
Submitted to:
PLACES 2010

c© P. Gerakios, N. Papaspyrou, and K. Sagonas
This work is licensed under the
Creative Commons Attribution License.

A Type System for Unstructured Locking that Guarantees
Deadlock Freedom without Imposing a Lock Ordering

Prodromos Gerakios Nikolaos Papaspyrou Konstantinos Sagonas
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{pgerakios,nickie,kostis }@softlab.ntua.gr

Deadlocks occur in concurrent programs as a consequence of cyclic resource acquisition between
threads. In this paper we present a novel type system that guarantees deadlock freedom for a lan-
guage with references, unstructured locking primitives, and locks which are implicitly associated
with references. The proposed type system does not impose a strict lock acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. Two or more threads are deadlocked when each
of them is waiting for a lock that is acquired by another thread. According to Coffman et al. [4], a set of
threads reaches a deadlocked state when the following conditions hold:

- Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
- Hold and wait: Threads already holding locks may request (and wait for) new locks.
- No preemption: Locks cannot be forcibly removed from threads; they must be released explicitly

by the thread that acquired them.
- Circular wait: Two or more threads form a circular chain, where each thread waits for a lock held

by the next thread in the chain.

Coffman has identified three strategies that guarantee deadlock-freedom by denying at least one of
the above conditions before or during program execution:

- Deadlock prevention: At each point of execution, ensure that at least one of the above conditions
is not satisfied. Thus, programs that fall into this category are correct by design.

- Deadlock detection and recovery: A dedicated observer thread determines whether the above con-
ditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their locks,
so that the remaining threads can make progress.

- Deadlock avoidance: Using information that is computed in advance regarding thread resource
allocation, determine whether granting a lock will bring the program to an unsafe state, i.e., a state
which can result in deadlock, and only grant locks that lead to safe states.

Several type systems have been proposed that guarantee deadlock freedom, the majority of which is
based on the first two strategies. In the deadlock prevention category, one finds type and effect systems
that guarantee deadlock freedom by statically enforcing a global lock acquisition order that must be
respected by all threads [6, 2, 9, 11, 12]. In this setting, lock handles are associated with type-level lock
names via the use of singleton types. Thus, handle lkı is of type lk(ı). The same applies to lock handle
variables. The effect system tracks the order of lock operations on handles or variables and determines
whether all threads acquire locks in the same order.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Type-Based Deadlock Freedom without Lock Ordering

Using a strict lock acquisition order is a constraint we want to avoid, as it unnecessarily rejects many
correct programs. It is not hard to come up with an example that shows that imposing a partial order on
locks is too restrictive. The simplest of such examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two different locks, x and y, in reverse order.
When trying to find a partial order ≤ on locks for this program, the type system or static analysis tool
will deduce that x ≤ y must be true, because of the first thread, and that y ≤ x must be true, because of
the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which requires
annotations [5] and in the system of Kobayashi which employs inference [9] as there is no single lock
order for both threads. Similar considerations apply to the more recent works of Suenaga [11] and
Vasconcelos et al. [12] dealing with non lexically-scoped locks.

Our work follows the third strategy (deadlock avoidance). It is based on an idea put forward recently
by Boudol, who proposed a type system for deadlock avoidance that is more permissive than existing
approaches [1]. However, his system is suitable for programs that use exclusively lexically-scoped lock-
ing primitives. In this paper we present a simple language with functions, mutable references, explicit
(de-)allocation constructs and unstructured (i.e., non lexically-scoped) locking primitives. Our approach
ensures deadlock freedom for the proposed language by preserving exact information about the order of
events, both statically and dynamically.

In the next section, we informally describe Boudol’s idea and present an informal overview of our
type and effect system. In Section 3 we formally define the syntax of our language, its operational
semantics and the type and effect system. In Section 4 we reason about the soundness of our system and
the paper ends with a few concluding remarks.

2 Deadlock Avoidance

Recently, Boudol developed a type and effect system for deadlock freedom [1], which is based on dead-
lock avoidance. The effect system calculates for each expression the set of acquired locks and annotates
lock operations with the “future” lockset. The runtime system utilizes the inserted annotations so that
each lock operation can only proceed when its “future” lockset is unlocked. The main advantage of
Boudol’s type system is that it allows a larger class of programs to type check and thus increases the
programming language expressiveness as well as concurrency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only lock
operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in general, allows locks to be acquired in any
order. At runtime, the first lock operation of the first thread must ensure that y has not been acquired
by the second (or any other) thread, before granting x (and symmetrically for the second thread). The
second lock operations need not ensure anything special, as the future locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped.
Even if his language had lock/unlock constructs, instead of lock . . .in . . ., Boudol’s type system is not
sufficient to guarantee deadlock freedom. The example program in Figure 1(a) will help us see why: It
updates the values of three shared variables, x, y and z, making sure at each step that only the strictly
necessary locks are held.1

1To simplify presentation, we assume here that there is one implicit lock per variable, which has the same name. This is

P. Gerakios, N. Papaspyrou, and K. Sagonas 3

let f = λ x.λy.λz. lock{y} x; x := x + 1;
lock{z} y; y := y + x;
unlock x;
lock∅ z; z := z + y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock{a} a; a := a + 1;
lock{b} a; a := a + a;
unlock a;
lock∅ b; b := b + a;
unlock b;
unlock a

(b) after substitution

Figure 1: An example program, which is well typed before substitution (a) but not after (b).

In our naı̈vely extended (and broken, as will be shown) version of Boudol’s type and effect system, the
program in Figure 1(a) will type check. The future lockset annotations of the three locking operations in
the body of f are {y}, {z} and ∅, respectively. (This can be easily verified by observing the lock operations
between a specific lock and unlock pair.) Now, function f is used by instantiating both x and y with the
same variable a, and instantiating z with a different variable b. The result of this substitution is shown in
Figure 1(b). The first thing to notice is that, if we want this program to work in this case, locks have to
be re-entrant. This roughly means that if a thread holds some lock, it can try to acquire the same lock
again; this will immediately succeed, but then the thread will have to release the lock twice, before it is
actually released.

Even with re-entrant locks, however, it is easy to see that the program in Figure 1(b) does not type
check with the present annotations. The first lock for a now matches with the last (and not the first)
unlock; this means that a will remain locked during the whole execution of the program. In the mean-
time b is locked, so the future lockset annotation of the first lock should contain b, but it does not. (The
annotation of the second lock contains b, but blocking there if lock b is not available does not prevent
a possible deadlock; lock a has already been acquired.) So, the technical failure of our naı̈vely extended
language is that the preservation lemma breaks. From a more pragmatic point of view, if a thread run-
ning in parallel already holds b and, before releasing it, is about to acquire a, a deadlock can occur. The
naı̈ve extension also fails for another reason: Boudol’s system is based on the assumption that calling a
function cannot affect the set of locks that are held. This is obviously not true, if non lexically-scoped
locking operations are to be supported.

The type and effect system proposed in this paper supports unstructured locking, by preserving more
information at the effect level. Instead of treating effects as unordered collections of locks, our type
system precisely tracks effects as an order of lock and unlock operations, without enforcing a strict
lock-acquisition order. The continuation effect of a term represents the effect of the function code suc-
ceeding that term. In our approach, lock operations are annotated with a continuation effect. When a
lock operation is evaluated, the future lockset is calculated by inspecting its continuation effect. The
lock operation succeeds only when both the lock and the future lockset are available.

Figure 2 illustrates the same program as in Figure 1, except that locking operations are now annotated
with continuation effects. For example, the annotation [y+, x−, z+, z−, y−] at the first lock operation
means that in the future (i.e., after this lock operation) y will be acquired, then x will be released, and so
on.2 If x and y were different, the runtime system would deduce that between this lock operation on x

more or less consistent with our formalization in Section 3. However, on a different track, locks could be associated with larger
memory regions, as in our previous work [7].

2In the examples of this section, a simplified version of effects is used, to make presentation easier. In the formalism of
Section 3, the plus and minus signs would be encoded as differences in lock counts, e.g., y+ would be encoded by a y1,0 (an
unlocked y) followed in time by a y1,1 (a locked y).

4 Type-Based Deadlock Freedom without Lock Ordering

let f = λ x.λy.λz. lock[y+, x−,z+,z−,y−] x; x := x + 1;
lock[x−,z+,z−,y−] y; y := y + x;
unlock x;
lock[z−,y−] z; z := z + y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock[a+,a−,b+,b−,a−] a; a := a + 1;
lock[a−,b+,b−,a−] a; a := a + a;
unlock a;
lock[b−,a−] b; b := b + a;
unlock b;
unlock a

(b) after substitution

Figure 2: The program of Figure 1 with continuation effect annotations; now well typed in both cases.

and the corresponding unlock operation, only y is locked, so the future lockset in Boudol’s sense would
be {y}. On the other hand, if x and y are instantiated with the same a, the annotation becomes [a+, a−,
b+, b−, a−] and the future lockset that is calculated is now the correct {a,b}. In a real implementation,
there are several optimizations that can be performed (e.g., pre-calculation of effects) but we do not deal
with them in this paper.

There are three issues that must be faced, before we can apply this approach to a full programming
language. First, we need to consider continuation effects in an interprocedural manner: it is possible
that a lock operation in the body of function f matches with an unlock operation in the body of function
g after the point where f was called, directly or indirectly. In this case, the future lockset for the lock
operation may contain locks that are not visible in the body of f . We choose to compute function effects
intraprocedurally and to annotate each application term with a continuation effect, which represents the
effect of the code succeeding the application term in the calling function’s body. A runtime mechanism
pushes information about continuation effects on the stack and, if necessary, uses this information to
correctly calculate future locksets, taking into account the continuation effects of the enclosing contexts.

Second, we need to support conditional statements. The tricky part here is that, even in a simple
conditional statement such as

if c then (lock x; ... unlock x) else (lock y; ... unlock y)

the two branches have different effects: [x+, x−] and [y+, y−], respectively. A typical type and effect
system would have to reject this program, but this would be very restrictive in our case. We resolve this
issue by requiring that the overall effect of both alternatives is the same. This (very roughly) means that,
after the plus and minus signs cancel each other out, we have equal numbers of plus or minus signs for
each lock in both alternatives. Furthermore, we assign the combined effect of the two alternatives to
the conditional statement, thus keeping track of the effect of both branches; in the example above, the
combined effect is denoted by [x+, x−]? [y+, y−].

The third and most complicated issue that we need to face is support for recursive functions. Again,
consider a simple recursive function of the form

fix f . λ x. if c then (... f (y) ...) else ...

Let us call γ f the effect of f and γb the computed effect for the body of f . It is easy to see that γb

must contain γ f and, if any lock/unlock operations are present in the body of f , γb will be strictly larger
than γ f . Again, a typical type and effect system would require that γb = γ f and reject this function
definition. We resolve this issue by computing a summary of γb and requiring that the summary is equal
to γ f . In computing the summary, we can make several simplifications that preserve the calculation of
future locksets for operations residing outside function f . For instance, we are not interested whether a
lock is acquired and released many times or just once, we are not interested in the exact order in which
lock/unlock pairs occur, and we can flatten branches.

P. Gerakios, N. Papaspyrou, and K. Sagonas 5

Expression e ::= x | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x = ref e in e
| share e | release e | lockγ e
| unlock e | () | popγ e | locı
| if e then e else e | true | false

Value v ::= f | () | locı | true | false

Function f ::= λx.e as τ
γ
−→τ | Λρ. f | fix x : τ. f

Type τ ::= 〈〉 | τ
γ
−→τ | ∀ρ.τ

| ref(τ,r) | bool

Location r ::= ρ | ı@n | ρ@n

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ,rκ | γ,γ?γ

Figure 3: Language syntax.

3 Formalism

The syntax of our language is illustrated in Figure 3, where x and ρ range over term and “region” vari-
ables, respectively. Similarly to our previous work [7, 8], a region is thought of as a memory unit that
can be shared between threads and whose contents can be atomically locked. In this paper, we make
the simplistic assumption that there is a one-to-one correspondence between regions and memory cells
(locations), but this is of course not necessary.

The language core comprises of variables (x), constants (the unit value, true and false), functions
(f), and function application. Functions can be location polymorphic (Λρ. f) and location application
is explicit (e[ρ]). Monomorphic functions (λx.e) must be annotated with their type. The application of
monomorphic functions is annotated with a calling mode (ξ), which is seq(γ) for normal (sequential)
application and par for parallel application. Notice that sequential application terms are annotated with
γ, the continuation effect as mentioned earlier. The semantics of parallel application is that once the
application term is evaluated to a redex, then it is moved to a new thread of execution and the spawning
thread can proceed with the remaining computation in parallel with the new thread. The term popγ e
encloses a function body e and can only appear during evaluation. The same applies to constant locations
ı@n, which cannot exist at the source-level. The construct let ρ, x = ref e1 in e2 allocates a fresh cell,
initializes it to e1, and associates it with variables ρ and x within expression e2. As in other approaches,
we use ρ as the type-level representation of the new cell’s location. The reference variable x has the
singleton type ref(ρ,τ), where τ is the type of the cell’s contents. This allows the type system to
connect x and ρ and thus to statically track uses of the new cell. As will be explained later, the cell can
be consumed either by deallocation or by transferring its ownership to another thread. Assignment and
dereference operators are standard. The value locı represents a reference to a location ı and is introduced
during evaluation. Source programs cannot contain locı.

