
A Logic-Based Framework for Reasoning Support
in Software Evolution

Vassilios C. Vescoukis, Nikolaos Papaspyrou and Emmanuel Skordalakis

{bxb, nickie, skordala}@softlab.ntua.gr

National Technical University of Athens
Electrical & Computer Engineering Department

Computer Science Division, Software Engineering Laboratory

Abstract. Software development has been acknowledged as a complicated problem-solving
activity done in a complex, multi-dimensional space. People actively involved in software
development need support in understanding and documenting not only the description of the
software developed, but also the problem domain and the reasons behind decisions taken
during evolution. Development methods do not provide such support, and researchers begin to
explore the recording of reasoning in specific phases of software evolution. Several data
models have been presented, aiming to support developers by maintaining a repository of
deliberation elements of decisions taken during development; these models are usually
supported by a special CASE tool that can be classified as a Software decision management
system. Using experience gained in the development of large-scale applications in an industrial
environment, and experimenting with prototype software design decision management systems,
we introduce PROFILE, a conceptual logic-based meta-model that integrates software
evolution process modelling with deliberation representation and decision factors. PROFILE
enhances existing models by providing support throughout the whole software evolution, by
capturing assumptions as real-world reasoning elements, and by maintaining a Knowledge Base
of decision-making factors. A prototype Software Evolution Decision Support System based on
an instance of PROFILE is also presented in this paper.

Keywords: meta-models, decision-based software development, logic-based models,
knowledge-based software engineering, conceptual modelling, reasoning, software evolution
support.

1. Introduction

For the past 30 years there has been an intensive effort to improve the software
development process by resolving what has been called software crisis. Software
development methods have been introduced to help produce “good” software,
focusing on how this should be done. As they where introduced, new development
methods appeared to be very promising, but soon enthusiasm was replaced by realism,
and yet today, there is no doubt that the crisis is still here.

Documentation is the only means stakeholders have for understanding a software
system. It must, therefore, be as complete, understandable and easy-to-communicate,
as possible. Practice has shown that everything changes in the time allocated to a
software development effort: requirements are never the same as they were when the
development begun, assumptions and constraints change, too. It is the real world that



changes, which has an effect in software and these changes must be reflected in
software documentation.

We can consider documentation as the result of a problem-solving activity defined by
a software development method. It is an answer to a “what needs to be done...” or
“how should something be done...” question. Experience shows that this kind of
documentation is not equally well understood by all stakeholders involved in software
development. Users familiar to the problem domain, might understand some “what-
type” answers, provided that they are properly expressed. Software engineers are
supposed to understand everything, but this claim cannot be supported in a “court of
realism”. Managers do not need, nor do they want to understand such documentation.
Finally, marketeers usually derive their own version of documentation which is not
necessarily exact or up-to-date.

For the past few years, research has focused on reasoning in software development.
During software development several artifacts are produced; before the production of
each artifact a deliberation takes place (Figure 1). Several conceptual models have
been introduced to capture elements of this deliberation either in the software
requirements specification phase, or in the software design phase. A new dimension in
software documentation has been introduced. Researchers try to enhance
documentation by giving answers to “why-type” questions, which is believed that will
make documentation more useful, conceivable and easy-to-communicate. So far, focus
is on two discrete phases in software development: requirements engineering and
design. New data models and tools have been developed to support those involved in
these phases of development, capture and exploit reasoning in their work. However,
little has been published about experience in using such tools and on practical results
of the proposed approaches.

A

A

A
A

A

A

. . .

. . .

. . .

. . .

A

A
. . .A

A

A

A. . .

A

Derives

Software Artifact

Deliberation node

Figure 1. A software evolution graph.

