈ dom(M) M ; ∅ ` τ

`M, ı 7→ τ

191



Typing rules

`M ;∆; Γ; γ; γ
(x : τ ′) ∈ Γ τ ' τ ′

M ;∆; Γ ` x : τ & (γ;γ)
(T-V)

`M ; ∆; Γ; γ; γ

M ;∆; Γ ` true : bool& (γ;γ)
(T-TR)

M ;∆, ρ; Γ ` f : τ & (γ;γ)

M ;∆; Γ ` Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

`M ;∆; Γ; γ; γ τ ′ ≡ τ1
γb−→ τ2 M ;∆ ` τ ′ τ ' τ ′

seq(∅) ` γb ⇒M ;∆; Γ, x : τ1 ` e1 : τ2& (min(γb);γb)
M ;∆; Γ ` λx. e1 as τ ′ : τ & (γ;γ)

(T-F)

M ;∆ ` r M ;∆ ` τ [r/ρ]
M ; ∆; Γ ` e1 : ∀ρ. τ & (γ;γ′)

M ; ∆; Γ ` (e1) [r] : τ [r/ρ]& (γ;γ′)
(T-RP)

`M ;∆; Γ; γ; γ

M ;∆; Γ ` () : 〈〉& (γ;γ)
(T-U)

`M ;∆; Γ; γ; γ (ı 7→ τ ′) ∈M τ ' ref(τ ′, ı)

M ;∆; Γ ` locı : τ & (γ;γ)
(T-L)

`M ;∆; Γ; γ; γ

M ;∆; Γ ` false : bool& (γ;γ)
(T-FL)

M ;∆; Γ ` e : τ ′& (min(γb);γb) γb ' γ′b
seq(γ) ` γ′ = γ ⊕ γ′b τ ′ ' τ `M ; ∆; Γ; γ; γ′

M ;∆; Γ ` popγ e : τ & (γ;γ′)
(T-PP)

M ;∆; Γ ` e1 : ref(τ, r)& (γ1;γ
′)

M ;∆; Γ ` e2 : τ & (γ;γ1) γ(r) ≥ (1, 1)

M ; ∆; Γ ` e1 := e2 : 〈〉& (γ;γ′)
(T-AS)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ−(1,0);γ′) κ ≥ (2, 0) γ(r) = κ

M ;∆; Γ ` share e : 〈〉& (γ;γ′)
(T-SH)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ+(1,0);γ′)
κ = (n1, n2) n1 = 0 ⇒ n2 = 0 γ(r) = κ

M ;∆; Γ ` release e : 〈〉& (γ;γ′)
(T-RL)

M ;∆; Γ ` e : ref(τ, r)& (γ, rκ−(0,1);γ′) κ ≥ (1, 1) γ(r) = κ

M ; ∆; Γ ` lockγ e : 〈〉& (γ;γ′)
(T-LK)

M ;∆; Γ ` e1 : τ1
γa−→ τ2& (γ3;γ

′) ξ ` γ2 = γ ⊕ γa
M ;∆; Γ ` e2 : τ1& (γ2;γ3) ξ = par ⇒ τ2 = 〈〉

M ;∆; Γ ` (e1 e2)
ξ : τ2& (γ;γ′)

(T-A)

192



M ; ∆; Γ ` e : ref(τ, r)& (γ, rκ+(0,1);γ′) κ ≥ (1, 0) γ(r) = κ

M ;∆; Γ ` unlock e : 〈〉& (γ;γ′)
(T-UL)

M ;∆; Γ ` e1 : τ1& (γ1 \ ρ;γ′) γ1(ρ) = (1, 1)
M ;∆ ` τ M ;∆, ρ; Γ, x : ref(τ1, ρ) ` e2 : τ & (γ, ρ0,0;γ1)

M ;∆; Γ ` let ρ, x = ref e1 in e2 : τ & (γ;γ′)
(T-NG)

τ ≡ τ1
γb−→ τ2 τ ′ ≡ τ ′1

γ′
a−→ τ ′2 τ ' τ ′ γa ' γ′a

M ;∆; Γ, x : τ ` f : τ ′& (γ;γ) γb = summary(γa)
M ; ∆; Γ ` fix x : τ. f : τ & (γ;γ)

(T-FX)

M ;∆; Γ ` e1 : bool& (γ, γ2 ? γ3;γ
′) max(γ :: γ2) = max(γ :: γ3)

M ;∆; Γ ` e2 : τ & (γ;γ :: γ2) M ;∆; Γ ` e3 : τ & (γ;γ :: γ3)

M ;∆; Γ ` if e1 then e2 else e3 : τ & (γ;γ′)
(T-IF)

M ; ∆; Γ ` e1 : ref(τ, r)& (γ;γ′) γ(r) ≥ (1, 1)

M ;∆; Γ ` deref e1 : τ & (γ;γ′)
(T-D)

C.5 Type safety

Evaluation context typing

`M ;∆; Γ; γ1; γ2 M ;∆ ` τ
M ;∆; Γ ` � : τ

γ1;γ2−→ τ & (γ1;γ2)
(E0)

M ; ∆; Γ ` E : τ2
γ5;γ6−→ τ3& (γ1;γ2)

M ;∆; Γ ` F : τ1
γ3;γ4−→ τ2& (γ5;γ6)

M ;∆; Γ ` E[F ] : τ1
γ3;γ4−→ τ3& (γ1;γ2)

(E1)

γ3 C γ4 γ2 = γ1 ⊕ γa
M ;∆; Γ ` e2 : τ1& (γ2;γ3) M ;∆ ` τ1

γa−→ τ2
ξ ` γa ξ = seq(γ1) ∨ (ξ = par ∧ τ2 = 〈〉)

M ;∆; Γ ` (� e2)
ξ : (τ1

γa−→ τ2)
γ3;γ4−→ τ2& (γ1;γ4)

(F1)

M ;∆; Γ ` v1 : τ1
γa−→ τ2& (γ3;γ3)

γ2 = γ1 ⊕ γa γ2 C γ3 M ;∆ ` γ3
ξ ` γa ξ = seq(γ1) ∨ (ξ = par ∧ τ2 = 〈〉)

M ; ∆; Γ ` (v1 �)ξ : τ1
γ2;γ3−→ τ2& (γ1;γ3)

(F2)

`M ;∆; Γ; γ; γ′ `M ;∆; Γ; γ1; γ2 M ;∆ ` τ
γ′ = γ ⊕ γ2 e = v ⇒ γ1 = min(γ1)

M ;∆; Γ ` popγ � : τ
γ1;γ2−→ τ & (γ;γ′)

(F3)

γ3 = γ2 \ ρ γ3 C γ′ γ1(ρ) = (1, 1) M ;∆ ` τ1 M ;∆ ` τ
`M ;∆; Γ; γ; γ′ M ;∆, ρ; Γ, x : ref(τ1, ρ) ` e2 : τ & (γ, ρ0,0;γ1)

M ;∆; Γ ` let ρ, x = ref � in e2 : τ1
γ3;γ′
−→ τ & (γ;γ′)

(F4)

193



`M ; ∆; Γ; γ; γ′ M ;∆ ` ref(τ, r)
M ;∆; Γ ` e2 : τ & (γ;γ1) γ(r) ≥ (1, 1)

M ;∆; Γ ` � := e2 : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F5)

γ C γ′ γ(r) ≥ (1, 1)
M ;∆; Γ ` locı : ref(τ, r)& (γ′;γ′)

M ;∆; Γ ` locı := � : τ
γ;γ′
−→〈〉& (γ;γ′)

(F6)

`M ;∆; Γ; γ; γ′ γ(r) ≥ (1, 1) M ;∆ ` ref(τ, r)

M ;∆; Γ ` deref � : ref(τ, r)
γ;γ′
−→ τ & (γ;γ′)

(F7)

`M ;∆; Γ; γ1; γ
′ M ;∆ ` ref(τ, r)

κ ≥ (2, 0) γ(r) = κ γ1 = γ, rκ−(1,0)

M ;∆; Γ ` share � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F8)

n1 = 0 ⇒ n2 = 0 γ1 = γ, rκ+(1,0) κ = (n1, n2)
`M ;∆; Γ; γ1; γ

′ M ; ∆ ` ref(τ, r) γ(r) = κ

M ;∆; Γ ` release � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F9)

`M ;∆; Γ; γ1; γ
′ M ; ∆ ` ref(τ, r) κ ≥ (1, 0)

γ(r) = κ γ1 = γ, rκ+(0,1)

M ;∆; Γ ` unlock � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F10)

`M ;∆; Γ; γ1; γ
′ M ;∆ ` ref(τ, r)

κ ≥ (1, 1) γ(r) = κ γ1 = γ, rκ−(0,1)

M ;∆; Γ ` lockγ � : ref(τ, r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F11)

γ3 = γ, γ1 ? γ2 M ;∆ ` γ′ γ3 C γ′ max(γ :: γ1) = max(γ :: γ2)
M ;∆; Γ ` e2 : τ & (γ;γ :: γ1) M ;∆; Γ ` e3 : τ & (γ;γ :: γ2)

M ;∆; Γ ` if � then e2 else e3 : bool
γ3;γ′
−→ τ & (γ;γ′)

(F12)

M ;∆; Γ ` e : τ & (γa;γb) M ;∆; Γ ` E : τ
γa;γb−→ 〈〉& (γ1;γ2)

∀rκ ∈ γ1. κ = (0, 0) counts ok(E[popγb �], θ) lockset ok(E[popγb �], θ)
M ;∆; Γ `t θ;E[e] : 〈〉& (γ1;γ2)

(EA)

pure(γ) = {ı | ı ' r ∧ rn1,n2 ∈ γ ∧ n1 + n2 > 0}
counts ok(E, θ) = counts rok(E, θ, ∅, ∅)

θ′, ı 7→ n1;n2; ε1; ε2 = θ − γ κ = (n3, n4) ı ' r
(n1, n2) ≥ (n3, n4) is pure(κ) ⇒ n1 = n3 ∧ n2 = n4

θ′, ı 7→ n1 − n3;n2 − n4; ε1; ε2 = θ − γ, rκ
(B0)

θ = θ − ∅
(B1)

counts rok(E, θ′, γ, ε ∪ ε′) ε′ = pure(γ′′)
θ′ = θ − γ′′ ε ∩ ε′ = ∅ γ′′ = subtract(max(γ) , max(γ1))

counts rok(E[popγ �], θ, γ1, ε)
(C1)

194



∀ı.θ(ı) = (0, 0)

counts rok(�, θ, γ, ε) (C0)
F 6= popγ′ � counts rok(E, θ, γ, ε)

counts rok(E[F ], θ, γ, ε)
(C2)

lockset ok(E, θ) lockset(ı, n2, E) ∩ ε1 ⊆ ε2

lockset ok(E , θ, ı 7→ n1;n2; ε1; ε2)
(DL0)

lockset ok(E, ∅)
(DL1)

Program typing

mutex(T ) ≡ ∀T1, n : θ;E[e].T = T1, n : θ;E[e] ⇒ ∀ı.θ(ı) ≥ (1, 1) ⇒ ı /∈ locked(T1)
deadlocked(T ) ≡ T ⊇ T1, n0 : θ0;E[lockγ0 locı0 ], . . . nk : θk;Ek[lockγk locık ] ∧ k > 0 ⇒

∀m1 ∈ [0, k].m2 = (m1 + 1)mod(k + 1) ∧ θm1(ım2) ≥ (1, 1)

blocked(T, n) ≡ T = T1, n : θ;E[lockγ2 locı] ∧ θ(ı) = (n1, n2) ∧ n1 > 0 ∧ n2 = 0∧
locked(T1) ∩ lockset(ı, 1, E[popγ2 �]) 6= ∅

Store Typing

dom(M) = dom(S) ∀(ı 7→ τ) ∈M.M ; ∅; ∅ ` S(ı) : τ & (∅;∅)
M ` S

Configuration Typing

M ` T M ` S mutex(T )
M ` S;T

Thread Typing

M ` ∅
M ; ∅; ∅ `t θ; e : 〈〉& (γ;γ′) M ` T n /∈ dom(T )

M ` T, n : θ; e

Not Stuck

∀T ′, n : θ; e.T = T ′, n : θ; e⇒ (T ′ ⊆ T ′′ ∧ S;T  S′;T ′′) ∨ blocked(T, n)
` S;T

195



Multi-step evaluation

n > 0 S;T  n−1 Sn−1;Tn−1 Sn−1;Tn−1  Sn;Tn
S;T  n Sn;Tn

(E-M1)
S;T  0 S;T

(E-M2)

Main theorems

Safety

∅ ` 0 : ∅; e ∧ 0 : ∅; e  n S′;T ′ ⇒` S′;T ′ ∧ ¬deadlocked(T )

Preservation

M ` S;T ∧ S;T  S′;T ′ ⇒ ∃M ′ ⊇M. M ′ ` S′;T ′

Progress

M ` S;T ⇒ ` S;T

Deadlock Freedom

∅; 0 : e  n Sn;Tn ∧ ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı ⇒ ¬deadlocked(Tn).