At any given program point, each cell is associated with a capability (κ). Capabilities consist of two
natural numbers, the capability counts: the cell reference count, which denotes whether the cell is live,
and the lock count, which denotes whether the cell has been locked to provide the current thread with ex-
clusive access to its contents. Capability counts determine the validity of operations on cells. When first
allocated, a cell starts with capability (1,1), meaning that it is live and locked, which provides exclusive
access to the thread which allocated it. (This is our equivalent of thread-local data.) Capabilities can be
either pure (n1,n2) or impure (n1,n2). In both cases, it is implied that the current thread can decrement
the cell reference count n1 times and the lock count n2 times. Similarly to fractional permissions [3],
impure capabilities denote that a location may be aliased. Our type system requires aliasing information
so as to determine whether it is safe to pass lock capabilities to new threads.

The remaining language constructs (share e, release e, lockγ e and unlock e) operate on a
reference e. The first two constructs increment and decrement the cell reference count of e respectively.

6 Type-Based Deadlock Freedom without Lock Ordering

Configuration C ::= S ;T

Store S ::= ∅ | S , ı 7→ v

Threads T ::= ∅ | T,n :θ;e

Locations ε ::= ∅ | ε, ı

Access Lists θ ::= ∅ | θ, ı 7→ n;n;ε;ε

Stack E ::= � | E[F]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v := � | share � | release �
| lockγ � | unlock � | popγ �

| if � then e1 else e2

Reduction relation C {C′

v′ ≡ λx.e1 as τ1
γa
−→τ2 fresh n′ (θ1, θ2) = split(θ , max(γa))

S ;T,n :θ; E[(v′ v)par] { S ;T,n :θ1; E[()],n′ :θ2;�[(v′ v)seq(min(γa))]
(E-SN)

∀ı. θ(ı) = (0,0)
S ;T,n :θ; () { S ;T

(E-T)

v′ ≡ λx.e1 as τ
′

S ;T,n :θ; E[(v′ v)seq(γb)] { S ;T,n :θ; E[popγb e1[v/x]]
(E-A)

S ;T,n :θ; E[popγ v] { S ;T,n :θ; E[v]
(E-PP)

fresh n2

S ;T,n :θ; E[(Λρ. f)[ı@n1]]
{ S ;T,n :θ; E[f [ı@n2/ρ]]

(E-RP)
S ;T,n :θ; E[(fix x : τ. f v)seq(γa)]

{ S ;T,n :θ; E[(f [fix x : τ. f /x] v)seq(γa)]

(E-FX)

S ;T,n :θ; E[if true then e1 else e2]
{ S ;T,n :θ; E[e1]

(E-IT)
S ;T,n :θ; E[if false then e1 else e2]
{ S ;T,n :θ; E[e2]

(E-IF)

fresh ı@n1 S ′ = S , ı 7→ v θ′ = θ, ı 7→ 1;1;∅;∅

S ;T,n :θ; E[let ρ, x = ref v in e2] { S ′;T,n :θ′; E[e2[ı@n1/ρ][locı/x]]
(E-NG)

θ(ı) ≥ (1,1) ı < locked(T)
S ;T,n :θ; E[locı := v] { S [ı 7→ v];T,n :θ; E[()]

(E-AS)
θ(ı) ≥ (1,1) ı < locked(T)

S ;T,n :θ; E[deref locı] { S ;T,n :θ; E[S (ı)]
(E-D)

θ(ı) ≥ (1,0) θ′ = θ +ı (1,0)

S ;T,n :θ; E[share locı] { S ;T,n :θ′; E[()]
(E-SH)

θ(ı) ≥ (1,0) θ(ı) = (n1,n2)
n1 = 1⇒ n2 = 0 θ′ = θ +ı (−1,0)

S ;T,n :θ; E[release locı] { S ;T,n :θ′; E[()]
(E-RL)

ε = lockset(ı,1,E[popγ1 �]) θ = θ′′, ı 7→ n1;0;ε1;ε2
θ′ = θ′′, ı 7→ n1;1;dom(S);ε n1 ≥ 1 locked(T)∩ ε = ∅

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK0)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,1)

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK1)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,−1)

S ;T,n :θ; E[unlock locı] { S ;T,n :θ′; E[()]
(E-UL)

Figure 4: Operational semantics.

Similarly, the latter two constructs increment and decrement the lock count of e. As mentioned earlier,
the runtime system inspects the lock annotation γ to determine whether it is safe to lock e.

3.1 Operational Semantics

We define a small-step operational semantics for our language in Figure 4.3 The evaluation relation
transforms configurations. A configuration C consists of an abstract store S and a thread map T .4 A store
S maps constant locations (ı) to values (v). A thread map T associates thread identifiers to expressions
(i.e., threads) and access lists. An access list θ maps location identifiers to reference and lock counts.

A frame F is an expression with a hole, represented as �. The hole indicates the position where

3Due to space limitations, some of the functions and judgements that are used by the operational and (later) the static
semantics are not formally defined in this paper. Verbal descriptions and a full formalization are given in the Appendix.

4The order of elements in comma-separated lists, e.g., in a store S or in a list of threads T , is unimportant; we consider all
list permutations as equivalent.

P. Gerakios, N. Papaspyrou, and K. Sagonas 7

the next reduction step can take place. A thread evaluation context E, is defined as a stack of nested
frames. Our notion of evaluation context imposes a call-by-value evaluation strategy to our language.
Subexpressions are evaluated in a left-to-right order. We assume that concurrent reduction events can
be totally ordered [10]. At each step, a random thread (n) is chosen from the thread list for evaluation.
Therefore, the evaluation rules are non-deterministic.

When a parallel function application redex is detected within the evaluation context of a thread, a
new thread is created (rule E-SN). The redex is replaced with a unit value in the currently executed
thread and a new thread is added to the thread list, with a fresh thread identifier. The calling mode of
the application term is changed from parallel to sequential. The continuation effect associated with the
sequential annotation equals the resulting effect of the function being applied (i.e., min(γa)). Notice,
that θ is divided into two lists θ1 and θ2 using the new thread’s initial effect max(γa) as a reference for
consuming the appropriate number of counts from θ. On the other hand, when evaluation of a thread
reduces to a unit value, the thread is removed from the thread list (rule E-T). This is successfuly only if
the thread has previously released all of its resources.

The rule for sequential function application (E-A) reduces an application redex to a pop expression,
which contains the body of the function and is annotated with the same effect as the application term.
Evaluation propagates through pop expressions (rule E-PP), which are only useful for calculating future
locksets in rule E-LK0 . The rules for evaluating the application of polymorphic functions (E-RP) and
recursive functions (E-FX) are standard, as well as the rules for evaluating conditionals (E-IT and E-IF).

The rules for reference allocation, assignment and dereference are straightforward. Rule E-NG
appends a fresh location ı (with initial value v) and the dynamic count (1,1) to S and θ respectively.
Rules E-AS and E-D require that the location (ı) being accessed is both live and accessible and no other
thread has access to ı. Therefore dangling memory location accesses as well as unsynchronized accesses
cause the evaluation to get stuck. Furthermore, the rules E-SH , E-RL and E-UL manipulate a cell’s
reference or lock count. They are also straightforward, simply checking that the cell is live and (in the
case of E-UL) locked. Rule E-RL makes sure that a cell is unlocked before its reference count can be
decremented to zero.

The most interesting rule is E-LK0 , which applies when the reference being locked (ı) is initially
unlocked. The future lockset (ε) is dynamically computed, by inspecting the preceding stack frames (E)
as well as the lock annotation (γ1). The lockset ε is a list of locations (and thus locks). The reference
ı must be live and no other thread must hold either ı or any of the locations in ε. Upon success, the
lock count of ı is incremented by one. On the other hand, rule E-LK1 applies when ı has already been
locked by the current thread (that tries to lock it again). This immediately succeeds and the lock count is
incremented by one.

3.2 Static Semantics

In this section we present our type and effect system and discuss the most interesting parts. Effects are
used to statically track the capability of each cell. An effect (γ) is an ordered list of elements of the
form rκ and summarizes the sequence of operations (e.g., locking or sharing) on references. The syntax
of types in Figure 3 (on page 5) is more or less standard: Atomic types consist of base types (the unit
type, denoted by 〈〉, and bool); reference types ref(τ,r) are associated with a type-level cell name r and
monomorphic function types carry an effect. Figure 5 contains the typing rules. The typing relation is
denoted by M;∆;Γ ` e : τ&(γ;γ′), where M;∆;Γ is the typing context, e is an expression, τ is the type
attributed to e, γ is the input effect, and γ′ is the output effect. In the typing context, M is a mapping of
constant locations to types, ∆ is a set of cell variables, and Γ is a mapping of term variables to types.

8 Type-Based Deadlock Freedom without Lock Ordering

Typing relation M;∆;Γ ` e : τ&(γ;γ′)

` M;∆;Γ;γ;γ

M;∆;Γ ` () : 〈〉&(γ;γ)
(T-U)

` M;∆;Γ;γ;γ
M;∆;Γ ` true : bool&(γ;γ)

(T-TR)
` M;∆;Γ;γ;γ

M;∆;Γ ` false : bool&(γ;γ)
(T-FL)

` M;∆;Γ;γ;γ
(x : τ′) ∈ Γ τ ' τ′

M;∆;Γ ` x : τ&(γ;γ)
(T-V)

` M;∆;Γ;γ;γ τ′ ≡ τ1
γb
−→τ2 M;∆ ` τ′ τ ' τ′

seq(∅) ` γb⇒ M;∆;Γ, x : τ1 ` e1 : τ2 &(min(γb);γb)

M;∆;Γ ` λx.e1 as τ
′ : τ&(γ;γ)

(T-F)

M;∆,ρ;Γ ` f : τ&(γ;γ)
M;∆;Γ ` Λρ. f : ∀ρ.τ&(γ;γ)

(T-RF)
M;∆ ` r M;∆ ` τ[r/ρ] M;∆;Γ ` e1 : ∀ρ.τ&(γ;γ′)

M;∆;Γ ` (e1) [r] : τ[r/ρ]&(γ;γ′)
(T-RP)

M;∆;Γ ` e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ` γ2 = γ⊕γa

M;∆;Γ ` e2 : τ1 &(γ2;γ3) ξ = par⇒ τ2 = 〈〉

M;∆;Γ ` (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

M;∆;Γ ` e : τ′&(min(γb);γb) γb ' γ
′
b

seq(γ) ` γ′ = γ⊕γ′b τ′ ' τ ` M;∆;Γ;γ;γ′

M;∆;Γ ` popγ e : τ&(γ;γ′)
(T-PP)

τ ≡ τ1
γb
−→τ2 τ′ ≡ τ′1

γ′a
−→τ′2 τ ' τ′ γa ' γ

′
a

M;∆;Γ, x : τ ` f : τ′&(γ;γ) γb = summary(γa)
M;∆;Γ ` fix x : τ. f : τ&(γ;γ)

(T-FX)

` M;∆;Γ;γ;γ
(ı 7→ τ′) ∈ M τ ' ref(τ′, ı)

M;∆;Γ ` locı : τ&(γ;γ)
(T-L)

M;∆;Γ ` e1 : τ1 &(γ1 \ρ;γ′) γ1(ρ) = (1,1) M;∆ ` τ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

M;∆;Γ ` e1 : ref(τ,r)&(γ1;γ′)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

γ(r) ≥ (1,1)
M;∆;Γ ` e1 : ref(τ,r)&(γ;γ′)

M;∆;Γ ` deref e1 : τ&(γ;γ′)
(T-D)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(1,0);γ′)
κ ≥ (2,0) γ(r) = κ

M;∆;Γ ` share e : 〈〉&(γ;γ′)
(T-SH)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(1,0);γ′)
κ = (n1,n2) n1 = 0⇒ n2 = 0 γ(r) = κ

M;∆;Γ ` release e : 〈〉&(γ;γ′)
(T-RL)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(0,1);γ′)
κ ≥ (1,1) γ(r) = κ

M;∆;Γ ` lockγ e : 〈〉&(γ;γ′)
(T-LK)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(0,1);γ′)
κ ≥ (1,0) γ(r) = κ

M;∆;Γ ` unlock e : 〈〉&(γ;γ′)
(T-UL)

M;∆;Γ ` e1 : bool&(γ,γ2 ?γ3;γ′) max(γ :: γ2) = max(γ :: γ3)
M;∆;Γ ` e2 : τ&(γ;γ :: γ2) M;∆;Γ ` e3 : τ&(γ;γ :: γ3)

M;∆;Γ ` if e1 then e2 else e3 : τ&(γ;γ′)
(T-IF)

Figure 5: Typing rules.

Lock operations and sequential application terms are annotated with the continuation effect. This
imposes the restriction that effects must flow backwards. The input effect γ to an expression e is indeed
the continuation effect; it represents the operations that follow the evaluation of e. On the other hand,
the output effect γ′ represents the combined operations of e and its continuation. The typing relation
guarantees that the input effect is always a prefix of the output effect.

The typing rules T-U , T-TR , T-FL , T-V , T-L , T-RF and T-RP are almost standard, except for the
occasional premise τ ' τ′ which allows the type system to ignore the identifiers used for location aliasing
and, for example, treat the types ı@n1 and ı@n2 as equal. The typing rule T-F checks that, if the effect
γb that is annotated in the function’s type is well formed, it is indeed the effect of the function’s body. On
the other hand, the typing rule T-A for function application has a lot more work to do. It joins the input
effect γ (i.e., the continuation effect) and the function’s effect γa, which contains the entire history of
events occurring in the function body; this is performed by the premise ξ ` γ2 = γ⊕γa, which performs

P. Gerakios, N. Papaspyrou, and K. Sagonas 9

all the necessary checks to ensure that all the capabilities required in the function’s effect γa are available,
that pure capabilities are not aliased, and, in the case of parallel application, that no lock capabilities are
split and that the resulting capability of each location is zero. Rule T-PP works as a bridge between
the body of a function that is being executed and its calling environment. Rule T-FX uses the function
summary to summarize the effect of the function’s body and to check that the type annotation indeed
contains the right summary. The effect summary is conservatively computed as the set of locks that are
acquired within the function body; the unmatched lock/unlock operations are also taken into account.