Our central thesis is that a wider perspective is needed in representing reasoning in
software development. Supporting only the phases of design and requirements
specification, can provide limited help. Reasoning needs to be supported through the
whole software life cycle, in a flexible and customizable way (in the sequence, the
terms software evolution and software life cycle will be considered equivalent).
Assumptions should be recorded at a global level so that their role can be thoroughly
understood. A Knowledge Base containing knowledge about problem-solving practice



in software evolution should also be maintained. PROFILE, introduced in this paper,
is a logic-based conceptual meta-model aiming to provide a framework for reasoning
support in software evolution. It enhances existing models by providing support for
the whole software life cycle, by handling assumptions as global reasoning elements,
and by maintaining a Knowledge Base for software evolution.

This paper is organized as follows: in section 2, we briefly present our experience
with existing deliberation representation models in capturing software design
rationale, and give a detailed description of a new logic-based conceptual meta-model.
A prototype system implementing an instance of this meta-model is presented in
section 3. In section 4 we discuss the related work and in section 5 we make some
concluding remarks and present directions for our future work.

2. A new logic-based approach

2.1 Experience

We have been experimenting with software deliberation representation in the phase of
design, using qualitative prototypes of existing data models [Potts88], [Lee90],
[Lee91], [Conklin88], [Vesc95]. Our experimentation has been done on the design of
three software applications: a small-sized text formatter developed for illustrative
purposes, a medium-scale document manager, and a large-scale technical
construction cost estimation application. We came out with a few useful observations:

� The representation of software design deliberation is a relatively new topic in
software engineering. It is not obvious what is useful to be captured and how to
exploit such information.

� A limitation of the models we used, is that the notion of Design Artifact is not
well-defined [Potts88] [Lee91]. It is not clear neither what exactly an Artifact is,
nor what its difference from an Alternative is.

� Not all alternatives are compatible to each other: selection of another alternative at
a later time, may not be possible because of incompatibility with alternatives
selected up to then.

� The notion of “design policy” does not exist in any model we have considered.

� Assumptions taken into consideration during design were not represented as such,
although they are the bridge between the real world and a software system and
their representation in a conceptual model should clearly reflect this fact
[Lehman91].

2.2 A hierarchy of reasoning in software evolution

From our experimentation, it has been made clear that there are two levels of
hierarchy of practical reasoning in software evolution (Figure 2). The lower one is the



application-specific level and contains reasoning information which is unique to the
software application during the life cycle of which reasoning is supported. Such
information includes the deliberation elements during evolution problem-solving and
is captured using the Deliberation Representation Data Model. The higher level is
called global and contains reasoning information which is global to a software
development organization, or at least, to a specific problem-domain in which many
software applications can be developed.

Problem-
solving Rules

Deliberation Representation Data Model

Attribute Constraints

Software Process Model

AssumptionsGlobal

Application-specific

Figure 2. Levels of reasoning in software evolution.

The global level contains the following elements:

The software process model followed, which represents the phases in software
evolution, an analysis of each phase in a hierarchy of tasks, and the software artifacts
produced in each task. If the definition of the software process model is done at a
highly-detailed level, the internal structure of the software artifacts, is also
represented.

The constraints that are applied on the evaluation of software artifacts using any
measurable attributes, and

A rule base containing knowledge about the implementation of the process model and
the practice followed by the developer during evolution problem solving.

Assumptions represent conditions or the real world and in particular of the software
development environment or the problem domain, which are true for a period of time
and can be used as reasoning elements in deliberation recording. Usually, the scope of
an assumption is wider than a single evolution problem; however, an assumption
could also be used as a reasoning element at the application-specific level as shown in
Figure 2. With respect to this classification, current approaches provide reasoning
support at the application-specific level [Potts88][Lee90][Arango93], and only
partially embody the notion of assumption [Ramesh92] as a reasoning element.

2.3 Requirements from a data model

Based on the discussion so far, we present several requirements from a model that will
be used to capture deliberations in software evolution.

