Extensions of Commutative Rings in Subsystems of Second Order Arithmetic

Kostas Hatzikiriakou
Department of Elementary Education
University of Thessaly
Argonafton & Fillelinon, GR-382 21 Volos, Greece
kxatzkyr@uth.gr

Abstract. We prove that the existence of the integral closure of a countable commutative ring R in a countable commutative ring S is equivalent to Arithmetical Comprehension (over RCA_0). We also show that i) the Lying Over ii) the Going Up theorem for integral extensions of countable commutative rings and iii) the Going Down theorem for integral extensions of countable domains $R \subset S$, with R normal, are provable in WKL_0.

1 Introduction

This paper is a contribution to the program of Reverse Mathematics that currently develops mathematics in subsystems of second order arithmetic and attempts to classify key theorems of mathematics according to their logical strength in a relatively small number of classes that have emerged in the course of the above development, see [3,6].

In this paper we use three subsystems of second order arithmetic: RCA_0, WKL_0 and ACA_0. The reader who is not familiar with these systems should consult [2] or [6]. The basic theory of integral ring extensions can be found in [1, 4, 5]. All the rings considered in this paper are commutative and countable. More precisely, a countable commutative ring R is a subset of \mathbb{N} (the set of natural numbers), together with binary operations $+,-, \cdot$ a unary operation $-$ and distinguished elements 0, 1 such that the system $(R, +,-, \cdot, 0, 1)$ obeys the usual commutative ring axioms. We also assume that whenever $R \subset S$, the unit element of the two rings is the same.

2 Integral closure and Arithmetic Comprehension

Definition 1 (RCA_0) Let R and S be rings with $R \subset S$. An element s of S is called integral over R if and only if s is a root of a monic polynomial of $R[x]$, i.e. if and only if $s^n + r_{n-1} \cdot s^{n-1} + \ldots + r_1 \cdot s + r_0 = 0$, for $r_i \in R$, $i = 0, \ldots, n - 1$. If all the elements of S are integral over R, then the extension $R \subset S$ is called integral.

⋆ I am grateful to S. G. Simpson for his advice in putting together this paper.
Lemma 2 (ACA_0) Let R and S be rings with $R \subset S$. The integral closure of R in S exists.

Proof. The integral closure of R in S is the Σ^0_1 definable set $K = \{ s \in S : \exists r_0 \ldots \exists r_{n-1} (r_0 \in R \land \ldots r_{n-1} \in R \land s^n + r_{n-1} \cdot s^{n-1} + \ldots + r_1 \cdot s + r_0 = 0) \}$ and thus it exists by Arithmetical Comprehension, an axiom scheme included in ACA_0.

Theorem 3 (RCA_0) The following are equivalent:
1. Arithmetical Comprehension
2. Given countable rings R,S with $R \subset S$, the integral closure of R in S exists.
3. Given countable fields K,L with $K \subset L$, the relative algebraic closure of K in L exists.

Proof. 1)$$2)$ by Lemma 1. $2)$ $$3)$ Trivial. $3)$$1)$ It suffices to prove that given any one-to-one function $f : \mathbb{N} \to \mathbb{N}$, its range exists (see [6]). We are going to use an idea of Fröhlich and Shepherdson that is also used in [2] to show that if $F \subset K$ are countable fields, the existence of a transcendental basis for K over F is equivalent to Arithmetical Comprehension. Let $R = \mathbb{Q}[x_0, x_1, \ldots]$ and let P be the ideal of R generated by $x_{f(n)} - x_0$, for $n > 0$ (for simplicity, assume that $f(0) = 0$). In RCA_0, we can prove that this ideal exists and it is prime (see [2]). Thus R/P exists and it is a domain, hence let L be its field of fractions. Let K be $\mathbb{Q}(x_0)$. By 3), the relative algebraic closure of K in L exists and obviously m belongs to the range of f if and only if x_m belongs to the relative algebraic closure of K in L.

3 WKL_0 and the Lying Over, the Going Up and the Going Down Theorem

In the theory of integral ring extensions there are three prominent theorems, the Lying Over, The Going Up and the Going Down (due to Cohen-Seidenberg). We show that all of them can be proved in WKL_0. The main tool in proving these theorems in WKL_0 is a form of Krull’s theorem, which we state and prove.

Proposition 4 (WKL_0) Let R be a countable ring, let I be a Σ^0_1 ideal of R and let M be a Σ^0_1 multiplicative set disjoint from I, ($1 \in M$). Then there is a prime ideal P of R, which contains I and is disjoint from M.