Rule T-NG for creating new cells passes the input effect γ to e2, the body of let, augmented by
ρ0,0. This means that, upon termination of e2, both references and locks of ρ must have been consumed.
The output effect of e2 is a γ1 such that ρ has capability (1,1), which implies that when e2 starts being
evaluated ρ is live and locked. The input effect of the cell initializer expression e1 is equal to the output
effect of e2 without any occurrences of ρ. Rules T-AS and T-D check that, before dereferencing or
assigning to cells, a capability of at least (1,1) is held. Rules T-SH , T-RL , T-LK and T-UL are the ones
that modify cell capabilities. In each rule, κ is the capability after the operation has been executed. In the
case of T-RL , if the reference count for a cell is decremented to zero, then all locks must have previously
been released. The last rule in Figure 5, and probably the least intuitive, is T-IF . Suppose γ is the input
(continuation) effect to a conditional expression. Then γ is passed as the input effect to both branches.
We know that the outputs of both branches will have γ as a common prefix; if γ2 and γ3 are the suffixes,
respectively, then γ2 ?γ3 is the combined suffix, which is passed as the input effect to the condition e1.

4 Type Safety

In this section we present proof sketches for the fundamental theorems that prove type safety of our
language.5 The type safety formulation is based on proving progress, deadlock freedom and preservation
lemmata. Informally, a program written in our language is safe when for each thread of execution either
an evaluation step can be performed, or the thread is waiting to acquire a lock (blocked). In addition,
there must not exist any threads that have reached a deadlocked state. As discussed in Section 3.1, a
thread may become stuck when it performs an illegal operation, or when it references a location that has
been deallocated, or when it accesses a location that has not been locked.

Thread Typing. Let E[e] be the body of a thread and let θ be the thread’s access list. Thread typing is
defined by the rule:

M;∆;Γ ` e : τ&(γa;γb) M;∆;Γ ` E : τ
γa;γb
−→ 〈〉&(γ1;γ2)

∀rκ ∈ γ1. κ = (0,0) counts ok(E[popγb �], θ) lockset ok(E[popγb �], θ)

M;∆;Γ `t θ; E[e] : 〈〉&(γ1;γ2)
(EA)

First of all, thread typing implies the typing of E[e].
Secondly, thread typing establishes an exact correspondence between counts of the access list θ and

counts of pop expression annotations that reside in the evaluation context E[popγb �] (i.e., counts ok
(E[popγb �], θ)). The typing derivations of e and E establish an exact correspondence between the anno-
tations of pop expressions and static effects. Therefore, for each location ı in θ, the dynamic reference
and lock counts of ı are identical to the static counts of ı deduced by the type system.

Thirdly, thread typing enforces the invariant that the future lockset of an acquired lock at any pro-
gram point is always a subset of the future lockset computed when the lock was initially acquired (i.e.,

5The complete proofs are given in the Appendix.

10 Type-Based Deadlock Freedom without Lock Ordering

lockset ok(E[popγb �], θ)). This invariant is essential for establishing deadlock freedom. Finally, all
locations must be deallocated and released when a thread terminates (∀rκ ∈ γ1. κ = (0,0)).

Process Typing. A collection of threads T is well typed if each thread in T is well typed and thread
identifiers are distinct:

M ` ∅

M;∅;∅ `t θ;e : 〈〉&(γ;γ′) M ` T n < dom(T)
M ` T,n :θ;e

Store Typing. A store S is well typed if there is a one-to-one correspondence between S and M and
all stored values are closed and well typed:

dom(M) = dom(S) ∀(ı 7→ τ) ∈ M.M;∅;∅ ` S (ı) : τ&(∅;∅)
M ` S

Configuration Typing. A configuration S ;T is well typed when both T and S are well typed, and locks
are acquired by at most one thread (i.e., mutex(T) holds).

M ` T M ` S mutex(T)
M ` S ;T

Deadlocked State. A set of threads n0, . . . ,nk, where k > 0, has reached a deadlocked state, when each
thread nı has acquired lock `(ı+1)mod (k+1) and is waiting for lock `ı.

Not Stuck. A configuration S ;T is not stuck when each thread in T can take one of the evaluation steps
in Figure 4 or it is trying to acquire a lock which (either itself or its future lockset) is unavailable (i.e.,
blocked(T,n) holds).

Given these definitions, we can now present the main results of this paper. Progress, deadlock free-
dom and preservation are formalized at the program level, i.e., for all concurrently executed threads.

Lemma 1 (Deadlock Freedom) If the initial configuration takes n steps, where each step is well typed,
then the resulting configuration has not reached a deadlocked state.

Proof. Let us assume that z threads have reached a deadlocked state and let m ∈ [0,z− 1], k = (m +

1) modz and o = (k +1) modz. According to definition of deadlocked state, thread m acquires lock ık and
waits for lock ım, whereas thread k acquires lock ıo and waits for lock ık. Assume that m is the first of the
z threads that acquires a lock so it acquires lock ık, before thread k acquires lock ıo.

Let us assume that S y;Ty is the configuration once ıo is acquired by thread k for the first time, ε1y is
the corresponding lockset of ıo (ε1y = lockset(ıo,1,E[popγy �])) and ε2y is the set of all heap locations
(ε2y = dom(S y)) at the time ıo is acquired. Then, ık does not belong to ε1y, otherwise thread k would have
been blocked at the lock request of ıo as ık is already owned by thread m.

Let us assume that when thread k attempts to acquire ık, the configuration is of the form S x;Tx.
According to the assumption of this lemma that all configurations are well typed so S x;Tx is well-typed
as well. By inversion of the typing derivation of S x;Tx, we obtain the typing derivation of thread nk :
θk; Ek[lockγ′k locık]: lockγ′k locık is well-typed with input-output effect (γ′k;γ′′k), where κ = γ′k(ık@n′),
κ ≥ (1,1), γ′′ = γ′k, (ık@n′)κ−(1,0), and lockset ok(Ek[popγ′′k �], θk) holds, where θk is the access list of
thread k. lockset ok(Ek[popγ′′k �], θk) implies lockset(ıo,n2,Ek[popγ′′k �])∩ ε1 ⊆ ε2, where θk = θ′k, ıo 7→

n1;n2;ε1;ε2 (notice that n2 is positive, ε2 = ε1y and ε1 = ε2y — this is immediate by the operational steps
from S y;Ty to S x;Tx and rule E-LK0).

We have assumed that m is the first thread to lock ık at some step before S y;Ty, thus ık ∈ dom(S y) (the
store can only grow — this is immediate by observing the operational semantics rules). By the definition
of lockset function and the definition of γ′′k we have that ık ∈ lockset(ıo,n2,Ek[popγ′′k �]). Therefore,
ık ∈ lockset(ıo,n2,Ek[popγ′′k �])∩dom(S y) ⊆ ε1y, which is a contradiction. �

P. Gerakios, N. Papaspyrou, and K. Sagonas 11

Lemma 2 (Progress) If S ;T is a well typed configuration, then S ;T is not stuck.

Proof. It suffices to show that for any thread in T , a step can be performed or block predicate holds for
it. Let n be an arbitrary thread in T such that T = T1,n :θ;e for some T1. By inversion of the typing
derivation of S ;T we have that M;∅;∅ `t θ;e : 〈〉&(γ;γ′), mutex(T), and M ` S .

If e is a value then by inversion of M;∅;∅ `t θ;e : 〈〉&(γ;γ′), we obtain that γ = γ′, E[e] = �[()] and
∀ı.θ(ı) = (0,0), as a consequence of ∀rκ ∈ γ.κ = (0,0) and counts ok(�[popγ �], θ). Thus, rule E-T can
be applied.

If e is not a value then it can be trivially shown (by induction on the typing derivation of e) that there
exists a redex u and an evaluation context E such that e = E[u]. By inversion of the thread typing deriva-
tion for e we obtain that M;∅;∅ ` u : τ&(γa;γb), M;∅;∅ ` E : τ

γa;γb
−→ 〈〉&(γ;γ′), counts ok(E[popγb �], θ)

hold.
Then, we proceed by perfoming a case analysis on u (we only consider the most interesting cases):

Case (λx.e′ as τ v)par: it suffices to show that (θ1, θ2) = split(θ , max(γc)) is defined, where γc is the
nnotation of type τ. If max(γc) is empty, then the proof is immediate from the base case of split
function. Otherwise, we must show that for all ı, the count θ(ı) is greater than or equal to the
sum of all (ı@n)κ in max(γc). This can be shown by considering par ` γb = γa ⊕γc (i.e., the max
counts in γc are less than or equal to the max counts in γb), which can be obtained by inversion
of the typing derivation of (λx.e′ as τ v)par, and the exact correspondence between static (γb) and
dynamic counts (i.e, counts ok(E[popγb �], θ)). Thus, rule E-SN can be applied to perform a
single step.

Case share locı: counts ok(E[popγb �], θ) establishes an exact correspondence between dynamic and
static counts. The typing derivation implies that γa(ı@n1) ≥ (2,0), for some n1 existentially bound
in the premise of the derivation. Therefore, θ(ı) ≥ (1,0). It is possible to perform a single step using
rule E-SH . The cases for release locı and unlock locı can be shown in a similar manner.

Case lockγa locı: similarly to the case we can show that θ(ı) = (n1,n2) and n1 is positive. If n2 is
positive, rule E-LK1 can be applied. Otherwise, n2 is zero. Let ε be equal to locked(T1) ∩
lockset(ı,1,E[popγa �]). If ε is empty then rule E-LK0 can be applied in order to perform a single
step. Otherwise, blocked(T,n) predicate holds and the configuration is not stuck.

Case deref locı: it can be trivially shown (as in the previous case of share that we proved θ(ı) ≥
(1,0)), that θ(ı) ≥ (1,1) and since mutex(T1,n :θ; E[deref locı]) holds, then ı < locked(T1) and
thus rule E-D can be used to perform a step. The case of locı := v can be shown in a similar
manner. �

Lemma 3 (Preservation) Let S ;T be a well-typed configuration with M ` S ;T. If the operational
semantics takes a step S ;T { S ′;T ′, then there exists M′ ⊇ M such that the resulting configuration is
well-typed with M′ ` S ′;T ′.

Proof. We proceed by case analysis on the thread evaluation relation (we only consider a few cases due
to space limitations):

Case E-A : Rule E-A implies S ′ = S , T ′ = T,n :θ; E[popγa e1[v/x]] and e = (λx.e1 as τ1
γc
−→τ2 v)

seq(γa)
.

By inversion of the configuration typing assumption we have that mutex(T,n :θ; E[e]) and M;∅;∅ `t
θ; E[e] : 〈〉&(γ;γ′) hold. It suffices to show that mutex(T,n :θ; E[popγa e1[v/x]]) and M;∅;∅ `t
θ; E[popγa e1[v/x]] : 〈〉&(γ;γ′) hold. The former is immediate from mutex(T,n :θ; E[e]) as no new
locks are acquired. Now we proceed with the latter, which can be shown by proving that M;∅;∅ `

12 Type-Based Deadlock Freedom without Lock Ordering

popγa e1[v/x] : τ′2 &(γa;γb) holds. By inversion on the thread typing derivation E[e] we have

M;∅;∅ ` v : τ′1 &(γb;γb), seq(γa) ` γb = γa⊕γ
′
c and M;∅;∅ ` λx.e1 as τ1

γc
−→τ2 : τ′1

γ′c
−→τ′2 &(γb;γb),

where τ′1
γ′c
−→τ′2 ' τ1

γc
−→τ2. We can use proof by induction on the expression typing relation to

show that if v is well typed with τ′1, then it is also well typed with τ1 provided that τ1 ' τ
′
1.

Therefore, M;∅;∅ ` v : τ1 &(γb;γb) holds. By inversion of the function typing derivation we ob-
tain that seq(∅) ` γc ⇒ M;∅;∅, x : τ1 ` e1 : τ2 &(min(γc);γc). seq(∅) ` γ′c (premise of seq(γa) `
γb = γa ⊕ γ

′
c) and γc ' γ

′
c imply that seq(∅) ` γc holds, thus M;∅;∅, x : τ1 ` e1 : τ2 &(min(γc);γc)

holds. By applying the standard value substitution lemma on the new typing derivation of v we
obtain that M;∅;∅ ` e1[v/x] : τ2 &(min(γc);γc) holds. The application of rule T-PP implies that
M;∅;∅ ` popγa e1[v/x] : τ′2 &(γa;γb) holds.

Case E-LK0 , E-LK1, E-UL , E-SH and E-RL : these rules generate side-effects as they modify the
reference/lock count of location ı. We provide a single proof for all cases. Hence, we are as-
suming here that u (i.e. in E[u]) has one of the following forms: lockγ1 locı, unlock locı
share locı or release locı. Rules E-LK0 , E-LK1, E-UL , E-SH and E-RL imply that S ′ = S ,
T ′ = T,n :θ′; E[()], where () replaces u in context E and θ differs with respect to θ′ only in the one
of the counts of ı (i.e., θ′ = θ[ı 7→ θ(ı) + (n1,n2)] and γa(r)− κ = (n1,n2) — γa is the input effect of
E[u]).
By inversion of the configuration typing assumption we have that:

- mutex(T,n :θ; E[u]): In the case of E-UL , E-SH , E-LK1 and E-RL no new locks are acquired.
Thus, mutex(T,n :θ′; E[()]) holds. In the case of rule E-LK0 , a new lock ı is acquired (i.e.,
when the lock count of ı is zero) the precondition of E-LK0 suggests that no other thread
holds ı: locked(T)∩ lockset(ı,1,E[popγa �]) = ∅. Thus, mutex(T,n :θ′; E[()]) holds.