C.6 Proof of soundness

Theorem C.1 (Type Safety) Let expression e be the initial program and let the initial typing context
M0 and the initial program configuration S0;T0 be defined as follows:M0 = ∅, S0 = ∅, and T0 =
{0 : ∅; e}. If S0;T0 is well-typed in M0 and the operational semantics takes any number of steps
S0;T0  n Sn;Tn, then the resulting configuration Sn;Tn is not stuck and Tn has not reached a
deadlocked state.

Proof. The application of Lemma C.1 to the assumption implies that ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı.
Therefore, Sn;Tn is well-typed for someMn. The application of Lemma C.2 to ∀ı ∈ [0, n].∃Mı.Mı `
Sı;Tı and ∅; 0 : ∅; e  n Sn;Tn implies that ¬deadlocked(Tn). The application of Lemma C.18 to
Mn ` Sn;Tn implies Sn;Tn is not stuck.

Lemma C.1 (Multi-step Program Preservation) Let S0;T0 be a closed well-typed configuration
for someM0 and assume that S0;T0 evaluates to Sn;Tn in n steps. Then for all ı ∈ [0, n]Mı ` Sı;Tı
holds. Let S0;T0 be a closed well-typed configuration such thatM0 ` S0;T0 for someM0.

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0)
the proof is immediate from the assumption. When some steps are performed (i.e., n > 0), we have
that S0;T0  n Sn;Tn or S0;T0  n−1 Sn−1;Tn−1 and Sn−1;Tn−1  Sn;Tn. By applying the
induction hypothesis on the fact that S0;T0 is well-typed and that n − 1 steps are performed we
obtain that ∀ı ∈ [0, n − 1].∃Mı.Mı ` Sı;Tı. Thus, Mn−1 ` Sn−1;Tn−1 holds. The application of
Lemma C.3 toMn−1 ` Sn−1;Tn−1 and Sn−1;Tn−1  Sn;Tn. implies thatMn ` Sn;Tn. Therefore,
∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı.

Lemma C.2 (Deadlock Freedom) If the initial configuration takes n steps, where each step is well
typed, then the resulting configuration has not reached a deadlocked state.

196



Proof. Let us assume that z threads have reached a deadlocked state and let m ∈ [0, z − 1], k =
(m+1)mod z and o = (k+1)mod z. According to definition of deadlocked state, threadm acquires
lock ık and waits for lock ım, whereas thread k acquires lock ıo and waits for lock ık. Assume thatm
is the first of the z threads that acquires a lock so it acquires lock ık, before thread k acquires lock ıo.

Let us assume that Sy;Ty is the configuration once ıo is acquired by thread k for the first time,
ε1y is the corresponding lockset of ıo (ε1y = lockset(ıo, 1, E[popγy �])) and ε2y is the set of all heap
locations (ε2y = dom(Sy)) at the time ıo is acquired. Then, ık does not belong to ε1y, otherwise thread
k would have been blocked at the lock request of ıo as ık is already owned by threadm.

Let us assume that when thread k attempts to acquire ık, the configuration is of the form Sx;Tx.
According to the assumption of this lemma that all configurations are well typed so Sx;Tx is well-
typed as well. By inversion of the typing derivation of Sx;Tx, we obtain the typing derivation of
thread nk : θk;Ek[lockγ′

k
locık ]: lockγ′

k
locık is well-typed with input-output effect (γ′k; γ

′′
k ), where

κ = γ′k(ık@n
′), κ ≥ (1, 1), γ′′ = γ′k, (ık@n

′)κ−(1,0), and lockset ok(Ek[popγ′′
k
�], θk) holds, where

θk is the access list of thread k.
lockset ok(Ek[popγ′′

k
�], θk) implies lockset(ıo, n2, Ek[popγ′′

k
�])∩ε1 ⊆ ε2, where θk = θ′k, ıo 7→

n1;n2; ε1; ε2 (notice that n2 is positive, ε2 = ε1y and ε1 = ε2y — this is immediate by the operational
steps from Sy;Ty to Sx;Tx and rule E-LK0).

We have assumed thatm is the first thread to lock ık at some step before Sy;Ty, thus ık ∈ dom(Sy)
(the store can only grow — this is immediate by observing the operational semantics rules). By the
definition of lockset function and the definition of γ′′k we have that ık ∈ lockset(ıo, n2, Ek[popγ′′

k
�]).

Therefore, ık ∈ lockset(ıo, n2, Ek[popγ′′
k
�]) ∩ dom(Sy) ⊆ ε1y, which is a contradiction.

Lemma C.3 (Preservation) Let S;T be a well-typed configuration with M ` S;T . If the oper-
ational semantics takes a step S;T  S′;T ′, then there exist an M ′ ⊇ M such that the resulting
configuration is well-typed withM ′ ` S′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : Rule E-T implies that θ;E[e] = θ;�[()], S′ = S and T ′ = T , ∀ı. θ(ı) = (0, 0). By
inversion of the configuration typing assumption we have that:

-M ` T, n : θ;�[()]: by inversion of this derivation we haveM ` T .
-M ` S
- mutex(T, n : θ;�[()]): implies that mutex(T ).

Given the above facts,M ` S;T holds.

Case E-A: RuleE-A implies thatS′ = S, e = (λx. e1 as τ1
γc−→ τ2 v)

seq(γa) and T ′ = T, n : θ;E[popγa
e1[v/x]].

By inversion of the configuration typing assumption we have that:

-M ` S
- mutex(T, n : θ;E[e]): no new locks are acquired.
Thus, mutex(T, n : θ;E[popγa e1[v/x]]) holds.

-M ` T, n : θ;E[e]: by inversion of this derivation we have that:

–M ` T
– n /∈ dom(T )
–M ; ∅; ∅ `t θ;E[e] : 〈〉& (γ;γ′): by inversion we have that counts ok(E[popγb �], θ),
lockset ok(E[popγb �], θ), ∀rκ ∈ γ. κ = (0, 0), andM ; ∅; ∅ ` E : τ ′2

γa;γb−→ 〈〉& (γ;γ′),
M ; ∅; ∅ ` e : τ ′2& (γa;γb). By inversion of the latter derivation we have thatM ; ∅; ∅ `

197



v : τ ′1& (γb;γb), seq(γa) ` γb = γa ⊕ γ′c and M ; ∅; ∅ ` λx. e1 as τ1
γc−→ τ2 :

τ ′1
γ′
c−→ τ ′2& (γb;γb), where τ ′1

γ′
c−→ τ ′2 ' τ1

γc−→ τ2.
By inversion of the function typing derivationwe obtain that seq(∅) ` γc ⇒M ; ∅; ∅, x :
τ1 ` e1 : τ2& (min(γc);γc). seq(∅) ` γ′c (by inversion of seq(γa) ` γb = γa⊕γ′c) and
γc ' γ′c imply that seq(∅) ` γc henceM ; ∅; ∅, x : τ1 ` e1 : τ2& (min(γc);γc) holds.
Lemma C.8 implies thatM ; ∅; ∅ ` v : τ1& (γb;γb). Lemma C.9 implies thatM ; ∅; ∅ `
e1[v/x] : τ2& (min(γc);γc) holds. The application of rule T-PP implies thatM ; ∅; ∅ `
popγa e1[v/x] : τ

′
2& (γa;γb) holds (` M ; ∅; ∅; γa; γb can be derived by the applica-

tion of lemma C.4 to the typing derivation of e). Thus,M ; ∅; ∅ ` E[popγa e1[v/x]] :
〈〉& (γ;γ′), by the application of rule EA to the typing derivation of popγa e1[v/x],
∀rκ ∈ γ. κ = (0, 0), counts ok(E[popγb �], θ) and lockset ok(E[popγb �], θ).

Case E-FX : Rule E-FX implies S;T, n : θ;E[(fix x : τ. f v)seq(γa)]  S; T, n : θ;E[

(f [fix x : τ. f/x] v)seq(γa)] holds. By inversion of the configuration typing assumptionwe have
that:

-M ` S
- mutex(T, n : θ;E[e]): no new locks are acquired. Thus, mutex(T, n : θ;E[e′]) holds, where
e′ = popγa e1[v/x].

-M ` T, n : θ;E[e], where e is equal to (fix x : τ. f v)seq(γa): by inversion of this deriva-
tion we have that:
–M ` T
– n /∈ dom(T )

–M ; ∅; ∅ `t E[e] : 〈〉& (γ0;γ): lemma C.15 implies that M ; ∅; ∅ ` E : τ ′2
γa;γb−→ 〈〉

& (γ0;γ) and M ; ∅; ∅ ` e : τ ′2& (γa;γb). By inversion of the latter derivation we
have that M ; ∅; ∅ ` v : τ1& (γb;γb), and M ; ∅; ∅ ` fix x : τ. f : τ & (γb;γb),
where seq(γa) ` γb = γa ⊕ γc and τ equals τ1

γc−→ τ2. By inversion of the typing
derivation of fix x : τ. f we obtain that M ; ∅; ∅, x : τ ` f : τ ′& (γb;γb), where

τ ′ = τ ′1
γ′
d−→ τ ′2, γ′d ' γd, τ ' τ ′ and γc = summary(γd). Lemma C.9 implies that

M ; ∅; ∅ ` f [fix x : τ. f/x] : τ ′& (γb;γb) holds.
seq(γa) ` γa :: γ′b = γa ⊕ γ′d is implied by γ′d ' γd, seq(γa) ` γb = γa ⊕ γc,
max(γc) = max(γd) and min(γc) = min(γd).
Lemma C.6 implies that M ; ∅; ∅ ` E : τ ′2

γa;γa−→ 〈〉& (γ0;γ
′) and M ; ∅ ` γ, where

γ = γ′ :: γc. Thus,M ; ∅ ` γ′ :: γ′b holds ( the domain of γ′b is a subset of the domain of
γb). The application of lemma C.6 to the latter fact,M ; ∅; ∅ ` E : τ ′2

γa;γa−→ 〈〉& (γ0;γ
′)

implies thatM ; ∅; ∅ ` E : τ ′2
γa;γa::γ′

b−→ 〈〉& (γ0;γ
′ :: γ′b).

Lemma C.5 implies thatM ; ∅; ∅ ` f [fix x : τ. f/x] : τ ′1
γ′
d−→ τ ′2& (γa :: γ′b;γa :: γ′b)

andM ; ∅; ∅ ` v : τ ′1& (γa :: γ′b;γa :: γ′b). Therefore,M ; ∅; ∅ ` (f [fix x : τ. f/x] v)seq(γa) :
τ ′2& (γa;γa :: γ′b).

– lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): lockset ok(E[popγa::γ′
b
�], θ)

and counts ok(E[popγa::γ′
b
�], θ) are immediate from lockset ok(E[popγb �], θ), γc =

summary(γd),max(γc) = max(γd),min(γc) = min(γd), counts ok(E[popγb �], θ) and
the fact that each locked location in γc is also locked in γd and vice versa.

Case E-LK0, E-LK1, E-UL, E-SH and E-RL: these rules generate side-effects as they modify the
reference/lock count of location ı. We provide a single proof for all cases. Hence, we are as-
suming here that u (i.e. in E[u]) has one of the following forms: lockγ1 locı, unlock locı
share locı or release locı. Rules E-LK0, E-LK1, E-UL, E-SH and E-RL imply that S′ = S,
T ′ = T, n : θ′;E[()], where () replaces u in context E and θ differs with respect to θ′ only in the

198



one of the counts of ı (i.e., θ′ = θ[ı 7→ θ(ı) + (n1, n2)] and γa(r) − κ = (n1, n2) — γa is the
input effect of E[u] and κ is the count of the last element of the output effect of u).

