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Abstract

The possibility to run into a deadlock is an annoying and commonly
occurring hazard associated with the concurrent execution of pro-
grams. In this paper we present a polymorphic type and effect sys-
tem that can be used to dynamically avoid deadlocks, guided by
information about the order of lock and unlock operations which
is computed statically. In contrast to most other type-based ap-
proaches to deadlock freedom, our system does not insist that pro-
grams adhere to a strict lock acquisition order or use locking primi-
tives in a block-structured way. Lifting these restrictions is primar-
ily motivated by our desire to target low-level languages, such as C
with pthreads, but it also allows our system to be directly applicable
in optimizing compilers for high-level languages, such as Java.

To show the effectiveness of our approach, we have also devel-
oped a tool that uses static analysis to instrument concurrent pro-
grams written in C/pthreads and then links these programs with a
run-time system that avoids possible deadlocks. Although our tool
is still in an early development stage, in the sense that currently its
analysis only handles a limited class of programs, our benchmark
results are very promising: they show that it is not only possible to
avoid all deadlocks with a small run-time overhead, but also often
achieve better throughput in highly concurrent programs by natu-
rally reducing lock contention.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.2 [Programming Languages]: Language
Classifications—Concurrent, distributed and parallel languages;
D.1.3 [Software]: Concurrent Programming—Parallel program-
ming

General Terms Design, Languages, Performance, Theory

Keywords Deadlock avoidance, types and effects, C, pthreads

1. Introduction

In shared memory concurrent programming, deadlocks typically
occur as a consequence of cyclic lock acquisition between threads.
Two or more threads are deadlocked when each of them is waiting
for a lock that has been acquired and is held by another thread. As
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59 efs_lookup(struct inode *dir, struct dentry *dentry) {

60 efs_ino_t inodenum;

61 struct inode * inode = NULL;

62

63 lock_kernel();

64 inodenum = efs_find_entry(dir, dentry->d_name.name,

dentry->d_name.len);

65 if (inodenum) {

66 if (!(inode = iget(dir->i_sb, inodenum))) {

67 unlock_kernel();

68 return ERR_PTR(-EACCES);

69 }

70 }

71 unlock_kernel();

72

73 d_add(dentry, inode);

74 return NULL;

75 }

Listing 1. Code from Linux’s EFS (linux/fs/efs/namei.c)

deadlocks are a serious problem, several methods to achieve dead-
lock freedom have so far been proposed. In particular, type-based
approaches aim for static deadlock freedom guarantees. Most of
the proposed type systems in this category [6, 13, 18, 21] prevent
deadlocks by imposing a strict (non-cyclic) lock acquisition order
that must be respected throughout the entire program. However, in-
sisting on a global lock ordering limits programming language ex-
pressiveness as many correct programs are rejected unnecessarily.
Furthermore, the approach is intrinsically non-modular.

An alternative to deadlock prevention is to employ an approach
that dynamically avoids deadlocks by utilizing information regard-
ing future lock usage which is provided statically by program anal-
ysis. An interesting recent work in this direction is by Boudol [1]
who presented a type and effect system for deadlock avoidance
when locking is block-structured (e.g. as in Java’s synchronized
blocks). Unfortunately, in Boudol’s system the fact that locking is
block-structured is a crucial assumption that prohibits the use of
his method in many situations. For example, there is a lot of impor-
tant existing code where locking is used in an unstructured way;
cf. the code in Listing 1, which is a typical example of systems
code. Furthermore note that in low-level languages such as C, even
if the programmer adheres to block-structured locking, this is noth-
ing more than a convention: at the source level, any tool needs to
deal with separate lock and unlock primitives. Finally, in almost all
languages, the restriction that locking is block-structured is usually
lifted at the low-level language of the compiler for optimization
purposes. This is the type of languages that our work targets.

More specifically, in this paper we present a type-based method
to dynamically avoid deadlocks guided by information about the
order of lock and unlock operations which is computed statically
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via program analysis. The analysis is based on a type and effect
system that is general enough to be applicable regardless of how
locking is used. Our work is part of a long term effort to design and
implement a language at the C-level of abstraction, which has ex-
plicit support for shared memory concurrency and provides static
guarantees for various safety properties. Chief among these prop-
erties are memory safety, freedom from data races, and freedom
from deadlocks. In this paper we focus exclusively on the last of
them. While our work is primarily targeting low-level languages
with unstructured locking, and is applied to multi-threaded C pro-
grams using the pthreads library, the main ideas in the type and ef-
fect system that we present are generic and language independent.
To ease their exposition and simplify the presentation, the language
we use in the main sections of this paper is a lambda calculus with
recursion, conditionals, and of course primitives for creating, ac-
quiring and releasing re-entrant locks. However, even in this sim-
plified language, unstructured locking primitives and unrestricted
lock aliasing introduce significant complexity to the type system
compared with block-structured locking, where lock operations al-
ways match up with implicit unlock operations. Our type and effect
system guarantees that locks are safely released and acquired in the
presence of unrestricted lock aliasing.

It should be mentioned that this is not the first system for dead-
lock avoidance in the presence of unstructured locking that we have
developed. In a recent workshop paper [9] we presented a rich
type and effect system that, besides deadlock freedom, also guaran-
tees race freedom and memory safety. Its effects contain elements
that are pairs (n1, n2) associating memory cells with two capabil-
ity counts: n1 is a cell reference count, denoting whether the cell is
live, while n2 is the lock count, denoting how many times the cell
has been locked (as locks are re-entrant). In addition, capabilities
can be either unique or possibly aliased: the type system requires
aliasing information so as to determine whether it is safe to pass
lock capabilities to new threads. More importantly, it also requires
that all functions are annotated with an explicit effect, which is used
to type check their body. As a result, that type system is probably
unsuitable for a language like C/pthreads; instead, it is relevant for
a language like Cyclone [10] where it is commonplace for func-
tions to have annotations. In contrast, the type and effect system
we develop in this paper is much simpler. It focuses on deadlock
avoidance only, captures the temporal order of lock and unlock op-
erations, and imposes no restrictions with respect to aliasing. More
importantly, its implementation is amenable to effect inference, and
there is no requirement that functions are annotated with explicit
effects. Instead, the type and effect system gathers effects and vali-
dates them at the beginning of the lexical scope of each lock. This
simpler system is thus directly applicable to C/pthreads programs.

In short, the contributions of this paper are as follows:

- we present a polymorphic type and effect system that can be
used to dynamically avoid deadlocks, guided by information
about the order of lock and unlock operations which is com-
puted statically, in a core language without references but with
recursion, conditionals, and primitives for unstructured locking;

- we provide an operational semantics for deadlock avoidance in
this language and state and provide proofs of the core soundness
properties modeling and guaranteeing deadlock avoidance;

- we show the effectiveness of our approach by running existing
C/pthreads programs in our prototype implementation and offer
preliminary evidence that the approach is viable in practice.

To make the paper self-contained, we review existing type-
based approaches to deadlock freedom (Sect. 2), including the re-
cent work of Boudol, and explain why his approach cannot guaran-
tee deadlock freedom in the presence of unstructured locking (first
half of Sect. 3). Most of this material is taken more or less verbatim

from our previous workshop paper [9]. In the main body of the cur-
rent paper, we first describe informally how our approach manages
to avoid deadlocks when unstructured locking is used (second half
of Sect. 3), and then present the syntax of our language, its oper-
ational semantics, and a type and effect system for this language
(Sect. 4) which we prove type safe (Sect. 5). To show the effective-
ness of our approach, we briefly describe our current implementa-
tion (Sect. 6) and its performance (Sect. 7). The paper ends with
a comparison of our approach with other techniques for providing
deadlock freedom (Sect. 8), and with some concluding remarks.

2. Deadlock Freedom and Related Work

According to Coffman et al. [3], a set of threads reaches a dead-
locked state when the following conditions hold:

- Mutual exclusion: Threads claim exclusive control of the locks
that they acquire.

- Hold and wait: Threads already holding locks may request (and
wait for) new locks.

- No preemption: Locks cannot be forcibly removed from threads;
they must be released explicitly by the thread that acquired
them.

- Circular wait: Two or more threads form a circular chain, where
each thread waits for a lock held by the next thread in the chain.

Therefore, deadlock freedom can be guaranteed by denying at
least one of these conditions before or during program execution.
Thus, the following three strategies guarantee deadlock freedom:

- Deadlock prevention: At each point of execution, ensure that
at least one of the above conditions is not satisfied. Thus, pro-
grams that fall into this category are correct by design.

- Deadlock detection and recovery: A dedicated observer thread
determines whether the above conditions are satisfied and pre-
empts some of the deadlocked threads, releasing (some of) their
locks, so that the remaining threads can make progress.

- Deadlock avoidance: Using static information regarding thread
resource allocation, determine at run time whether granting a
lock will bring the program to an unsafe state, i.e., a state which
can result in deadlock, and only grant locks that lead to safe
states.

The majority of literature for language-based approaches to
deadlock freedom falls under the first two strategies. In the dead-
lock prevention category, one finds type and effect systems [2, 6,
13, 18, 21] that guarantee deadlock freedom by statically enforcing
a global lock-acquisition ordering, which must be respected by all
threads. In this setting, lock handles are associated with type-level
lock names via the use of singleton types. Thus, handle lkı is of
type Lk(ı). The same applies to lock handle variables. The effect
system tracks the order of lock operations on handles or variables
and determines whether all threads acquire locks in the same order.

Using a strict lock acquisition order is a constraint we want to
avoid. It is not hard to come up with an example that shows that
imposing a partial order on locks is too restrictive. The simplest of
such examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) ||
(lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two
distinct locks, x and y, in reverse order. When trying to find a partial
order ≤ on locks for this program, the type system or static analysis
tool will fail: it will deduce that x ≤ y must be true, because of
the first thread, and that y ≤ x must be true, because of the second.
In short, there is no partial order that satisfies these constraints.
Thus, programs containing such patterns will be rejected, both in
the system of Flanagan and Abadi which requires annotations [6]
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and in the system of Kobayashi which employs inference [13] as
there is no single lock order for both threads. Similar considerations
apply to the more recent works of Suenaga [18] and Vasconcelos et
al. [21] dealing with unstructured locking primitives. Finally, such
programs cannot be handled even by the type and effect system
of Boyapati et al. [2], which allows for some controlled changes
to the partial order of locks at runtime by permitting conservative
updates on directed acyclic lock graphs, because there is no acyclic
data structure that captures the cyclic dependencies between locks
x and y of this program fragment.

Recently, Boudol developed a type and effect system for dead-
lock freedom [1], which is based on deadlock avoidance. The effect
system calculates for each expression the set of acquired locks and
annotates lock operations with the “future” lockset. The run-time
system utilizes the inserted annotations so that each lock operation
can only proceed when its “future” lockset is available to the re-
questing thread. The main advantage of Boudol’s type system is
that it allows a larger class of programs to type check and thus in-
creases the programming language expressiveness as well as con-
currency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as
follows, assuming that the only lock operations in the two threads
are those visible:

(lock{y} x in . . . lock∅ y in . . .) ||
(lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in gen-
eral, allows locks to be acquired in any order. At run-time, the first
lock operation of the first thread must ensure that y has not been ac-
quired by the second (or any other) thread, before granting x. The
second lock operation need not ensure anything, as its future lock-
set is empty. (The handling is symmetric for the second thread.)

3. Type System Overview

Boudol’s work heavily relies on the assumption that locking is
block-structured. In fact, the soundness of his system in the pres-
ence of lock aliasing is guaranteed by assuming that locks are re-
entrant and are released in the reverse order in which they were
acquired. In this section, we discuss the main ideas of a novel type
system for a simple language with unstructured locking primitives,
recursion, and conditionals, which guarantees deadlock freedom
and safe use of operations that acquire and release locks in the pres-
ence of aliasing. We first show that a naı̈ve extension of Boudol’s
system is insufficient to guarantee deadlock freedom when locking
is unstructured. The example program in Fig. 1(a) illustrates this
point: It uses three shared variables, x, y and z, ensuring at each
step that no unnecessary locks are held. It is assumed here that the
long computations do not acquire or release any locks.1

In our naı̈vely extended (and broken, as we will see) version of
Boudol’s type and effect system, the program in Fig. 1(a) will type
check. The future lockset annotations of the three locking opera-
tions in the body of f are {y}, {z} and ∅, respectively. (This can be
easily verified by observing the lock operations between a specific
lock and unlock pair.) Now, function f is used by instantiating both
x and y with the same variable a, and instantiating z with a distinct
variable b. The result of this substitution is shown in Fig. 1(b). The
first thing to notice is that, if we want this program to work, locks
have to be re-entrant. This roughly means that if a thread holds

1 For simplicity, in the examples of this section, we assume that there is one
(implicit) lock for every shared program variable, which is used to avoid
data races when this shared variable is accessed. Therefore, by x we denote
both the shared variable x and its implicit lock. As we will see, in Sect. 4
we will simplify presentation even further by completely omitting shared
variables and mutable state in general from the language.

let f = λ x. λ y. λ z.

lock{y} x;
some long computation x;
lock{z} y;
another long computation x y;
unlock x;
lock∅ z;
another long computation y z;
unlock z;
unlock y

in f a a b

(a) before substitution

lock{a} a;
some long computation a;
lock{b} a;
another long computation a a;
unlock a;
lock∅ b;
another long computation a b;
unlock b;
unlock a

(b) after substitution

Figure 1. A program which is typable by a naı̈ve extension of
Boudol’s system before substitution (a) but not after (b).

let f = λ x. λ y. λ z.

lock[y+, x−, z+, z−, y−] x;
some long computation x;
lock[x−, z+, z−, y−] y;
another long computation x y;
unlock x;
lock[z−, y−] z;
another long computation y z;
unlock z;
unlock y

in f a a b

(a) before substitution

lock[a+, a−, b+, b−, a−] a;
some long computation a;
lock[a−, b+, b−, a−] a;
another long computation a a;
unlock a;
lock[b−, a−] b;
another long computation a b;
unlock b;
unlock a

(b) after substitution

Figure 2. The program of Fig. 1 with continuation effect annota-
tions; now the program is typable in both cases.

some lock, it can try to acquire the same lock again; this will im-
mediately succeed, but then the thread will have to release the lock
twice, before it is actually released.

Even with re-entrant locks, however, it is easy to see that the
program in Fig. 1(b) does not type check with the present anno-
tations. The first lock operation for a now matches with the last
(and not the first) unlock operation; this means that a will remain
locked during the whole execution of the program. In the mean-
time b is locked, so the future lockset annotation of the first lock
operation should contain b, but it does not. (The annotation of the
second lock operation contains b, but blocking there if lock b is not
available does not prevent a possible deadlock; lock a has already
been acquired.) So, the technical failure of our naı̈vely extended
language is that the preservation lemma breaks. From a more prag-
matic point of view, if a thread running in parallel with the thread
in Fig. 1(b) already holds b and, before releasing it, is about to ac-
quire a, a deadlock can occur. The naı̈ve extension also fails for
another reason: Boudol’s system is based on the assumption that
calling a function cannot affect the set of locks that are held. This
is obviously not true, if non lexically-scoped locking operations are
to be supported.