- M;∅;∅ `t θ; E[u] : 〈〉&(γ;γ′): By inversion we have that M;∅;∅ ` E : 〈〉
γa;γb
−→ 〈〉&(γ;γ′) and

M;∅;∅ ` u : 〈〉&(γa;γb), where γb = γa, (ı@n′)κ for some n′. It can be trivially shown from
the latter derivation that M;∅;∅ ` () : 〈〉&(γa;γa). We can obtain from the typing derivation of
E (proof by induction) that M;∅;∅ ` E : 〈〉

γa;γa
−→ 〈〉&(γ;γ′′), where γ′ = γ′′, (ı@n′)κ.

- lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): By the definition of lockset func-
tion it can be shown that lockset(j,nb,E[popγa �]) ⊆ lockset(j,nb,E[popγb �]) for all j , ı
in the domain of θ′ (nb is the lock count of j in θ). The same applies for j = ı in the case of
rules E-SH , E-RL as the lock count of ı is not affected. In the case of rules E-LK0 , E-LK1,
E-UL we have lockset(ı,nb±1,E[popγa �]), but this is identical to lockset(ı,nb,E[popγb �])
by the definition of lockset. Therefore lockset ok(E[popγa �], θ′) holds. The predicate
counts ok (E[popγb �], θ) enforces the invariant that the static counts are identical to the
dynamic counts (θ) of ı. The lock count of θ is modified by ±1 and γa differs with respect to
γb by (ı@n′)κ. We can use this fact to show that counts ok(E[popγa �], θ′). �

Lemma 4 (Multi-step Program Preservation) Let S 0;T0 be a closed well-typed configuration for
some M0 and assume that S 0;T0 evaluates to S n;Tn in n steps. Then for all ı ∈ [0,n] Mı ` S ı;Tı holds.

Proof. Proof by induction on the number of steps n using Lemma 3. �

Theorem 1 (Type Safety) Let expression e be the initial program and let the initial typing context M0
and the initial program configuration S 0;T0 be defined as follows: M0 = ∅, S 0 = ∅, and T0 = {0 : ∅;e}.
If S 0;T0 is well-typed in M0 and the operational semantics takes any number of steps S 0;T0 {

n S n;Tn,
then the resulting configuration S n;Tn is not stuck and Tn has not reached a deadlocked state.

P. Gerakios, N. Papaspyrou, and K. Sagonas 13

Proof. The application of Lemma 4 to the typing derivation of S 0;T0 implies that for all steps from zero
to n there exists an Mı such that Mı ` S ı;Tı. Therefore, Lemma 1 implies that ¬deadlocked(Tn) and
Lemma 2 implies S n;Tn is not stuck. �

Typing the initial configuration S 0;T0 with the empty typing context M0 guarantees that all functions
in the program are closed and that no explicit location values (locı) are used in the source of the original
program.

5 Concluding Remarks

The main contribution of this work is type-based deadlock avoidance for a language with unstructured
locking primitives and the meta-theory for the proposed semantics. The type system presented in this
paper guarantees that well-typed programs will not deadlock at execution time. This is possible by
statically verifying that program annotations reflect the order of future lock operations and using the
annotations at execution time to avoid deadlocks. The main advantage over purely static approaches to
deadlock freedom is that our type system accepts a wider class of programs as it does not enforce a total
order on lock acquisition. The main disadvantages of our approach is that it imposes an additional run-
time overhead induced by the future lockset computation and blocking time (i.e., both the requested lock
and its future lockset must be available). Additionally, in some cases threads may unnecessarily block
because our type and effect system is conservative. For example, when a thread locks x and executes a
lengthy computation (without acquiring other locks) before releasing x, it would be safe to allow another
thread to lock y even if x is in its future lockset.

We have shown that this is a non-trivial extension for existing type systems based on deadlock avoid-
ance. There are three significant sources of complexity: (i) lock acquisition and release operations may
not be properly nested, (ii) lock-unlock pairs may span multiple contexts: function calls that contain lock
operations may not always increase the size of lockset, but instead limit the lockset size. In addition,
future locksets must be computed in a context-sensitive manner (stack traversal in our case), and (iii) in
the presence of location (lock) polymorphism and aliasing, it is very difficult for a static type system even
to detect the previous two sources of complexity. To address lock aliasing without imposing restrictions
statically, we defer lockset resolution until run-time.

References

[1] Gérard Boudol (2009): A Deadlock-Free Semantics for Shared Memory Concurrency. In: Martin Leucker &
Carroll Morgan, editors: Proceedings of the International Colloquium on Theoretical Aspects of Computing,
LNCS 5684, Springer, pp. 140–154.

[2] Chandrasekhar Boyapati, Robert Lee & Martin Rinard (2002): Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In: Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM Press, New York, NY, USA, pp. 211–
230.

[3] John Boyland (2003): Checking Interference with Fractional Permissions. In: Radhia Cousot, editor: Static
Analysis: Proceedings of the 10th International Symposium, LNCS 2694, Springer, pp. 55–72.

[4] E. G. Coffman, M. Elphick & A. Shoshani (1971): System Deadlocks. ACM Comput. Surv. 3(2), pp. 67–78.

[5] Cormac Flanagan & Martı́n Abadi (1999): Object Types Against Races. In: Jos C. M. Baeten & Sjouke Mauw,
editors: Concurrency Theory: Proceedings of the 10th International Conference, LNCS 1664, Springer, pp.
288–303.

14 Type-Based Deadlock Freedom without Lock Ordering

[6] Cormac Flanagan & Martı́n Abadi (1999): Types for Safe Locking. In: Programming Language and Systems:
Proceedings of the European Symposium on Programming, number 1576 in LNCS, Springer, pp. 91–108.

[7] Prodromos Gerakios, Nikolaos Papaspyrou & Konstantinos Sagonas (2010): A Concurrent Language With a
Uniform Treatment of Regions and Locks. In: Alastair R. Beresford & Simon Gay, editors: PLACES 2009,
EPTCS 17, pp. 79–93.

[8] Prodromos Gerakios, Nikolaos Papaspyrou & Konstantinos Sagonas (2010): Race-free and Memory-safe
Multithreading: Design and Implementation in Cyclone. In: Proceedings of the ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation, ACM Press, New York, NY, USA, pp.
15–26.

[9] Naoki Kobayashi (2006): A New Type System for Deadlock-Free Processes. In: C. Baier & H. Hermanns,
editors: CONCUR 2006, LNCS 4137, Springer, pp. 233–247.

[10] Leslie Lamport (1979): A New Approach to Proving the Correctness of Multiprocess Programs. ACM Trans-
actions on Programming Languages and Systems 1(1), pp. 84–97.

[11] Kohei Suenaga (2008): Type-Based Deadlock-Freedom Verification for Non-Block-Structured Lock Primi-
tives and Mutable References. In: G. Ramalingam, editor: Asian Symposium on Programming Languages
and Systems, LNCS 5356, Springer, pp. 155–170.

[12] Vasco Vasconcelos, Francisco Martin & Tiago Cogumbreiro (2010): Type Inference for Deadlock Detec-
tion in a Multithreaded Polymorphic Typed Assembly Language. In: Alastair R. Beresford & Simon Gay,
editors: Post-proceedings of the Workshop on Programming Language Approaches to Concurrency and
communication-cEntric Software (PLACES 2009), EPTCS 17, pp. 95–109.

Appendix

A.1 Formalism Summary: Operational Semantics
locked(T) this function takes a list of threads T and returns a set of locations ε locked by

threads in T .
θ +ı (n1,n2) this function updates the map θ so that the reference and lock counts of θ(ı) are

incremented by n1 and n2 respectively.
θ(ı) this function returns the reference and lock counts of θ(ı).
(θ1, θ2) = split(θ , max(γa)) this judgment takes γa (the effect of a new thread) and θ and returns θ1 and θ2,

such that the sum of the counts of each location in θ1 and θ2 equals the counts
of the same location in θ.

lockset(ı,n,E) the lockset computation function traverses the evaluation context E, and returns
the union of the application f rame lockset function to each frame the form
popγ �. The traversal ends when E is empty or n is zero.

A.2 Formalism Summary: Static Semantics
M;∆ ` τ well-formedness judgement within a typing context M;∆ for type τ.
M;∆ ` r well-formedness judgement within a typing context M;∆ for location r.
` M;∆;Γ;γ1;γ2 well-formedness judgement for typing context M;∆;Γ and effect (γ1;γ2).
ξ ` γ ensures that pure capabilities are not aliased within γ. In the case of parallel

application (i.e., ξ = par), the ending capability of each location must be zero,
whereas the starting capability of each location must have a zero lock count
when that capability is impure.

γ(r) this function returns the most recent (i.e., rightmost) occurence of r within
effect γ.

P. Gerakios, N. Papaspyrou, and K. Sagonas 15

max(γ′) returns a subset of γ′, say γ such that no duplicate locations or branches exist,
the domain of γ′ equals the domain of γ and each element of γ is equal to γ(r)
for any r in the domain of γ.

min(γ′) this function takes γ′ and returns a prefix γ′ of γ such that no duplicate locations
or branches exist and the domain of γ′ equals the domain of γ.

γ \ r this function takes γ and r and removes all occurences of r′ from γ such that r′

is identical to r modulo the tags of constant locations.

ξ ` γ′ = γ⊕γ1 this function takes as an input γ representing the environment effect before a
function call, the function effect γ1 and yields the environment effect γ′ repre-
senting the environment effect after the function call. γ is a prefix of γ′ and the
suffix of γ′ is an adjusted version of γ1: the order of locations is the same as in
γ1 but the counts may be greater than the ones in γ1 as some counts may have
been abstracted withing the scope of the function. It also enforces ξ ` γ.

κ ≥ κ′ this predicate is true if both counts of κ are no smaller than the correspoding
counts of κ′.

κ+ κ′, κ− κ′ these functions calculate the sum and difference of two capabilities (considered
here as two-dimensional vectors).

summary(γ) the effect summarization function, used primarily in the definition of recursive
functions.

τ ' τ′ this predicate is true when τ and τ′ are structurally equivalent after removing
@n annotations from locations.

M;∆;Γ ` E : τ
γa;γb
−→ τ′&(γ1;γ2) the evaluation typing context judgement that takes as an input the typing con-

text M;∆;Γ, the evaluation context E, the expected effect (γa;γb) and the ex-
pected type τ (for the innermost hole in E), the input effect γ1 and returns the
type τ′ and the effect γ2 that will be returned by E when it is filled with an
expression of type τ and effect (γa;γb).

A.3 Formalism Summary: Type Safety

blocked(T,n) this predicate is true when thread n of thread list T is in a blocked (i.e, waiting
for a lock) state.

mutex(T) this predicate is true when each lock is held by at most one thread of T .

counts ok(E, θ) this predicate takes as an evaluation context E, and an access list θ and holds
when the sum of all pop expression annotations in E equal the counts of the
access list θ. This judgement establishes an exact correspondence between
dynamic and static counts.

lockset ok(E, θ) this predicate takes as an evaluation context E, and an access list θ and holds
when the future lockset (lockset function) of an acquired lock at any program
point is always a subset of the future lockset computed when the lock was
initially acquired.