By inversion of the configuration typing assumption we have that:

- mutex(T, n : θ;E[u]): In the case of E-UL, E-SH , E-LK1 and E-RL no new locks are ac-
quired. Thus, mutex(T, n : θ′;E[()]) holds. In the case of rule E-LK0, a new lock ı is ac-
quired (i.e., when the lock count of ı is zero) the precondition of E-LK0 suggests that no
other thread holds ı:
locked(T ) ∩ lockset(ı, 1, E[popγa �]) = ∅. Thus, mutex(T, n : θ′;E[()]) holds.

-M ; ∅; ∅ `t θ;E[u] : 〈〉& (γ;γ′): By inversionwe have thatM ; ∅; ∅ ` E : 〈〉 γa;γb−→ 〈〉& (γ;γ′)
and M ; ∅; ∅ ` u : 〈〉& (γa;γb), where γb = γa, (ı@n′)κ for some n′. It can be trivially
shown from the latter derivation thatM ; ∅; ∅ ` () : 〈〉& (γa;γa). Lemma C.6 implies that
M ; ∅; ∅ ` E : 〈〉 γa;γa−→ 〈〉& (γ;γ′′), where γ′ = γ′′, (ı@n′)κ.

- lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): By the definition of lockset func-
tion it can be shown that:
lockset(j, nb, E[popγa �]) ⊆ lockset(j, nb, E[popγb �]) for all j 6= ı in the domain of θ′
(nb is the lock count of j in θ).
The same applies for j = ı in the case of rules E-SH , E-RL as the lock count of ı is not
affected. In the case of rules E-LK0, E-LK1, E-UL we have lockset(ı, nb± 1, E[popγa �]),
but this is identical to lockset(ı, nb, E[popγb �]) by the definition of lockset. Therefore
lockset ok(E[popγa �], θ′) holds. The predicate counts ok (E[popγb �], θ) enforces the
invariant that the static counts are identical to the dynamic counts (θ) of ı. The lock count
of θ is modified by ±1 and γa differs with respect to γb by (ı@n′)κ. We can use this fact
to show that counts ok(E[popγa �], θ′).

Case E-D,E-AS, E-RP and E-PP: these rules are side-effect free and therefore we provide a single
proof for all cases. Hence, we are assuming here that u (i.e. in E[u]) has one of the following
forms: (Λρ. f) [ı@n1], deref locı locı := v or popγ v. Rules E-AS,E-D,E-RP, and E-PP imply
that S′ = S, T ′ = T, n : θ;E[v], where v is the value that replaces u in contextE. By inversion
of the configuration typing assumption we have that:

-M ` S
- mutex(T, n : θ;E[u]): no new locks are acquired.
Thus, mutex(T, n : θ;E[v]) holds.

-M ` T, n : θ;E[u]: by inversion of this derivation we have that:
–M ` T
– n /∈ dom(T )
–M ; ∅; ∅ `t θ;E[u] : 〈〉& (γ;γ′): In the case of rule E-D and E-AS the value v that sub-
stitutes u is () and it can be trivially shown that it is well-typed. In the case rule E-PP
applies, v is well-typed by inversion of the typing derivation of u. In the case of
rule E-RP, v is obtained by substituting ı@n2 in the body of function f (i.e. the ini-
tial term is (Λρ. f) [ı@n1]). We can obtain the typing derivation of v by applying
lemma C.11.Notice, that we are dealing with side-effect free rules in this case thus u
has the same input and output effect.

Case E-IT : ruleE-IT implies thatS;T, n : θ;E[u]  S;T, n : θ;E[e1], whereu is equal to if true then

e1 else e2. By inversion of the configuration typing assumption we have that:

-M ` S
- mutex(T, n : θ;E[u]): no new locks are acquired. Thus, mutex(T, n : θ;E[v]) holds.

199



-M ` T, n : θ;E[u], where u is equal to if true then e1 else e2: by inversion of this
derivation we have that:
–M ` T
– n /∈ dom(T )
–M ; ∅; ∅ `t θ;E[u] : 〈〉& (γ;γ′): by inversion of the typing derivation of θ;E[e] we
obtain that M ; ∅; ∅ ` E : τ ′2

γa;γb−→ 〈〉& (γ;γ′) and M ; ∅; ∅ ` u : τ ′2& (γa;γb). By
inversion of the latter derivation we have that M ; ∅; ∅ ` e1 : τ ′2& (γa;γa :: γb1),
M ; ∅; ∅ ` e2 : τ ′2& (γa;γa :: γb2) and γb = γa, γb1 ? γb2 . Lemma C.6 implies that
M ; ∅; ∅ ` E : τ ′2

γa;γa−→ 〈〉& (γ;γ′′) and M ; ∅ ` γ′, where γ′ = γ′′, γb1 ? γb2 . Thus,
M ; ∅ ` γ′′ :: γb1 holds. The application of lemma C.6 to the latter fact,M ; ∅; ∅ ` E :

τ ′2
γa;γa−→ 〈〉& (γ;γ′′) implies thatM ; ∅; ∅ ` E : τ ′2

γa;γa::γb1−→ 〈〉& (γ;γ′′ :: γb1).
– lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ):
lockset ok(E[popγa::γb1

�], θ) is immediate from lockset(j, nb, E[popγa::γb1
�]) is a

subset of lockset(j, nb, E[popγb �]) that holds for all j in the domain of θ (nb is the
lock count of j in θ) and ruleW4. Predicate counts ok(E[popγa::γb1

�], θ) holds from
counts ok(E[popγb �], θ) and the fact that max(γa :: γb1) = max(γb).

Case E-IF: similar to the previous case.

Case E-NG and E-SN : similar to case E-AP. In the case of rule E-NG the use of lemma C.9 will also
be required in addition to lemmas C.12 and C.13. In the case of E-SN , θ is divided into θ1 and θ2
for threads n and n′ respectively. Thus, it is shown that the effects of the remaining computation
of thread n match θ1, whereas the effect of the new thread n′ matches θ2.

Lemma C.4 (Well-Formedness) If an expression e is well-typed in the typing context M ;∆; Γ,
with effect γ; γ′, then `M ;∆; Γ; γ; γ′ holds.

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting
case is rule T-AP, where it needs to be shown that if ` M ; ∆; Γ; γ1; γ2 and ` M ;∆; Γ; γ2; γ3 are the
well-formedness derivations of expressions e2 and e1 respectively and γ0 is the input effect to the
application term, then `M ;∆; Γ; γ0; γ3 holds.

The premise that γ1 = γ0 ⊕ γa, where γa is the annotation of the abstraction type (i.e. the type of
e1) implies that γ0 C γ1. `M ;∆; Γ; γ1; γ2 and `M ;∆; Γ; γ2; γ3 imply that γ1 C γ2, γ2 C γ3. Thus,
γ0 C γ3. They also imply that seq(∅) ` γ3, ` M ,M ;∆ ` Γ andM ;∆ ` γ3. The latter fact and the
fact that γ0 C γ3 imply thatM ;∆ ` γ0. Thus, `M ;∆; Γ; γ0; γ3 holds.

Lemma C.5 (Value-Effect — Using Well-Formedness) If value v is well-typed in the typing con-
textM ;∆; Γ, with effect (γ; γ) and `M ;∆; Γ; γ1; γ2, then v is well-typed in the same typing context
with effect (γ1; γ1) and (γ2; γ2).

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies
that `M ; ∆; Γ; γ1; γ1 and also `M ; ∆; Γ; γ2; γ2 hold (trivial). By inversion of the typing derivation
of v (for any v) we obtain the well-formedness derivation as well as some other premises (in the case
of rules T-L,T-V,T-F,T-RF,T-Tf,T-Tr,T-FX,T-U). We may use the latter premises of value typing, which
still hold (same typing context), along with the latter two well-formedness derivations to formulate
the new value typing derivations with effect (γ1; γ1) and (γ2; γ2) respectively. The case for rule T-RF
or rule T-FX can be trivially shown by induction (the base case is the same as for rule T-F).

Lemma C.6 (Evaluation Context Sub-typing)

- M ;∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ3;γ4)

- γ2 = γ21 :: γ22 and γ1 C γ21

200



if and only if

- M ; ∆; Γ ` E : τ
γ1;γ21−→ τ ′& (γ3;γ5)

- γ4 = γ5 :: γ22 andM ;∆ ` γ4

Proof. Straightforward induction on the evaluation context typing relation. The base case is trivial.
The inductive hypothesis is trivial by lemma C.7.

Lemma C.7 (Frame Sub-typing) If the following conditions hold

- M ; ∆; Γ ` F : τ
γ1;γ2−→ τ ′& (γ3;γ4)

- γ2 = γ21 :: γ22 and γ1 C γ21

if and only if

- M ; ∆; Γ ` F : τ
γ1;γ21−→ τ ′& (γ3;γ5)

- γ4 = γ5 :: γ22 andM ;∆ ` γ4

Proof. Straightforward case analysis on the frame typing relation.

Lemma C.8 (Typing Equivalence) If τ ′ ' τ and M ;∆; Γ ` e : τ & (γ;γ) then M ;∆; Γ ` e :
τ ′& (γ;γ)

Proof. Straightforward induction on the shape of e′.

Lemma C.9 (Variable Substitution) M ;∆; Γ, x : τ1 ` e : τ2& (γ1;γ2)∧M ; ∅; ∅ ` v : τ1& (γ;γ) ⇒
M ;∆; Γ ` e[v/x] : τ2& (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma C.10 (Type Well-formedness) M ;∆; Γ ` e : τ & (γ;γ′) ⇒M ; ∆ ` τ

Proof. Straightforward induction on the typing rules.

Lemma C.11 (Location Substitution) If the following hold:

- M, ı 7→ τ ′;∆, ρ; Γ ` e : τ & (γ;γ′)

- fresh n

thenM, ı 7→ τ ′;∆; Γ[ı@n/ρ] ` e[ı@n/ρ] : τ [ı@n/ρ]& (γ[ı@n/ρ];γ′[ı@n/ρ]).

Proof. Proof by induction on the typing derivation of e.

Lemma C.12 (Evaluation Typing Weakening) M ;∆; Γ ` e : τ & (γ;γ′), M ; ∅ ` τ ′ and ı /∈
dom(M) thenM, ı 7→ τ ′;∆; Γ ` e : τ & (γ;γ′).

Proof. Proof by induction on the typing derivation of e.

Lemma C.13 (Evaluation Context Typing Weakening) M ;∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ;γ′),M ; ∅ `

τ ′ and ı /∈ dom(M) thenM, ı 7→ τ ′; ∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ;γ′).

Proof. Proof by induction on the derivation of E.

201



Lemma C.14 (Evaluation Context Composition — E) IfM ;∆; Γ ` e : τ & (γa;γb) andM ; ∆; Γ `
E : τ

γa;γb−→ τ ′& (γ1;γ2), thenM ;∆; Γ ` E[e] : τ ′& (γ1;γ2).

Proof. Proof by induction on typing derivation of E. The base case is immediate as �[e] = e. The
inductive case where E = E′[F ], the proof is immediate by inversion of the derivation of E and the
application of lemma C.16.

Lemma C.15 (Evaluation Context Decomposition — E) If M ;∆; Γ ` E[e] : τ ′& (γ1;γ2), then
there exists a γa, γb and τ such thatM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ ` E : τ

γa;γb−→ τ ′& (γ1;γ2).

Proof. Proof by induction on the structure of E. The base case is immediate by using the well-
formedness derivation for the type and typing context of e (i.e., lemmas C.4 and C.10) and the appli-
cation rule E0. The inductive case, where E[e] = E′[F ][e] is immediate by lemma C.17 and rule E1.

Lemma C.16 (Evaluation Context Composition — F ) IfM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ `
F : τ

γa;γb−→ τ ′& (γ1;γ2), thenM ;∆; Γ ` F [e] : τ ′& (γ1;γ2).