Proof. Let $a_0 = 0, a_1 = 1, \ldots$ be an enumeration of R, let $b_0 = 0, b_1 = 1, \ldots$ be an enumeration of I and let $c_0 = 0, c_1 = 1, \ldots$ be an enumeration of M (Lemma II.3.7 in [6]). We define a tree $T \subseteq Seq_2$ by induction on $s = lh(\sigma)$ and simultaneously we define finite sets $X_\sigma \subseteq S$, with the property that if σ is an initial segment of τ, then $X_\sigma \subseteq X_\tau$. At stage s, $T_s = \{ \sigma \in T : lh(\sigma) = s \}$ is defined. For $s = 0$, $T_0 = \{0\}$ and $X_{<s} = \{0\}$. Now assume that T_{s-1} has been defined. The definition of T_s splits into 5 cases. Let $s = 5 \cdot m + r$, $0 \leq r > 5$ and
assume that m encodes a triple of natural numbers (i, j, k). Assume $\sigma \in T_{s-1}$.

Case 1. $r = 0$. For each $\sigma \in T_{s-1}$, put $\sigma 0$ in T_s and let $X_{\sigma 0} = X_\sigma \cup \{b_m\}$.

Case 2. $r = 1$. For each $\sigma \in T_{s-1}$, put $\sigma 0$ in T_s and let $X_{\sigma 0} = X_\sigma$, unless $m = (i, j, k)$ and $a_i, a_j \in X_\sigma$, in which case let $X_{\sigma 0} = X_\sigma \cup \{a_i + a_j\}$.

Case 3. $r = 2$. For each $\sigma \in T_{s-1}$, put $\sigma 0$ in T_s and let $X_{\sigma 0} = X_\sigma$, unless $m = (i, j, k)$ and $a_i \in X_\sigma$, in which case let $X_{\sigma 0} = X_\sigma \cup \{a_i + a_j\}$.

Case 4. $r = 3$. For each $\sigma \in T_{s-1}$, put $\sigma 0$ in T_s and let $X_{\sigma 0} = X_\sigma$, unless $m = (i, j, k)$ and $a_i, a_j \in X_\sigma$, in which case put $\sigma 0, \sigma 1$ in T_s and let $X_{\sigma 0} = X_\sigma \cup \{a_i\}$ and $X_{\sigma 1} = X_\sigma \cup \{a_j\}$.

Case 5. $r = 4$. For each $\sigma \in T_{s-1}$, put $\sigma 0$ in T_s and let $X_{\sigma 0} = X_\sigma$, unless $m = (i, j, k)$ and $a_i = c_j$, in which case put neither $\sigma 0$ nor $\sigma 1$ in T_s and do not define $X_{\sigma 0}$ and $X_{\sigma 1}$.

Claim (RCA_0). T is infinite.

Proof. Consider the H_1 0 formula $\psi(s) = \exists \sigma \in T_s(I_\sigma \cap M = \emptyset)$, where I_σ is the ideal generated by $I \cup X_\sigma$ in R. Then $\psi(0)$ holds, since I and M are disjoint.

Now assume that $\psi(s - 1)$ holds and that $\sigma \in T_{s-1}$ and $I_\sigma \cap M = \emptyset$. Then, in cases 1, 2, 3 and 5, $I_{\sigma 0} = I_\sigma$, and so $\psi(s)$ holds. In case 4, either only $\sigma 0$ was put in T_s and $X_{\sigma 0} = X_\sigma$ and $I_{\sigma 0} = I_\sigma$, or both $\sigma 0$ and $\sigma 1$ were put in T_s and $X_{\sigma 0} = X_\sigma \cup \{a_i\}$ and $X_{\sigma 1} = X_\sigma \cup \{a_j\}$ and $a_i, a_j \in I_\sigma$. Assume then, towards a contradiction, that $I_{\sigma 0} \cap M \neq \emptyset$ and $I_{\sigma 1} \cap M \neq \emptyset$. Hence there exist m_1, m_2 in M such that $m_1 = b \cdot r \cdot a_i$ and $m_2 = d \cdot s \cdot a_j$, where $b, d \in I_\sigma$ and $r, s \in R$. Then $m_1 \cdot m_2 = b \cdot d + b \cdot r \cdot a_i + d \cdot s \cdot a_i + r \cdot s \cdot a_i \cdot a_j$. This means that $m_1, m_2 \in I_\sigma \cap M$, contradiction. So, at least one of the that $I_{\sigma 0} \cap M = \emptyset$ and $I_{\sigma 1} \cap M = \emptyset$ holds and so $\psi(s)$ holds. Since RCA_0 includes H_1^0 induction (see Corollary II.3.10 in [6]), $\psi(s)$ holds for all $s \in \mathbb{N}$. Hence T is infinite. □

So by Weak König’s Lemma, the defining set existence axiom of WKL_0,

let f be a path through T. Let $P_0 = \cup_s X_\sigma$, where σ ranges over all finite initial segments of f. Then P_0 is a prime ideal (because of 2, 3, 4), it contains 1 (because of 1) and it is disjoint from M (because of 5). However, P_0 is defined by a Σ^0_1 formula and thus it may not exist. So consider the following tree S of all sequences of Σ_1, such that for all $i, j, k > lh(\sigma)$:

i) $a_i = b_j \rightarrow \sigma(i) = 1$

ii) $\sigma(i) = \sigma(j) = 1$ and $a_i + a_j = a_k \rightarrow \sigma(k) = 1$

iii) $\sigma(i) = 1$ and $a_i \cdot a_j = a_k \rightarrow \sigma(k) = 1$

iv) $\sigma(i) = \sigma(j) = 0$ and $a_i \cdot a_j = a_k \rightarrow \sigma(k) = 0$

v) $a_i = c_j \rightarrow \sigma(i) = 0$.