16 Type-Based Deadlock Freedom without Lock Ordering

A.4 Language Syntax & Substitution Relation

Value v ::= f | () | locı | true | false

Expression e ::= x | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x = ref e in e
| share e | release e | lockγ e
| unlock e | () | popγ e | locı
| if e then e else e | true | false

Function f ::= λx.e as τ
γ
−→τ | Λρ. f | fix x : τ. f

Type τ ::= 〈〉 | τ
γ
−→τ | ∀ρ.τ

| ref(τ,r) | bool

Location r ::= ρ | ı@n | ρ@n

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ,rκ | γ,γ?γ

x′[v/x] = v x′ ≡ x
| x′ otherwise

e[v/x] = x′[v/x] | locı | true | false | () | popγ e[v/x]
| share e[v/x] | release e[v/x] | lockγ e[v/x]
| unlock e[v/x] | deref e[v/x] | (e[v/x]) [r]
| e[v/x] := e′[v/x] | f [v/x] | (e[v/x] e′[v/x])ξ

| let ρ,y = ref e[v/x] in e′[v/x] y . x
| if e[v/x] then e′[v/x] else e′′[v/x]

f [v/x] = λy.e[x/v] as τ
γ1
−→τ | Λρ. f [x/v]

| fix y : τ. f [x/v]

r′[r/ρ] = r r′ ≡ ρ
| r@n r′ ≡ ρ@n
| r′ otherwise

f [r/ρ] = λx.e[r/ρ] as τ1[r/ρ]
γ[r/ρ]
−→ τ2[r/ρ] | Λρ′. f [r/ρ]

| fix x : τ[r/ρ]. f [r/ρ]

e[r/ρ] = x | locı | true | false | () | popγ[r/ρ] e[r/ρ]
| share e[r/ρ] | release e[r/ρ] | lockγ[r/ρ] e[r/ρ]
| unlock e[r/ρ] | (e[r/ρ] e′[r/ρ])ξ[r/ρ]

| deref e[r/ρ] | e[r/ρ] := e′[r/ρ]
| (e[r/ρ]) [r′[r/ρ]] | f [r/ρ]
| let ρ′, x = ref e[r/ρ] in e′[r/ρ]
| if e[r/ρ] then e′[r/ρ] else e′′[r/ρ]

τ[r/ρ] = 〈〉 | τ1[r/ρ]
γ[r/ρ]
−→ τ2[r/ρ] | bool

| ∀ρ′. τ[r/ρ] | ref(τ[r/ρ],r′[r/ρ])

ξ[r/ρ] = seq(γ[r/ρ]) | par

γ[r/ρ] = ∅ | γ′[r/ρ],r′[r/ρ]κ

| γ′[r/ρ],γ′′[r/ρ]?γ′′′[r/ρ]

A.5 Operational Semantics: Syntax & Evaluation Context

Access Lists θ ::= ∅ | θ, ı 7→ n;n;ε;ε

Store S ::= ∅ | S , ı 7→ v

Threads T ::= ∅ | T,n :θ;e

Configuration C ::= S ;T

Locations ε ::= ∅ | ε, ı

Stack E ::= � | E[F]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v := � | share � | release �
| lockγ � | unlock � | popγ �

| if � then e1 else e2

Redex u ::= (λx.e as τ v)ξ | lockγ1 locı | unlock locı | share locı
| release locı | deref locı | locı := v | let ρ, x = ref v in e2
| popγ v | if v then e1 else e2 | (Λρ. f) [r] | (fix x : τ. f v)seq(γb)

A.6 Generic Predicates and Functions

set(γ) = ∀α, γ1, γ2.γ = (γ1,α) :: γ2⇒ α = rκ ∧ r < dom(γ1)∪dom(γ2)

P. Gerakios, N. Papaspyrou, and K. Sagonas 17

γ :: ∅ = γ

γ :: γ′ = γ′′

γ :: γ′,rκ = γ′′,rκ
γ :: γ′ = γ′′

γ :: γ′, (γ1 ?γ2) = γ′′, (γ1 ?γ2)

dom(γ) = ε

dom(γ,rκ) = ε ∪{r}

dom(γ) = ε
dom(γ′) = ε′ dom(γ′′) = ε′′

dom(γ,γ′ ?γ′′) = ε ∪ ε′∪ ε′′ dom(∅) = ∅

max(∅) = ∅

γ2 = {r′κ ∈max(γ1) | r′ , r}

max(γ1,rκ) = γ2,rκ
γ4 = max(γ1 :: γ2) = max(γ1 :: γ3)

max(γ1,γ2 ?γ3) = γ4

set(γ1) γ2 = γ1 :: γ3
dom(γ2) = dom(γ1)

min(γ2) = γ1

γ1 = γ2 :: γ3
γ2 Cγ1

max(γ) = (γ1,rκ) :: γ2

γ(r) = κ

A.7 Operational Semantics: Helper Rules & Predicates

locked(T) = { ı | (n :θ;e) ∈ T ∧ θ(ı) ≥ (1,1)}
lk(κ) = n2 if κ = (n1,n2)
θ +ı (n1,n2) = θ[ı 7→ n1 + n3;n2 + n4;ε1;ε2] if (ı 7→ n3;n4;ε1;ε2) ∈ θ
θ(ı) = (n1,n2) if (ı 7→ n1;n2;ε1;ε2) ∈ θ

κ = (n1,n2) (θa, θb) = split(θ , γ)
(θc, θd) = (θa +ı (−n1,−n2) , θb +ı (n1,n2))

(θc, θd) = split(θ , γ, (ı@n0)κ)
(A1)

(θ,∅) = split(θ , ∅)
(A2)

(∅,n) = frame lockset(ı,n, ∅)
(W0)

(∅,0) = frame lockset(ı,0, γ)
(W1)

n1 > 0 n2 = lk(κ)− lk(γ(ı@n0))
(ε,n3) = frame lockset(ı,n1 + n2, γ)

(ε,n3) = frame lockset(ı,n1, γ, (ı@n0)κ)
(W2)

n1 > 0 (ε,n2) = frame lockset(ı,n1, γ1 :: γ2)
(ε′,n2) = frame lockset(ı,n1, γ1 :: γ3)

(ε ∪ ε′,n2) = frame lockset(ı,n1, γ1,γ2 ?γ3)
(W3)

n1 > 0 (ε,n2) = frame lockset(ı,n1, γ) j , ı
ε′ = {j | lk(κ)− lk(γ(j@n0)) < 0}

(ε ∪ ε′,n2) = frame lockset(ı,n1, γ, (j@n0)κ)
(W4)

{ı} = lockset(ı,n,�)
(L1)

n1 > 0 ε′ = lockset(ı,n2,E) (ε,n2) = frame lockset(ı,n1, γ)

ε ∪ ε′ = lockset(ı,n1,E[popγ �])
(L2)

E , �
{ı} = lockset(ı,0,E)

(L3)
F , popγ � ε = lockset(ı,n1,E) n1 > 0

ε = lockset(ı,n1,E[F])
(L4)

18 Type-Based Deadlock Freedom without Lock Ordering

A.8 Operational Semantics: Reduction Relation

v′ ≡ λx.e1 as τ1
γa
−→τ2 fresh n′ (θ1, θ2) = split(θ , max(γa))

S ;T,n :θ; E[(v′ v)par] { S ;T,n :θ1; E[()],n′ :θ2;�[(v′ v)seq(min(γa))]
(E-SN)

∀ı. θ(ı) = (0,0)
S ;T,n :θ; () { S ;T

(E-T)
v′ ≡ λx.e1 as τ

′

S ;T,n :θ; E[(v′ v)seq(γb)] { S ;T,n :θ; E[popγb e1[v/x]]
(E-A)

θ(ı) ≥ (1,1) ı < locked(T)
S ;T,n :θ; E[locı := v] { S [ı 7→ v];T,n :θ; E[()]

(E-AS)
θ(ı) ≥ (1,1) ı < locked(T)

S ;T,n :θ; E[deref locı] { S ;T,n :θ; E[S (ı)]
(E-D)

fresh ı@n1 S ′ = S , ı 7→ v θ′ = θ, ı 7→ 1;1;∅;∅

S ;T,n :θ; E[let ρ, x = ref v in e2] { S ′;T,n :θ′; E[e2[ı@n1/ρ][locı/x]]
(E-NG)

θ(ı) ≥ (1,0) θ′ = θ +ı (1,0)

S ;T,n :θ; E[share locı] { S ;T,n :θ′; E[()]
(E-SH)

θ(ı) ≥ (1,0) θ(ı) = (n1,n2)
n1 = 1⇒ n2 = 0 θ′ = θ +ı (−1,0)

S ;T,n :θ; E[release locı] { S ;T,n :θ′; E[()]
(E-RL)

fresh n2

S ;T,n :θ; E[(Λρ. f)[ı@n1]] { S ;T,n :θ; E[f [ı@n2/ρ]]
(E-RP)

S ;T,n :θ; E[popγ v] { S ;T,n :θ; E[v]
(E-PP)

S ;T,n :θ; E[if true then e1 else e2] { S ;T,n :θ; E[e1]
(E-IT)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,−1)

S ;T,n :θ; E[unlock locı] { S ;T,n :θ′; E[()]
(E-UL)

S ;T,n :θ; E[if false then e1 else e2] { S ;T,n :θ; E[e2]
(E-IF)

ε = lockset(ı,1,E[popγ1 �]) θ = θ′′, ı 7→ n1;0;ε1;ε2
θ′ = θ′′, ı 7→ n1;1;dom(S);ε n1 ≥ 1 locked(T)∩ ε = ∅

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK0)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,1)

S ;T,n :θ; E[lockγ1 locı] { S ;T,n :θ′; E[()]
(E-LK1)

S ;T,n :θ; E[(fix x : τ. f v)seq(γa)] { S ;T,n :θ; E[(f [fix x : τ. f /x] v)seq(γa)]
(E-FX)

A.9 Static Semantics: Syntax and Typing Context Substitution Relation

Type variable list ∆ ::= ∅ | ∆,ρ

Memory List M ::= ∅ | M, ı 7→ τ

Variable list Γ ::= ∅ | Γ, x : τ

Γ[r/ρ] ::= ∅ | Γ1[r/ρ], x : τ[r/ρ]

A.10 Static Semantics: Type Equivalence

r ' r (S0) r′ ' r
r ' r′

(S1) r ' r′

r ' r′@n2
(S2)

∅ ' ∅
(S3)

r1 ' r2 γ1 ' γ2

γ1,r1
κ ' γ2,r2

κ
(S4)

γ1 ' γ4 γ2 ' γ5 γ3 ' γ6

γ1,γ2 ?γ3 ' γ4,γ5 ?γ6
(S5)

τ ' τ
(S6)

τ3 ' τ4 r1 ' r2

ref(τ3,r1) ' ref(τ4,r2)
(S7)

fresh ρ1@n
τ1[ρ1@n/ρ] ' τ2[ρ1@n/ρ′]

∀ρ.τ1 ' ∀ρ
′. τ2

(S8)

τ1 ' τ3 τ2 ' τ4
γ1 ' γ3 γ2 ' γ4

τ1
γ1
−→τ2 ' τ3

γ3
−→τ4

(S9)

P. Gerakios, N. Papaspyrou, and K. Sagonas 19

A.11 Static Semantics: Capability Related Rules
is pure(κ)=∃n1. ∃n2. κ = n1,n2

∀rκ ∈ γ. is pure(κ)⇒∀r′κ
′

∈ γ.r′ , r⇒¬(r ' r′)
ξ = par⇒∀rκ.(rκ ∈min(γ)⇒ κ = (0,0))∧ (rκ ∈max(γ)∧¬is pure(κ)⇒ lk(κ) = 0)

ξ ` γ
(OK)

r′ ' r γ′ = γ \ r′

γ′ = γ,rκ \ r′
(M0)

¬(r′ ' r) γ′ = γ \ r′

γ′,rκ = γ,rκ \ r′
(M1)

∅ = ∅\ r
(M2)

is pure(κ3)⇒ κ2 = (0,0) ∧ is pure(κ1) is pure(κ1)⇔ is pure(κ2)
κ1 = (n3 + n5,n4 + n6) κ3 = (n5,n6) κ2 = (n3,n4)

κ1 = κ2 + κ3
(K1)

γ = subtract(γ , ∅)
(ES1)

γ2 = subtract(γ,rκ2 , γ1) κ = κ2 + κ1

γ2 = subtract(γ,rκ , γ1,rκ1)
(ES2)

κ = γ(r) + κ2 γ′′ = add(γ , γ′)

γ′′,rκ = add(γ , γ′,rκ2)
(AD1)

∅ = add(γ , ∅)
(AD2)

γ2 = add(subtract(max(γ) , min(γ1)) , γ1)
γ2 = min(γ2) :: γ3 seq(∅) ` γ

seq(γ) ` γ :: γ3 = γ⊕γ1
(D0)

par ` γ1
γ2 = add(subtract(max(γ) , min(γ1)) , max(γ1))

par ` γ :: γ2 = γ⊕γ1
(D1)

locked(γ,1,r) lk(κ) = 0

locked(γ,rκ,0,r)
(X1)

lk(κ) > 0
locked(γ,rκ,1,r)

(X2)
r , r′ locked(γ,n,r)

locked(γ,r′κ,n,r)
(X3)

locked(γ :: γ1,n,r)∨ locked(γ :: γ2,n,r)
locked(γ,γ1 ?γ2,n,r)

(X4)

γb = min(γa) γc = max(γa)
γd = {rγc(r)+(0,1) | locked(γa,0,r)}
γb :: γd :: γc = summary(γa)

(L0)

A.12 Static Semantics: Well Formedness Relation
Constraint Well-formedness

M;∆ ` ∅

M;∆ ` r M;∆ ` γ1

M;∆ ` γ1,rκ
M;∆ ` γ1 M;∆ ` γ2 M;∆ ` γ3

M;∆ ` γ1,γ2 ?γ3

Region Well-formedness

r ∈ ∆∪dom(M)
M;∆ ` r

M;∆ ` ı
M;∆ ` ı@n

M;∆ ` ρ
M;∆ ` ρ@n

Program Typing Context Well-formedness

` M M;∆ ` Γ M;∆ ` γ1 M;∆ ` γ2 γ1 Cγ2 seq(∅) ` γ2

` M;∆;Γ;γ1;γ2

Type Well-formedness

M;∆ ` bool
M;∆,ρ ` τ

M;∆ ` ∀ρ.τ
M;∆ ` τ M;∆ ` r

M;∆ ` ref(τ,r)

min(γ1) defined
M;∆ ` τ1 M;∆ ` γ1 M;∆ ` τ2

M;∆ ` τ1
γ1
−→τ2

M;∆ ` 〈〉

Γ Well-formedness

M;∆ ` ∅
M;∆ ` τ x < dom(Γ) M;∆ ` Γ

M;∆ ` Γ, x : τ

M Well-formedness

` ∅

` M ı < dom(M) M;∅ ` τ
` M, ı 7→ τ

20 Type-Based Deadlock Freedom without Lock Ordering

A.13 Static Semantics: Typing Rules

` M;∆;Γ;γ;γ
(x : τ′) ∈ Γ τ ' τ′

M;∆;Γ ` x : τ&(γ;γ)
(T-V)

` M;∆;Γ;γ;γ
M;∆;Γ ` true : bool&(γ;γ)