Proof. Proof by case analysis on typing derivation ofF . The premises required to construct the typing
derivation of F [e] are given as premises of the typing derivation of F .

Lemma C.17 (Evaluation Context Decomposition — F ) If M ;∆; Γ ` F [e] : τ ′& (γ1;γ2), then
there exists a γa, γb and τ such thatM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ ` F : τ

γa;γb−→ τ ′& (γ1;γ2).

Proof. Proof by case analysis on the structure ofF . The premises required for each case (i.e., rulesF1-F10)
are given by the premises of the typing derivation of F [e].

Lemma C.18 (Progress) Let S;T be a closed well-typed configuration withM ` S;T then S;T
is not stuck (` S;T ).

Proof. It suffices to show that for any thread in T , a step can be performed or block predicate holds
for it. Let n be an arbitrary thread in T such that T = T1, n : θ; e for some T1. By inversion of the
typing derivation of S;T we have thatM ; ∅; ∅ `t θ; e : 〈〉& (γ;γ′), mutex(T ), andM ` S.

If e is a value then by inversion ofM ; ∅; ∅ `t θ; e : 〈〉& (γ;γ′), we obtain that γ = γ′, E[e] =
�[()] and ∀ı.θ(ı) = (0, 0), as a consequence of the following:

∀rκ ∈ γ.κ = (0, 0) and counts ok(�[popγ �], θ). Thus, rule E-T can be applied.
If e is not a value then according to lemma C.19, there exists a redex u and an evaluation context

E such that e = E[u]. By inversion of the thread typing derivation for e we obtain thatM ; ∅; ∅ ` u :

τ & (γa;γb),M ; ∅; ∅ ` E : τ
γa;γb−→ 〈〉& (γ;γ′), counts ok(E[popγb �], θ) hold.

Then, we proceed by performing a case analysis on u:

Case (λx. e′ as τ v)par: it suffices to show that (θ1, θ2) = split(θ , max(γc)) is defined, where γc is
the annotation of type τ . If max(γc) is empty, then the proof is immediate from the base case of
split function. Otherwise, we must show that for all ı, the count θ(ı) is greater than or equal to
the sum of all (ı@n)κ in max(γc). This can be shown by considering par ` γb = γa ⊕ γc (i.e.,
themax counts in γc are less than or equal to themax counts in γb), which can be obtained by
inversion of the typing derivation of (λx. e′ as τ v)par, and the exact correspondence between
static (γb) and dynamic counts (i.e, counts ok(E[popγb �], θ)). Thus, rule E-SN can be applied
to perform a single step.

Case share locı: counts ok(E[popγb �], θ) establishes an exact correspondence between dynamic
and static counts. The typing derivation implies that γa(ı@n1) ≥ (2, 0), for somen1 existentially
bound in the premise of the derivation. Therefore, θ(ı) ≥ (1, 0). It is possible to perform a single
step using rule E-SH . The cases for release locı and unlock locı can be shown in a similar
manner.

202



Case lockγa locı: similarly to the case we can show that θ(ı) = (n1, n2) and n1 is positive. If n2
is positive, rule E-LK1 can be applied. Otherwise, n2 is zero. Let ε be equal to locked(T1) ∩
lockset(ı, 1, E[popγa �]). If ε is empty then rule E-LK0 can be applied in order to perform a
single step. Otherwise, blocked(T, n) predicate holds and the configuration is not stuck.

Case deref locı: it can be trivially shown (as in the previous case of share that we proved θ(ı) ≥
(1, 0)), that θ(ı) ≥ (1, 1) and since mutex(T1, n : θ;E[deref locı]) holds, then ı /∈ locked(T1)
and thus rule E-D can be used to perform a step. The case of locı := v can be shown in a similar
manner.

Case (λx. e′ as τ ′ v)seq(γa): a step can be taken by rule E-A.

Case popγb e
′[v/x]: a step can be taken by rule E-PP.

Case (Λρ. f) [ı@n1]: a step can be taken by rule E-RP.

Case (fix x : τ. f v)seq(γa): a step can be taken by rule E-FX .

Case if true then e1 else e2: a step can be taken by rule E-IT .

Case if false then e1 else e2: a step can be taken by rule E-IF.

Lemma C.19 (Redex) If M ;∆; Γ ` e : τ & (γ1;γ2) and e is not a value then M ;∆; Γ ` E′[u] :
τ & (γ1;γ2) such that E′[u] = e.

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is
not a redex, to typing derivations of the form E′[e′] and apply induction for e′.

203





Appendix D

Formal semantics and proof of soundness for Chapter 7

D.1 Language syntax

Language syntax

Value v ::= () | true | false | f | lkı
Expression e ::= x | v | (e e)ξ | (e) [r] | popγ e

| newlock ρ, x in e
| lockγ e | unlock e
| if e then e else e

Function f ::= λx. e | Λρ. f | fix x. f
Type τ ::= 〈〉 | Bool | Lk(r) | τ γ−→ τ | ∀ρ. τ
Lock r ::= ρ | ı
Calling modeξ ::= seq(γ) | par
Operation κ ::= + | −
Effect γ ::= ∅ | rκ, γ | γ ? γ, γ

D.2 Operational semantics

Auxiliary syntax for operational semantics

Lock Store S ::= ∅ | S, ı 7→ n;n; ε; ε

Threads T ::= ∅ | T, n : e
Configuration C ::= S;T

Lockset ε ::= ∅ | ε, ı

205



Evaluation context

Context E ::= � | E[F ]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | popγ �
| lockγ1 � | unlock� | if � then e else e

Redex u ::= (v′ v)ξ | (f) [r] | lockγ1 v | unlock v
| newlock ρ, x in e1 | if v then e1 else e2 | popγ v

Helper relations

run(γ, ı, n) =



∅ if n = 0
run(γ′, ı, n+ 1) if γ = ı+, γ′ and n > 0
run(γ′, ı, n− 1) if γ = ı−, γ′ and n > 0
run(γ′, ı, n) ∪ {j} if γ = j+, γ′ and n > 0
run(γ′, ı, n) if γ = j−, γ′ and n > 0
run((γ1 :: γ′), ı, n) ∪ run((γ2 :: γ′), ı, n) if γ = γ1 ? γ2, γ

′ and
n > 0

stack(E) =


∅ if E = �
stack(E′) if E = E′[F ] and F 6= popγ′ �
γ′ :: stack(E′) if E = E′[popγ′ �]

available(S, n) =


∅ if S = ∅
available(S′, n) ∪ {ı} if S = S′, ı 7→ n1;n2; ε1; ε2 and

n1 = n or n2 = 0
available(S′, n) if S = S′, ı 7→ n1, n2; ε1; ε2 and

n1 6= n and n2 > 0

dom(S) = {ı | ı 7→ n1;n2; εa; εb ∈ S}

Reduction relation

S;T, n :E[if true then e1 else e2]  S;T, n :E[e1]
(E-IT)

S;T, n :E[if false then e1 else e2]  S;T, n :E[e2]
(E-IF)

v′ = fix x. f

S;T, n :E[(v′ v)seq(γ)]  S;T, n :E[(f [v′/x] v)seq(γ)]
(E-FX)

fresh n′

S;T, n :E[(v′ v)par]  S;T, n :E[()], n′ :�[(v′ v)seq(∅)]
(E-SN)

S;T, n :�[()]  S;T
(E-T)

S;T, n :E[((λx. e1) v)
seq(γ)]  S;T, n :E[popγ e1[v/x]]

(E-A)

S;T, n :E[(Λρ. f)[ı]]  S;T, n :E[f [ı/ρ]]
(E-RP)

S;T, n :E[popγ v]  S;T, n :E[v]
(E-PP)

fresh ı S′ = S, ı 7→ n; 0; ∅; ∅
S;T, n :E[newlock ρ, x in e1]  S′;T, n :E[e1[ı/ρ][lkı/x]]

(E-NG)

206



S(ı) = n1; 0; ε1; ε2 S′ = S[ı 7→ n; 1; dom(S); ε]
ε = run(stack(E[popγ1 �]), ı, 1) ε ∪ {ı} ⊆ available(S, n)

S;T, n :E[lockγ1 lkı]  S′;T, n :E[()]
(E-LK0)

S(ı) = n;n2; ε1; ε2 n2 > 0 S′ = S[ı 7→ n;n2 + 1; ε1; ε2]

S;T, n :E[lockγ1 lkı]  S′;T, n :E[()]
(E-LK1)

S(ı) = n;n2; ε1; ε2 n2 > 0 S′ = S[ı 7→ n;n2 − 1; ε1; ε2]

S;T, n :E[unlock lkı]  S′;T, n :E[()]
(E-UL)

D.3 Static semantics

Static semantics syntax

Type variable list� ::= ∅ | ∆, ρ
Memory List M ::= ∅ | M, ı

Variable list � ::= ∅ | Γ, x : τ

Well-formedness relation
Constraint Well-formedness

M ;∆ ` ∅
r ∈M ∪∆ M ;∆ ` γ1

M ; ∆ ` γ1, rκ
M ;∆ ` γ1 M ;∆ ` γ2 M ;∆ ` γ3

M ;∆ ` γ1, γ2 ? γ3

Type Well-formedness

M ;∆ ` Bool

M ;∆, ρ ` τ
M ;∆ ` ∀ρ. τ

r ∈M ∪∆
M ;∆ ` Lk(r)

M ; ∆ ` τ1 M ;∆ ` γ1 M ;∆ ` τ2
M ;∆ ` τ1

γ1−→ τ2 M ;∆ ` 〈〉

ΓWell-formedness

M ;∆ ` ∅
M ;∆ ` τ1 x /∈ dom(Γ1) M ;∆ ` Γ1

M ;∆ ` Γ1, x : τ1

207



Typing rules

x : τ ∈ Γ
M ;∆ ` Γ M ; ∆ ` γ
M ;∆; Γ ` x : τ & (γ;γ)

(T-V)
M ;∆ ` Γ M ;∆ ` γ

M ;∆; Γ ` true : Bool& (γ;γ)
(T-T)

M ;∆ ` Γ M ;∆ ` γ
M ;∆; Γ ` false : Bool& (γ;γ)

(T-F)
M ; ∆ ` Γ M ;∆ ` γ
M ;∆; Γ ` () : 〈〉& (γ;γ)

(T-U)

M ;∆, ρ; Γ ` f : τ & (γ;γ)

M ;∆; Γ ` Λρ. f : ∀ρ. τ & (γ;γ)
(T-RF)

M ;∆ ` Γ M ;∆ ` γ ı ∈M

M ; ∆; Γ ` lkı : Lk(ı)& (γ;γ)
(T-L)

M ;∆ ` Γ M ;∆ ` γ τ ≡ τ1
γb−→ τ2

M ;∆ ` τ M ; ∆; Γ, x : τ1 ` e1 : τ2& (∅;γb)
M ;∆; Γ ` λx. e1 : τ & (γ;γ)

(T-FN)

R;M ;∆; Γ, x : τa ` f : τb& (γ;γ)

τa ≡ τ1
γa−→ τ2 τb ≡ τ1

γb−→ τ2 γa = summary(γb)
R;M ;∆; Γ ` fix x. f : τa& (γ;γ)

(T-FX)

M ;∆; Γ ` e : Lk(r)& (r+, γ;γ′)

M ;∆; Γ ` lockγ e : 〈〉& (γ;γ′)
(T-LK)

M ; ∆; Γ ` e : Lk(r)& (r−, γ;γ′)

M ;∆; Γ ` unlock e : 〈〉& (γ;γ′)
(T-UL)

M ;∆; Γ ` e1 : τ1
γa−→ τ2& (γ1;γ

′)
M ;∆; Γ ` e2 : τ1& (γa :: γ;γ1)

M ;∆; Γ ` (e1 e2)
seq(γ) : τ2& (γ;γ′)

(T-SA)

∀r ∈ dom(γa). r; 0 `ok γa
M ; ∆; Γ ` e1 : τ1

γa−→〈〉& (γ1;γ
′) M ;∆; Γ ` e2 : τ1& (γ;γ1)

M ;∆; Γ ` (e1 e2)
par : 〈〉& (γ;γ′)

(T-PA)

r ∈M ∪∆ M ;∆; Γ ` e1 : ∀ρ. τ & (γ;γ′)