To avoid such problems, our type system precisely tracks effects
as a sequence of lock and unlock events. A continuation effect of
an expression represents the effect of the function code following
that expression (i.e., our continuation effects are intra-procedural,
in contrast to the work of Hicks et al. [11] where the continuation
effects are inter-procedural). As shown in the example of Fig. 1,
the future lockset for unstructured locking operations cannot be
computed statically as a result of lock aliasing. Therefore, the
computation of future locksets given the continuation effects is
deferred until run-time (i.e., after substitution has taken place), in
contrast to Boudol’s system.

The program in Fig. 2 is similar to the program in Fig. 1, except
that lock operations are now annotated with continuation effects.
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let f = λ . g()[z+];
lock∅ z ;

let g = λ . lock[y+, y−] x;

lock[y−] y;
unlock y ;

f ()[z−, x−]; unlock z; unlock x

(a) lock/unlock in different scope

Stack

z−, x−

z+

Lock/Continuation

x+ y+, y−

lockset = { y,z }

(b) run-time state

Figure 3. An example program where lock and unlock operations
are not in the same scope (a) and the run-time state of this program
when the boxed term is executed (b).

For example, the annotation [y+, x−, z+, z−, y−] at the first lock
operation means that in the future (i.e., after this lock operation) y
will be acquired, then x will be released, and so on. If x and y are
instantiated with distinct values, the run-time system will compute
the future lockset {y} from the continuation effect. In terms of
the continuation effect, y+ precedes x− (i.e., the matching unlock
operation).

On the other hand, if x and y are instantiated with the same
lock handle a and z with b, the continuation effect of the first lock
operation becomes [a+, a−, b+, b−, a−] and the future lockset is
now correctly calculated as {a, b}: a+ and b+ precede the matching
unlock operation, which is the last a−. More generally, the future
lockset computation algorithm takes as input a lock x, a contin-
uation effect γ, assumes an empty future lockset and adds all y+
events of γ to the future lockset until the matching unlock opera-
tion for x is found.

Our continuation effects are intra-procedural, as mentioned ear-
lier. Therefore, the matching unlock operation for y may not be
located in γ. We resolve this issue by annotating application terms
with their continuation effect. At run-time, when a function appli-
cation redex is evaluated, its continuation effect is pushed on a stack
of continuation effects for the duration of the function evaluation.2

When the matching unlock operation is not located in a contin-
uation effect, the algorithm proceeds with the remaining continu-
ation effects on the run-time stack. The type system ensures that
for each lock operation there exists a matching unlock operation.
Therefore, the lockset computation algorithm is guaranteed to ter-
minate. A lock operation succeeds only when both the lock and its
future lockset are available. However, the locks in the future lockset
are not prematurely acquired, as this would damage the program’s
degree of parallelism.

Fig. 3(a) illustrates a program where lock and unlock operations
reside in different scopes. For instance, x is locked in function g, but
it is unlocked in the outermost scope. Application terms are anno-
tated with their continuation effects. For instance, the application
of f is annotated with the continuation effect [z−, x−] as it is suc-
ceeded by two unlock operations on z and x respectively. Fig. 3(b)
shows the run-time state of the program when control reaches the
lock operation on x: the run-time stack (which grows downwards in
the figure) contains the continuation effects of f and g and the lock-
set computation algorithm starts off with the continuation effect of
the lock operation. The algorithm adds y+ to the future lockset of
x and then considers the continuation effects on the stack, from top
to bottom. Thus, z+ is added to the future lockset and the match-
ing unlock operation is found on the next element of the stack. The
resulting lockset is {y, z}.

Our language provides support for conditional expressions and
recursion. A shortcoming of representing effects as ordered events
is that, when typing conditional expressions, it is too restrictive

2 As we will see in Sect. 6, this is a constant time operation.

to require that both branches have the same effect. Consider the
following example:

if e then (lock[y] x; . . . lock∅ y; . . . unlock y)
else (lock[x] z; . . . lock∅ x; . . . unlock z)

The lock operations of the two branches differ: the effect of the first
branch is [x+, y+, y−] and that of the second is [z+, x+, z−]. Al-
though the overall effect of the two branches (as most programmers
understand it) is the same, a simple type and effect system would
have to reject this program.

Our system is able to overcome this issue by keeping track of the
effects in both branches. For the example shown above, we make
the effect of the conditional expression [x+, y+, y−] ? [z+, x+, z−].
Given this effect the lockset calculation algorithm computes the
lockset of the two branches separately. The resulting lockset is
formulated by joining the two locksets. However, for each lock, we
impose the restriction that the number of unmatched lock/unlock
operations must be equal in both branches.

Additional problems need to be addressed when dealing with
recursive function definitions. Consider the following example:

letrec f = λ x. λ y. λ z.
if z > 0 then (lockγ x; f x y (z − 1); unlock x)

else (lock∅ y; . . . unlock y; )

In this case, if we employ the usual typing for letrec, the effect of
f must equal the effect of its body. However, this is impossible, as
the two effects cannot be structurally equivalent: in fact, the effect
of f is contained in the effect of its body, due to the recursive
call. To overcome this issue, our system assigns f a summary of
the effect of its body. A detailed discussion of effect summaries is
deferred until Sect. 4.3 but let us briefly see how our system can
infer the effect of function f in the example above. Suppose that γ f

is the (unknown) effect of f . Then, the effect of the body of f as a
function of γ f is expressed as

γb(γ f ) = ([x+] :: γ f :: [x−]) ? [y+, y−]

where γ1 :: γ2 denotes the appending of two effects γ1 and γ2. We
are looking for a solution to the equation

γ f = summary(γb(γ f ))

At this point, we can start with γ0 = ∅ (noticing that function f has
no unmatched lock or unlock operations) and look for the limit of
the sequence γn+1 = summary(γb(γn)) in other words, for a fixed
point of the summarized function’s body. We have

γ1 = summary(γb(γ0)) = summary([x+, x−] ? [y+, y−])

Although we have not formally defined what function summary
does, a possible (but conservative) choice here would be to “merge”
the effects of the two branches in the summary. (In Sect. 4.3 we
discuss how exactly this “merging” takes place and also discuss
less conservative alternatives.) Therefore,

γ1 = [x+, x−, y+, y−]

We can then proceed in the same way and take

γ2 = summary([x+, x+, x−, y+, y−, x−] ? [y+, y−])

If we are outside function f , we don’t care if inside f lock x is taken
more than once. Nor do we care if x is held or not, at the moment
when y is taken. We are just happy to know that x and y are taken
and released. Therefore, by merging again:

γ2 = [x+, x−, y+, y−] = γ1

We reached a fixed point and we can take γ1 as the summarized
effect of function f . Therefore, the effect γ in the annotation of the
first lock operation in the example is equal to [x+, x−, y+, y−, x−].
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Expression e ::= x | v | (e e)ξ | (e) [r] | popγ e

| newlock ρ, x in e | lockγ e | unlock e

| if e then e else e

Value v ::= () | true | false | f | lkı

Function f ::= λx. e | Λρ. f | fix x. f

Type τ ::= 〈〉 | Bool | Lk(r) | τ
γ
−→ τ | ∀ρ. τ

Lock r ::= ρ | ı

Calling mode ξ ::= seq(γ) | par

Operation κ ::= + | −

Effect γ ::= ∅ | rκ, γ | γ ? γ, γ

Figure 4. Language and type syntax.

4. Formal Semantics and Metatheory

The syntax of our language is illustrated in Fig. 4, where x and ρ
range over term and lock variables, respectively, and ı ranges over
lock constants. In this paper, to make the presentation as simple as
possible, we do not include any mutable shared state in our lan-
guage. In other words, we study locks in isolation: locks do not
serve any other purpose than thread synchronization (mutual ex-
clusion). Without shared mutable references, locks may seem a
bit pointless. However, our primary goal is to develop a simple
and understandable type and effect system that guarantees dead-
lock avoidance. Including shared memory and achieving other in-
teresting properties, such as memory safety and data race freedom,
are goals which are more or less orthogonal to deadlock freedom.
For one way on how to achieve them, we refer the reader to our
previous work [8] and to the workshop paper [9] mentioned in the
introduction.

The language core comprises of constants (true, false and ()
— the “unit” value), functions ( f ), and function application. Func-
tions can be monomorphic (λx. e), lock polymorphic (Λρ. f ), and
recursive (fix x. f ). The application of lock polymorphic functions
is explicit (e[r], where r is a metavariable ranging over lock con-
stants and variables). The application of monomorphic functions
is annotated with a calling mode (ξ), which is seq(γ) for normal
sequential application and par for parallel application.3 The se-
mantics of parallel application is that, once the application term
is evaluated to a redex, it is moved to a new thread of execution
and the spawning thread can proceed with the remaining com-
putation in parallel with the new thread. Conditional expressions
(if e then e1 else e2) are standard.

The construct newlock ρ, x in e allocates a fresh lock, which
is initially unlocked, and associates it with variables ρ and x within
expression e. The type variable ρ is bound to the type-level rep-
resentation of the fresh lock and allows the type system to stati-
cally track uses of it, whereas the term variable x is bound to the
fresh lock’s handle. Handles can be used as arguments in opera-
tions lockγ e and unlock e, which have been explained in Sect. 3.
It is worth noting that run-time locks are re-entrant, so each lock
is associated with a count which is modified after each successful
lock/unlock operation. As mentioned, the run-time system inspects
the lock annotation γ to determine whether it is safe to lock e.

The term popγ e encloses a function body e and cannot exist
at the source-level; it only appears during evaluation. The same
applies to constant lock handles lkı.

The syntax of types is more or less standard; a function’s type
is annotated with the function’s effect. Effects (γ) are sequences of
events, in the way that was explained in Sect. 3. An atomic event

3 Notice that sequential application terms are annotated with γ, the contin-

uation effect, as mentioned earlier in Sect. 3.

Lock Store S ::= ∅ | S , ı 7→ n; n; ǫ; ǫ

Threads T ::= ∅ | T, n : e

Configuration C ::= S ; T

Lockset ǫ ::= ∅ | ǫ, ı

Context E ::= � | E[F]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | popγ �

| lockγ1
� | unlock� | if � then e else e

Figure 5. Operational semantics syntax and evaluation context.

can either be r+ or r−, representing acquire and release operations
on a lock handle of type Lk(r). Events also include γ1 ? γ2, where
γ1 and γ2 are the continuation effects corresponding to the two
branches of a conditional expression.

4.1 Operational Semantics

We define a small-step operational semantics for our language in
Fig. 5 and 6.4 The evaluation relation transforms configurations. A
configuration C consists of an abstract lock store S and a thread
map T .5 A store S maps constant locks (ı) to tuples of the form
(n1; n2; ǫ1; ǫ2). The first two elements of the tuple are natural num-
bers representing the thread identifier that owns ı and the count of ı,
respectively. The remaining two elements are locksets; they bear no
operational significance but are necessary for the type safety proof.
The first lockset (ǫ1) represents the set of all locks in S when ı was
last locked (when its n2 went from zero to one). The second lockset
(ǫ2) represents the future lockset of ı when it was last locked.

A thread map T associates thread identifiers to expressions (i.e.,
threads). A frame F is an expression with a hole, represented as
�. The hole indicates the position where the next reduction step
can take place. A thread evaluation context E is defined as a
stack of nested frames. Our notion of evaluation context imposes a
call-by-value evaluation strategy to our language. Subexpressions
are evaluated in a left-to-right order. We assume that concurrent
reduction events can be totally ordered [14]. At each step, a random
thread (n) is chosen from the thread list for evaluation. Therefore,
the evaluation rules are non-deterministic.

When a parallel function application redex is detected within
the evaluation context of a thread, a new thread is created (rule
E-SN). The redex is replaced with the unit value in the currently
executed thread and a new thread is added to the thread list, with a
fresh thread identifier. The calling mode of the application term is
changed from parallel to sequential, with an empty continuation
effect. When evaluation of a thread reduces to a unit value, the
thread is removed from the thread list (rule E-T). The sequential
function application rule (E-A) reduces an application redex to
a pop expression, which contains the body of the function and
is annotated with the same effect as the application term. Pop
expressions are used to form the run-time stack of continuation
effects, explained in the example of Fig. 3(b). When the expression
contained within a pop has been reduced to a value, then enclosing
pop is removed and the value is returned to the context (rule E-PP).
The rules for evaluating the application of polymorphic functions
(E-RP) and recursive functions (E-FX) are standard, as well as
the rules for evaluating conditionals (E-IT and E-IF ). Rule E-NG

appends to S a fresh lock ı, which is initially unlocked.
The most interesting rule is E-LK0 , which dynamically com-

putes the future lockset (ǫ) of lock ı. To achieve this, function stack

4 A full formalization is given in the Appendix.
5 The order of elements in comma-separated lists, e.g., in a store S or in a list
of threads T , is unimportant; we consider all list permutations as equivalent.
However, in sequences (e.g., effects), order is important.
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fresh n′

S ; T, n : E[(v′ v)par] { S ; T, n : E[()], n′ :�[(v′ v)seq(∅)]
(E-SN)

S ; T, n :�[()] { S ; T
(E-T)

S ; T, n : E[((λx. e1) v)seq(γ)] { S ; T, n : E[popγ e1[v/x]]
(E-A)

S ; T, n : E[popγ v] { S ; T, n : E[v]
(E-PP)

S ; T, n : E[(Λρ. f )[ı]] { S ; T, n : E[ f [ı/ρ]]
(E-RP)

v′ = fix x. f

S ; T, n : E[(v′ v)seq(γ)] { S ; T, n : E[( f [v′/x] v)seq(γ)]
(E-FX)

S ; T, n : E[if true then e1 else e2] { S ; T, n : E[e1]
(E-IT)

S ; T, n : E[if false then e1 else e2] { S ; T, n : E[e2]
(E-IF)

fresh ı S ′ = S , ı 7→ n; 0; ∅; ∅

S ; T, n : E[newlock ρ, x in e1] { S ′; T, n : E[e1[ı/ρ][lkı/x]]
(E-NG)

S (ı) = n1; 0; ǫ1; ǫ2 S ′ = S [ı 7→ n; 1; dom(S ); ǫ]

ǫ = run(stack(E[popγ1
�]), ı, 1) ǫ ∪ {ı} ⊆ available(S , n)

S ; T, n : E[lockγ1
lkı] { S ′; T, n : E[()]

(E-LK0)

S (ı) = n; n2; ǫ1; ǫ2 n2 > 0 S ′ = S [ı 7→ n; n2 + 1; ǫ1; ǫ2]

S ; T, n : E[lockγ1
lkı] { S ′; T, n : E[()]

(E-LK1)
S (ı) = n; n2; ǫ1; ǫ2 n2 > 0 S ′ = S [ı 7→ n; n2 − 1; ǫ1; ǫ2]

S ; T, n : E[unlock lkı] { S ′; T, n : E[()]
(E-UL)

Figure 6. Operational semantics.

assembles the overall (stacked) continuation effect by concatenat-
ing the continuation effect annotations of pop expressions that are
found in the stack of the evaluation context. The lockset computa-
tion is modeled by function run(γ, ı, k), which accepts the stacked
effect γ, the lock ı whose lockset is to be computed and the number
k of unmatched unlock events (ı−) in the stack. It returns a subset
of the lock events (r+) located in the stack, such that each element
of the subset is locked before the last unmatched unlock opera-
tion of ı. Function run is defined only when all unlock events for ı
are found in the stacked effect. The future lockset of ı (ǫ) is equal
to run(γ, ı, 1). Rule E-LK0 also requires that both ı and its future
lockset are available — ǫ∪{ı} ⊆ available(S , n). Function available
takes as input a lock store S and a thread identifier n and returns a
set of locks, such that each element of the set can be acquired by
thread n (i.e., locks whose thread identifier either equals n or their
count is zero). If the availability premise holds, the lock count of ı
is set to one and the thread identifier is set to n. In addition, both ǫ1
and ǫ2 (the last two elements of S (ı)) are replaced with dom(S ) (all
locks allocated in the program) and ǫ, respectively.