(T-TR)
M;∆,ρ;Γ ` f : τ&(γ;γ)

M;∆;Γ ` Λρ. f : ∀ρ.τ&(γ;γ)
(T-RF)

` M;∆;Γ;γ;γ τ′ ≡ τ1
γb
−→τ2 M;∆ ` τ′ τ ' τ′

seq(∅) ` γb⇒ M;∆;Γ, x : τ1 ` e1 : τ2 &(min(γb);γb)

M;∆;Γ ` λx.e1 as τ
′ : τ&(γ;γ)

(T-F)

M;∆ ` r M;∆ ` τ[r/ρ]
M;∆;Γ ` e1 : ∀ρ.τ&(γ;γ′)

M;∆;Γ ` (e1) [r] : τ[r/ρ]&(γ;γ′)
(T-RP)

` M;∆;Γ;γ;γ

M;∆;Γ ` () : 〈〉&(γ;γ)
(T-U)

` M;∆;Γ;γ;γ
(ı 7→ τ′) ∈ M τ ' ref(τ′, ı)

M;∆;Γ ` locı : τ&(γ;γ)
(T-L)

` M;∆;Γ;γ;γ
M;∆;Γ ` false : bool&(γ;γ)

(T-FL)

M;∆;Γ ` e : τ′&(min(γb);γb) γb ' γ
′
b

seq(γ) ` γ′ = γ⊕γ′b τ′ ' τ ` M;∆;Γ;γ;γ′

M;∆;Γ ` popγ e : τ&(γ;γ′)
(T-PP)

M;∆;Γ ` e1 : ref(τ,r)&(γ1;γ′)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(1,0);γ′)
κ ≥ (2,0) γ(r) = κ

M;∆;Γ ` share e : 〈〉&(γ;γ′)
(T-SH)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(1,0);γ′)
κ = (n1,n2) n1 = 0⇒ n2 = 0 γ(r) = κ

M;∆;Γ ` release e : 〈〉&(γ;γ′)
(T-RL)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ−(0,1);γ′)
κ ≥ (1,1) γ(r) = κ

M;∆;Γ ` lockγ e : 〈〉&(γ;γ′)
(T-LK)

M;∆;Γ ` e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ` γ2 = γ⊕γa

M;∆;Γ ` e2 : τ1 &(γ2;γ3) ξ = par⇒ τ2 = 〈〉

M;∆;Γ ` (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

M;∆;Γ ` e : ref(τ,r)&(γ,rκ+(0,1);γ′)
κ ≥ (1,0) γ(r) = κ

M;∆;Γ ` unlock e : 〈〉&(γ;γ′)
(T-UL)

M;∆;Γ ` e1 : τ1 &(γ1 \ρ;γ′) γ1(ρ) = (1,1)
M;∆ ` τ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

τ ≡ τ1
γb
−→τ2 τ′ ≡ τ′1

γ′a
−→τ′2 τ ' τ′ γa ' γ

′
a

M;∆;Γ, x : τ ` f : τ′&(γ;γ) γb = summary(γa)
M;∆;Γ ` fix x : τ. f : τ&(γ;γ)

(T-FX)

M;∆;Γ ` e1 : bool&(γ,γ2 ?γ3;γ′) max(γ :: γ2) = max(γ :: γ3)
M;∆;Γ ` e2 : τ&(γ;γ :: γ2) M;∆;Γ ` e3 : τ&(γ;γ :: γ3)

M;∆;Γ ` if e1 then e2 else e3 : τ&(γ;γ′)
(T-IF)

γ(r) ≥ (1,1)
M;∆;Γ ` e1 : ref(τ,r)&(γ;γ′)

M;∆;Γ ` deref e1 : τ&(γ;γ′)
(T-D)

P. Gerakios, N. Papaspyrou, and K. Sagonas 21

A.14 Type Safety: Evaluation Context Typing

` M;∆;Γ;γ1;γ2 M;∆ ` τ

M;∆;Γ ` � : τ
γ1;γ2
−→ τ&(γ1;γ2)

(E0)

M;∆;Γ ` E : τ2
γ5;γ6
−→ τ3 &(γ1;γ2)

M;∆;Γ ` F : τ1
γ3;γ4
−→ τ2 &(γ5;γ6)

M;∆;Γ ` E[F] : τ1
γ3;γ4
−→ τ3 &(γ1;γ2)

(E1)

γ3 Cγ4 γ2 = γ1 ⊕γa

M;∆;Γ ` e2 : τ1 &(γ2;γ3) M;∆ ` τ1
γa
−→τ2

ξ ` γa ξ = seq(γ1)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (� e2)ξ : (τ1
γa
−→τ2)

γ3;γ4
−→ τ2 &(γ1;γ4)

(F1)

M;∆;Γ ` v1 : τ1
γa
−→τ2 &(γ3;γ3)

γ2 = γ1 ⊕γa γ2 Cγ3 M;∆ ` γ3
ξ ` γa ξ = seq(γ1)∨ (ξ = par∧τ2 = 〈〉)

M;∆;Γ ` (v1 �)ξ : τ1
γ2;γ3
−→ τ2 &(γ1;γ3)

(F2)

` M;∆;Γ;γ;γ′ ` M;∆;Γ;γ1;γ2 M;∆ ` τ
γ′ = γ⊕γ2 e = v⇒ γ1 = min(γ1)

M;∆;Γ ` popγ � : τ
γ1;γ2
−→ τ&(γ;γ′)

(F3)

γ3 = γ2 \ρ γ3 Cγ
′ γ1(ρ) = (1,1) M;∆ ` τ1 M;∆ ` τ

` M;∆;Γ;γ;γ′ M;∆,ρ;Γ, x : ref(τ1,ρ) ` e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ` let ρ, x = ref � in e2 : τ1
γ3;γ′
−→ τ&(γ;γ′)

(F4)

` M;∆;Γ;γ;γ′ M;∆ ` ref(τ,r)
M;∆;Γ ` e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ` � := e2 : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F5)

γCγ′ γ(r) ≥ (1,1)
M;∆;Γ ` locı : ref(τ,r)&(γ′;γ′)

M;∆;Γ ` locı := � : τ
γ;γ′
−→〈〉&(γ;γ′)

(F6)

` M;∆;Γ;γ;γ′ γ(r) ≥ (1,1) M;∆ ` ref(τ,r)

M;∆;Γ ` deref � : ref(τ,r)
γ;γ′
−→τ&(γ;γ′)

(F7)

` M;∆;Γ;γ1;γ′ M;∆ ` ref(τ,r)
κ ≥ (2,0) γ(r) = κ γ1 = γ,rκ−(1,0)

M;∆;Γ ` share � : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F8)

n1 = 0⇒ n2 = 0 γ1 = γ,rκ+(1,0) κ = (n1,n2)
` M;∆;Γ;γ1;γ′ M;∆ ` ref(τ,r) γ(r) = κ

M;∆;Γ ` release � : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F9)

` M;∆;Γ;γ1;γ′ M;∆ ` ref(τ,r) κ ≥ (1,0)
γ(r) = κ γ1 = γ,rκ+(0,1)

M;∆;Γ ` unlock � : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F10)

` M;∆;Γ;γ1;γ′ M;∆ ` ref(τ,r)
κ ≥ (1,1) γ(r) = κ γ1 = γ,rκ−(0,1)

M;∆;Γ ` lockγ � : ref(τ,r)
γ1;γ′
−→ 〈〉&(γ;γ′)

(F11)

γ3 = γ,γ1 ?γ2 M;∆ ` γ′ γ3 Cγ
′ max(γ :: γ1) = max(γ :: γ2)

M;∆;Γ ` e2 : τ&(γ;γ :: γ1) M;∆;Γ ` e3 : τ&(γ;γ :: γ2)

M;∆;Γ ` if � then e2 else e3 : bool
γ3;γ′
−→ τ&(γ;γ′)

(F12)

M;∆;Γ ` e : τ&(γa;γb) M;∆;Γ ` E : τ
γa;γb
−→ 〈〉&(γ1;γ2)

∀rκ ∈ γ1. κ = (0,0) counts ok(E[popγb �], θ) lockset ok(E[popγb �], θ)

M;∆;Γ `t θ; E[e] : 〈〉&(γ1;γ2)
(EA)

A.15 Type Safety: Access List Typing

pure(γ) = {ı | ı ' r∧ rn1,n2 ∈ γ∧n1 + n2 > 0}
counts ok(E, θ) = counts roc(E, θ,∅,∅)

θ′, ı 7→ n1;n2;ε1;ε2 = θ−γ κ = (n3,n4) ı ' r
(n1,n2) ≥ (n3,n4) is pure(κ)⇒ n1 = n3 ∧ n2 = n4

θ′, ı 7→ n1 −n3;n2 −n4;ε1;ε2 = θ−γ,rκ
(B0)

θ = θ−∅
(B1)

∀ı.θ(ı) = (0,0)
counts rok(�, θ,γ, ε)

(C0)

counts rok(E, θ′,γ, ε ∪ ε′) ε′ = pure(γ′′)
θ′ = θ−γ′′ ε ∩ ε′ = ∅ γ′′ = subtract(max(γ) , max(γ1))

counts rok(E[popγ �], θ,γ1, ε)
(C1)

F , popγ′ � counts rok(E, θ,γ, ε)

counts rok(E[F], θ,γ, ε)
(C2)

lockset ok(E, θ) lockset(ı,n2,E)∩ ε1 ⊆ ε2
lockset ok(E , θ, ı 7→ n1;n2;ε1;ε2)

(DL0)
lockset ok(E,∅)

(DL1)

A.16 Type Safety: Configuration Typing
mutex(T) ≡ ∀T1,n :θ; E[e].T = T1,n :θ; E[e]⇒∀ı.θ(ı) ≥ (1,1)⇒ ı < locked(T1)
deadlocked(T) ≡ T ⊇ T1,n0 :θ0; E[lockγ0 locı0], . . .nk :θk; Ek[lockγk locık]∧ k > 0⇒

∀m1 ∈ [0,k].m2 = (m1 + 1)mod(k + 1)∧ θm1 (ım2) ≥ (1,1)

22 Type-Based Deadlock Freedom without Lock Ordering

blocked(T,n) ≡ T = T1,n :θ; E[lockγ2 locı]∧ θ(ı) = (n1,n2) ∧ n1 > 0 ∧ n2 = 0∧
locked(T1)∩ lockset(ı,1,E[popγ2 �]) , ∅

Store Typing

dom(M) = dom(S) ∀(ı 7→ τ) ∈ M.M;∅;∅ ` S (ı) : τ&(∅;∅)
M ` S

Configuration Typing

M ` T M ` S mutex(T)
M ` S ;T

Thread Typing

M ` ∅

M;∅;∅ `t θ;e : 〈〉&(γ;γ′) M ` T n < dom(T)
M ` T,n :θ;e

Not Stuck
∀T ′,n :θ;e.T = T ′,n :θ;e⇒ (T ′ ⊆ T ′′ ∧ S ;T { S ′;T ′′)∨blocked(T,n)

` S ;T

A.17 Type Safety: Multi-step Evaluation
n > 0 S ;T {n−1 S n−1;Tn−1 S n−1;Tn−1 { S n;Tn

S ;T {n S n;Tn
(E-M1)

S ;T {0 S ;T
(E-M2)

A.18 Type Safety: Main Theorems
Safety

∅ ` 0:∅;e ∧ 0:∅;e {n S ′;T ′⇒` S ′;T ′ ∧ ¬deadlocked(T)

Preservation

M ` S ;T ∧ S ;T { S ′;T ′⇒∃M′ ⊇ M. M′ ` S ′;T ′

Progress

M ` S ;T ⇒ ` S ;T

Deadlock Freedom

∅;0 :e {n S n;Tn ∧ ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı ⇒ ¬deadlocked(Tn).

A.19 Proof Sketch

Theorem 1 (Type Safety) Let expression e be the initial program and let the initial typing context M0
and the initial program configuration S 0;T0 be defined as follows: M0 = ∅, S 0 = ∅, and T0 = {0 : ∅;e}.
If S 0;T0 is well-typed in M0 and the operational semantics takes any number of steps S 0;T0 {

n S n;Tn,
then the resulting configuration S n;Tn is not stuck and Tn has not reached a deadlocked state.

Proof. The application of Lemma 1 to the assumption implies that ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı. There-
fore, S n;Tn is well-typed for some Mn. The application of Lemma 2 to ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı and
∅;0 :∅;e {n S n;Tn implies that ¬deadlocked(Tn). The application of Lemma 18 to Mn ` S n;Tn implies
S n;Tn is not stuck. �

Lemma 1 (Multi-step Program Preservation) Let S 0;T0 be a closed well-typed configuration for
some M0 and assume that S 0;T0 evaluates to S n;Tn in n steps. Then for all ı ∈ [0,n] Mı ` S ı;Tı holds.
Let S 0;T0 be a closed well-typed configuration such that M0 ` S 0;T0 for some M0.

P. Gerakios, N. Papaspyrou, and K. Sagonas 23

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0) the
proof is immediate from the assumption. When some steps are performed (i.e., n > 0), we have that
S 0;T0 {

n S n;Tn or S 0;T0 {
n−1 S n−1;Tn−1 and S n−1;Tn−1 { S n;Tn. By applying the induction hy-

pothesis on the fact that S 0;T0 is well-typed and that n−1 steps are performed we obtain that ∀ı ∈ [0,n−
1].∃Mı.Mı ` S ı;Tı. Thus, Mn−1 ` S n−1;Tn−1 holds. The application of Lemma 3 to Mn−1 ` S n−1;Tn−1 and
S n−1;Tn−1 { S n;Tn. implies that Mn ` S n;Tn. Therefore, ∀ı ∈ [0,n].∃Mı.Mı ` S ı;Tı. �

Lemma 2 (Deadlock Freedom) If the initial configuration takes n steps, where each step is well typed,
then the resulting configuration has not reached a deadlocked state.