M ; ∆; Γ ` (e1) [r] : τ [r/ρ]& (γ;γ′)
(T-RP)

M ;∆ ` τ ρ /∈ dom(γ) ρ; 0 `ok γ′

M ;∆, ρ; Γ, x : Lk(ρ) ` e1 : τ & (γ;γ′)

M ; ∆; Γ ` newlock ρ, x in e1 : τ & (γ;γ′ \ ρ)
(T-NG)

M ;∆ ` γ M ;∆; Γ ` e : τ & (∅;γ′)
M ;∆; Γ ` popγ e : τ & (γ;γ′ :: γ)

(T-PP)

M ;∆; Γ ` e1 : Bool& (γ1 ? γ2, γ;γ
′)

M ;∆; Γ ` e2 : τ & (γ;γ1 :: γ) M ;∆; Γ ` e3 : τ & (γ;γ2 :: γ)

M ;∆; Γ ` if e1 then e2 else e3 : τ & (γ;γ′)
(T-IF)

where summary(γa) = γ1 :: γ2 :: γ3 if rsummary(γa) = γ1; γ2; γ3

208



Lock removal

γ′ = γ \ r
γ′ = rκ, γ \ r

(M0)
r′ 6= r γ′ = γ \ r′

rκ, γ′ = rκ, γ \ r′
(M1)

∅ = ∅ \ r
(M3)

γ′1 = γ1 \ r′ γ′2 = γ2 \ r′ γ′3 = γ3 \ r′

γ′2 ? γ
′
3, γ

′
1 = γ2 ? γ3, γ1 \ r

(M4)

Effect validation

0 ≤ n r;n+ 1 `ok γ

r;n `ok r+, γ
(OK1)

r;n− 1 `ok γ n > 0

r;n `ok r−, γ
(OK2)

0 ≤ n r;n `ok γ r 6= r′

r;n `ok r′κ, γ
(OK3)

r; 0 `ok ∅
(OK4)

0 ≤ n r;n `ok γ1 :: γ r;n `ok γ2 :: γ

r;n `ok γ1 ? γ2, γ
(OK5)

Summary of recursive effect

r;na `ok γa :: (r−)
nb r ∈ dom(γa) ∀nc.¬ (r;na − 1 `ok γa :: (r−)

nc)
γ3 = {r+, r− | r+ ∈ γa} rsummary(γa \ r) = γ1; γ2; γ0

rsummary(γa) = γ3 :: γ1; (r
+)

nb :: γ2; (r
−)

na :: γ0
(PX0)

rsummary(∅) = ∅; ∅; ∅
(PX1)

D.4 Type safety

Evaluation context typing

Sub-effect γ C γ′ ≡ ∃γ′′.γ′ = γ′′ :: γ

M ;∆ ` Γ M ;∆ ` γ1 M ;∆ ` γ2 M ;∆ ` τ
M ;∆; Γ ` � : τ

γ1;γ2−→ τ & (γ1;γ2)
(E0)

M ;∆; Γ ` E : τ2
γ5;γ6−→ τ3& (γ1;γ2)

M ;∆; Γ ` F : τ1
γ3;γ4−→ τ2& (γ5;γ6)

M ;∆; Γ ` E[F ] : τ1
γ3;γ4−→ τ3& (γ1;γ2)

(E1)

209



M ;∆ ` γ2 γ1 C γ2 M ;∆ ` τ2
M ;∆; Γ ` e2 : τ1& (γa :: γ;γ1)

M ;∆; Γ ` (� e2)
seq(γ) : (τ1

γa−→ τ2)
γ1;γ2−→ τ2& (γ;γ2)

(F1)

γ2 C γ3 M ;∆ ` τ1
γa−→〈〉

M ;∆; Γ ` e2 : τ1& (γ1;γ2)

M ;∆; Γ ` (� e2)
par : (τ1

γa−→〈〉) γ2;γ3−→ 〈〉& (γ1;γ3)
(F2)

γ2 = γ1 :: γa M ;∆ ` γ3 γ2 C γ3
M ;∆; Γ ` v1 : τ1

γa−→ τ2& (γ3;γ3)

M ;∆; Γ ` (v1 �)seq(γ1) : τ1
γ2;γ3−→ τ2& (γ1;γ3)

(F3)

M ; ∆ ` γ2 γ1 C γ2
M ;∆; Γ ` v1 : τ1

γa−→〈〉& (γ2;γ2)

M ;∆; Γ ` (v1 �)par : τ1
γ1;γ2−→ 〈〉& (γ1;γ2)

(F4)

M ;∆ ` τ M ;∆ ` γ′ γ′ = γ2 :: γ

M ; ∆; Γ ` popγ � : τ
∅;γ2−→ τ & (γ;γ′)

(F5)

M ; ∆ ` Γ M ;∆ ` γ′
M ;∆ ` Lk(r) γ1 = r−, γ γ1 C γ′

M ;∆; Γ ` unlock� : Lk(r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F6)

M ; ∆ ` Γ M ;∆ ` γ′
M ;∆ ` Lk(r) γ1 = r+, γ γ1 C γ′

M ; ∆; Γ ` lockγ � : Lk(r)
γ1;γ′
−→ 〈〉& (γ;γ′)

(F7)

γ3 = γ1 ? γ2, γ M ;∆ ` γ′ γ3 C γ′
M ;∆; Γ ` e2 : τ & (γ;γ1 :: γ) M ;∆; Γ ` e3 : τ & (γ;γ2 :: γ)

M ;∆; Γ ` if � then e2 else e3 : Bool
γ3;γ′
−→ τ & (γ;γ′)

(F8)

M ;∆ ` γ′ M ;∆ ` ∀ρ. τ r ∈M ∪∆ γ C γ′

M ;∆; Γ ` (�) [r] : ∀ρ. τ γ;γ′
−→ τ [r/ρ]& (γ;γ′)

(F9)

Program typing

locks(S, ı, n) =

{
n2 if S(ı) = (n;n2; ε1; ε2)
0 if S(ı) = (n1;n2; ε1; ε2) ∧ n1 6= n

deadlocked(T ) ≡ T ⊇ T1, n0 :E[lockγ0 lkı0 ], . . . , nk :Ek[lockγk lkık ] ∧ k > 0∧
∀m1 ∈ [0, k].m2 = (m1 + 1)mod(k + 1) ∧ locks(S, ım2 ,m1) > 0

dom(γ) =


∅ if γ = ∅
dom(γ′) ∪ dom(γ1) ∪ dom(γ2) if γ = γ1 ? γ2, γ

′

dom(γ′) ∪ {r} if γ = rκ, γ′

dom(T ) = {n | n : e ∈ T}

210



Configuration Typing

S;M ` T M = dom(S)
M ` S;T

Thread Effect Consistency

ı;n1 `ok γ ε3 = run(γ, ı, n1)
n; γ ` S ε1 ∩ ε3 ⊆ ε2
n; γ ` S, ı 7→ n;n1; ε1; ε2

ı; 0 `ok γ n 6= n1 n; γ ` S
n; γ ` S, ı 7→ n1;n2; ε1; ε2 n; γ ` ∅

Thread Typing

S;M ` ∅

M ; ∅; ∅ ` e : 〈〉& (∅;γ) S;M ` T
n /∈ dom(T ) n; γ ` S

S;M ` T, n : e

Not Stuck

` S; ∅
` S;T S;T, n : e  S′;T ′ T ⊆ T ′

` S;T, n : e

` S;T locks(S, ı, n) = 0
run(stack(E[popγ �), ı; 1) = ε ε ∪ {ı} ⊃ available(S, n)

` S;T, n :E[lockγ lkı]

Multi-step evaluation

n > 0 S;T  n−1 Sn−1;Tn−1 Sn−1;Tn−1  Sn;Tn
S;T  n Sn;Tn

(E-M1)
S;T  0 S;T

(E-M2)

Main theorems
Safety

S0;T0 ≡ ∅; 0 : e ∧ ∅ ` S0;T0 ∧ S0;T0  n S′;T ′ ⇒ ` S′;T ′ ∧ ¬deadlocked(T ′)

Preservation

M ` S;T ∧ S;T  S′;T ′ ⇒ ∃M ′ ⊇M. M ′ ` S′;T ′

Progress

M ` S;T ⇒ ` S;T

211



Deadlock Freedom

∅; 0 : e  n Sn;Tn ∧ ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı ⇒ ¬deadlocked(Tn).

D.5 Proof of soundness

Theorem D.1 (Type Safety) If the initial configuration S0;T0 is well-typed (cf. page 54) with ∅ `
S0;T0 and the operational semantics takes any number of steps S0;T0  n Sn;Tn, then the resulting
configuration Sn;Tn is not stuck and Tn has not reached a deadlocked state.

Proof. The application of lemma D.1 to the assumption implies that ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı.
Therefore, Sn;Tn is well-typed for someMn. The application of lemma D.19 toMn ` Sn;Tn implies
Sn;Tn is not stuck. The application of lemma D.2 to ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı and ∅; 0 : ∅; e  n

Sn;Tn implies that Tn has not reached a deadlocked state.

Lemma D.1 (Multi-step Program Preservation) Let S0;T0 be a closed well-typed configuration
such thatM0 ` S0;T0 for someM0. If the operational semantics evaluates S0;T0 to Sn;Tn in n steps,
then ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0)
the proof is immediate from the assumption. When some steps are performed (i.e., n > 0), we have
that S0;T0  n Sn;Tn or S0;T0  n−1 Sn−1;Tn−1 and Sn−1;Tn−1  Sn;Tn. The application
of the induction hypothesis to the fact that S0;T0 is well-typed implies ∀ı ∈ [0, n − 1].∃Mı.Mı `
Sı;Tı. Thus,Mn−1 ` Sn−1;Tn−1 holds. The application of lemma D.3 toMn−1 ` Sn−1;Tn−1 and
Sn−1;Tn−1  Sn;Tn. implies thatMn ` Sn;Tn. Therefore, ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı.

Lemma D.2 (Deadlock Freedom) Let the initial configuration taken steps, where each step is well-
typed for someM , then the resulting configuration has not reached a deadlocked state.

Proof. The assumptions imply that ∅; 0 : e  n Sn;Tn and ∀ı ∈ [0, n].∃Mı.Mı ` Sı;Tı. Assume that
deadlocked(Tx) holds for some x ∈ [0, n] and the first deadlock occurring in the program is in Tx (i.e.
∀ı.ı < x⇒ ¬deadlocked(Tı)). Then, the following hold:

- Tx = T, n0 :E0[lockγ0 lkı0 ], . . . nz :Ez[lockγz lkız ], where threads 0 to z are in a deadlocked
state.

- z > 0 and ∀m1 ∈ [0, z]. locks(S, ısucc(m1),m1) > 0, where succ(n) = (n+ 1) mod(z + 1).

Letm be the thread that acquires the first of the z + 1 locks that cause the deadlock, namely ısucc(m)

(given the definition of Tx). Then threadm acquired lock ık, where k equals succ(m), before thread
k acquired lock ısucc(κ). Let us assume that ε1y = run(stack(E[popγy �]), ısucc(k) , 1) and ε2y =
dom(Sy), where y < x such that ısucc(k) is acquired for the first time by thread k. Then, ık does not
belong to ε1y, otherwise thread k would have been blocked at the lock request of ısucc(k) as ık is already
owned by threadm.

According to the assumption, each step is well-typed so Sx;Tx is well-typed. By inversion of the
typing configuration of thread nk : Ek[lockγ′

k
lkık ]we obtain that nk; γk ` Sk, where γk is the effect

assigned to expression Ek[lockγ′
k
lkık ] by thread typing. We have that ısucc(k) is locked by thread k

so by inversion of nk; γk ` Sk we have that:

- Sk(ısucc(k)) = nk;n1; ε1; ε2, where n1 is positive.

- ısucc(k);n1 `ok γk

- ε3 = run(γk, ısucc(k), n1)

212



- ε1 ∩ ε3 ⊆ ε2, where ε2 = ε1y and ε1 = ε2y (this is immediate by the operational steps from step
y to x).