The rules for acquiring or releasing a held lock (E-LK1 or
E-UL) require that the count of that lock is positive and that it is
owned by the thread that is performing the unlock/lock operation.
Otherwise, the semantics will get stuck. We will soon present a type
system for this language and also the type safety formulation that
guarantees that well-typed programs cannot reach a stuck state.

Note that, although rule E-LK0 ensures that all locks in the
future lockset ǫ are available before proceeding, our semantics only
acquires the requested lock ι and not any of the locks in ǫ. As a
possible optimization, an implementation could choose to acquire
additionally some subset ǫ′ ⊆ ǫ. These locks are all available at
this point and an implementation might not want to recheck for
their availability and more importantly risk having to wait for them
at the time they are needed, in case some other thread has got
hold of them until then. Pre-acquisition of locks, however, may
reduce parallelism and an implementation should use it only when
an analysis shows that the locks will definitely be needed, and not
“too late” in the future. (Additional information could statically be
placed in the effects to guide such an implementation.) The type
safety of our system, stated in Sect. 5, can be proved even if the
semantics pre-acquires a subset of the future lockset in this rule.

4.2 Static Semantics

The syntax of types and effects is given in Fig. 4 (on page 5). Basic
types consist of the boolean and the unit type, denoted by 〈〉; lock
handle types Lk(r) are singleton types parameterized by a type-
level lock name r; and monomorphic function types carry the func-
tion’s effect. Effects (γ) are used to statically track lock ownership
information; they are ordered sequences of events, which can be
either rκ or γ1 ? γ2.

The typing relation is denoted by M;∆;Γ ⊢ e : τ& (γ;γ′).
It takes an expression e, the typing context M;∆;Γ, and an input
effect γ, and produces the type τ assigned to expression e as well
as an output effect γ′. Here, M is a set of lock constants, ∆ is a set
of lock variables, and Γ is a mapping of term variables to types.

As lock operations and application terms are annotated with
their continuation effect, it is natural that effects flow backwards
through the type system: the input effect to an expression e repre-
sents the events that follow in the future of e, that is, after e is eval-
uated. On the other hand, the output effect represents the combined
sequence of events caused by e and its future. In fact, the typing re-
lation does not modify the input effect but rather appends to it: the
input effect is always a suffix of the output effect, in chronological
order. (This is ensured by the typing relation and the typing con-
text well-formedness.) The typing rules are given in Fig. 7.6 The
typing rules T-U , T-T , T-F , T-V , T-L , T-RF , T-RP and T-FN are
standard. Notice, that in the case of rule T-FN , the input effect of
the function’s body e1 is empty. The typing rule for sequential func-
tion application (T-SA) appends the input effect γ to the function’s
effect γa and propagates the new effect to expression e2, which in
turn propagates its output effect to e1. The output effect of the se-
quential function application is the output effect of expression e1.
The annotation of the application must match with the input ef-
fect γ. Rule T-PP acts as a bridge between the body of a function
that is being executed and its calling environment, by appending
the continuation effect to the effect of the function’s body. The rule
for parallel application (T-PA) is similar to the sequential applica-
tion rule, except that the function’s effect (γa) is not combined with
the input effect (as the function will be evaluated in a new thread)
and the function’s return type must be unit. In addition, all locks
in the function’s effect must be released before and after the func-
tion’s execution — ∀r. r; 0 ⊢ok γa. The relation r; n ⊢ok γ checks

6 A complete formalization appears in the Appendix.
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M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ () : 〈〉& (γ;γ)
(T-U)

x : τ ∈ Γ

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ x : τ& (γ;γ)
(T-V)

M;∆ ⊢ Γ M;∆ ⊢ γ τ ≡ τ1
γb
−→ τ2

M;∆ ⊢ τ M;∆;Γ, x : τ1 ⊢ e1 : τ2 & (∅;γb)

M;∆;Γ ⊢ λx. e1 : τ& (γ;γ)
(T-FN)

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ true : Bool& (γ;γ)
(T-T)

M;∆, ρ;Γ ⊢ f : τ& (γ;γ)

M;∆;Γ ⊢ Λρ. f : ∀ρ. τ& (γ;γ)
(T-RF)

r ∈ M ∪ ∆ M;∆;Γ ⊢ e1 : ∀ρ. τ& (γ;γ′)

M;∆;Γ ⊢ (e1) [r] : τ[r/ρ] & (γ;γ′)
(T-RP)

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ false : Bool& (γ;γ)
(T-F)

M;∆ ⊢ γ M;∆;Γ ⊢ e : τ& (∅;γ′)

M;∆;Γ ⊢ popγ e : τ& (γ;γ′ :: γ)
(T-PP)

M;∆ ⊢ Γ M;∆ ⊢ γ ı ∈ M

M;∆;Γ ⊢ lkı : Lk(ı) & (γ;γ)
(T-L)

M;∆;Γ ⊢ e : Lk(r) & (r+, γ;γ′)

M;∆;Γ ⊢ lockγ e : 〈〉& (γ;γ′)
(T-LK)

M;∆;Γ ⊢ e : Lk(r) & (r−, γ;γ′)

M;∆;Γ ⊢ unlock e : 〈〉& (γ;γ′)
(T-UL)

M;∆;Γ ⊢ e1 : τ1
γa
−→ τ2 & (γ1;γ′)

M;∆;Γ ⊢ e2 : τ1 & (γa :: γ;γ1)

M;∆;Γ ⊢ (e1 e2)seq(γ) : τ2 & (γ;γ′)
(T-SA)

∀r ∈ dom(γa). r; 0 ⊢ok γa

M;∆;Γ ⊢ e1 : τ1
γa
−→〈〉& (γ1;γ′) M;∆;Γ ⊢ e2 : τ1 & (γ;γ1)

M;∆;Γ ⊢ (e1 e2)par : 〈〉& (γ;γ′)
(T-PA)

M;∆ ⊢ τ ρ < dom(γ) ρ; 0 ⊢ok γ
′

M;∆, ρ;Γ, x : Lk(ρ) ⊢ e1 : τ& (γ;γ′)

M;∆;Γ ⊢ newlock ρ, x in e1 : τ& (γ;γ′ \ ρ)
(T-NG)

M;∆;Γ, x : τa ⊢ f : τb & (γ;γ)

τa ≡ τ1
γa
−→ τ2 τb ≡ τ1

γb
−→ τ2 γa = summary(γb)

M;∆;Γ ⊢ fix x. f : τa & (γ;γ)
(T-FX)

M;∆;Γ ⊢ e1 : Bool& (γ1 ? γ2, γ;γ
′)

M;∆;Γ ⊢ e2 : τ& (γ;γ1 :: γ) M;∆;Γ ⊢ e3 : τ& (γ;γ2 :: γ)

M;∆;Γ ⊢ if e1 then e2 else e3 : τ& (γ;γ′)
(T-IF)

Figure 7. Typing rules.

that there exist exactly n unmatched unlock events in γ for lock r (it
is used at the same time to make sure that r is never released more
times than it has been acquired).

The rule for typing recursive functions (T-FX) is the standard
one, if we ignore the effects γa and γb on the function types. As
mentioned in Sect. 3, it may be impossible to assign the recursive
function variable x the same effect as the function body f (i.e., γb).
The intuition here is that x must be assigned an effect γa that
summarizes γb, and this effect can be computed as a least fixed
point with the procedure that was sketched in Sect. 3. We postpone
the discussion on summaries for a little longer, until Sect. 4.3.

The rule for creating new locks (T-NG ) passes the input effect
γ to e1, the body of let, assigns the lock handle variable x the
singleton type Lk(ρ) and adds ρ to the lock variable context for the
scope of e1. The output effect of the lock creation construct is equal
to the output effect of e1 minus any events of the form ρκ. The rule
also requires that ρ is unlocked before and after the execution of
e1 — ρ; 0 ⊢ok γ

′. Rule T-LK prepends r+ to the input effect and
propagates the resulting effect to e1. Notice, that the input effect
must match the lock annotation (the continuation effect of the lock
operation must be valid). The typing rule T-UL prepends r− to the
input effect and propagates the resulting effect to e1.

The typing rule for conditional expressions (T-IF ) propagates
the input effect of the conditional expression to its branches e2 and
e3 respectively. We know that γ is a common suffix of the output
effect of e2 and e3. Let us assume that γ1 and γ2 are the prefixes
of the two branches respectively. Thus, the input effect of the
guard expression e1 is γ1 ? γ2, γ, which tells us that the type system
records the effects of both branches but it does not unify them.

The typing rules T-SA , T-LK and T-PP ensure that the effect an-
notations in sequential applications, lock and pop expressions are
equal to the expression’s input effect. This means that, even in this
language (and much more so in a language like C), programmers
are not really expected to explicitly annotate such expressions: it is
easy for the type and effect system to infer the annotations.

4.3 Summarizing Recursive Functions

We have already discussed why it is necessary to summarize the
effects of recursive functions. However, the function summary can
be correctly defined in different ways. In principle, any possible
definition will do, as long as it satisfies Lemmata 1 and 2.

L 1 (Consistency of Summary). Let σ be a substitution of
lock variables with lock constants and γs be a continuation effect.
If γa = summary(γb) then for all ı and n we have

run(σ(γb :: γs), ı, n) ⊆ run(σ(γa :: γs), ı, n)

Before we proceed to Lemma 2, we provide an informal defini-
tion for function startup. This function takes an effect γ and finds
all unmatched lock and unlock operations in γ. It produces an effect
γ′ which has all the unmatched lock operations, followed by all the
unmatched unlock operations. E.g.

startup([x+, x−] ? [y+, y−]) = ∅
startup([z−, y+] ? [x+, y+, x−, z−]) = [y+, z−]

We can also define the notion of compositionality for functions on
effects. Informally, a function F(γ) is compositional if γ can only
be used as a sub-effect in the result (i.e. in the way that our type and
effect system uses effects).

L 2 (Fixed Point of Summary). Let F(γ) be a compositional
function, γ0 = startup(F(∅)), and γn+1 = summary(F(γn)). Then
there exists a k such that for all n > k we have γk = γn.

If a summary function satisfies Lemma 2, then the procedure
described in Sect. 3 can be used to compute the fixed point of all
recursive functions. This fixed point can be used by the type sys-
tem to determine type τa in rule T-FX . Furthermore, if a summary
function satisfies Lemma 1, then it is safe for the run-time system to
use the summarized effect in the place of the real effect of a func-
tion’s body. In all cases, the future lockset that will be computed
based on the summary will be a superset of the future lockset that
would be computed based on the body’s real effect.

In our implementation, we use a conservative function summary
that can be shown to satisfy Lemmata 1 and 2. For any effect γ, we
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define summary(γ) as follows. We take startup(γ) and split it in
two components: γ+, which contains the unmatched lock opera-
tions, and γ−, which contains the unmatched unlock operations.
We reorder the events in γ+ and γ− using any total order relation on
lock variables ρ. (This normalization is required for ensuring that a
fixed point exists — Lemma 2.) We then build a third component:
γ0, which contains one pair of [x+, x−] for each lock x that is ac-
quired at any time in γ, excluding the ones that are in γ+. Again,
we normalize γ0 by reordering the events that it contains. Finally,
we take summary(γ) = γ+ :: γ0 :: γ−.

As an example, consider the conditional statement of Sect. 3,
copied here without the annotations to lock operations:

if e then (lock x; . . . lock y; . . . unlock y)
else (lock z; . . . lock x; . . . unlock z)

The corresponding effect is:

γ = [x+, y+, y−] ? [z+, x+, z−]

There is one unmatched lock operation (for x, which occurs in both
branches of the conditional), therefore startup(γ) = [x+]. We take
γ+ = [x+] and γ− = ∅. Then, we build γ0 = [y+, y−, z+, z−], by
taking one matching pair for each of the lock operations that occur
in γ and are not contained in γ+ (these are y+ and z+, and we order
lock variables lexicographically). Thus:

summary(γ) = [x+, y+, y−, z+, z−]

More accurate summary functions can also be constructed, not
merging branching effects and respecting the nested structure of
lock/unlock operations. However, we are not convinced of their
practical importance and, in particular, whether the future locksets
run(σ(γa :: γs), ı, n) that they produce are indeed more accurate.

As a last note here, summarization is not only necessary for
dealing with recursive functions. It is useful for reducing the size of
the effects of non-recursive functions, to improve the performance
of the run-time system.

5. Type Safety and Deadlock Freedom

In this section we present the fundamental theorems that prove type
safety for our language, together with very brief proof sketches.7

Type safety, which in this system implies deadlock freedom, is
based on proving the preservation, deadlock freedom and progress
lemmata. Informally, a program written in our language is safe
when each thread of execution can perform an evaluation step or
is waiting for a lock (blocked). In addition, there must not exist
threads that have reached a deadlocked state.

As discussed in Sect. 4.1, a thread may become stuck when it
performs an ill-typed operation, or when it attempts to compute the
future lockset of a malformed stack, or when it attempts to acquire
a non-existing lock, or when it attempts to release a lock whose
count has already reached the value zero, and so on.

D 1 (Thread Effect Consistency). The following rules
define effect-consistent threads.

ı; n1 ⊢ok γ ǫ3 = run(γ, ı, n1)

n; γ ⊢ S ǫ1 ∩ ǫ3 ⊆ ǫ2

n; γ ⊢ S , ı 7→ n; n1; ǫ1; ǫ2

ı; 0 ⊢ok γ n , n1 n; γ ⊢ S

n; γ ⊢ S , ı 7→ n1; n2; ǫ1; ǫ2 n; γ ⊢ ∅

Thread effect consistency (denoted by n; γ ⊢ S ) ensures that any
lock acquired by thread n will be released before thread n termi-

7 A full formalization of our language and complete proofs are given in the
Appendix.

nates. Furthermore, it establishes an exact correspondence between
locks in γ and S . In particular, for each lock ı in the domain of γ,
ı; n1 ⊢ok γ must hold, where n1 must equal the reference count of ı
in S for each thread n. Notice that only one thread can have a pos-
itive reference count for ı. It also establishes that the future lockset
of an acquired lock at any program point (ǫ3 — modulo the loca-
tions that have been created after the lock was initially acquired) is
always a subset of the future lockset computed when the lock was
initially acquired (ǫ2).

D 2 (Thread Typing). The following rules define well
typed threads.