Proof. Let us assume that z threads have reached a deadlocked state and let m ∈ [0,z− 1], k = (m +

1) modz and o = (k +1) modz. According to definition of deadlocked state, thread m acquires lock ık and
waits for lock ım, whereas thread k acquires lock ıo and waits for lock ık. Assume that m is the first of the
z threads that acquires a lock so it acquires lock ık, before thread k acquires lock ıo.

Let us assume that S y;Ty is the configuration once ıo is acquired by thread k for the first time, ε1y is
the corresponding lockset of ıo (ε1y = lockset(ıo,1,E[popγy �])) and ε2y is the set of all heap locations
(ε2y = dom(S y)) at the time ıo is acquired. Then, ık does not belong to ε1y, otherwise thread k would have
been blocked at the lock request of ıo as ık is already owned by thread m.

Let us assume that when thread k attempts to acquire ık, the configuration is of the form S x;Tx.
According to the assumption of this lemma that all configurations are well typed so S x;Tx is well-typed
as well. By inversion of the typing derivation of S x;Tx, we obtain the typing derivation of thread nk :
θk; Ek[lockγ′k locık]: lockγ′k locık is well-typed with input-output effect (γ′k;γ′′k), where κ = γ′k(ık@n′),
κ ≥ (1,1), γ′′ = γ′k, (ık@n′)κ−(1,0), and lockset ok(Ek[popγ′′k �], θk) holds, where θk is the access list of
thread k. lockset ok(Ek[popγ′′k �], θk) implies lockset(ıo,n2,Ek[popγ′′k �])∩ ε1 ⊆ ε2, where θk = θ′k, ıo 7→

n1;n2;ε1;ε2 (notice that n2 is positive, ε2 = ε1y and ε1 = ε2y — this is immediate by the operational steps
from S y;Ty to S x;Tx and rule E-LK0).

We have assumed that m is the first thread to lock ık at some step before S y;Ty, thus ık ∈ dom(S y) (the
store can only grow — this is immediate by observing the operational semantics rules). By the definition
of lockset function and the definition of γ′′k we have that ık ∈ lockset(ıo,n2,Ek[popγ′′k �]). Therefore,
ık ∈ lockset(ıo,n2,Ek[popγ′′k �])∩dom(S y) ⊆ ε1y, which is a contradiction. �

Lemma 3 (Preservation) Let S ;T be a well-typed configuration with M ` S ;T. If the operational
semantics takes a step S ;T { S ′;T ′, then there exist an M′ ⊇ M such that the resulting configuration is
well-typed with M′ ` S ′;T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : Rule E-T implies that θ; E[e] = θ;�[()], S ′ = S and T ′ = T , ∀ı. θ(ı) = (0,0). By inversion of
the configuration typing assumption we have that:

- M ` T,n :θ;�[()]: by inversion of this derivation we have M ` T .
- M ` S
- mutex(T,n :θ;�[()]): implies that mutex(T).

Given the above facts, M ` S ;T holds.

Case E-A : Rule E-A implies that S ′ = S , T ′ = T,n :θ; E[popγa e1[v/x]] and e = (λx.e1 as τ1
γc
−→τ2 v)

seq(γa)
.

By inversion of the configuration typing assumption we have that:

- M ` S

24 Type-Based Deadlock Freedom without Lock Ordering

- mutex(T,n :θ; E[e]): no new locks are acquired. Thus, mutex(T,n :θ; E[popγa e1[v/x]]) holds.
- M ` T,n :θ; E[e]: by inversion of this derivation we have that:

– M ` T
– n < dom(T)
– M;∅;∅ `t θ; E[e] : 〈〉&(γ;γ′): by inversion of this derivation we have that counts ok(E[popγb �], θ),

lockset ok(E[popγb �], θ), ∀rκ ∈ γ.κ = (0,0), and M;∅;∅ ` E : τ′2
γa;γb
−→ 〈〉&(γ;γ′), M;∅;∅ `

e : τ′2 &(γa;γb). By inversion of the latter derivation we have that M;∅;∅ ` v : τ′1 &(γb;γb),

seq(γa) ` γb = γa⊕γ
′
c and M;∅;∅ ` λx.e1 as τ1

γc
−→τ2 : τ′1

γ′c
−→τ′2 &(γb;γb), where τ′1

γ′c
−→τ′2 '

τ1
γc
−→τ2.

By inversion of the function typing derivation we obtain that seq(∅) ` γc ⇒ M;∅;∅, x :
τ1 ` e1 : τ2 &(min(γc);γc). seq(∅) ` γ′c (by inversion of seq(γa) ` γb = γa⊕γ

′
c) and γc ' γ

′
c

imply that seq(∅) ` γc hence M;∅;∅, x : τ1 ` e1 : τ2 &(min(γc);γc) holds. Lemma 8 implies
that M;∅;∅ ` v : τ1 &(γb;γb). Lemma 9 implies that M;∅;∅ ` e1[v/x] : τ2 &(min(γc);γc)
holds. The application of rule T-PP implies that M;∅;∅ ` popγa e1[v/x] : τ′2 &(γa;γb)
holds (` M;∅;∅;γa;γb can be derived by the application of lemma 4 to the typing deriva-
tion of e). Thus, M;∅;∅ ` E[popγa e1[v/x]] : 〈〉&(γ;γ′), by the application of rule EA to
the typing derivation of popγa e1[v/x], ∀rκ ∈ γ.κ = (0,0), counts ok(E[popγb �], θ) and
lockset ok(E[popγb �], θ).

Case E-FX : Rule E-FX implies S ;T,n :θ; E[(fix x : τ. f v)seq(γa)]{ S ;T,n :θ; E[(f [fix x : τ. f /x] v)seq(γa)]
holds. By inversion of the configuration typing assumption we have that:

- M ` S
- mutex(T,n :θ; E[e]): no new locks are acquired. Thus, mutex(T,n :θ; E[popγa e1[v/x]]) holds.

- M ` T,n :θ; E[e], where e is equal to (fix x : τ. f v)seq(γa): by inversion of this derivation we
have that:

– M ` T
– n < dom(T)
– M;∅;∅ `t E[e] : 〈〉&(γ0;γ): lemma 15 implies that M;∅;∅ ` E : τ′2

γa;γb
−→ 〈〉&(γ0;γ) and

M;∅;∅ ` e : τ′2 &(γa;γb). By inversion of the latter derivation we have that M;∅;∅ ` v :
τ1 &(γb;γb), and M;∅;∅ ` fix x : τ. f : τ&(γb;γb), where seq(γa) ` γb = γa ⊕ γc and τ
equals τ1

γc
−→τ2. By inversion of the typing derivation of fix x : τ. f we obtain that

M;∅;∅, x : τ ` f : τ′&(γb;γb), where τ′ = τ′1
γ′d
−→τ′2, γ′d ' γd, τ' τ′ and γc = summary(γd).

Lemma 9 implies that M;∅;∅ ` f [fix x : τ. f /x] : τ′&(γb;γb) holds.
seq(γa) ` γa :: γ′b = γa ⊕ γ

′
d is implied by γ′d ' γd, seq(γa) ` γb = γa ⊕ γc, max(γc) =

max(γd) and min(γc) = min(γd).
Lemma 6 implies that M;∅;∅ ` E : τ′2

γa;γa
−→ 〈〉&(γ0;γ′) and M;∅ ` γ, where γ = γ′ :: γc.

Thus, M;∅ ` γ′ :: γ′b holds (the domain of γ′b is a subset of the domain of γb). The

application of lemma 6 to the latter fact, M;∅;∅ ` E : τ′2
γa;γa
−→ 〈〉&(γ0;γ′) implies that

M;∅;∅ ` E : τ′2
γa;γa::γ′b
−→ 〈〉&(γ0;γ′ :: γ′b).

Lemma 5 implies that M;∅;∅ ` f [fix x : τ. f /x] : τ′1
γ′d
−→τ′2 &(γa :: γ′b;γa :: γ′b) and M;∅;∅ `

v : τ′1 &(γa :: γ′b;γa :: γ′b). Therefore, M;∅;∅ ` (f [fix x : τ. f /x] v)seq(γa) : τ′2 &(γa;γa ::
γ′b).

P. Gerakios, N. Papaspyrou, and K. Sagonas 25

– lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): lockset ok(E[popγa::γ′b
�], θ)

and counts ok(E[popγa::γ′b
�], θ) are immediate from lockset ok(E[popγb �], θ), counts ok(E[popγb �], θ),

γc = summary(γd), max(γc) = max(γd), min(γc) = min(γd), and the fact that each locked
location in γc is also locked in γd and vice versa.

Case E-LK0 , E-LK1, E-UL , E-SH and E-RL : these rules generate side-effects as they modify the
reference/lock count of location ı. We provide a single proof for all cases. Hence, we are as-
suming here that u (i.e. in E[u]) has one of the following forms: lockγ1 locı, unlock locı
share locı or release locı. Rules E-LK0 , E-LK1, E-UL , E-SH and E-RL imply that S ′ = S ,
T ′ = T,n :θ′; E[()], where () replaces u in context E and θ differs with respect to θ′ only in the one
of the counts of ı (i.e., θ′ = θ[ı 7→ θ(ı) + (n1,n2)] and γa(r)− κ = (n1,n2) — γa is the input effect of
E[u] and κ is the count of the last element of the output effect of u).

By inversion of the configuration typing assumption we have that:

- mutex(T,n :θ; E[u]): In the case of E-UL , E-SH , E-LK1 and E-RL no new locks are acquired.
Thus, mutex(T,n :θ′; E[()]) holds. In the case of rule E-LK0 , a new lock ı is acquired (i.e.,
when the lock count of ı is zero) the precondition of E-LK0 suggests that no other thread
holds ı: locked(T)∩ lockset(ı,1,E[popγa �]) = ∅. Thus, mutex(T,n :θ′; E[()]) holds.

- M;∅;∅ `t θ; E[u] : 〈〉&(γ;γ′): By inversion we have that M;∅;∅ ` E : 〈〉
γa;γb
−→ 〈〉&(γ;γ′) and

M;∅;∅ ` u : 〈〉&(γa;γb), where γb = γa, (ı@n′)κ for some n′. It can be trivially shown from the
latter derivation that M;∅;∅ ` () : 〈〉&(γa;γa). Lemma 6 implies that M;∅;∅ ` E : 〈〉

γa;γa
−→ 〈〉&(γ;γ′′),

where γ′ = γ′′, (ı@n′)κ.
- lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): By the definition of lockset func-

tion it can be shown that lockset(j,nb,E[popγa �]) ⊆ lockset(j,nb,E[popγb �]) for all j , ı
in the domain of θ′ (nb is the lock count of j in θ). The same applies for j = ı in the case of
rules E-SH , E-RL as the lock count of ı is not affected. In the case of rules E-LK0 , E-LK1,
E-UL we have lockset(ı,nb±1,E[popγa �]), but this is identical to lockset(ı,nb,E[popγb �])
by the definition of lockset. Therefore lockset ok(E[popγa �], θ′) holds. The predicate
counts ok (E[popγb �], θ) enforces the invariant that the static counts are identical to the
dynamic counts (θ) of ı. The lock count of θ is modified by ±1 and γa differs with respect to
γb by (ı@n′)κ. We can use this fact to show that counts ok(E[popγa �], θ′).

Case E-D,E-AS, E-RP and E-PP : these rules are side-effect free and therefore we provide a single proof
for all cases. Hence, we are assuming here that u (i.e. in E[u]) has one of the following forms:
(Λρ. f) [ı@n1], deref locı locı := v or popγ v. Rules E-AS,E-D,E-RP , and E-PP imply that
S ′ = S , T ′ = T,n :θ; E[v], where v is the value that replaces u in context E. By inversion of the
configuration typing assumption we have that:

- M ` S
- mutex(T,n :θ; E[u]): no new locks are acquired. Thus, mutex(T,n :θ; E[v]) holds.
- M ` T,n :θ; E[u]: by inversion of this derivation we have that:

– M ` T
– n < dom(T)
– M;∅;∅ `t θ; E[u] : 〈〉&(γ;γ′): In the case of rule E-D and E-AS the value v that substitutes

u is () and it can be trivially shown that it is well-typed. In the case rule E-PP applies,
v is well-typed by inversion of the typing derivation of u. In the case of rule E-RP ,
v is obtained by substituting ı@n2 in the body of function f (i.e. the initial term is

26 Type-Based Deadlock Freedom without Lock Ordering

(Λρ. f) [ı@n1]). We can obtain the typing derivation of v by applying lemma 11.Notice,
that we are dealing with side-effect free rules in this case thus u has the same input and
output effect.