Software life cycle representation. Software life is divided in discrete phases in
which several actions take place. A software evolution model is a set of software
engineering activities, methods and practices, needed to produce, enhance, repair, and



maintain software [Humphrey89]. Such a model defines what actions should be
performed and in what sequence. As these actions take place, software Artifacts are
produced. Software evolution models do not define the same types of artifacts, or
consider similar types of artifacts in an equivalent way. Reference to the software
evolution model is necessary for a fine definition of Artifact. Hence, the software life
cycle followed, should be a part of the model. Apart from a better definition of
Artifact, this could be useful in classifying decisions, and in understanding the impact
and the importance of decisions according to the evolution phase they have been made
in.

Development practice representation. Developers use software metrics to define
quality measures for the software applications they produce, and require software
artifacts to comply to certain norms or constraints when evaluated using these
measures. This is a global software development organization’s policy that can justify
decisions in a proper context, independently of the specific software application in the
development of which these decisions have been made. Another case of policy is that
of specifying steps that should be taken in solving specific problems. Such
requirements can be considered as decision factors, because they provide guidance on
what piece of information should be considered significant in a problem-solving
activity in software evolution. Decision factors can therefore be (a) constraints on
evaluation, if metrics are well-defined, (b) logic rules, in the case of problem-solving
steps, or (c) free-text containing general guidelines, if neither can be formulated. All
three types of decision factors can be expressed as rules using predicate logic.

User-defined deliberation representation model. In a deliberation, it is not clear
what the most useful information to keep is. The different semantic orientation of the
models introduced so far, suggests that this information is not the same in all phases of
software evolution. The argument that it can be different even among developers, has
a standing basis, too. It is therefore required that any deliberation representation
schema, not necessarily the same throughout the whole evolution, should become a
part of the model under discussion.

Representation of assumptions in a proper context. Assumptions play an important
role in software development [Lehman91]. In e-type applications [Lehman80], they
can be considered as a bridge between the real world and software. Attaching
assumptions in any software engineering artifact, provides a basis for better reasoning
in software evolution by capturing important deliberation information in an
appropriate context.

2.4 Description of PROFILE

Figure 3 shows the main elements of a conceptual meta-model developed to satisfy the
requirements presented in section 2.3, called PROFILE (PROcess modelling and
decision Factors In software deLiberation and Evolution). This is an abstract view of
PROFILE; as will be described later, many elements need to be replaced with a
specific data model, in order to have a real implementable model instance. We call
this process “model instantiation”.



RULES, 
ATTRIBUTES,

CONSTRAINTS

SOFTWARE
PROCESS

MODEL

DELIBERATION
REPRESENTATION

MODEL

PROBLEM
SOLUTION

EVALUATION

DECISION

SOFTWARE
ARTIFACT

Global
Level

Application-
specific
Level

ASSUMPTION

APPLIES TO

SUPPORTS

GENERATES

LEADS TO JUSTIFIES

QUALIFY

CREATES/MODIFIES

REFERS TO

Figure 3. An abstract view of PROFILE.

The first element to define is the software evolution model. This requires
representation of phases and their sequence in software evolution. Such a definition
can be made in any of three levels of detail as described in [Humphrey89]. In the most
detailed level (called the Atomic level) a complete definition of all Artifact types
including their internal structure, is possible.

The next step is the representation of policies followed by developers during software
evolution. Quality measures is a set of software metrics, formal or not, used by a
developer. They usually have a description, a measurement scale, and an applicability
scope in terms of Artifacts and Evolution Phases. A Decision Factor is either a
constraint upon Artifacts evaluation, a sequence of actions taken in problem-solving,
or a generic guideline expressed using natural language.

A deliberation representation model for capturing rationale at the application-specific
reasoning level is the next element of the model to define. It can be the same
throughout the whole evolution, or it can be different according to evolution phases.
In the latter case, we have a three-dimensional model with reference to the software
evolution model used. This implies a higher overhead in software evolution and
should be carefully balanced with expressiveness and exploitation of collected
information.

Using Quality Measures defined previously, alternative solutions to software
evolution problems are qualified by assigning values to attributes of Artifacts. This is
a key in justifying decisions in software evolution. It is well known that software
metrics have failed to provide objective measures of software characteristics, except
maybe for program code, but metrics is all we have. Defining Viewpoints for
supporting multiple qualifications made under different assumptions or by different
persons, is a realistic solution to this.