S ; M ⊢ ∅

M; ∅; ∅ ⊢ e : 〈〉& (∅;γ) S ; M ⊢ T

n < dom(T ) n; γ ⊢ S

S ; M ⊢ T, n : e

A collection of threads T is well typed w.r.t. a lock store S and a
set of lock identifiers M, if for each thread n : e, expression e is
well-typed with an empty input effect and some output effect γ and
the lock store is consistent w.r.t. n and γ.

D 3 (Configuration Typing). A configuration S ; T is well
typed w.r.t. M (we denote this by M ⊢ S ; T) when S ; M ⊢ T and
M = dom(S ).

D 4 (Deadlocked State). A configuration has reached a
deadlocked state when there exist a set of threads n0, . . . , nk, for
k > 0, and a set of locks ℓ0, . . . , ℓk, such that each thread nı has
acquired lock ℓ(ı+1) mod (k+1) and is waiting for lock ℓı.

D 5 (Not Stuck). A configuration S ; T is not stuck when
each thread in T can take one of the evaluation steps in Fig. 6 or is
waiting for a lock held by some other thread.

Given these definitions, we can now present the main results of
this paper. The progress, deadlock freedom and preservation lem-
mata are formalized at the program level, i.e., for all concurrently
executed threads. Let expression e be the initial program. The ini-
tial program configuration S 0; T0 is defined by taking S 0 = ∅, and
T0 = {∅; e}.

L 3 (Deadlock Freedom). If the initial configuration takes n
steps, where each step is well-typed for some M, then the resulting
configuration has not reached a deadlocked state.

Proof sketch. We assume that a cyclic set of threads exists, in the
sense of Def. 4. Let m be the thread that first acquires its lock
ℓk. When thread k subsequently acquires its lock ℓo, we know that
ℓk does not belong to the corresponding future lockset (otherwise
the lock could not have been acquired). We show that this is a
contradiction, using the effect consistency of the store and the
threads’ typing.

L 4 (Progress). If S ; T is a closed well-typed configuration
with M ⊢ S ; T, then S ; T is not stuck.

Proof sketch. Let n : e be a thread in T . It suffices to show that e
can take a step or is waiting for a lock held by some other thread.
As S ; T is well-typed, we know that e is well typed with type 〈〉.
If it is a value, the proof is trivial. Otherwise, e is of the form E[u]
where u is a redex, and we proceed by a case analysis on u. In each
case, based on what the typing derivation gives us, we can deduce
that either u can take a step, or that it is blocked.

L 5 (Preservation). Let S ; T be a well-typed configuration
with M ⊢ S ; T. If the operational semantics takes a step S ; T {
S ′; T ′, then there exists M′ ⊇ M such that the resulting configura-
tion is well-typed with M′ ⊢ S ′; T ′.
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Proof sketch. By induction on the thread evaluation relation.

L 6 (Multi-step Preservation). Let S 0; T0 be a closed well-
typed configuration for some M0 and assume that S 0; T0 evaluates
to S n; Tn in n steps. Then for all ı ∈ [0, n] Mı ⊢ S ı; Tı holds.

Proof. Proof by induction on the number of steps n using Lemma 5.

T 1 (Type Safety). If the initial configuration S 0; T0 is
closed and well-typed (∅ ⊢ S 0; T0) and the operational seman-
tics takes any number of steps S 0; T0 {

n S n; Tn, then the resulting
configuration S n; Tn is not stuck and Tn has not reached a dead-
locked state.

Proof. The application of Lemma 6 to the typing derivation of
S 0; T0 implies that for all steps from zero to n there exists an Mı
such that Mı ⊢ S ı; Tı. Therefore, Lemma 3 implies that Tn has
not reached a deadlocked state and Lemma 4 implies S n; Tn is not
stuck.

Using an empty typing context for typing the initial configura-
tion S 0; T0 guarantees that all functions in the program are closed
and that no explicit lock values (lkı) are used in the source of the
original program.

6. Prototype Implementation

We have implemented our approach for programs written in C us-
ing the pthreads library. Our tool uses CIL [15] to parse and analyze
C source code, as well as some modules from the implementation
of R [22] that perform pointer analyses.8

As in the formal semantics, our approach guarantees deadlock
freedom by combining static analysis and dynamic checks. There-
fore, our tool performs a source-to-source transformation that in-
struments the original C code with meta-data representing future
lock usage. The instrumented C program is then linked with a run-
time library that provides replacements for some pthreads func-
tions. We provide a very brief description of our tool below.

Static Analysis Our tool performs a bottom-up traversal of the
program call graph and computes the effect of each function with
a standard forward intra-procedural effect analysis. Effects flow-
ing from back edges of a node must be equivalent (with respect to
the unmatched lock and unlock operations) to effects flowing from
front edges in the same node. Therefore, loops and goto statements
can perform arbitrary locking operations, but they must not sur-
prise their environment. Indirect calls (i.e., function pointers) are
treated by computing the set of all possible aliases for each function
pointer and assigning a new join effect, whose branches represent
the effects of all aliased functions. The effect of recursive calls is
computed in a manner similar to that described earlier for the for-
mal language. Currently, the effect inference component of the tool
is incomplete in the sense that it does not handle all C/pthreads pro-
grams. It cannot deal with non-local jumps, dynamically allocated
data structures containing locks and rejects programs with arith-
metic on pointers (including arrays) that contain or point to locks.
Stack-allocated lock handles are also not supported. Lock handle
variables cannot be directly used in the program (e.g., parameter
passing or assignment) but only through the use of pointers. Lifting
these limitations of the analysis is the target of future work.

Code Generation and Run-time System Our main goal for the
run-time system was to minimize the overhead induced by “ef-
fect accounting”. A naı̈ve implementation of the formal semantics
would simply allocate and initialize effect frames for each func-
tion call and this would be unacceptable in terms of performance.

8 Our tool and the benchmark programs we use in Sect. 7 are available from
http://www.softlab.ntua.gr/∼pgerakios/deadlocks/.

The code generation phase statically creates a single block of ini-
tialization code for the effect of each function and inserts effect
index update instructions (i.e., a single assignment) before each
call and lock operation. Therefore, the overhead imposed for such
operations is minimal. Each function is also instrumented with in-
structions for pushing and popping effects from the run-time stack
at function entry and exit points respectively. This imposes a con-
stant cost to function calls independently of the effect’s size. The
run-time system extends the standard implementation of locking
functions such as the pthreads functions pthread mutex lock and
pthread cond wait. If a lock is already held by the requesting
thread then the lock’s count is simply incremented. Otherwise, the
run-time system computes the future lockset of the requested lock
from the current effect and verifies that all locks in the future lock-
set are available when the lock is acquired.

7. Performance Evaluation

In this section we describe our experimental results, aiming to
demonstrate that our approach can achieve deadlock freedom with
relatively low run-time overhead. The experiments were performed
on a multiprocessor machine with four Intel Xeon E7340 CPUs
(2.40 GHz), having a total of 16 cores and 16 GB of RAM. In the
benchmarks involving network interaction, a second machine was
also used with two Intel Xeon CPUs (2.80 GHz), having a total
of 4 cores and 4 GB of RAM. Both machines were running Linux
2.6.26-2-amd64 and GCC 4.3.2.

We used a total of six benchmark programs of varying com-
plexity: two written by us (these are programs from the literature
which are known to exhibit deadlocks) and four which are real,
publicly available applications. Except for the first program, whose
only purpose is to show that our approach avoids deadlocks, the
rest of the benchmarks are used to evaluate scalability as the num-
ber of threads increases, and to demonstrate that our approach not
only avoids deadlocks but, in some cases, may result in better par-
allelism (dining philosophers).

bank transactions: a small multithreaded program simulating re-
peated concurrent circular transactions between two accounts
that may deadlock. The program is based on the example used
in the introduction of Boudol’s paper [1]. Each transaction con-
sists of a withdrawal step from account A and a deposit step to
account B, each of which is protected by a lock. In addition,
the whole transaction is protected by the lock account A; this
creates a necessity for recursive (reentrant) locks and makes the
program prone to deadlocks. The original program deadlocks
with probability very close to 100%.

dining philosophers: a program implementing the obvious and
deadlock-prone attempt to solve the classic multi-process syn-
chronization problem. Each philosopher first picks up the stick
on his left, then the stick on his right. The original program
deadlocks with a probability that decreases as the number of
philosophers increases (for five philosophers, the probability
for deadlock was roughly 70%) but increases again when the
number of philosophers exceeds the number of available cores.
For the performance comparison that we discuss below, we only
used the deadlock-free runs of the original program.

The performance of the original and the instrumented versions
are shown in Fig. 8. For a given elapsed time (2 secs) we mea-
sured the total number of times that the philosophers ate (using
a per-thread random number generator that was identical in both
versions). It is interesting to see that in the instrumented pro-
gram, the number grows linearly with the number of philoso-
phers, i.e., each philosopher eats for a (more or less) constant
number of times during the 2 secs (this number is determined by
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n original instrumented improvement

5 126,536 126,961 0.34%

10 224,536 230,981 2.87%

15 284,150 298,563 5.07%

31 536,889 587,051 9.34%

63 1,080,322 1,193,509 10.48%

127 1,603,880 2,219,022 38.35%

255 1,480,183 4,220,603 185.14%

Figure 8. Performance comparison for the dining philosophers.
We measure the total number of times that the n philosophers ate.

the ratio of eating time versus sleeping time, which was chosen
to be 0.1 in both programs). On the other hand, in the origi-
nal program, the linear growth seems to last only as long as the
number of philosophers is small and we do not run out of cores.

In the original program, it is frequent that a philosopher holds
his left stick while waiting to acquire his right stick. This is far
less frequent in the instrumented program, which checks that
the right stick is available before granting the left stick (if the
right neighbour is fast enough, he can still get to it first but this
is rather very improbable). This results in a much better degree
of parallelism, which clearly shows in Fig. 8.

The four remaining programs are applications whose source
code is publicly available on the internet. The first two contain only
one lock (therefore they cannot possibly deadlock) while the last
two have multiple locks. In all programs, independently of whether
deadlocks are possible or not, we were primarily concerned with
measuring and comparing the performance of the original and the
instrumented versions of the programs, in order to evaluate the
overhead imposed by our approach.

thrhttp: a multithreaded HTTP server (implemented in 500 lines),
using a single lock for synchronizing various counters which
are concurrently accessed [20]. We measured the server’s per-
formance at varying loads (number of responses over number
of requests) using httperf, an open source tool for measuring
web server performance. The results were almost identical for
the original and the instrumented version of thrhttp.

flam3: a multithreaded program which creates “cosmic recursive
fractal flames”, i.e., (animations consisting of) algorithmically
generated images based on fractals [5]. A single lock is used to
synchronize access to a shared bucket accumulator that merges
computations of distinct threads. We measured the time re-
quired to generate a long sequence of fractal images, varying

n original instrumented overhead

U S e U S e

1 7.91 7.18 14.30 8.35 7.40 14.66 2.52%

2 8.08 7.30 9.71 9.53 8.02 9.51 −2.06%

4 8.48 7.69 7.19 7.32 7.33 6.39 −11.13%

8 9.21 9.09 5.16 10.04 9.58 5.32 3.10%

16 12.02 10.42 4.94 14.48 12.42 5.45 10.32%

32 12.72 11.23 5.32 13.84 12.89 6.34 19.17%

64 12.71 11.14 5.34 13.56 12.32 5.66 5.99%

Figure 9. Performance comparison for the tgrep utility.

the number of threads that were dedicated to the task. The re-
sults again were almost identical for the original and the instru-
mented version of flam3-render.

tgrep: a multithreaded version of the utility program grep which
is part of the SUNWdev suite of Solaris 10 [19]. The program
achieves speedup by splitting the search space across threads,
using multiple locks for implementing thread-safe queues, log-
ging and counters. In our experiment, we looked for an occur-
rence of a six-letter word in a directory tree containing 100,000
files, with a varying number of threads dedicated to the task.
The results are shown in Fig. 9. The performance difference be-
tween the original and the instrumented program is roughly be-
tween −10% and 20%. The instrumented program consistently
performs better for a few working cores (2 and 4) and worse for
more working cores (≥ 16).

sshfs: a filesystem client based on the SSH File Transfer Proto-
col [17]. It creates threads on demand so as to serve concurrent
read and write requests to the filesystem, using multiple locks to
synchronize data structures, logging and access to non thread-
safe functions. In our experiment, we mount a remote directory
over sshfs and start n concurrent threads, each of which is try-
ing to download a number of large files. The total volume of
data that is copied over sshfs is linear w.r.t. n, and this is of
course reflected in our measured results in Fig. 10. Again, we
notice a small improvement in the performance of the instru-
mented program w.r.t. the original one, which we attribute to a
slightly better degree of parallelism (as in the case of the dining
philosophers).

8. Further Comparison with Related Work

In Sect. 2 we mentioned type-based approaches to preventing dead-
locks. All works in this category prevent deadlocks using a type
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n original instrumented improvement

U S e U S e

1 0.00 0.48 0.57 0.00 0.53 0.57 0.00%

2 0.04 2.02 1.46 0.01 1.96 1.44 1.37%

4 0.07 6.07 2.59 0.03 5.85 2.58 0.39%

8 0.13 18.70 4.48 0.14 17.71 4.42 1.34%

16 0.27 122.53 11.97 0.27 103.75 10.95 8.52%

32 0.45 422.57 31.52 0.50 412.08 30.75 2.44%

64 0.90 1050.64 71.83 1.05 1029.45 70.20 2.27%

Figure 10. Performance comparison for the sshfs.

system which computes a partial order of all locks in the program
and checks statically that all threads adhere to this order. In most
such systems [6, 13, 18, 21], this partial order is statically fixed
and can not be changed at runtime. A notable exception is the type
system of Boyapati et al. [2] which allows for some form of dy-
namism. Namely, it allows programmers to partition the locks into
a fixed number of equivalence classes (lock levels), use recursive
tree-based data structures to describe their partial order, and also
perform a limited set of mutations to these data structures which
can change the partial order of locks within a given lock level at
runtime. Even in this system though, to guarantee soundness, the
partial order between lock levels is fixed statically. In contrast, our
system does not impose any partial order on locks at compile time,
but instead naturally grants locks of different threads during run-
time based on the actual program needs and lock contention.

In the rest of this section, we compare our work with other tech-
niques and tools that deal with deadlock detection and avoidance.

Purely static approaches to deadlock detection employ flow-
sensitive static analysis [4] and theorem proving [7] to identify
places in the code where programs do not adhere to some global
lock acquisition order for all threads. In theory, such static ap-
proaches are attractive because they do not incur run-time over-
head. In practice however, adhering to a strict lock acquisition or-
der is rarely easy and seems unsuitable for systems programming.
Even in simpler application domains, experience has shown that a
global lock ordering is inflexible and difficult to enforce in com-
plex, multi-layered software written by large teams of program-
mers. More importantly, because purely static approaches are by
definition conservative, they often reject programs unnecessarily or
result in a large number of false alarms.

On the other end of the spectrum, dynamic approaches to dead-
lock detection [12, 16] do not suffer from false positives, but they
are often inflexible because when a deadlock is detected it is quite

often too late to react on or recover from it. (The programs may
have already performed some irrevocable operations such as I/O.)