Thus, it suffices to prove that ık ∈ ε1 and ık ∈ ε3. For all evaluation steps f and g such that f
less or than equal to g, dom(Sf ) ⊆ dom(Sg) holds (trivial to show by observation of the evaluation
relation). We have assumed that m is the first thread to lock ık at some step y′ (so ık ∈ dom(Sy′))
prior to y so ık ∈ ε1 (so ık ∈ dom(Sy′) ⊆ (dom(Sy) = ε2y = ε1).

The application of lemmaD.16 to the typing derivation ofEk[lockγ′
k
lkık ] implies that lockγ′

k
lkık

is well-typedwith effect (γ′k; ık
+, γ′k) and thatEk is well-typed. Thus,Mk; ∅; ∅ ` Ek : 〈〉

γ′
k;ık

+,γ′
k−→ 〈〉& (∅;

γk). Lemma D.9 implies that γk = ık
+, γ′′k for some γ′′k . Thus, ε3 = run(ık+, γ′′k , ısucc(k), n1) =

run(γ′′k , ısucc(k), n1)∪ {ık} (by the definition of function run). Therefore ık ∈ ε1y, which is a contra-
diction.

Lemma D.3 (Preservation) Let S;T be a well-typed configuration with M ` S;T . If the oper-
ational semantics takes a step S;T  S′;T ′, then there exist an M ′ ⊇ M such that the resulting
configuration is well-typed withM ′ ` S′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : rule E-T implies that S;T, n :�[()]  S;T . By inversion of the configuration typing
assumption we have that:

- S;M ` T, n :�[()]: by inversion of this derivation we have that:
–M ; ∅; ∅ ` �[()] : 〈〉& (∅;∅)
– n /∈ dom(T )
– S;M ` T
– n; ∅ ` S

-M = dom(S)

Given the above facts,M ` S;T holds.

Case E-A: rule E-A implies that S;T, n :E[(v′ v)seq(γa)]  S;T, n :E[popγa e1[v/x]], where v
′ is

equal to λx. e1. By inversion of the configuration typing assumption we have that:

-M = dom(S)

- S;M ` T, n :E[e], where e is equal to (v′ v)seq(γa): by inversion of this derivation we
have that:
– S;M ` T
– n /∈ dom(T )
– n; γ ` S
–M ; ∅; ∅ ` E[e] : 〈〉& (∅;γ): lemmaD.16 implies thatM ; ∅; ∅ ` E : τ ′2

γa;γb−→ 〈〉 & (∅;γ)
and M ; ∅; ∅ ` e : τ ′2& (γa;γb). By inversion of the latter derivation we have that

M ; ∅; ∅ ` v : τ ′1& (γb;γb), and M ; ∅; ∅ ` λx. e1 : τ ′1
γ′
c−→ τ ′2& (γb;γb), where γb =

γ′c :: γa. By inversion of the typing derivation of v′ we obtain thatM ; ∅; ∅, x : τ ′1 `
e1 : τ

′
2& (∅;γ′c). Lemma D.11 implies thatM ; ∅; ∅ ` e1[v/x] : τ ′2& (∅;γ′c) holds. The

application of rule T-PP implies that M ; ∅; ∅ ` popγa e1[v/x] : τ
′
2& (γa;γb) holds.

The application of lemma D.15 implies thatM ; ∅; ∅ ` E[popγa e1[v/x]] : 〈〉& (∅;γ).

Case E-SN : Rule E-SN implies that S;T, n :E[(v′ v)par]  S;T, n :E[()], n′ :�[(v′ v)seq(∅)] By
inversion of the configuration typing assumption we have that:

-M = dom(S)

213



- S;M ` T, n :E[e]: by inversion of this derivation we have that:

– S;M ` T
– n; γ ` S
– n /∈ dom(T )

–M ; ∅; ∅ ` E[(v′ v)par] : 〈〉& (∅;γ): lemmaD.16 implies thatM ; ∅; ∅ ` E : 〈〉 γa;γa−→ 〈〉& (
∅;γ) and M ; ∅; ∅ ` (v′ v)par : 〈〉& (γa;γa). By inversion of the latter derivation

we have that M ; ∅; ∅ ` v : τ ′1& (γa;γa), M ; ∅; ∅ ` v′ : τ ′1
γ′
c−→〈〉& (γa;γa) and

∀r ∈ dom(γ′c). r; 0 `ok γ′c. The application of lemma D.7 to the typing derivation
of v′ implies that M ; ∅ ` γ′c. Lemma D.8 implies that M ; ∅; ∅ ` v : τ ′1& (γ′c;γ

′
c)

and M ; ∅; ∅ ` v′ : τ ′1
γ′
c−→〈〉& (γ′c;γ

′
c). Rule T-AP implies M ; ∅; ∅ ` (v′ v)seq(∅) :

〈〉& (∅;γ′c). Therefore, lemma D.15 implies thatM ; ∅; ∅ ` �(v′ v)seq(∅) : 〈〉& (∅;γ′c).
The application of lemma D.6 to the typing derivation of v′ implies M ; ∅ ` γa.
Rule T-U yields that M ; ∅; ∅ ` () : 〈〉& (γa;γa). The application of lemma D.15
implies thatM ; ∅; ∅ ` E[()] : 〈〉& (∅;γ).

– n′; γ′c ` S: this is immediate from ∀r ∈ dom(γ′c). r; 0 `ok γ′c and the fact that
locks(S, ı, n′) = 0 for all ı.

Case E-IT : rule E-IT implies that S;T, n :E[if true then e1 else e2]  S;T, n :E[e1]. By in-
version of the configuration typing assumption we have that:

-M = dom(S)

- S;M ` T, n :E[e], where e is equal to if true then e1 else e2: by inversion of this
derivation we have that:

– S;M ` T
– n /∈ dom(T )

–M ; ∅; ∅ ` E[e] : 〈〉& (∅;γ): lemma D.16 implies that M ; ∅; ∅ ` E : τ ′2
γa;γb−→ 〈〉

& (∅;γ) and M ; ∅; ∅ ` e : τ ′2& (γa;γb). By inversion of the latter derivation we
have that M ; ∅; ∅ ` e1 : τ ′2& (γa;γb1 :: γa), M ; ∅; ∅ ` e2 : τ ′2& (γa;γb2 :: γa)

and γb = γb1 ? γb2 , γa. Lemma D.9 implies that M ; ∅; ∅ ` E : τ ′2
γa;γa−→ 〈〉& (∅;γ′)

and M ; ∅ ` γ, where γ = γb1 ? γb2 , γ
′. Thus, M ; ∅ ` γb1 :: γ′ holds. The applica-

tion of lemma D.9 to the latter fact, M ; ∅; ∅ ` E : τ ′2
γa;γa−→ 〈〉& (∅;γ′) implies that

M ; ∅; ∅ ` E : τ ′2
γa;γb1 ::γa−→ 〈〉& (∅, γb1 :: γ′). Lemma D.15 implies that M ; ∅; ∅ `

E[e1] : 〈〉& (∅;γb1 :: γ′).
– n; γ ` S: Let us assume that S = S′, ı1 7→ na;nb; εa; εb, for any ı1 in dom(S). Given
n; γ ` ı1 7→ na;nb; εa; εb, where γ = γb1 ? γb2 , γ

′, it suffices to prove n; γb1 :: γ′ `
ı1 7→ na;nb; εa; εb. If na 6= n, then it suffices to prove ı1; 0 `ok γb1 :: γ′, which
immediate by ı1; 0 `ok γb1 ? γb2 , γ

′ (by inversion of n; γ ` ı1 7→ na;nb; εa; εb). If
na 6= n, then it suffices to prove ı1;na `ok γb1 :: γ′ and run((γb1 :: γ′), ı1, na)∩εa ⊆
εb. The proof for the former is identical to the proof where na 6= n. By inversion of
n; γ ` ı1 7→ na;nb; εa; εb we obtain that run(γ, ı1, na) ∩ εa ⊆ εb. Thus, it suffices to
show that run(γ, ı1, na) ⊇ run((γb1 :: γ′), ı1, na), which is immediate by the definition
of run.

Case E-IF: similar to the previous case.

Case E-FX : rule E-FX implies S;T, n :E[(fix x. f v)seq(γa)]  S;T, n :E[(f ′ v)seq(γa)] holds,
where f ′ = f [fix x. f/x]. By inversion of the configuration typing assumption we have that:

-M = dom(S)

214



- S;M ` T, n :E[e], where e is equal to (fix x. f v)seq(γa): by inversion of this derivation
we have that:

– S;M ` T
– n /∈ dom(T )

–M ; ∅; ∅ ` E[e] : 〈〉& (∅;γ): lemma D.16 implies thatM ; ∅; ∅ ` E : τ ′2
γa;γb−→ 〈〉& (∅;γ)

and M ; ∅; ∅ ` e : τ ′2& (γa;γb). By inversion of the latter derivation we have that

M ; ∅; ∅ ` v : τ ′1& (γb;γb), andM ; ∅; ∅ ` fix x. f : τ ′1
γ′
c−→ τ ′2& (γb;γb), where γb =

γ′c :: γa. By inversion of the typing derivation of fix x. f we obtain thatM ; ∅; ∅, x :

τ ′1
γ′
c−→ τ ′2 ` f : τ ′1

γ′′
c−→ τ ′2& (γb;γb), summary(γ′′c ) = γ′c = γx1 :: γy :: γx2 such that

rsummary(γ′′c ) = γx1; γy; γx2. Lemma D.11 implies that M ; ∅; ∅ ` f [fix x. f/x] :

τ ′1
γ′′
c−→ τ ′2& (γb;γb) holds. Lemma D.9 implies thatM ; ∅; ∅ ` E : τ ′2

γa;γa−→ 〈〉& (∅;γ′)
andM ; ∅ ` γ, where γ = γ′c :: γ

′. Thus,M ; ∅ ` γ′′c :: γ′ holds (M ; ∅ ` γ′′c holds by
the application of lemma D.7 to the typing derivation f [fix x. f/x]). The application
of lemmaD.9 to the latter fact,M ; ∅; ∅ ` E : τ ′2

γa;γa−→ 〈〉& (∅;γ′) implies thatM ; ∅; ∅ `
E : τ ′2

γa;γ′′
c ::γa−→ 〈〉& (∅;γ′′c :: γ′). Lemma D.8 implies thatM ; ∅; ∅ ` f [fix x. f/x] :

τ ′1
γ′′
c−→ τ ′2& (γ′′c :: γa;γ

′′
c :: γa) and M ; ∅; ∅ ` v : τ ′1& (γ′′c :: γa;γ

′′
c :: γa). There-

fore, M ; ∅; ∅ ` (f [fix x. f/x] v)seq(γa) : τ ′2& (γa;γ
′′
c :: γa). The application of

lemma D.15 implies thatM ; ∅; ∅ ` E[(f [fix x. f/x] v)seq(γa)] : 〈〉& (∅;γ′′c :: γ′).
– n; γ ` S: n; γ′′c :: γ′ ` S is immediate by lemma D.4.

Case E-RP and E-PP: these rules are side-effect free and therefore we provide a single proof for
all cases. Hence, we are assuming here that u (i.e. in E[u]) has one of the following forms:
(Λρ. f) [ı] or popγ v. Rules E-RP and E-PP imply that S′ = S, T ′ = T, n :E[v], where v is
the value that replaces u in context E. By inversion of the configuration typing assumption we
have that:

-M = dom(S)

- S;M ` T, n :E[u]: by inversion of this derivation we have that:

– S;M ` T
– n /∈ dom(T )

–M ; ∅; ∅ ` E[u] : 〈〉& (∅;γ): in the case of rule E-PP, v is well-typed by inversion of
the typing derivation of u. We need to apply lemma D.8 so as to change the effect of
v from ∅ to γ. In the case of rule E-RP, v is obtained by substituting ı in the body of
function f (i.e. the initial term is (Λρ. f) [ı]). This is immediate by lemma D.12.

– n; γ ` S

Case E-NG: rule E-NG implies that S;T, n :E[newlock ρ, x in e1]  S, ı 7→ n; 0; ∅; ∅;T, n :
E[e1[ı/ρ] [lkı/x]]. By inversion of the configuration typing assumption we have that:

-M = dom(S):M, ı = dom(S, ı 7→ n; 0; ∅; ∅) is immediate.