The notion of Assumption in PROFILE is rather universal than part of the deliberation
representation model. Assumptions can be attached to any entity of the model to
represent a condition that is true within a time frame. Implementations are responsible
for handling the temporal dimension of assumption validity, and determine what
happens when an Assumption is no longer true.

A Decision is a trigger for the creation or modification of software Artifacts. Removal
of Artifacts is a special case of modification. A fine definition of Decision depends
upon the deliberation representation model that will be used, and can only be done in
an instantiation of PROFILE. A Decision Signature is a key notion in PROFILE and
is defined as a set containing references to the context in which a Decision was made.
We thus have: DSig = { DPh, DF*, Q*, A*, J, S* } where DPh = design phase,
DF = applicable decision Factors, Q = solutions qualification, A = standing
assumptions, J = justification as recorded in the deliberation representation model, S is
the scope of the decision in terms of Artifacts, and ( * ) denotes a set instead of a
single element. DPh, and J are pointers to the corresponding entities of the software
evolution and deliberation representation models, respectively. A Decision is valid as
long as all the elements of its Signature are valid. Decision Signatures can be used in
submitting queries to the model to extract information about software evolution
rationale and will be further discussed in section 2.5.

2.5 Instantiation, implementation and use

In this section we present the actions that need to be taken in order to specify an
implementable instance of PROFILE, we address some implementation issues and
discuss a few aspects of using such an implementation in a real software development
environment. From now on, such an implementation will be called a Software
Evolution Decision Support System (SE-DSS). We believe that the data model of a
SE-DSS highly depends upon the user characteristics; hence, a SE-DSS cannot be
regarded as “one more CASE tool”. The use of a SE-DSS implies a measurable
overhead, however its necessity cannot be considered well understood by development
teams: things could easily end up in a documentation-mess. A developer should
proceed in small steps, evaluating experience and using as much feedback as possible
from those who actually do the “dirty job” in software development.

At first, the software development organization should specify its requirements from
the use of this new dimension of software documentation. The next thing to do, is to
conduct some kind of organization-wide research in order to collect some useful
characteristics and knowledge that will be embodied in the SE-DSS. These
characteristics are: the software life cycle model, the quality measures, the decision
factors, and those elements of deliberation in software evolution that will be recorded.
Determining the first two, is the easy part of this work. Determining the decision
factors is more or less equivalent to creating a special knowledge base by acquiring
experts’ knowledge on software evolution, which is not an easy thing to do. The initial
set of decision factors will contain constraints about metrics and maybe a few
guidelines expressed in natural language; as experience is gained, this set will contain
fruitful knowledge on software development. It is apparent that a SE-DSS can be best



implemented in an environment suitable for knowledge representation. Such a
“standard” environment is Prolog, in which we have chosen to implement a prototype
presented in section 3; frame-based environments such as ConceptBase [Jarke91] can
also be used. In the following discussion we consider Prolog as the implementation
environment.

The main functions of a SE-DSS are the maintenance of software evolution history
and the relevant information extraction, the maintenance and handling of trigger
events whenever certain conditions become true, the maintenance of the knowledge
base, and the support of decisions by consulting the knowledge base and examining
similar situations of the past. The evolution of a SE-DSS is shown in Figure 4.

System Initialization Data Models
Definition

Knowledge Base
Rules Definition

Application
Evolution Support

Initial Flow

Feedback

Figure 4. Evolution of a SE-DSS using a PROFILE instance.

3. A prototype SE-DSS system

3.1 Architecture

Figure 5 shows an instance of PROFILE which embodies a deliberation representation
model based on DRL [Lee91]. DRL was initially oriented to software design,
however, in the context of PROFILE, we think it is generic enough to represent
deliberations throughout the whole life cycle.