From approaches that combine static and dynamic techniques,
besides Boudol’s proposal for deadlock avoidance, a tool that is
quite similar to ours is Gadara [23]. Gadara employs whole pro-
gram analysis to model programs and discrete control theory to
synthesize a concurrent logic that avoids deadlocks at run time [24].
Like our work, Gadara targets C/pthreads programs and is claimed
to avoid deadlocks quite efficiently because it performs the major-
ity of its deadlock avoidance computations offline. (The tool is not
publicly available.) Similarly to our future locksets, Gadara uses
the notion of control places to decide whether it is safe to admit a
lock acquisition. More precisely, a lock acquisition can only pro-
ceed when all the control places associated with the lock are avail-
able. The mostly static approach followed by Gadara, as well as the
lack of alias analysis, results in an over-approximation of the set of
run-time locks associated with a control place.

9. Concluding Remarks

Locks are here to stay as a language construct either for program-
mers or for compiler writers. Deadlocks are an important problem
especially for languages that employ non block-structured locking.

In this paper, we have presented a novel technique that dynami-
cally avoids deadlock states for a lock-polymorphic lambda calcu-
lus with unstructured locking primitives. The key idea is to utilize
statically computed information regarding lock usage at execution
time in order to avoid deadlocks. This approach accepts a wider
class of programs compared to purely static approaches based on
deadlock prevention. The main drawback is the additional run-time
overhead induced by the future lockset computation and blocking
time (i.e., both the requested lock and its future lockset must be
available). Additionally, in some cases threads may unnecessarily
block because our type and effect system is conservative.

We have presented a semantics for the proposed language, a
sound type and effect system that guarantees that well-typed pro-
grams cannot reach a deadlocked state, and a proof sketch for the
type safety theorem and related lemmata. Most importantly, we
have also shown the promise of our approach by implementing a
tool for C/pthreads and evaluating it on a number of programs. Our
benchmark evaluation suggests that our approach imposes only a
modest run-time overhead on real applications and, in some cases,
it produces remarkably increased throughput.
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Appendix

1.1 Language Syntax & Substitution Relation

Value v ::= () | true | false | f | lkı

Expression e ::= x | v | (e e)ξ | (e) [r] | popγ e

| newlock ρ, x in e | lockγ e | unlock e

| if e then e else e

Function f ::= λx. e | Λρ. f | fix x. f

Type τ ::= 〈〉 | Bool | Lk(r) | τ
γ
−→ τ | ∀ρ. τ

Lock r ::= ρ | ı

Calling mode ξ ::= seq(γ) | par

Operation κ ::= + | −

Effect γ ::= ∅ | rκ, γ | γ ? γ, γ

x1[v/x] = v x1 ≡ x

| x1 otherwise

e[v/x] = x1[v/x] | f [v/x] | lkı | true | false | ()

| popγ e[v/x] | lockγ e[v/x]

| unlock e[v/x] | (e1[v/x] e2[v/x])ξ

| (e1[v/x]) [r] | newlock ρ, y in e1[v/x]

| if e1[v/x] then e2[v/x] else e3[v/x]

f [v/x] = λy. e[v/x] | Λρ. f [v/x]

| fix y. e1[v/x]

r1[r/ρ] = r r1 ≡ ρ

| r1 otherwise

f [r/ρ] = λx. e[r/ρ] | Λρ′. f [r/ρ]

| fix x. f [r/ρ]

e[r/ρ] = x | f [r/ρ] | lkı | true | false | ()

| popγ[r/ρ] e[r/ρ] | lockγ1[r/ρ] e[r/ρ]

| unlock e[r/ρ] | (e1[r/ρ] e2[r/ρ])ξ[r/ρ]

| (e1[r/ρ]) [r1[r/ρ]] | newlock ρ′, x in e1[r/ρ]

| if e1[r/ρ] then e2[r/ρ] else e3[r/ρ]

τ[r/ρ] = b | 〈〉 | τ1[r/ρ]
γ[r/ρ]
−→ τ2[r/ρ] | ∀ρ′. τ[r/ρ]

| Lk(r[r/ρ])

ξ[r/ρ] = seq(γ[r/ρ]) | par

γ[r/ρ] = ∅ | γ1[r/ρ], γ2[r/ρ] ? γ3[r/ρ] | γ1[r/ρ], r1[r/ρ]κ

1.2 Operational Semantics: Syntax & Evaluation Context

Lock Store S ::= ∅ | S , ı 7→ n; n; ǫ; ǫ

Threads T ::= ∅ | T, n : e

Configuration C ::= S ; T

Lockset ǫ ::= ∅ | ǫ, ı

Context E ::= � | E[F]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | popγ �

| lockγ1
� | unlock� | if � then e else e

Redex u ::= (v′ v)ξ | ( f ) [r] | lockγ1
v | unlock v

| newlock ρ, x in e1 | if v then e1 else e2 | popγ v

1.3 Operational Semantics: Helper Relations

run(γ, ı, n) =



















































∅ if n = 0

run(γ′, ı, n + 1) if γ = ı+, γ′ and n > 0

run(γ′, ı, n − 1) if γ = ı−, γ′ and n > 0

run(γ′, ı, n) ∪ {j} if γ = j+, γ′ and n > 0

run(γ′, ı, n) if γ = j−, γ′ and n > 0

run((γ1 :: γ′), ı, n) ∪ run((γ2 :: γ′), ı, n) if γ = γ1 ? γ2, γ
′ and n > 0

stack(E) =



















∅ if E = �

stack(E′) if E = E′[F] and F , popγ′ �

γ′ :: stack(E′) if E = E′[popγ′ �]

available(S , n) =



















∅ if S = ∅

available(S ′, n) ∪ {ı} if S = S ′, ı 7→ n1; n2; ǫ1; ǫ2 and n1 = n or n2 = 0

available(S ′, n) if S = S ′, ı 7→ n1, n2; ǫ1; ǫ2 and n1 , n and n2 > 0

dom(S ) = {ı | ı 7→ n1; n2; ǫa; ǫb ∈ S }
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1.4 Operational Semantics: Reduction Relation

S ; T, n : E[if true then e1 else e2] { S ; T, n : E[e1]
(E-IT)

S ; T, n : E[if false then e1 else e2] { S ; T, n : E[e2]
(E-IF)

v′ = fix x. f

S ; T, n : E[(v′ v)seq(γ)] { S ; T, n : E[( f [v′/x] v)seq(γ)]
(E-FX)

fresh n′

S ; T, n : E[(v′ v)par] { S ; T, n : E[()], n′ :�[(v′ v)seq(∅)]
(E-SN)

S ; T, n :�[()] { S ; T
(E-T)

S ; T, n : E[((λx. e1) v)seq(γ)] { S ; T, n : E[popγ e1[v/x]]
(E-A)

S ; T, n : E[(Λρ. f )[ı]] { S ; T, n : E[ f [ı/ρ]]
(E-RP)

S ; T, n : E[popγ v] { S ; T, n : E[v]
(E-PP)

fresh ı S ′ = S , ı 7→ n; 0; ∅; ∅

S ; T, n : E[newlock ρ, x in e1] { S ′; T, n : E[e1[ı/ρ][lkı/x]]
(E-NG)

S (ı) = n1; 0; ǫ1; ǫ2 S ′ = S [ı 7→ n; 1; dom(S ); ǫ]

ǫ = run(stack(E[popγ1
�]), ı, 1) ǫ ∪ {ı} ⊆ available(S , n)

S ; T, n : E[lockγ1
lkı] { S ′; T, n : E[()]

(E-LK0)

S (ı) = n; n2; ǫ1; ǫ2 n2 > 0 S ′ = S [ı 7→ n; n2 + 1; ǫ1; ǫ2]

S ; T, n : E[lockγ1
lkı] { S ′; T, n : E[()]

(E-LK1)

S (ı) = n; n2; ǫ1; ǫ2 n2 > 0 S ′ = S [ı 7→ n; n2 − 1; ǫ1; ǫ2]

S ; T, n : E[unlock lkı] { S ′; T, n : E[()]
(E-UL)

1.5 Static Semantics: Syntax and Typing Context Substitution Relation

Type variable list ∆ ::= ∅ | ∆, ρ

Memory List M ::= ∅ | M, ı

Variable list Γ ::= ∅ | Γ, x : τ

Γ[r/ρ] ::= ∅ | Γ1[r/ρ], x : τ[r/ρ]

1.6 Static Semantics: Well Formedness Relation

Constraint Well-formedness

M;∆ ⊢ ∅

r ∈ M ∪ ∆ M;∆ ⊢ γ1

M;∆ ⊢ γ1, r
κ

M;∆ ⊢ γ1 M;∆ ⊢ γ2 M;∆ ⊢ γ3

M;∆ ⊢ γ1, γ2 ? γ3

Type Well-formedness

M;∆ ⊢ Bool

M;∆, ρ ⊢ τ

M;∆ ⊢ ∀ρ. τ

r ∈ M ∪ ∆

M;∆ ⊢ Lk(r)

M;∆ ⊢ τ1 M;∆ ⊢ γ1 M;∆ ⊢ τ2

M;∆ ⊢ τ1

γ1
−→ τ2

M;∆ ⊢ 〈〉

ΓWell-formedness

M;∆ ⊢ ∅

M;∆ ⊢ τ1 x < dom(Γ1) M;∆ ⊢ Γ1

M;∆ ⊢ Γ1, x : τ1
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1.7 Static Semantics: Typing Rules

x : τ ∈ Γ

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ x : τ& (γ;γ)
(T-V)

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ true : Bool& (γ;γ)
(T-T)

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ false : Bool& (γ;γ)
(T-F)

M;∆ ⊢ Γ M;∆ ⊢ γ

M;∆;Γ ⊢ () : 〈〉& (γ;γ)
(T-U)

M;∆, ρ;Γ ⊢ f : τ& (γ;γ)

M;∆;Γ ⊢ Λρ. f : ∀ρ. τ& (γ;γ)
(T-RF)

M;∆ ⊢ Γ M;∆ ⊢ γ ı ∈ M

M;∆;Γ ⊢ lkı : Lk(ı) & (γ;γ)
(T-L)

M;∆ ⊢ Γ M;∆ ⊢ γ τ ≡ τ1

γb
−→ τ2

M;∆ ⊢ τ M;∆;Γ, x : τ1 ⊢ e1 : τ2 & (∅;γb)

M;∆;Γ ⊢ λx. e1 : τ& (γ;γ)
(T-FN)

M;∆;Γ, x : τ ⊢ f : τ′& (γ;γ) τ′ ≡ τ1

γb
−→ τ2

τ ≡ τ1

γa

−→ τ2 γa = summary(γb)

M;∆;Γ ⊢ fix x. f : τ& (γ;γ)
(T-FX)

M;∆;Γ ⊢ e : Lk(r) & (r+, γ;γ′)

M;∆;Γ ⊢ lockγ e : 〈〉& (γ;γ′)
(T-LK)

M;∆;Γ ⊢ e : Lk(r) & (r−, γ;γ′)

M;∆;Γ ⊢ unlock e : 〈〉& (γ;γ′)
(T-UL)

M;∆;Γ ⊢ e1 : τ1

γa

−→ τ2 & (γ1;γ′)

M;∆;Γ ⊢ e2 : τ1 & (γa :: γ;γ1)

M;∆;Γ ⊢ (e1 e2)seq(γ) : τ2 & (γ;γ′)
(T-SA)

∀r ∈ dom(γa). r; 0 ⊢ok γa

M;∆;Γ ⊢ e1 : τ1

γa

−→〈〉& (γ1;γ′) M;∆;Γ ⊢ e2 : τ1 & (γ;γ1)

M;∆;Γ ⊢ (e1 e2)par : 〈〉& (γ;γ′)
(T-PA)

r ∈ M ∪ ∆ M;∆;Γ ⊢ e1 : ∀ρ. τ& (γ;γ′)

M;∆;Γ ⊢ (e1) [r] : τ[r/ρ] & (γ;γ′)
(T-RP)

M;∆ ⊢ τ ρ < dom(γ) ρ; 0 ⊢ok γ
′

M;∆, ρ;Γ, x : Lk(ρ) ⊢ e1 : τ& (γ;γ′)

M;∆;Γ ⊢ newlock ρ, x in e1 : τ& (γ;γ′ \ ρ)
(T-NG)

M;∆ ⊢ γ M;∆;Γ ⊢ e : τ& (∅;γ′)

M;∆;Γ ⊢ popγ e : τ& (γ;γ′ :: γ)
(T-PP)

M;∆;Γ ⊢ e1 : Bool& (γ1 ? γ2, γ;γ
′)

M;∆;Γ ⊢ e2 : τ& (γ;γ1 :: γ) M;∆;Γ ⊢ e3 : τ& (γ;γ2 :: γ)

M;∆;Γ ⊢ if e1 then e2 else e3 : τ& (γ;γ′)
(T-IF)

where summary(γa) = γ1 :: γ2 :: γ3 if rsummary(γa) = γ1; γ2; γ3

1.8 Lock Removal

γ′ = γ \ r

γ′ = rκ, γ \ r
(M0)

r′ , r γ′ = γ \ r′

rκ, γ′ = rκ, γ \ r′
(M1)

∅ = ∅ \ r
(M3)

γ′
1
= γ1 \ r′ γ′

2
= γ2 \ r′ γ′

3
= γ3 \ r′

γ′
2

? γ′
3
, γ′

1
= γ2 ? γ3, γ1 \ r

(M4)

1.9 Effect Validation

0 ≤ n r; n + 1 ⊢ok γ

r; n ⊢ok r+, γ
(OK1)

r; n − 1 ⊢ok γ n > 0

r; n ⊢ok r−, γ
(OK2)

0 ≤ n r; n ⊢ok γ r , r′

r; n ⊢ok r′κ, γ
(OK3)

r; 0 ⊢ok ∅
(OK4)

0 ≤ n r; n ⊢ok γ1 :: γ r; n ⊢ok γ2 :: γ

r; n ⊢ok γ1 ? γ2, γ
(OK5)

1.10 Summary of Recursive Effect

r; na ⊢ok γa :: (r−)nb r ∈ dom(γa) ∀nc.¬ (r; na − 1 ⊢ok γa :: (r−)nc )

γ3 = {r
+, r− | r+ ∈ γa} rsummary(γa \ r) = γ2; γ1; γ0

rsummary(γa) = (r+)nb :: γ2; γ3 :: γ1; (r−)na :: γ0

(PX0)
rsummary(∅) = ∅; ∅; ∅

(PX1)
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1.11 Type Safety: Evaluation Context Typing

Sub-effect γ ⊳ γ′ ≡ ∃γ′′.γ′ = γ′′ :: γ

M;∆ ⊢ Γ M;∆ ⊢ γ1 M;∆ ⊢ γ2 M;∆ ⊢ τ

M;∆;Γ ⊢ � : τ
γ1;γ2
−→ τ& (γ1;γ2)

(E0)

M;∆;Γ ⊢ E : τ2

γ5;γ6
−→ τ3 & (γ1;γ2)

M;∆;Γ ⊢ F : τ1

γ3;γ4
−→ τ2 & (γ5;γ6)