Case E-IT : rule E-IT implies that S ;T,n :θ; E[u]{ S ;T,n :θ; E[e1], where u is equal to if true then e1 else e2.
By inversion of the configuration typing assumption we have that:

- M ` S
- mutex(T,n :θ; E[u]): no new locks are acquired. Thus, mutex(T,n :θ; E[v]) holds.
- M ` T,n :θ; E[u], where u is equal to if true then e1 else e2: by inversion of this derivation

we have that:
– M ` T
– n < dom(T)
– M;∅;∅ `t θ; E[u] : 〈〉&(γ;γ′): by inversion of the typing derivation of θ; E[e] we obtain

that M;∅;∅ ` E : τ′2
γa;γb
−→ 〈〉&(γ;γ′) and M;∅;∅ ` u : τ′2 &(γa;γb). By inversion of the latter

derivation we have that M;∅;∅ ` e1 : τ′2 &(γa;γa :: γb1), M;∅;∅ ` e2 : τ′2 &(γa;γa :: γb2)

and γb = γa,γb1 ?γb2 . Lemma 6 implies that M;∅;∅ ` E : τ′2
γa;γa
−→ 〈〉&(γ;γ′′) and M;∅ ` γ′,

where γ′ = γ′′,γb1 ?γb2 . Thus, M;∅ ` γ′′ :: γb1 holds. The application of lemma 6 to the

latter fact, M;∅;∅ ` E : τ′2
γa;γa
−→ 〈〉&(γ;γ′′) implies that M;∅;∅ ` E : τ′2

γa;γa::γb1
−→ 〈〉&(γ;γ′′ ::

γb1).
– lockset ok(E[popγb �], θ) and counts ok(E[popγb �], θ): lockset ok(E[popγa::γb1

�], θ)
is immediate from lockset(j,nb,E[popγa::γb1

�]) ⊆ lockset(j,nb,E[popγb �]) that holds
for all j in the domain of θ (nb is the lock count of j in θ) and rule W4 . Predi-
cate counts ok(E[popγa::γb1

�], θ) holds from counts ok(E[popγb �], θ) and the fact that
max(γa :: γb1) = max(γb).

Case E-IF : similar to the previous case.

Case E-NG and E-SN : similar to case E-AP . In the case of rule E-NG the use of lemma 9 will also
be required in addition to lemmas 12 and 13. In the case of E-SN , θ is divided into θ1 and θ2 for
threads n and n′ respectively. Thus, it is shown that the effects of the remaining computation of
thread n match θ1, whereas the effect of the new thread n′ matches θ2.

Lemma 4 (Well-Formedness) If an expression e is well-typed in the typing context M;∆;Γ, with effect
γ;γ′, then ` M;∆;Γ;γ;γ′ holds.

Proof. Straightforward proof by induction on the expression typing derivation. The most interesting
case is rule T-AP , where it needs to be shown that if ` M;∆;Γ;γ1;γ2 and ` M;∆;Γ;γ2;γ3 are the well-
formedness derivations of expressions e2 and e1 respectively and γ0 is the input effect to the application
term, then ` M;∆;Γ;γ0;γ3 holds.

The premise that γ1 = γ0⊕γa, where γa is the annotation of the abstraction type (i.e. the type of e1)
implies that γ0Cγ1. ` M;∆;Γ;γ1;γ2 and ` M;∆;Γ;γ2;γ3 imply that γ1Cγ2, γ2Cγ3. Thus, γ0Cγ3. They
also imply that seq(∅) ` γ3, ` M, M;∆ ` Γ and M;∆ ` γ3. The latter fact and the fact that γ0 Cγ3 imply
that M;∆ ` γ0. Thus, ` M;∆;Γ;γ0;γ3 holds. �

Lemma 5 (Value-Effect — Using Well-Formedness) If value v is well-typed in the typing context
M;∆;Γ, with effect (γ;γ) and ` M;∆;Γ;γ1;γ2, then v is well-typed in the same typing context with effect
(γ1;γ1) and (γ2;γ2).

P. Gerakios, N. Papaspyrou, and K. Sagonas 27

Proof. The proof is trivial, but we provide the key steps behind the proof. The assumption implies
that ` M;∆;Γ;γ1;γ1 and also ` M;∆;Γ;γ2;γ2 hold (trivial). By inversion of the typing derivation of
v (for any v) we obtain the well-formedness derivation as well as some other premises (in the case of
rules T-L,T-V,T-F,T-RF,T-Tf,T-Tr,T-FX,T-U). We may use the latter premises of value typing, which still
hold (same typing context), along with the latter two well-formedness derivations to formulate the new
value typing derivations with effect (γ1;γ1) and (γ2;γ2) respectively. The case for rule T-RF or rule T-FX
can be trivially shown by induction (the base case is the same as for rule T-F). �

Lemma 6 (Evaluation Context Subtyping)

- M;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ3;γ4)

- γ2 = γ21 :: γ22 and γ1Cγ21

if and only if

- M;∆;Γ ` E : τ
γ1;γ21
−→ τ′&(γ3;γ5)

- γ4 = γ5 :: γ22 and M;∆ ` γ4

Proof. Straightforward induction on the evaluation context typing relation. The base case is trivial. The
inductive hypothesis is trivial by lemma 7. �

Lemma 7 (Frame Subtyping) If the following conditions hold

- M;∆;Γ ` F : τ
γ1;γ2
−→ τ′&(γ3;γ4)

- γ2 = γ21 :: γ22 and γ1Cγ21

if and only if

- M;∆;Γ ` F : τ
γ1;γ21
−→ τ′&(γ3;γ5)

- γ4 = γ5 :: γ22 and M;∆ ` γ4

Proof. Straightforward case analysis on the frame typing relation. �

Lemma 8 (Typing Equivalence) If τ′ ' τ and M;∆;Γ ` e : τ&(γ;γ) then M;∆;Γ ` e : τ′&(γ;γ)

Proof. Straightforward induction on the shape of e′. �

Lemma 9 (Variable Substitution) M;∆;Γ, x : τ1 ` e : τ2 &(γ1;γ2)∧M;∅;∅ ` v : τ1 &(γ;γ)⇒ M;∆;Γ `
e[v/x] : τ2 &(γ1;γ2)

Proof. Straightforward induction on the expression typing derivation. �

Lemma 10 (Type Well-formedness) M;∆;Γ ` e : τ&(γ;γ′)⇒ M;∆ ` τ

Proof. Straightforward induction on the typing rules. �

Lemma 11 (Location Substitution) If the following hold:

- M, ı 7→ τ′;∆,ρ;Γ ` e : τ&(γ;γ′)

- fresh n

then M, ı 7→ τ′;∆;Γ[ı@n/ρ] ` e[ı@n/ρ] : τ[ı@n/ρ]&(γ[ı@n/ρ];γ′[ı@n/ρ]).

Proof. Proof by induction on the typing derivation of e. �

28 Type-Based Deadlock Freedom without Lock Ordering

Lemma 12 (Evaluation Typing Weakening) M;∆;Γ ` e : τ&(γ;γ′), M;∅ ` τ′ and ı < dom(M) then
M, ı 7→ τ′;∆;Γ ` e : τ&(γ;γ′).

Proof. Proof by induction on the typing derivation of e. �

Lemma 13 (Evaluation Context Typing Weakening) M;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ;γ′), M;∅ ` τ′ and ı <

dom(M) then M, ı 7→ τ′;∆;Γ ` E : τ
γ1;γ2
−→ τ′&(γ;γ′).

Proof. Proof by induction on the derivation of E. �

Lemma 14 (Evaluation Context Composition — E) If M;∆;Γ ` e : τ&(γa;γb) and M;∆;Γ ` E : τ
γa;γb
−→ τ′&(γ1;γ2),

then M;∆;Γ ` E[e] : τ′&(γ1;γ2).

Proof. Proof by induction on typing derivation of E. The base case is immediate as �[e] = e. The
inductive case where E = E′[F], the proof is immediate by inversion of the derivation of E and the
application of lemma 16. �

Lemma 15 (Evaluation Context Decomposition — E) If M;∆;Γ ` E[e] : τ′&(γ1;γ2), then there ex-
ists a γa, γb and τ such that M;∆;Γ ` e : τ&(γa;γb) and M;∆;Γ ` E : τ

γa;γb
−→ τ′&(γ1;γ2).

Proof. Proof by induction on the structure of E. The base case is immediate by using the well-formedness
derivation for the type and typing context of e (i.e., lemmas 4 and 10) and the application rule E0 . The
inductive case, where E[e] = E′[F][e] is immediate by lemma 17 and rule E1. �

Lemma 16 (Evaluation Context Composition — F) If M;∆;Γ ` e : τ&(γa;γb) and M;∆;Γ ` F : τ
γa;γb
−→ τ′&(γ1;γ2),

then M;∆;Γ ` F[e] : τ′&(γ1;γ2).

Proof. Proof by case analysis on typing derivation of F. The premises required to construct the typing
derivation of F[e] are given as premises of the typing derivation of F. �

Lemma 17 (Evaluation Context Decomposition — F) If M;∆;Γ ` F[e] : τ′&(γ1;γ2), then there ex-
ists a γa, γb and τ such that M;∆;Γ ` e : τ&(γa;γb) and M;∆;Γ ` F : τ

γa;γb
−→ τ′&(γ1;γ2).

Proof. Proof by case analysis on the structure of F. The premises required for each case (i.e., rules F1-F10)
are given by the premises of the typing derivation of F[e]. �

Lemma 18 (Progress) Let S ;T be a closed well-typed configuration with M ` S ;T then S ;T is not
stuck (` S ;T).

Proof. It suffices to show that for any thread in T , a step can be performed or block predicate holds for
it. Let n be an arbitrary thread in T such that T = T1,n :θ;e for some T1. By inversion of the typing
derivation of S ;T we have that M;∅;∅ `t θ;e : 〈〉&(γ;γ′), mutex(T), and M ` S .

If e is a value then by inversion of M;∅;∅ `t θ;e : 〈〉&(γ;γ′), we obtain that γ = γ′, E[e] = �[()] and
∀ı.θ(ı) = (0,0), as a consequence of ∀rκ ∈ γ.κ = (0,0) and counts ok(�[popγ �], θ). Thus, rule E-T can
be applied.

If e is not a value then according to lemma 19, there exists a redex u and an evaluation context E such
that e = E[u]. By inversion of the thread typing derivation for e we obtain that M;∅;∅ ` u : τ&(γa;γb),
M;∅;∅ ` E : τ

γa;γb
−→ 〈〉&(γ;γ′), counts ok(E[popγb �], θ) hold.

Then, we proceed by perfoming a case analysis on u:

P. Gerakios, N. Papaspyrou, and K. Sagonas 29

Case (λx.e′ as τ v)par: it suffices to show that (θ1, θ2) = split(θ , max(γc)) is defined, where γc is the
annotation of type τ. If max(γc) is empty, then the proof is immediate from the base case of split
function. Otherwise, we must show that for all ı, the count θ(ı) is greater than or equal to the
sum of all (ı@n)κ in max(γc). This can be shown by considering par ` γb = γa ⊕γc (i.e., the max
counts in γc are less than or equal to the max counts in γb), which can be obtained by inversion
of the typing derivation of (λx.e′ as τ v)par, and the exact correspondence between static (γb) and
dynamic counts (i.e, counts ok(E[popγb �], θ)). Thus, rule E-SN can be applied to perform a
single step.

Case share locı: counts ok(E[popγb �], θ) establishes an exact correspondence between dynamic and
static counts. The typing derivation implies that γa(ı@n1) ≥ (2,0), for some n1 existentially bound
in the premise of the derivation. Therefore, θ(ı) ≥ (1,0). It is possible to perform a single step using
rule E-SH . The cases for release locı and unlock locı can be shown in a similar manner.

Case lockγa locı: similarly to the case we can show that θ(ı) = (n1,n2) and n1 is positive. If n2 is
positive, rule E-LK1 can be applied. Otherwise, n2 is zero. Let ε be equal to locked(T1) ∩
lockset(ı,1,E[popγa �]). If ε is empty then rule E-LK0 can be applied in order to perform a single
step. Otherwise, blocked(T,n) predicate holds and the configuration is not stuck.

Case deref locı: it can be trivially shown (as in the previous case of share that we proved θ(ı) ≥
(1,0)), that θ(ı) ≥ (1,1) and since mutex(T1,n :θ; E[deref locı]) holds, then ı < locked(T1) and
thus rule E-D can be used to perform a step. The case of locı := v can be shown in a similar
manner.

Case (λx.e′ as τ′ v)seq(γa): a step can be taken by rule E-A .

Case popγb e′[v/x]: a step can be taken by rule E-PP .

Case (Λρ. f) [ı@n1]: a step can be taken by rule E-RP .

Case (fix x : τ. f v)seq(γa): a step can be taken by rule E-FX .

Case if true then e1 else e2: a step can be taken by rule E-IT .

Case if false then e1 else e2: a step can be taken by rule E-IF .

Lemma 19 (Redex) If M;∆;Γ ` e : τ&(γ1;γ2) and e is not a value then M;∆;Γ ` E′[u] : τ&(γ1;γ2)
such that E′[u] = e.

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is not
a redex, to typing derivations of the form E′[e′] and apply induction for e′. �

	Introduction
	Deadlock Avoidance
	Formalism
	Operational Semantics
	Static Semantics

	Type Safety
	Concluding Remarks
	Formalism Summary: Operational Semantics
	Formalism Summary: Static Semantics
	Formalism Summary: Type Safety
	Language Syntax & Substitution Relation
	Operational Semantics: Syntax & Evaluation Context
	Generic Predicates and Functions
	Operational Semantics: Helper Rules & Predicates
	Operational Semantics: Reduction Relation
	Static Semantics: Syntax and Typing Context Substitution Relation
	Static Semantics: Type Equivalence
	Static Semantics: Capability Related Rules
	Static Semantics: Well Formedness Relation
	Static Semantics: Typing Rules
	Type Safety: Evaluation Context Typing
	Type Safety: Access List Typing
	Type Safety: Configuration Typing
	Type Safety: Multi-step Evaluation
	Type Safety: Main Theorems
	Proof Sketch