A prototype SE-DSS system based on this model, called Ictinus*, has been
implemented and we have been experimenting with it in the development of several
applications. Ictinus’s architecture is shown in Figure 6. It is based on the Windows
environment where a RDBMS and a Prolog system host a relational database and a
rule base respectively. A set of interconnected data models for the representation of
the software process model, of the software artifacts and of the deliberation at the
application-level, implement the data model shown in Figure 5. A set of Prolog
queries implement most of ICTINUS’s functions. The main user interface elements

                                                          
* Named after one of the architect designers of Acropolis in Athens.



are a set of forms for data entry and a graphical browser for browsing through an
evolution graph. A front-end user interface provides a working environment to users.

Software
Artifact Type

Software
Artifact

Description

Legal ValuesConstraint

Attribute

Evolution
Phase

Applies to

Evaluation

Decision

Software
Artifact

Decision
Problem

AlternativeClaim

Question

Has
Answers, Achieves

Supports, Denies

Raises, Answers

Supports,
Denies

Supports,
Denies,
Presupposes

Generalizes,
Specializes

Replaces,
Questions,
Is Suggested by

Raises

ViewpointIs subject to Is made
under

Selects

Supports

Quantify

Applies to

Accepts

Is subject to

1

N

1

N

1

N

11

M

N

1 1

M

N

1 1

1

1

M

M

N

M N

1

N M

NM

N

N

M

M

N

M
N

M

N

N

N

M

N

1N

1

Produces

Structure

Defines

1

N

Modifies

Assumption

Refers to

...(any entity)

Task

Subtask

1 N

N

1

Analyzed into

consists
of

Figure 5. An instance of  PROFILE implemented in the Ictinus system.

MS Windows

PrologRDBMS

Relational Database Knowledge Base

Deliberation
Representation

Model Query
manager

Fo
rm

s

G
ra

ph
ic

al
Br

ow
se

r

User front-end interface

In
te

rfa
ce

Software
Artifacts

Representation
Software

Process Model

Figure 6. The architecture of the ICTINUS system.



3.2 Services

In the following paragraphs we briefly discuss the main services provided by Ictinus.

Software Process Model management. The user can describe the steps taken in
software development at any required level of detail, as a basis for reasoning support
during evolution. If this description is done at a high level of detail, the internal
structure of software artifacts is also represented and managed. The current
implementation of ICTINUS embodies the Waterfall life cycle model at the Atomic
level of detail, which is the highest with reference to [Humphrey89].

Software Deliberation Representation model management. Several elements of the
deliberation representation model (e.g. Viewpoints, Evaluation formulas) reflect the
user’s policy on evaluation of alternative solution to evolution problems, and therefore
are user-defined.

Assumption management. The true state of an assumption is subject to change which
results in a set of chain-effects to the decisions in the justification of which this
assumption is used. This situation is automatically managed by ICTINUS.

Evolution history recording and playback. Recording of the evolution history is
done using either the form-based interface, or the graphical editor. Playback is done
using a customizable graphical browser that supports layers of information and can
zoom into specific entities to display the required detail. The user decides which
classes of entities and what details will be displayed at any time. Walking through the
history graph is done using semantic guidance through Prolog queries - not by
scrolling a graphical display.

Deliberation management at the application-specific level. Using the deliberation
representation data model as a basis, the evolution problems, the alternative solutions
and a set of arguments and mathematical evaluations of the alternatives, are stored and
managed. Evaluation of alternatives can be made using multiple Viewpoints.

What-if analysis using Assumptions. Modifying current assumptions can affect the
validity of decisions taken and change the status of the system. In many cases the
system becomes unstable, since some issues cannot be resolved in the new context,
and a new problem-solving activity has to take place. Such situations are common
during maintenance, where changes in the real world can affect the validity of
assumptions and make the system out-of-date, and can be explored using this feature.
If some artifacts are modified during this procedure, references to the assumption that
initiated the problem are automatically generated and attached to the deliberation
information of these artifacts.