- S;M ` T, n :E[newlock ρ, x in e1]: by inversion of this derivation we have that:

– S;M ` T : S, ı 7→ n; 0; ∅; ∅;M, ı ` T trivially holds by using lemma D.13 to
obtain that threads of T are well-typed in the extended contextM, ı; ı is fresh (it does
not exist in the effects or stack of other threads) so the invariant n; γn′ ` S, ı 7→
n; 0; ∅; ∅ trivially holds from n; γn′ ` S, where γn′ is the effect of thread n′ (other
than n).

– n /∈ dom(T )

215



–M ; ∅; ∅ ` E[newlock ρ, x in e1] : 〈〉& (∅;γ): lemma D.16 implies that M ; ∅; ∅ `
E : τ

γa;γb−→ 〈〉& (∅;γ) andM ; ∅; ∅ ` newlock ρ, x in e1 : τ & (γa;γb). By inversion of
the latter derivation we obtain that M ; ∆ ` τ , ρ; 0 `ok γc, M ; ∅, ρ; ∅, x : Lk(ρ) `
e1 : τ & (γa;γc) and γb = γc \ ρ = (γe \ ρ) :: γa for some γe. Lemma D.13
implies that M, ı; ∅, ρ; ∅, x : Lk(ρ) ` e1 : τ & (γa;γc) holds. Lemma D.12 implies
that M, ı; ∅; ∅, x : Lk(ı) ` e1[ı/ρ] : τ [ı/ρ]& (γa[ı/ρ];γc[ı/ρ]) holds. γa and τ do
not any contain occurrences of ρ so the above derivation can be further simplified to
M, ı; ∅; ∅, x : Lk(ı) ` e1[ı/ρ] : τ & (γa;γc[ı/ρ]) holds. Lemma D.11 andM, ı; ∅; ∅ `
lkı : Lk(ı)& (∅;∅) imply that M, ı; ∅; ∅ ` e1[ı/ρ][lkı/x] : τ & (γa;γc[ı/ρ]) holds.
Lemma D.9 implies thatM ; ∅; ∅ ` E : τ

γa;γa−→ 〈〉& (∅;γ′) andM ; ∅ ` γ, where γ =
(γe \ ρ) :: γ′. The application of lemma D.6 to the typing derivation of e1[ı/ρ][lkı/x]
implies thatM ; ∅ ` γc[ı/ρ]. LemmaD.14 implies thatM, ı; ∅; ∅ ` E : τ

γa;γa−→ 〈〉& (∅;γ′).
The application of lemmaD.9 to the latter facts imply thatM, ı; ∅; ∅ ` E : τ

γa;γc[ı/ρ]−→ 〈〉&
(∅, γ′′), where γ′′ = γe[ı/ρ] :: γ

′. LemmaD.15 implies thatM, ı; ∅; ∅ ` E[e1[ı/ρ][lkı/ρ
]] : 〈〉& (∅;γe[ı/ρ] :: γ′).

– n; γ ` S: we need to prove that n; γe[ı/ρ] :: γ′ ` S, ı 7→ n; 0; ∅; ∅. It suffices to show
that ı; 0 `ok γe[ı/ρ] :: γ

′, run(γe[ı/ρ] :: γ′, ı, 0) is defined, run(γe[ı/ρ] :: γ′, ı, 0)∩∅ ⊆
∅ (immediate), and n; γe[ı/ρ] :: γ′ ` S. ı; 0 `ok γe[ı/ρ] :: γ

′ holds as a consequence
of the following facts:
∗ ρ; 0 `ok γe :: γa holds by the typing rule T-NG
∗ ρ does not occur in γa nor γ′

∗ ı does not occur anywhere
∗ thus ı; 0 `ok γe[ı/ρ] :: γ

′ holds.
Now, run(γe[ı/ρ] :: γ′, ı, 0) is defined as ı; 0 `ok γe[ı/ρ] :: γ

′ holds (by simply ob-
serving that ok is defined then so is run). Finally, n; γe[ı/ρ] :: γ′ ` S holds as a
consequence of the following facts:
∗ for all j 6= ı γe[ı/ρ] contains that same order of + and − operations as γe \ ρ ,
∗ n; (γe \ ρ) :: γ′ ` S holds (by inversion of n; γ ` S) and
∗ for all j such that S(j) = (nx;ny; εx; εy), ı /∈ εx as ı is fresh.

Case E-UL: this rule creates side-effects as it modifies the count of lock ı. rule E-UL implies that
T ′ = T, n :E[()], where () replaces u (u = unlock lkı) in context E. The rule also implies
that S(ı) = (n;n2; ε1; ε2), n2 > 0 and S′ = S[ı 7→ n;n2 − 1; ε1; ε2]. By inversion of the
configuration typing assumption we have that:

-M = dom(S): ı is already contained in S soM = dom(S′) trivially holds.

- S;M ` T, n :E[u]: by inversion of this derivation we have that:

– S;M ` T : we must prove that S′;M ` T . It suffices to prove n′; γn′ ` S′ given
that n′; γn′ ` S holds, where γn′ is the effect of thread n′. This is immediate for all
locks j other than ı as they remain unchanged. The invariant holds for the updated ı
as only the reference count of lock ı is modified and therefore locks(S′, ı, n′) = 0 for
all n′ 6= n.

– n /∈ dom(T )

–M ; ∅; ∅ ` E[u] : 〈〉& (∅;γ): lemmaD.16 implies thatM ; ∅; ∅ ` E : 〈〉 γa;ı
−,γa−→ 〈〉& (∅;γ)

andM ; ∅; ∅ ` u : 〈〉& (γa;ı,
− γa). LemmaD.9 implies thatM ; ∅; ∅ ` E : 〈〉 γa;γa−→ 〈〉& (∅;γ′)

and γ = ı−, γ′. The application of lemmaD.7 to the typing derivation of u implies that
M ; ∅ ` γa. Thus, rule T-U impliesM ; ∅; ∅ ` () : 〈〉& (γa;γa).M ; ∅; ∅ ` E[()] : 〈〉
& (∅;γ′).

216



– n; ı−, γ′ ` S: S = S′′, ı 7→ n;n2; ε1; ε2, where n2 is positive, and S′ = S′′, ı 7→
n;n2 − 1; ε1; ε2. The thread identifier of ı is unchanged in S′ so it suffices to prove
the following:
∗ ı;n2 − 1 `ok γ′: by inversion of n; ı−, γ′ ` S we obtain ı;n2 `ok ı−, γ′. By
inversion (rule OK2) of the latter fact we have that ı;n2 − 1 `ok γ′.

∗ ε3 = run(γ′, ı, n2 − 1) is defined: by inversion of n; ı−, γ′ ` S we obtain
run((ı−, γ′), ı, n2). By unfolding the definition of run run((ı−, γ′), ı, n2) becomes
run(ı, γ′, n2 − 1).

∗ ε1 ∩ ε3 ⊆ ε2: trivially holds from the above.
∗ n; γ′ ` S′′: we have that n; ı−, γ′ ` S′′ by inversion of n; ı−, γ′ ` S. n; ı−, γ′ `
S′′ implies that for all j in dom(S′′) such that S′′(j) = (n1j;n2j; ε1j; ε2j) the
following hold: j;n2j `ok ı−, γ′ and run((ı−, γ′), j, , n2j) ∩ε1j ⊆ ε2j. By
inversion of j;n2j `ok ı−, γ′ (rule OK3) we have that j;n2j `ok γ′. If we
unfold run((ı−, γ′), j, n2j) once then we obtain run((ı−, γ′), j, n2j) is equal to
run((γ′), j, n2j).

Case E-LK1: the proof is identical to the previous case. In the case of proving n; γ′ ` S′′ is more
interesting: run((ı+, γ′), j, n2j) is equal to run((γ′), j, n2j) ∪ {ı}. Thus run((γ′), j, n2j) is a
subset of run((ı+, γ′), j, n2j) and therefore, run((γ′), j, n2j) ∩ ε1j is a subset of ε2j holds.

Case E-LK0: rule E-LK0 implies that T ′ = T, n :E[()], where () replaces u (u = lockγa lkı) in
context E. It also implies that ε = run(stack(E[popγa �]), ı, 1), ε ∪ {ı} ⊆ available(S, n),
S(ı) = (na; 0; εa; εb) and S = S[ı 7→ n; 1; dom(S); ε]. By inversion of the configuration typing
assumption we have that:

-M = dom(S): in both cases ı is already contained in S soM = dom(S′) trivially holds.
- S;M ` T, n :E[u]: by inversion of this derivation we have that:

– S;M ` T : we must prove that S′;M ` T . It suffices to prove n′; γn′ ` S′ given
that n′; γn′ ` S holds, where γn′ is the effect of thread n′. This is immediate for all
locks j other than ı as S′ differs from S in respect to lock ı. It also holds for ı as
locks(S′, ı, n′) = 0 for all n′ 6= n.

– n /∈ dom(T )

–M ; ∅; ∅ ` E[u] : 〈〉& (∅;γ): lemma D.16 implies that M ; ∅; ∅ ` E : 〈〉 γa;ı
+,γa−→ 〈〉

& (∅;γ) and M ; ∅; ∅ ` u : 〈〉& (γa;ı
+, γa). Lemma D.9 implies that M ; ∅; ∅ ` E :

〈〉 γa;γa−→ 〈〉& (∅;γ′) and γ = ı+, γ′. The application of lemma D.7 to the typing deriva-
tion of u implies thatM ; ∅ ` γa. Thus, rule T-U impliesM ; ∅; ∅ ` () : 〈〉& (γa;γa).
M ; ∅; ∅ ` E[()] : 〈〉& (∅;γ′).

– n; γ ` S: S = S′′, ı 7→ n1; 0; εa; εb, and S′ = S′′, ı 7→ n; 1; dom(S); ε. It suffices to
prove the following:
∗ ı; 1 `ok γ′: by inversion of n; ı+, γ′ ` S we obtain ı; 0 `ok ı+, γ′. By inversion
(rule OK1) of the latter fact we have that ı; 1 `ok γ′.

∗ ε3 = run(γ′, ı, 1) is defined: by inversion of n; ı+, γ′ ` S we obtain run((ı+, γ′), ı,
0). By unfolding the definition of run run((ı+, γ′), ı, 0) becomes run(γ′, ı, 1).

∗ ε ∩ dom(S) ⊆ ε: trivially holds. The typing implies that dom(S) = M and ε is
derived from γ′ which is well-typed in the context ofM .

∗ n; γ′ ` S′′: we have that n; ı+, γ′ ` S′′ by inversion of n; ı+, γ′ ` S. n; ı+, γ′ `
S′′ implies that for all j in dom(S′′) such that S′′(j) = (n1j;n2j; ε1j; ε2j) the
following hold:
j;n2j `ok ı+, γ′ and run((ı+, γ′), j, n2j) ∩ε1j ⊆ ε2j. By inversion of j;n2j `ok

ı+, γ′ (rule OK3) we have that j;n2j `ok γ′. If we unfold run((ı+, γ′), j, n2j)

217



once then we obtain run((ı+, γ′), j, n2j) is equal to run((γ′), j, n2j) ∪ {ı}. Thus
run((γ′), j, n2j) ⊆ run((ı+, γ′), j, n2j) and therefore, run((γ′), j, n2j)∩ε1j ⊆ ε2j
holds.

Lemma D.4 (Thread Lock Typing Preservation — Recursion) If n; γ ` S, γ = γx1 :: γx2 ::
γx3 :: γ

′ and rsummary(γx) = γx1; γx2; γx3 then n; γx :: γ′ ` S.

Proof. Proof by induction. If S is empty the conclusion trivially holds. Otherwise S is of the form
S′, ı 7→ n1;n2; εa; εb for some S′. There are two cases:

- n1 6= n: we need to prove that ı; 0 `ok γx :: γ′ given that ı; 0 `ok γx1 :: γx2 :: γx3 :: γ
′ holds.

This is immediate by Lemma D.5.

- n1 = n: as in the previous case, lemmaD.5 suggests that ı;n2 `ok γx :: γ′ holds. The remaining
proof obligation is run((γx :: γ′), ı, n2) ⊆ run((γx1 :: γx2 :: γx3 :: γ′), ı, n2). By observation of
function run it suffices to prove that the lockset of γx1 :: γx2 :: γx3 is a superset of the lockset
of γx. This is immediate by the definition of γx1 that only contains r+, r− pairs for all all r in
the domain of γx.

n; γ ` S′ holds by the induction hypothesis.