Claim (RCA_0). S is infinite.

Proof. To see that S is an infinite tree, let s be a natural number. Then let $X = \{i < s : \exists \sigma(a_i \in X_{\sigma[i,n]}\}$). Now X exists by bounded Σ^0_1 comprehension (Theorem II.3.9 in [6]) and so we can define $\sigma \in 2^s$ by $\sigma(i) = 1$ if $i \in X$ and $\sigma(i) = 0$ if $i \notin X$. Thus σ exists and $\sigma \in X$, since P_0 is a prime ideal which contains I and is disjoint from M. □
By Weak König’s Lemma, let g be a path through S. Then let $P = \{a_i : g(i) = 1\}$. This set exists by Δ^0_1 comprehension and it is the required prime ideal.

Remark. Proposition 3.1 is basically Exercise IV.6.6 in [6] and its proof is similar to the proof of Theorem IV.6.2 in [6].

Proposition 5 (WKL₀) The Lying Over Theorem: Let R and S be rings such that $R \subseteq S$ and the extension is integral. Let P be a prime ideal of R. Then there exists a prime ideal Q of S that lies over P, i.e. $Q \cap R = P$.

Proof. Let $I = PS$ be the ideal generated by P in S and let $M = R - P$. Then I is a Σ^0_1 ideal of S and M a multiplicative set of S. By Proposition 3.1, it suffices to prove that $I \cap M = \emptyset$. Given that the extension is integral, we can prove that if $m \in PS$, then $m^n + p_{n-1} \cdot m^{n-1} + \ldots + p_1 \cdot m + p_0 = 0$, for some $n > 0$, $p_i \in P$; $i = 0, \ldots, n - 1$. Hence, if $m \in I \cap R - P = \emptyset$, then in particular $m \in R$, so $m^n \in P$ and hence $m \in P$, contradiction. [The details of this proof, as it is given for example in Proposition 2.10 in [5], go through in RCA₀.]

Proposition 6 (RCA₀) The Lying Over Theorem implies the Going Up Theorem for integral extensions, i.e. the theorem whose statement is: “Given two rings $R \subseteq S$, such that the extension is integral, and given two prime ideals $P_1 \subseteq P_2$ in R and Q_1 a prime ideal in S, such that $Q_1 \cap R = P_1$, there exists a prime ideal Q_2 in S such that $Q_1 \subseteq Q_2$ and $Q_2 \cap R = P_2$.”

Proof. We argue in RCA₀. $R/P_1 = R/Q_1 \cap R$ exists in RCA₀ and it is a subring of S/Q_1. It is easy to prove in RCA₀ that if $R \subseteq S$ is integral extension than the extension $R/P_1 \subseteq S/Q_1$ is integral, too. Now P_2/P_1 is a prime ideal in R/P_1 (since $P_1 \subseteq P_2$ are prime ideals in R). Thus by the Lying Over Theorem there exists a prime ideal Q_2/Q_1 in S/Q_1 such that $Q_2/Q_1 \cap R/P_1 = P_2/P_1$. Hence $Q_2 \cap R = P_2$.

Proposition 7 (WKL₀) The Going Down theorem: Let R be a normal domain (i.e. integrally closed in its field of fractions), S a domain and $R \subseteq S$ an integral extension. If $P_1 \subseteq P_2$ are two prime ideals in R and Q_2 a prime ideal in S, such that $Q_2 \cap R = P_2$, there exists a prime ideal Q_1 in S such that $Q_1 \subseteq Q_2$ and $Q_1 \cap R = P_1$.

Proof. Let $I = P_1 S$ be the ideal generated by P_1 in S and let $M_1 = R - P_1$, $M_2 = S - Q_2$ and $M = M_1M_2 = \{r \cdot s : r \in M_1 \text{ and } s \in M_2\}$. Then I is a Σ^0_1 ideal of S and M is a Σ^0_1 multiplicative subset of S containing I. Also, I and M are disjoint. The proof, as it is given for example in Proposition 2.16 in [5], goes through in RCA₀. Hence, by Proposition 3.1, we get a prime ideal Q_1 disjoint from M and containing P_1 and this is the required prime ideal.

Open Question. Are all of any of the Lying Over, Going Up and Going Down theorems equivalent to Weak König’s Lemma over RCA₀?
References