M;∆;Γ ⊢ E[F] : τ1

γ3;γ4
−→ τ3 & (γ1;γ2)

(E1)

M;∆ ⊢ γ2 γ1 ⊳ γ2 M;∆ ⊢ τ2

M;∆;Γ ⊢ e2 : τ1 & (γa :: γ;γ1)

M;∆;Γ ⊢ (� e2)seq(γ) : (τ1

γa

−→ τ2)
γ1;γ2
−→ τ2 & (γ;γ2)

(F1)

γ2 ⊳ γ3 M;∆ ⊢ τ1

γa

−→〈〉

M;∆;Γ ⊢ e2 : τ1 & (γ1;γ2)

M;∆;Γ ⊢ (� e2)par : (τ1

γa

−→〈〉)
γ2;γ3
−→ 〈〉& (γ1;γ3)

(F2)

γ2 = γ1 :: γa M;∆ ⊢ γ3 γ2 ⊳ γ3

M;∆;Γ ⊢ v1 : τ1

γa

−→ τ2 & (γ3;γ3)

M;∆;Γ ⊢ (v1 �)seq(γ1) : τ1

γ2;γ3
−→ τ2 & (γ1;γ3)

(F3)

M;∆ ⊢ γ2 γ1 ⊳ γ2

M;∆;Γ ⊢ v1 : τ1

γa

−→〈〉& (γ2;γ2)

M;∆;Γ ⊢ (v1 �)par : τ1

γ1;γ2
−→ 〈〉& (γ1;γ2)

(F4)

M;∆ ⊢ τ M;∆ ⊢ γ′ γ′ = γ2 :: γ

M;∆;Γ ⊢ popγ � : τ
∅;γ2
−→ τ& (γ;γ′)

(F5)

M;∆ ⊢ Γ M;∆ ⊢ γ′

M;∆ ⊢ Lk(r) γ1 = r−, γ γ1 ⊳ γ
′

M;∆;Γ ⊢ unlock� : Lk(r)
γ1;γ′

−→〈〉& (γ;γ′)

(F6)

M;∆ ⊢ Γ M;∆ ⊢ γ′

M;∆ ⊢ Lk(r) γ1 = r+, γ γ1 ⊳ γ
′

M;∆;Γ ⊢ lockγ � : Lk(r)
γ1;γ′

−→〈〉& (γ;γ′)

(F7)

γ3 = γ1 ? γ2, γ M;∆ ⊢ γ′ γ3 ⊳ γ
′

M;∆;Γ ⊢ e2 : τ& (γ;γ1 :: γ) M;∆;Γ ⊢ e3 : τ& (γ;γ2 :: γ)

M;∆;Γ ⊢ if � then e2 else e3 : Bool
γ3;γ′

−→ τ& (γ;γ′)

(F8)

M;∆ ⊢ γ′ M;∆ ⊢ ∀ρ. τ r ∈ M ∪ ∆ γ ⊳ γ′

M;∆;Γ ⊢ (�) [r] : ∀ρ. τ
γ;γ′

−→ τ[r/ρ] & (γ;γ′)

(F9)

1.12 Type Safety: Configuration Typing

locks(S , ı, n) =

{

n2 if S (ı) = (n; n2; ǫ1; ǫ2)

0 if S (ı) = (n1; n2; ǫ1; ǫ2) ∧ n1 , n

deadlocked(T ) ≡ T ⊇ T1, n0 : E[lockγ0
lkı0 ], . . . , nk : Ek[lockγk

lkık ] ∧ k > 0∧

∀m1 ∈ [0, k].m2 = (m1 + 1) mod(k + 1) ∧ locks(S , ım2
,m1) > 0

dom(γ) =



















∅ if γ = ∅

dom(γ′) ∪ dom(γ1) ∪ dom(γ2) if γ = γ1 ? γ2, γ
′

dom(γ′) ∪ {r} if γ = rκ, γ′

dom(T ) = {n | n : e ∈ T }

Configuration Typing

S ; M ⊢ T M = dom(S )

M ⊢ S ; T

Thread Effect Consistency

ı; n1 ⊢ok γ ǫ3 = run(γ, ı, n1)

n; γ ⊢ S ǫ1 ∩ ǫ3 ⊆ ǫ2

n; γ ⊢ S , ı 7→ n; n1; ǫ1; ǫ2

ı; 0 ⊢ok γ n , n1 n; γ ⊢ S

n; γ ⊢ S , ı 7→ n1; n2; ǫ1; ǫ2 n; γ ⊢ ∅

Thread Typing

S ; M ⊢ ∅

M; ∅; ∅ ⊢ e : 〈〉& (∅;γ) S ; M ⊢ T

n < dom(T ) n; γ ⊢ S

S ; M ⊢ T, n : e

Not Stuck

⊢ S ; ∅

⊢ S ; T S ; T, n : e { S ′; T ′ T ⊆ T ′

⊢ S ; T, n : e

⊢ S ; T locks(S , ı, n) = 0

run(stack(E[popγ �), ı; 1) = ǫ ǫ ∪ {ı} ⊃ available(S , n)

⊢ S ; T, n : E[lockγ lkı]
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1.13 Type Safety: Multi-step Evaluation

n > 0 S ; T {n−1 S n−1; Tn−1 S n−1; Tn−1 { S n; Tn

S ; T {n S n; Tn

(E-M1)
S ; T {0 S ; T

(E-M2)

1.14 Type Safety: Main Theorems

Safety

S 0; T0 ≡ ∅; 0 : e ∧ ∅ ⊢ S 0; T0 ∧ S 0; T0 {
n S ′; T ′ ⇒ ⊢ S ′; T ′ ∧ ¬deadlocked(T ′)

Preservation

M ⊢ S ; T ∧ S ; T { S ′; T ′ ⇒ ∃M′ ⊇ M. M′ ⊢ S ′; T ′

Progress

M ⊢ S ; T ⇒ ⊢ S ; T

Deadlock Freedom

∅; 0 : e {n S n; Tn ∧ ∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı ⇒ ¬deadlocked(Tn).

1.15 Type Safety Proof

Theorem 1 (Type Safety) If the initial configuration S 0; T0 is well-typed (cf. page ??) with ∅ ⊢ S 0; T0

and the operational semantics takes any number of steps S 0; T0 {
n S n; Tn, then the resulting configu-

ration S n; Tn is not stuck and Tn has not reached a deadlocked state.

Proof. The application of lemma 1 to the assumption implies that ∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı. Therefore,

S n; Tn is well-typed for some Mn. The application of lemma 19 to Mn ⊢ S n; Tn implies S n; Tn is not stuck.

The application of lemma 2 to ∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı and ∅; 0 : ∅; e {n S n; Tn implies that Tn has

not reached a deadlocked state.

Lemma 1 (Multi-step Program Preservation) Let S 0; T0 be a closed well-typed configuration such

that M0 ⊢ S 0; T0 for some M0. If the operational semantics evaluates S 0; T0 to S n; Tn in n steps, then

∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı

Proof. Proof by induction on the number of steps n. When no steps are performed (i.e., n = 0) the proof

is immediate from the assumption. When some steps are performed (i.e., n > 0), we have that S 0; T0 {
n

S n; Tn or S 0; T0 {
n−1 S n−1; Tn−1 and S n−1; Tn−1 { S n; Tn. The application of the induction hypothesis

to the fact that S 0; T0 is well-typed implies ∀ı ∈ [0, n−1].∃Mı.Mı ⊢ S ı; Tı. Thus, Mn−1 ⊢ S n−1; Tn−1 holds.

The application of lemma 3 to Mn−1 ⊢ S n−1; Tn−1 and S n−1; Tn−1 { S n; Tn. implies that Mn ⊢ S n; Tn.

Therefore, ∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı.

Lemma 2 (Deadlock Freedom) Let the initial configuration take n steps, where each step is well-typed

for some M, then the resulting configuration has not reached a deadlocked state.

Proof. The assumptions imply that ∅; 0 : e {n S n; Tn and ∀ı ∈ [0, n].∃Mı.Mı ⊢ S ı; Tı. Assume that

deadlocked(Tx) holds for some x ∈ [0, n] and the first deadlock occuring in the program is in Tx (i.e.

∀ı.ı < x⇒ ¬deadlocked(Tı)). Then, the following hold:

- Tx = T, n0 : E0[lockγ0
lkı0], . . . nz : Ez[lockγz

lkız], where threads 0 to z are in a deadlocked state.

- z > 0 and ∀m1 ∈ [0, z]. locks(S , ısucc(m1),m1) > 0, where succ(n) = (n + 1) mod(z + 1).
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Let m be the thread that acquires the first of the z+1 locks that cause the deadlock, namely ısucc(m) (given

the definition of Tx). Then thread m acquired lock ık, where k equals succ(m), before thread k acquired

lock ısucc(κ). Let us assume that ǫ1y = run(stack(E[popγy
�]), ısucc(k), 1) and ǫ2y = dom(S y), where y < x

such that ısucc(k) is acquired for the first time by thread k. Then, ık does not belong to ǫ1y, otherwise

thread k would have been blocked at the lock request of ısucc(k) as ık is already owned by thread m.

According to the assumption, each step is well-typed so S x; Tx is well-typed. By inversion of the

typing configuration of thread nk : Ek[lockγ′
k
lkık ] we obtain that nk; γk ⊢ S k, where γk is the effect

assigned to expression Ek[lockγ′
k
lkık ] by thread typing. We have that ısucc(k) is locked by thread k so by

inversion of nk; γk ⊢ S k we have that:

- S k(ısucc(k)) = nk; n1; ǫ1; ǫ2, where n1 is positive.

- ısucc(k); n1 ⊢ok γk

- ǫ3 = run(γk, ısucc(k), n1)

- ǫ1 ∩ ǫ3 ⊆ ǫ2, where ǫ2 = ǫ1y and ǫ1 = ǫ2y (this is immediate by the operational steps from step y to

x).

Thus, it suffices to prove that ık ∈ ǫ1 and ık ∈ ǫ3. For all evaluation steps f and g such that f less or

than equal to g, dom(S f ) ⊆ dom(S g) holds (trivial to show by observation of the evaluation relation).

We have assumed that m is the first thread to lock ık at some step y′ (so ık ∈ dom(S y′)) prior to y so ık ∈ ǫ1
(so ık ∈ dom(S y′) ⊆ (dom(S y) = ǫ2y = ǫ1).

The application of lemma 16 to the typing derivation of Ek[lockγ′
k
lkık ] implies that lockγ′

k
lkık is

well-typed with effect (γ′
k
; ık
+, γ′

k
) and that Ek is well-typed. Thus, Mk; ∅; ∅ ⊢ Ek : 〈〉

γ′
k
;ık
+,γ′

k
−→ 〈〉& (∅;γk).

Lemma 9 implies that γk = ık
+, γ′′

k
for some γ′′

k
. Thus, ǫ3 = run(ık

+, γ′′
k
, ısucc(k), n1) = run(γ′′

k
, ısucc(k), n1)∪

{ık} (by the definition of function run). Therefore ık ∈ ǫ1y, which is a contradiction.

Lemma 3 (Preservation) Let S ; T be a well-typed configuration with M ⊢ S ; T. If the operational

semantics takes a step S ; T { S ′; T ′, then there exist an M′ ⊇ M such that the resulting configuration

is well-typed with M′ ⊢ S ′; T ′.

Proof. By case analysis on the thread evaluation relation:

Case E-T : rule E-T implies that S ; T, n :�[()] { S ; T . By inversion of the configuration typing assump-

tion we have that:

- S ; M ⊢ T, n :�[()]: by inversion of this derivation we have that:

– M; ∅; ∅ ⊢ �[()] : 〈〉& (∅;∅)

– n < dom(T )

– S ; M ⊢ T

– n; ∅ ⊢ S

- M = dom(S )

Given the above facts, M ⊢ S ; T holds.

Case E-A : rule E-A implies that S ; T, n : E[(v′ v)seq(γa)] { S ; T, n : E[popγa
e1[v/x]], where v′ is equal

to λx. e1. By inversion of the configuration typing assumption we have that:

- M = dom(S )

- S ; M ⊢ T, n : E[e], where e is equal to (v′ v)seq(γa): by inversion of this derivation we have

that:
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– S ; M ⊢ T

– n < dom(T )

– n; γ ⊢ S

– M; ∅; ∅ ⊢ E[e] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γb

−→ 〈〉& (∅;γ) and

M; ∅; ∅ ⊢ e : τ′
2

& (γa;γb). By inversion of the latter derivation we have that M; ∅; ∅ ⊢ v :

τ′
1

& (γb;γb), and M; ∅; ∅ ⊢ λx. e1 : τ′
1

γ′c
−→ τ′

2
& (γb;γb), where γb = γ

′
c :: γa. By inversion

of the typing derivation of v′ we obtain that M; ∅; ∅, x : τ′
1
⊢ e1 : τ′

2
& (∅;γ′c). Lemma 11

implies that M; ∅; ∅ ⊢ e1[v/x] : τ′
2

& (∅;γ′c) holds. The application of rule T-PP implies

that M; ∅; ∅ ⊢ popγa
e1[v/x] : τ′

2
& (γa;γb) holds. The application of lemma 15 implies

that M; ∅; ∅ ⊢ E[popγa
e1[v/x]] : 〈〉& (∅;γ).

Case E-SN : Rule E-SN implies that S ; T, n : E[(v′ v)par] { S ; T, n : E[()], n′ :�[(v′ v)seq(∅)]

By inversion of the configuration typing assumption we have that:

- M = dom(S )

- S ; M ⊢ T, n : E[e]: by inversion of this derivation we have that:

– S ; M ⊢ T

– n; γ ⊢ S

– n < dom(T )

– M; ∅; ∅ ⊢ E[(v′ v)par] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : 〈〉
γa;γa

−→ 〈〉& (∅;γ)

and M; ∅; ∅ ⊢ (v′ v)par : 〈〉& (γa;γa). By inversion of the latter derivation we have that

M; ∅; ∅ ⊢ v : τ′
1

& (γa;γa), M; ∅; ∅ ⊢ v′ : τ′
1

γ′c
−→〈〉& (γa;γa) and ∀r ∈ dom(γ′c). r; 0 ⊢ok

γ′c. The application of lemma 7 to the typing derivation of v′ implies that M; ∅ ⊢ γ′c.

Lemma 8 implies that M; ∅; ∅ ⊢ v : τ′
1

& (γ′c;γ′c) and M; ∅; ∅ ⊢ v′ : τ′
1

γ′c
−→〈〉& (γ′c;γ′c).

Rule T-AP implies M; ∅; ∅ ⊢ (v′ v)seq(∅) : 〈〉& (∅;γ′c). Therefore, lemma 15 implies that

M; ∅; ∅ ⊢ �(v′ v)seq(∅) : 〈〉& (∅;γ′c). The application of lemma 6 to the typing derivation

of v′ implies M; ∅ ⊢ γa. Rule T-U yields that M; ∅; ∅ ⊢ () : 〈〉& (γa;γa). The application

of lemma 15 implies that M; ∅; ∅ ⊢ E[()] : 〈〉& (∅;γ).