Lemma D.5 (Implication of ok)
If

- rsummary(γx) = γx1; γx2; γx3

- r;n `ok γx1 :: γx2 :: γx3 :: γ

then r;n `ok γx :: γ.

Proof. The second assumption implies that r belongs in the domain of γx and thus by inversion of the
first assumption we have that r;na `ok γx :: (r−)

nb such that na and nb are the number of unmatched
unlock and lock operations respectively for r in γx (notice that na ≤ n by the second assumption).
The definition of rsumarry also tells us that there exist exactly na and nb unmatched unlock and
lock operations for r in in γx1 :: γx2 :: γx3. Therefore, γx can safely replace γx1 :: γx2 :: γx3 and
r;n `ok γx :: γ holds.

Lemma D.6 (Well-Formedness) If an expression e is well-typed in the typing context M ;∆; Γ,
with effect γ; γ′, thenM ;∆ ` Γ,M ;∆ ` γ andM ;∆ ` γ′ hold.

Proof. Straightforward proof by induction on the expression typing derivation.

Lemma D.7 (Type Well-formedness) M ;∆; Γ ` e : τ & (γ;γ′) ⇒M ;∆ ` τ

Proof. Straightforward induction on the typing rules.

Lemma D.8 (Value-Effect) If value v is well-typed in the typing contextM ;∆; Γ, with effect (γ; γ)
andM ;∆ ` γ1 then v is well-typed in the same typing context with effect (γ1; γ1).

Proof. The proof is trivial, but we provide the key steps behind the proof. By inversion of the typing
derivation of v (for any v) we obtain the well-formedness derivation as well as some other premises
(in the case of rules T-L, T-V , T-F, T-RF, T-T , T-FN , T-U , and T-FX ). We may use the latter premises
of value typing, which still hold (same typing context), along withM ;∆ ` γ1 to formulate the new
value typing derivations with effect (γ1; γ1). The cases for rules T-RF and T-FX can be shown trivially
by induction (the base case is the same as for rule T-F).

218



Lemma D.9 (Evaluation Context Sub-typing)

- M ; ∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ3;γ4)

- γ2 = γ22 :: γ21 and γ1 C γ21

if and only if

- M ; ∆; Γ ` E : τ
γ1;γ21−→ τ ′& (γ3;γ5)

- γ4 = γ22 :: γ5 andM ;∆ ` γ4

Proof. Straightforward induction on the evaluation context typing relation. The base case is trivial.
The inductive hypothesis is trivial by lemma D.10.

Lemma D.10 (Frame Sub-typing) If the following conditions hold

- M ; ∆; Γ ` F : τ
γ1;γ2−→ τ ′& (γ3;γ4)

- γ2 = γ22 :: γ21 and γ1 C γ21

if and only if

- M ; ∆; Γ ` F : τ
γ1;γ21−→ τ ′& (γ3;γ5)

- γ4 = γ22 :: γ5 andM ;∆ ` γ4

Proof. Straightforward case analysis on the frame typing relation.

Lemma D.11 (Variable Substitution) M ;∆; Γ, x : τ1 ` e : τ2& (γ1;γ2)∧M ; ∅; ∅ ` v : τ1& (γ;γ) ⇒
M ;∆; Γ ` e[v/x] : τ2& (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma D.12 (Lock Substitution) IfM, ı;∆, ρ; Γ ` e : τ & (γ;γ′) thenM, ı;∆; Γ[ı/ρ] ` e[ı/ρ] :
τ [ı/ρ]& (γ[ı/ρ];γ′[ı/ρ]).

Proof. Proof by induction on the typing derivation of e.

Lemma D.13 (Evaluation Typing Weakening) M ;∆; Γ ` e : τ & (γ;γ′), M ; ∅ ` τ ′ and ı /∈
dom(M) thenM, ı;∆; Γ ` e : τ & (γ;γ′).

Proof. Proof by induction on the typing derivation of e.

Lemma D.14 (Evaluation Context Typing Weakening) M ;∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ;γ′) and ı /∈

dom(M) thenM, ı;∆; Γ ` E : τ
γ1;γ2−→ τ ′& (γ;γ′).

Proof. Proof by induction on the derivation of E.

Lemma D.15 (Evaluation Context Composition — E) IfM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ `
E : τ

γa;γb−→ τ ′& (γ1;γ2), thenM ; ∆; Γ ` E[e] : τ ′& (γ1;γ2).

Proof. Proof by induction on typing derivation of E. The base case is immediate as �[e] = e. The
inductive case where E = E′[F ], the proof is immediate by inversion of the derivation of E and the
application of lemma D.17.

219



Lemma D.16 (Evaluation Context Decomposition — E) If M ;∆; Γ ` E[e] : τ ′& (γ1;γ2), then
there exists a γa, γb and τ such thatM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ ` E : τ

γa;γb−→ τ ′& (γ1;γ2).

Proof. Proof by induction on the structure of E. The base case is immediate by using the well-
formedness derivation for the type and typing context of e (i.e., lemmas D.6 and D.7) and the appli-
cation rule E0. The inductive case, where E[e] = E′[F ][e] is immediate by lemma D.18 and rule E1.

Lemma D.17 (Frame Composition — F ) If M ;∆; Γ ` e : τ & (γa;γb) and M ;∆; Γ ` F :

τ
γa;γb−→ τ ′& (γ1, γ2), thenM ;∆; Γ ` F [e] : τ ′& (γ1;γ2).

Proof. Proof by case analysis on typing derivation ofF . The premises required to construct the typing
derivation of F [e] are given as premises of the typing derivation of F .

Lemma D.18 (Frame Decomposition — F ) IfM ;∆; Γ ` F [e] : τ ′& (γ1;γ2), then there exists a
γa, γb and τ such thatM ;∆; Γ ` e : τ & (γa;γb) andM ;∆; Γ ` F : τ

γa;γb−→ τ ′& (γ1;γ2).

Proof. Proof by case analysis on the structure ofF . The premises required for each case (i.e., rulesF1-F9)
are given by the premises of the typing derivation of F [e].

Lemma D.19 (Progress) Let S;T be a closed well-typed configuration withM ` S;T then S;T
is not stuck (` S;T ).

Proof. Without loss of generality, we choose a random thread from the thread list such that T =
T1, n : e for some T1 and show that it is either blocked or it can perform a step. By inversion of the
configuration typing derivation we have that S;M ` T1, n : e, and M = dom(S). By inversion of
the former derivation we obtain that

- n /∈ dom(T1)

- n; γ ` S

- M ; ∅; ∅ ` e : 〈〉& (∅;γ): If e is a value then it can only be the unit value and a step can be
performed using rule E-T . If e is not value then according to lemma D.20 there exists a E[u]
such that e = E[u]. Lemma D.16 implies that M ; ∅; ∅ ` u : τ & (γa;γb), M ; ∅; ∅ ` E′ :

τ
γa;γb−→ 〈〉 & & (∅;γ). We proceed by a case analysis on u:

Case popγa v: rule E-PP can be applied to perform a single step.

Case (v′ v)seq(γa): the typing derivation of v′ implies that v′ is of the form λx. e′ or fix x. e′.
In the first case rule E-A can be applied, whereas in the second case rule E-FX can be
applied.

Case (v′ v)par: rule E-SN can be applied to perform a single step.
Case (f) [r]: the typing derivation of u implies that f is of form Λρ. f ′. Rule E-RP can be

applied to perform a single step.
Case newlock ρ, x in e2: rule E-NG can be applied to perform a single step.
Case if v then e1 else e2: the typing derivation of u implies that v is of type Bool. Therefore

v can be either true or false. In the first case rule E-IT can be applied, whereas in the
second case rule E-IF can be applied.

Case unlock v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). As in
lemma D.3, case E-UL we can use the typing derivation for thread n to derive γ = ı−, γ′,
where γ is the effect assigned to the entire thread. By inversion of the store typing premise
(n; γ ` S) of the derivation for thread n we have that ı;n2 `ok ı−, γ′, where n2 is the
reference count of lock ı. By inversion of the latter derivation (rule OK2) n2 is positive.
The latter fact and the store typing derivation also tell us that the thread identifier of ı is
n. Therefore, a single step can be performed via rule E-UL.

220



Case lockγa v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). If the ref-
erence count (n2) of lock ı is positive then the proof is similar to the case of unlock v and
a step can be performed via rule E-LK1. Otherwise, n2 = 0. As in lemma D.3, case E-LK0
we can use the typing derivation for thread n to derive γ = (ı+, γa) :: γ

′, where γ is the
effect assigned to the entire thread. By inversion of the store typing premise (n; γ ` S)
of the derivation for thread n we have that ı; 0 `ok (ı+, γa) :: γ

′ and that the thread iden-
tifier of ı is n. Therefore ı; 0 `ok (ı+, γa) :: γ

′ implies ε = run(stack(E[popγa �]), ı, 1)
is defined (here we are using the fact that the typing derivation implies that γa :: γ′ =
stack(E[popγa �]) and also the fact than when ok is defined so is run — this can be
trivially shown).
Now, if ε ∪ {ı} ⊆ available(S, n), then rule E-LK0 can be applied. Otherwise, the thread
is considered to be blocked but not stuck (see the third rule of judgement stuck).

Lemma D.20 (Redex) If M ;∆; Γ ` E[e] : τ & (γ1;γ2) and E[e] is not a value then M ;∆; Γ `
E′[u] : τ & (γ1;γ2) such that E′[u] = E[e].

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is
not a redex, to typing derivations of the form E′[e′] and apply induction for e′.

221


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Thesis overview
	Hierarchical regions and locks for safe multithreading 
	A hybrid approach to deadlock freedom


	A unified hierarchy of regions and locks
	Overview
	Language features through examples
	Formal language
	Operational semantics
	Static semantics
	Type Safety

	Inference for region hierarchies with reader-writer locks
	Overview
	Language features through examples
	Formal language
	Operational semantics
	Static semantics
	Effects for recursive functions
	Type safety

	Concurrent Cyclone
	Overview 
	Cyclone: A memory-safe dialect of C
	Memory management in Cyclone
	Concurrency in Cyclone

	Common features
	Extended regions and kind system
	Exceptions
	Reentrant functions
	Type polymorphism
	Interoperability with traditional regions
	Memory consistency

	Explicit annotations for Cyclone
	Traditional Cyclone effects
	Hierarchy abstraction
	Operating on capabilities
	Thread creation

	Annotation inference for Cyclone
	Implementation
	Compiler

	Code generation and run-time system
	Implementation with explicit annotations
	Implementation with inference

	Performance evaluation

	Effects for deadlock freedom
	Overview
	Introduction
	Deadlock avoidance
	Concluding remarks

	Explicit effects for deadlock freedom
	Overview
	Formalism
	Operational semantics
	Static semantics
	Type safety
	Concluding remarks

	Effect inference for deadlock freedom
	Overview
	Formal semantics and metatheory
	Operational semantics
	Static semantics
	Summarizing recursive functions
	Type safety and deadlock freedom
	Concluding remarks

	Deadlock avoidance tool
	Overview
	Deadlock avoidance analysis
	Static analysis
	Code generation
	Current limitations
	Runtime system

	Performance evaluation
	Concluding remarks

	Related work
	Safe systems programming languages
	Region-based memory management
	Safe concurrency
	Data race freedom
	Deadlock freedom
	Other approaches to safe concurrency


	Conclusion
	Bibliography
	Appendix
	Formal semantics and proof of soundness for Chapter 2
	Language syntax
	Operational semantics
	Static semantics
	Type safety
	Proof of soundness

	Formal semantics and proof of soundness for Chapter 3
	Language syntax
	Operational semantics
	Static semantics
	Type safety
	Proof of soundness

	Formal semantics and proof of soundness for Chapter 6
	Summary of additional functions and relations
	Language syntax
	Operational semantics
	Static semantics
	Type safety
	Proof of soundness

	Formal semantics and proof of soundness for Chapter 7
	Language syntax
	Operational semantics
	Static semantics
	Type safety
	Proof of soundness