– n′; γ′c ⊢ S : this is immediate from ∀r ∈ dom(γ′c). r; 0 ⊢ok γ
′
c and the fact that locks(S , ı, n′) =

0 for all ı.

Case E-IT : rule E-IT implies that S ; T, n : E[if true then e1 else e2] { S ; T, n : E[e1]. By inversion

of the configuration typing assumption we have that:

- M = dom(S )

- S ; M ⊢ T, n : E[e], where e is equal to if true then e1 else e2: by inversion of this deriva-

tion we have that:

– S ; M ⊢ T

– n < dom(T )

– M; ∅; ∅ ⊢ E[e] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γb

−→ 〈〉& (∅;γ) and

M; ∅; ∅ ⊢ e : τ′
2

& (γa;γb). By inversion of the latter derivation we have that M; ∅; ∅ ⊢

e1 : τ′
2

& (γa;γb1
:: γa), M; ∅; ∅ ⊢ e2 : τ′

2
& (γa;γb2

:: γa) and γb = γb1
? γb2
, γa. Lemma 9

implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γa

−→ 〈〉& (∅;γ′) and M; ∅ ⊢ γ, where γ = γb1
? γb2
, γ′. Thus,

M; ∅ ⊢ γb1
:: γ′ holds. The application of lemma 9 to the latter fact, M; ∅; ∅ ⊢ E :

τ′
2

γa;γa

−→ 〈〉& (∅;γ′) implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γb1
::γa

−→ 〈〉& (∅;γb1
:: γ′). Lemma 15

implies that M; ∅; ∅ ⊢ E[e1] : 〈〉& (∅;γb1
:: γ′).
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– n; γ ⊢ S : Let us assume that S = S ′, ı1 7→ na; nb; ǫa; ǫb, for any ı1 in dom(S ). Given

n; γ ⊢ ı1 7→ na; nb; ǫa; ǫb, where γ = γb1
? γb2
, γ′, it suffices to prove n; γb1

:: γ′ ⊢ ı1 7→

na; nb; ǫa; ǫb. If na , n, then it suffices to prove ı1; 0 ⊢ok γb1
:: γ′, which immediate by

ı1; 0 ⊢ok γb1
? γb2
, γ′ (by inversion of n; γ ⊢ ı1 7→ na; nb; ǫa; ǫb). If na , n, then it suffices

to prove ı1; na ⊢ok γb1
:: γ′ and run((γb1

:: γ′), ı1, na) ∩ ǫa ⊆ ǫb. The proof for the former

is identical to the proof where na , n. By inversion of n; γ ⊢ ı1 7→ na; nb; ǫa; ǫb we obtain

that run(γ, ı1, na) ∩ ǫa ⊆ ǫb. Thus, it suffices to show that run(γ, ı1, na) ⊇ run((γb1
::

γ′), ı1, na), which is immediate by the definition of run.

Case E-IF : similar to the previous case.

Case E-FX : Rule E-FX implies S ; T, n : E[(fix x. f v)seq(γa)] { S ; T, n : E[( f [fix x. f /x] v)seq(γa)]

holds. By inversion of the configuration typing assumption we have that:

- M = dom(S )

- S ; M ⊢ T, n : E[e], where e is equal to (fix x. f v)seq(γa): by inversion of this derivation we

have that:

– S ; M ⊢ T

– n < dom(T )

– M; ∅; ∅ ⊢ E[e] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γb

−→ 〈〉& (∅;γ) and

M; ∅; ∅ ⊢ e : τ′
2

& (γa;γb). By inversion of the latter derivation we have that M; ∅; ∅ ⊢

v : τ′
1

& (γb;γb), and M; ∅; ∅ ⊢ fix x. f : τ′
1

γ′c
−→ τ′

2
& (γb;γb), where γb = γ

′
c :: γa. By

inversion of the typing derivation of fix x. f we obtain that M; ∅; ∅, x : τ′
1

γ′c
−→ τ′

2
⊢ f :

τ′
1

γ′′c
−→ τ′

2
& (γb;γb), summary(γ′′c ) = γ′c = γx1 :: γy :: γx2 such that rsummary(γ′′c ) =

γx1; γy; γx2. Lemma 11 implies that M; ∅; ∅ ⊢ f [fix x. f /x] : τ′
1

γ′′c
−→ τ′

2
& (γb;γb) holds.

Lemma 9 implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γa

−→ 〈〉& (∅;γ′) and M; ∅ ⊢ γ, where γ = γ′c :: γ′.

Thus, M; ∅ ⊢ γ′′c :: γ′ holds ( M; ∅ ⊢ γ′′c holds by the application of lemma 7 to the typing

derivation f [fix x. f /x]). The application of lemma 9 to the latter fact, M; ∅; ∅ ⊢ E :

τ′
2

γa;γa

−→ 〈〉& (∅;γ′) implies that M; ∅; ∅ ⊢ E : τ′
2

γa;γ′′c ::γa

−→ 〈〉& (∅;γ′′c :: γ′). Lemma 8 implies

that M; ∅; ∅ ⊢ f [fix x. f /x] : τ′
1

γ′′c
−→ τ′

2
& (γ′′c :: γa;γ′′c :: γa) and M; ∅; ∅ ⊢ v : τ′

1
& (γ′′c ::

γa;γ′′c :: γa). Therefore, M; ∅; ∅ ⊢ ( f [fix x. f /x] v)seq(γa) : τ′
2

& (γa;γ′′c :: γa). The

application of lemma 15 implies that M; ∅; ∅ ⊢ E[( f [fix x. f /x] v)seq(γa)] : 〈〉& (∅;γ′′c ::

γ′).

– n; γ ⊢ S : n; γ′′c :: γ′ ⊢ S is immediate by lemma 4.

Case E-RP and E-PP : these rules are side-effect free and therefore we provide a single proof for all

cases. Hence, we are assuming here that u (i.e. in E[u]) has one of the following forms: (Λρ. f ) [ı]

or popγ v. Rules E-RP and E-PP imply that S ′ = S , T ′ = T, n : E[v], where v is the value that

replaces u in context E. By inversion of the configuration typing assumption we have that:

- M = dom(S )

- S ; M ⊢ T, n : E[u]: by inversion of this derivation we have that:

– S ; M ⊢ T

– n < dom(T )

– M; ∅; ∅ ⊢ E[u] : 〈〉& (∅;γ): in the case of rule E-PP , v is well-typed by inversion of the

typing derivation of u. We need to apply lemma 8 so as to change the effect of v from ∅

to γ. In the case of rule E-RP , v is obtained by substituting ı in the body of function f

(i.e. the initial term is (Λρ. f ) [ı]). This is immediate by lemma 12.

8



– n; γ ⊢ S

Case E-NG : rule E-NG implies that S ; T, n : E[newlock ρ, x in e1] { S , ı 7→ n; 0; ∅; ∅; T, n : E[e1[ı/ρ][lkı/x]].

By inversion of the configuration typing assumption we have that:

- M = dom(S ): M, ı = dom(S , ı 7→ n; 0; ∅; ∅) is immediate.

- S ; M ⊢ T, n : E[newlock ρ, x in e1]: by inversion of this derivation we have that:

– S ; M ⊢ T : S , ı 7→ n; 0; ∅; ∅; M, ı ⊢ T trivially holds by using lemma 13 to obtain that

threads of T are well-typed in the extended context M, ı; ı is fresh (it does not exist in the

effects or stack of other threads) so the invariant n; γn′ ⊢ S , ı 7→ n; 0; ∅; ∅ trivially holds

from n; γn′ ⊢ S , where γn′ is the effect of thread n′ (other than n).

– n < dom(T )

– M; ∅; ∅ ⊢ E[newlock ρ, x in e1] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E :

τ
γa;γb

−→ 〈〉& (∅;γ) and M; ∅; ∅ ⊢ newlock ρ, x in e1 : τ& (γa;γb). By inversion of the latter

derivation we obtain that M;∆ ⊢ τ, ρ; 0 ⊢ok γc, M; ∅, ρ; ∅, x : Lk(ρ) ⊢ e1 : τ& (γa;γc) and

γb = γc\ρ = (γe\ρ) :: γa for some γe. Lemma 13 implies that M, ı; ∅, ρ; ∅, x : Lk(ρ) ⊢ e1 :

τ& (γa;γc) holds. Lemma 12 implies that M, ı; ∅; ∅, x : Lk(ı) ⊢ e1[ı/ρ] : τ[ı/ρ] & (γa[ı/ρ];γc[ı/ρ])

holds. γa and τ do not any contain occurences of ρ so the above derivation can be fur-

ther simplified to M, ı; ∅; ∅, x : Lk(ı) ⊢ e1[ı/ρ] : τ& (γa;γc[ı/ρ]) holds. Lemma 11 and

M, ı; ∅; ∅ ⊢ lkı : Lk(ı) & (∅;∅) imply that M, ı; ∅; ∅ ⊢ e1[ı/ρ][lkı/x] : τ& (γa;γc[ı/ρ])

holds. Lemma 9 implies that M; ∅; ∅ ⊢ E : τ
γa;γa

−→ 〈〉& (∅;γ′) and M; ∅ ⊢ γ, where

γ = (γe \ ρ) :: γ′. The application of lemma 6 to the typing derivation of e1[ı/ρ][lkı/x]

implies that M; ∅ ⊢ γc[ı/ρ]. Lemma 14 implies that M, ı; ∅; ∅ ⊢ E : τ
γa;γa

−→ 〈〉& (∅;γ′). The

application of lemma 9 to the latter facts imply that M, ı; ∅; ∅ ⊢ E : τ
γa;γc[ı/ρ]
−→ 〈〉& (∅;γ′′),

where γ′′ = γe[ı/ρ] :: γ′. Lemma 15 implies that M, ı; ∅; ∅ ⊢ E[e1[ı/ρ][lkı/ρ]] :

〈〉& (∅;γe[ı/ρ] :: γ′).

– n; γ ⊢ S : we need to prove that n; γe[ı/ρ] :: γ′ ⊢ S , ı 7→ n; 0; ∅; ∅. It suffices to show

that ı; 0 ⊢ok γe[ı/ρ] :: γ′, run(γe[ı/ρ] :: γ′, ı, 0) is defined, run(γe[ı/ρ] :: γ′, ı, 0) ∩ ∅ ⊆ ∅

(immediate), and n; γe[ı/ρ] :: γ′ ⊢ S . ı; 0 ⊢ok γe[ı/ρ] :: γ′ holds as a consequence of the

following facts:

∗ ρ; 0 ⊢ok γe :: γa holds by the typing rule T-NG

∗ ρ does not occur in γa nor γ′

∗ ı does not occur anywhere

∗ thus ı; 0 ⊢ok γe[ı/ρ] :: γ′ holds.

Now, run(γe[ı/ρ] :: γ′, ı, 0) is defined as ı; 0 ⊢ok γe[ı/ρ] :: γ′ holds (by simply observing

that ok is defined then so is run). Finally, n; γe[ı/ρ] :: γ′ ⊢ S holds as a consequence of

the following facts:

∗ for all j , ı γe[ı/ρ] contains that same order of + and − operations as γe \ ρ ,

∗ n; (γe \ ρ) :: γ′ ⊢ S holds (by inversion of n; γ ⊢ S ) and

∗ for all j such that S (j) = (nx; ny; ǫx; ǫy), ı < ǫx as ı is fresh.

Case E-UL : this rule creates side-effects as it modifies the count of lock ı. rule E-UL implies that

T ′ = T, n : E[()], where () replaces u (u = unlock lkı) in context E. The rule also implies that

S (ı) = (n; n2; ǫ1; ǫ2), n2 > 0 and S ′ = S [ı 7→ n; n2 − 1; ǫ1; ǫ2]. By inversion of the configuration

typing assumption we have that:

- M = dom(S ): ı is already contained in S so M = dom(S ′) trivially holds.

- S ; M ⊢ T, n : E[u]: by inversion of this derivation we have that:
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– S ; M ⊢ T : we must prove that S ′; M ⊢ T . It suffices to prove n′; γn′ ⊢ S ′ given that

n′; γn′ ⊢ S holds, where γn′ is the effect of thread n′. This is immediate for all locks j

other than ı as they remain unchanged. The invariant holds for the updated ı as only the

reference count of lock ı is modified and therefore locks(S ′, ı, n′) = 0 for all n′ , n.

– n < dom(T )

– M; ∅; ∅ ⊢ E[u] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : 〈〉
γa;ı−,γa

−→ 〈〉& (∅;γ) and

M; ∅; ∅ ⊢ u : 〈〉& (γa;ı,− γa). Lemma 9 implies that M; ∅; ∅ ⊢ E : 〈〉
γa;γa

−→ 〈〉& (∅;γ′)

and γ = ı−, γ′. The application of lemma 7 to the typing derivation of u implies that

M; ∅ ⊢ γa. Thus, rule T-U implies M; ∅; ∅ ⊢ () : 〈〉& (γa;γa). M; ∅; ∅ ⊢ E[()] : 〈〉& (∅;γ′).

– n; ı−, γ′ ⊢ S : S = S ′′, ı 7→ n; n2; ǫ1; ǫ2, where n2 is positive, and S ′ = S ′′, ı 7→

n; n2 − 1; ǫ1; ǫ2. The thread identifier of ı is unchanged in S ′ so it suffices to prove the

following:

∗ ı; n2 − 1 ⊢ok γ
′: by inversion of n; ı−, γ′ ⊢ S we obtain ı; n2 ⊢ok ı

−, γ′. By inversion

(rule OK2) of the latter fact we have that ı; n2 − 1 ⊢ok γ
′.

∗ ǫ3 = run(γ′, ı, n2−1) is defined: by inversion of n; ı−, γ′ ⊢ S we obtain run((ı−, γ′), ı, n2).

By unfolding the definition of run run((ı−, γ′), ı, n2) becomes run(ı, γ′, n2 − 1).

∗ ǫ1 ∩ ǫ3 ⊆ ǫ2: trivially holds from the above.

∗ n; γ′ ⊢ S ′′: we have that n; ı−, γ′ ⊢ S ′′ by inversion of n; ı−, γ′ ⊢ S . n; ı−, γ′ ⊢ S ′′

implies that for all j in dom(S ′′) such that S ′′(j) = (n1j; n2j; ǫ1j; ǫ2j) the following

hold: j; n2j ⊢ok ı
−, γ′ and run((ı−, γ′), j, n2j) ∩ ǫ1j ⊆ ǫ2j. By inversion of j; n2j ⊢ok

ı−, γ′ (rule OK3) we have that j; n2j ⊢ok γ
′. If we unfold run((ı−, γ′), j, n2j) once

then we obtain run((ı−, γ′), j, n2j) is equal to run((γ′), j, n2j).

Case E-LK1: the proof is identical to the previous case. In the case of proving n; γ′ ⊢ S ′′ is more interest-

ing: run((ı+, γ′), j, n2j) is equal to run((γ′), j, n2j)∪{ı}. Thus run((γ′), j, n2j) ⊆ run((ı+, γ′), j, n2j)

and therefore, run((γ′), j, n2j) ∩ ǫ1j ⊆ ǫ2j holds.

Case E-LK0 : rule E-LK0 implies that T ′ = T, n : E[()], where () replaces u (u = lockγa
lkı) in context

E. It also implies that ǫ = run(stack(E[popγa
�]), ı, 1), ǫ∪{ı} ⊆ available(S , n), S (ı) = (na; 0; ǫa; ǫb)

and S = S [ı 7→ n; 1; dom(S ); ǫ]. By inversion of the configuration typing assumption we have that:

- M = dom(S ): in both cases ı is already contained in S so M = dom(S ′) trivially holds.

- S ; M ⊢ T, n : E[u]: by inversion of this derivation we have that:

– S ; M ⊢ T : we must prove that S ′; M ⊢ T . It suffices to prove n′; γn′ ⊢ S ′ given that

n′; γn′ ⊢ S holds, where γn′ is the effect of thread n′. This is immediate for all locks j

other than ı as S ′ differs from S in respect to lock ı. It also holds for ı as locks(S ′, ı, n′) =

0 for all n′ , n.

– n < dom(T )

– M; ∅; ∅ ⊢ E[u] : 〈〉& (∅;γ): lemma 16 implies that M; ∅; ∅ ⊢ E : 〈〉
γa;ı+,γa

−→ 〈〉& (∅;γ) and

M; ∅; ∅ ⊢ u : 〈〉& (γa;ı+, γa). Lemma 9 implies that M; ∅; ∅ ⊢ E : 〈〉
γa;γa

−→ 〈〉& (∅;γ′)

and γ = ı+, γ′. The application of lemma 7 to the typing derivation of u implies that

M; ∅ ⊢ γa. Thus, rule T-U implies M; ∅; ∅ ⊢ () : 〈〉& (γa;γa). M; ∅; ∅ ⊢ E[()] : 〈〉& (∅;γ′).

– n; γ ⊢ S : S = S ′′, ı 7→ n1; 0; ǫa; ǫb, and S ′ = S ′′, ı 7→ n; 1; dom(S ); ǫ. It suffices to

prove the following:

∗ ı; 1 ⊢ok γ
′: by inversion of n; ı+, γ′ ⊢ S we obtain ı; 0 ⊢ok ı

+, γ′. By inversion

(rule OK1) of the latter fact we have that ı; 1 ⊢ok γ
′.

∗ ǫ3 = run(γ′, ı, 1) is defined: by inversion of n; ı+, γ′ ⊢ S we obtain run((ı+, γ′), ı, 0).

By unfolding the definition of run run((ı+, γ′), ı, 0) becomes run(γ′, ı, 1).

∗ ǫ ∩ dom(S ) ⊆ ǫ: trivially holds. The typing implies that dom(S ) = M and ǫ is

derived from γ′ which is well-typed in the context of M.
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∗ n; γ′ ⊢ S ′′: we have that n; ı+, γ′ ⊢ S ′′ by inversion of n; ı+, γ′ ⊢ S . n; ı+, γ′ ⊢ S ′′

implies that for all j in dom(S ′′) such that S ′′(j) = (n1j; n2j; ǫ1j; ǫ2j) the following

hold: j; n2j ⊢ok ı
+, γ′ and run((ı+, γ′), j, n2j) ∩ ǫ1j ⊆ ǫ2j. By inversion of j; n2j ⊢ok

ı+, γ′ (rule OK3) we have that j; n2j ⊢ok γ
′. If we unfold run((ı+, γ′), j, n2j) once

then we obtain run((ı+, γ′), j, n2j) is equal to run((γ′), j, n2j)∪{ı}. Thus run((γ′), j, n2j) ⊆

run((ı+, γ′), j, n2j) and therefore, run((γ′), j, n2j) ∩ ǫ1j ⊆ ǫ2j holds.

Lemma 4 (Thread Lock Typing Preservation — Recursion) If n; γ ⊢ S , γ = γx1 :: γx2 :: γx3 :: γ′

and rsummary(γx) = γx1; γx2; γx3 then n; γx :: γ′ ⊢ S .

Proof. Proof by induction. If S is empty the conclusion trivially holds. Otherwise S is of the form

S ′, ı 7→ n1; n2; ǫa; ǫb for some S ′. There are two cases:

- n1 , n: we need to prove that ı; 0 ⊢ok γx :: γ′ given that ı; 0 ⊢ok γx1 :: γx2 :: γx3 :: γ′ holds. This

is immediate by Lemma 5.

- n1 = n: as in the previous case, lemma 5 suggests that ı; n2 ⊢ok γx :: γ′ holds. The remaining proof

obligation is run((γx :: γ′), ı, n2) ⊆ run((γx1 :: γx2 :: γx3 :: γ′), ı, n2). By observation of function

run it suffices to prove that the lockset of γx1 :: γx2 :: γx3 is a superset of the lockset of γx. This is

immediate by the definition of γx1 that only contains r+, r− pairs for all all r in the domain of γx.

n; γ ⊢ S ′ holds by the induction hypothesis.

Lemma 5 (Implication of ok)

If

- rsummary(γx) = γx1; γx2; γx3

- r; n ⊢ok γx1 :: γx2 :: γx3 :: γ

then r; n ⊢ok γx :: γ.

Proof. The second assumption implies that r belongs in the domain of γx and thus by inversion of the first

assumption we have that r; na ⊢ok γx :: (r−)
nb such that na and nb are the number of unmatched unlock

and lock operations respectively for r in γx (notice that na ≤ n by the second assumption). The definition

of rsumarry also tells us that there exist exactly na and nb unmatched unlock and lock operations for r in

in γx1 :: γx2 :: γx3. Therefore, γx can safely replace γx1 :: γx2 :: γx3 and r; n ⊢ok γx :: γ holds.

Lemma 6 (Well-Formedness) If an expression e is well-typed in the typing context M;∆;Γ, with effect

γ; γ′, then M;∆ ⊢ Γ, M;∆ ⊢ γ and M;∆ ⊢ γ′ hold.

Proof. Straightforward proof by induction on the expression typing derivation.

Lemma 7 (Type Well-formedness) M;∆;Γ ⊢ e : τ& (γ;γ′)⇒ M;∆ ⊢ τ

Proof. Straightforward induction on the typing rules.

Lemma 8 (Value-Effect) If value v is well-typed in the typing context M;∆;Γ, with effect (γ; γ) and

M;∆ ⊢ γ1 then v is well-typed in the same typing context with effect (γ1; γ1).
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Proof. The proof is trivial, but we provide the key steps behind the proof. By inversion of the typing

derivation of v (for any v) we obtain the well-formedness derivation as well as some other premises (in

the case of rules T-L , T-V , T-F , T-RF , T-T , T-FN , T-U , and T-FX). We may use the latter premises of

value typing, which still hold (same typing context), along with M;∆ ⊢ γ1 to formulate the new value

typing derivations with effect (γ1; γ1). The cases for rules T-RF and T-FX can be shown trivially by

induction (the base case is the same as for rule T-F ).

Lemma 9 (Evaluation Context Subtyping)

- M;∆;Γ ⊢ E : τ
γ1;γ2

−→ τ′& (γ3;γ4)

- γ2 = γ22 :: γ21 and γ1 ⊳ γ21

if and only if

- M;∆;Γ ⊢ E : τ
γ1;γ21

−→ τ′& (γ3;γ5)

- γ4 = γ22 :: γ5 and M;∆ ⊢ γ4

Proof. Straightforward induction on the evaluation context typing relation. The base case is trivial. The

inductive hypothesis is trivial by lemma 10.

Lemma 10 (Frame Subtyping) If the following conditions hold

- M;∆;Γ ⊢ F : τ
γ1;γ2

−→ τ′& (γ3;γ4)

- γ2 = γ22 :: γ21 and γ1 ⊳ γ21

if and only if

- M;∆;Γ ⊢ F : τ
γ1;γ21

−→ τ′& (γ3;γ5)

- γ4 = γ22 :: γ5 and M;∆ ⊢ γ4

Proof. Straightforward case analysis on the frame typing relation.

Lemma 11 (Variable Substitution) M;∆;Γ, x : τ1 ⊢ e : τ2 & (γ1;γ2) ∧ M; ∅; ∅ ⊢ v : τ1 & (γ;γ) ⇒

M;∆;Γ ⊢ e[v/x] : τ2 & (γ1;γ2)

Proof. Straightforward induction on the expression typing derivation.

Lemma 12 (Lock Substitution) If M, ı;∆, ρ;Γ ⊢ e : τ& (γ;γ′) then M, ı;∆;Γ[ı/ρ] ⊢ e[ı/ρ] : τ[ı/ρ] & (γ[ı/ρ];γ′[ı/ρ]).

Proof. Proof by induction on the typing derivation of e.

Lemma 13 (Evaluation Typing Weakening) M;∆;Γ ⊢ e : τ& (γ;γ′), M; ∅ ⊢ τ′ and ı < dom(M) then

M, ı;∆;Γ ⊢ e : τ& (γ;γ′).

Proof. Proof by induction on the typing derivation of e.

Lemma 14 (Evaluation Context Typing Weakening) M;∆;Γ ⊢ E : τ
γ1;γ2

−→ τ′& (γ;γ′) and ı < dom(M)

then M, ı;∆;Γ ⊢ E : τ
γ1;γ2

−→ τ′& (γ;γ′).
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Proof. Proof by induction on the derivation of E.

Lemma 15 (Evaluation Context Composition — E) If M;∆;Γ ⊢ e : τ& (γa;γb) and M;∆;Γ ⊢ E :

τ
γa;γb

−→ τ′& (γ1;γ2), then M;∆;Γ ⊢ E[e] : τ′& (γ1;γ2).

Proof. Proof by induction on typing derivation of E. The base case is immediate as �[e] = e. The

inductive case where E = E′[F], the proof is immediate by inversion of the derivation of E and the

application of lemma 17.

Lemma 16 (Evaluation Context Decomposition — E) If M;∆;Γ ⊢ E[e] : τ′& (γ1;γ2), then there

exists a γa, γb and τ such that M;∆;Γ ⊢ e : τ& (γa;γb) and M;∆;Γ ⊢ E : τ
γa;γb

−→ τ′& (γ1;γ2).

Proof. Proof by induction on the structure of E. The base case is immediate by using the well-formedness

derivation for the type and typing context of e (i.e., lemmas 6 and 7) and the application rule E0 . The

inductive case, where E[e] = E′[F][e] is immediate by lemma 18 and rule E1.

Lemma 17 (Frame Composition — F) If M;∆;Γ ⊢ e : τ& (γa;γb) and M;∆;Γ ⊢ F : τ
γa;γb

−→ τ′& (γ1;γ2),

then M;∆;Γ ⊢ F[e] : τ′& (γ1;γ2).

Proof. Proof by case analysis on typing derivation of F. The premises required to construct the typing

derivation of F[e] are given as premises of the typing derivation of F.

Lemma 18 (Frame Decomposition — F) If M;∆;Γ ⊢ F[e] : τ′& (γ1;γ2), then there exists a γa, γb

and τ such that M;∆;Γ ⊢ e : τ& (γa;γb) and M;∆;Γ ⊢ F : τ
γa;γb

−→ τ′& (γ1;γ2).

Proof. Proof by case analysis on the structure of F. The premises required for each case (i.e., rules F1-F9)

are given by the premises of the typing derivation of F[e].
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Lemma 19 (Progress) Let S ; T be a closed well-typed configuration with M ⊢ S ; T then S ; T is not

stuck (⊢ S ; T).

Proof. Without loss of generality, we choose a random thread from the thread list such that T = T1, n : e

for some T1 and show that it is either blocked or it can perform a step. By inversion of the configuration

typing derivation we have that S ; M ⊢ T1, n : e, and M = dom(S ). By inversion of the former derivation

we obtain that

- n < dom(T1)

- n; γ ⊢ S

- M; ∅; ∅ ⊢ e : 〈〉& (∅;γ): If e is a value then it can only be the unit value and a step can be performed

using rule E-T . If e is not value then according to lemma 20 there exists a E[u] such that e = E[u].

Lemma 16 implies that M; ∅; ∅ ⊢ u : τ& (γa;γb), M; ∅; ∅ ⊢ E′ : τ
γa;γb

−→ 〈〉& & (∅;γ). We proceed by

a case analysis on u:

Case popγa
v: rule E-PP can be applied to perform a single step.

Case (v′ v)seq(γa): the typing derivation of v′ implies that v′ is of the form λx. e′ or fix x. e′. In

the first case rule E-A can be applied, whereas in the second case rule E-FX can be applied.

Case (v′ v)par: rule E-SN can be applied to perform a single step.

Case ( f ) [r]: the typing derivation of u implies that f is of form Λρ. f ′. Rule E-RP can be applied

to perform a single step.

Case newlock ρ, x in e2: rule E-NG can be applied to perform a single step.

Case if v then e1 else e2: the typing derivation of u implies that v is of type Bool. Therefore v

can be either true or false. In the first case rule E-IT can be applied, whereas in the second

case rule E-IF can be applied.

Case unlock v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). As in

lemma 3, case E-UL we can use the typing derivation for thread n to derive γ = ı−, γ′, where

γ is the effect assigned to the entire thread. By inversion of the store typing premise (n; γ ⊢ S )

of the derivation for thread n we have that ı; n2 ⊢ok ı
−, γ′, where n2 is the reference count of

lock ı. By inversion of the latter derivation (rule OK2) n2 is positive. The latter fact and the

store typing derivation also tell us that the thread identifier of ı is n. Therefore, a single step

can be performed via rule E-UL .

Case lockγa
v: the typing derivation of u implies that v is a lock handle (i.e., v = lkı). If the

reference count (n2) of lock ı is positive then the proof is similar to the case of unlock v and

a step can be performed via rule E-LK1. Otherwise, n2 = 0. As in lemma 3, case E-LK0

we can use the typing derivation for thread n to derive γ = (ı+, γa) :: γ′, where γ is the

effect assigned to the entire thread. By inversion of the store typing premise (n; γ ⊢ S ) of the

derivation for thread n we have that ı; 0 ⊢ok (ı+, γa) :: γ′ and that the thread identifier of ı is

n. Therefore ı; 0 ⊢ok (ı+, γa) :: γ′ implies ǫ = run(stack(E[popγa
�]), ı, 1) is defined (here

we are using the fact that the typing derivation implies that γa :: γ′ = stack(E[popγa
�]) and

also the fact than when ok is defined so is run — this can be trivially shown).

Now, if ǫ ∪ {ı} ⊆ available(S , n), then rule E-LK0 can be applied. Otherwise, the thread is

considered to be blocked but not stuck (see the third rule of judgement stuck).

Lemma 20 (Redex) If M;∆;Γ ⊢ E[e] : τ& (γ1;γ2) and E[e] is not a value then M;∆;Γ ⊢ E′[u] :

τ& (γ1;γ2) such that E′[u] = E[e].

Proof. By induction on the shape of e. The key idea is to convert typing derivations of e, when e is not

a redex, to typing derivations of the form E′[e′] and apply induction for e′.

14


	Introduction
	Deadlock Freedom and Related Work
	Type System Overview
	Formal Semantics and Metatheory
	Operational Semantics
	Static Semantics
	Summarizing Recursive Functions 

	Type Safety and Deadlock Freedom
	Prototype Implementation
	Performance Evaluation
	Further Comparison with Related Work
	Concluding Remarks