What-if analysis using Viewpoints. A similar situation occurs when considering
different evaluations of artifacts’ quality measures. Depending on the set of decision
factors applied, some issues cannot be resolved, which initiates a new problem-solving
activity. This is a common situation when doing scenario analysis. Ictinus provides
support in such cases by generating alternative evolution graphs that correspond to
Viewpoints and by marking unresolved issues. The original evolution graph is



modified only when a scenario is accepted and the necessary references to the new
viewpoint are automatically generated.

Synthesis library maintenance. A synthesis is a reusable collection of artifacts that
share the same qualitative attributes and assumptions in the same functional domain. It
can be a set of assumptions, of requirements, of design artifacts, of program elements,
or of any type of entities that exist in the software life cycle. A synthesis is viable
when all attributes and assumptions of its members are valid. Ictinus provides support
for maintaining synthesis libraries, for verifying synthesis viability and for performing
what-if analysis of the viability of a synthesis in a similar way as in the previous cases.

Decision support is provided through the notion of decision signature. A deliberation
takes place in a certain context that is determined by the problem domain, the life
cycle phase, the valid assumptions and the applicable decision factors. These
elements, except for the problem domain, are part of the Decision Signature as
defined in section 2.4. We can therefore formulate a query to the knowledge base and
extract information about “what has been decided in similar situations”. The result of
this query can be a long list that can be somehow shortened by running successive
refinement queries. The real information obtained from this procedure depends on two
factors: The first one is the use of Assumptions. Proper use of Assumptions can help in
effectively characterizing situations and similarities between situations. The second
one is the Decision Factors rule base. Every time a decision is taken, the user should
consider if adding a new rule to the KB is possible. The system’s behaviour in
decision support is expected to improve as the KB accumulates knowledge about
software development practice in the user’s organization.

Two other services provided by Ictinus are event triggering and model statistics.
Event triggering is the ability to automatically trigger an event when a condition is
met. This is useful whenever a decision becomes invalid for some reason and no other
solution exists. The user is notified of the situation and can take the necessary actions.
Finally, using the model statistics feature, the user can determine which elements of
the KB are most used. These elements should correspond to policies and situations of
the real world, which is an indication that Ictinus is well-tuned to the software
development organization.

3.3 Intended use

Figure 7 shows the use of ICTINUS in a software development environment. Chief
software engineers are responsible for the initialization of the system by defining the
global characteristics of the software development organization, and an initial set of
rules and constraints. Software development teams use the system for application-
specific deliberation recording and support and provide chief software engineers with
feedback regarding the development process itself, and the domain experts with
feedback concerning the application domain. Chief software engineers and domain
experts are responsible for formulating software practice knowledge and domain
knowledge respectively, and updating ICTINUS’s knowledge base.



CASE toolsIctinus 2.0

DB, KB

Software Evolution Knowledge

Local Problem Solving
Deliberations

Local Problem Solving
Deliberations

Global Elements

Ru
les

Domain Knowledge

Domain-related  characteristics

Software Development
Team

Domain
Experts

Software Development
Team

Chief Software
Engineers

Support

Support

Figure 7. Use of Ictinus in a software development organization.

4. Related work

Potts & Bruns have presented a first approach in capturing deliberations in software
design [Potts88]. The data model they proposed is a simple and easy-to-use one. A
justification is a free-text description of the reasons why a decision has been made.
Their model cannot capture several arguments on the same issue and relations among
them. The software development organization’s practice (software evolution model) is
not represented, and neither is the problem-solving policy using metrics, constraints
and rules. Furthermore, their model is not supported by an integrated tool but instead
one has to switch between a hypertext editor and a Prolog environment.

SYBIL is a decision management system [Lee90] implementing DRL (Decision
Representation Language) that supports goals, alternatives, claims and relations
among them, in software design deliberation. DRL provides better support for
representing argumentation than P&B, and has some common qualitative semantic
elements with the IBIS model (DRL’s decision problem vs. IBIS’s issue, alternative
vs. position, claim vs. argument). However, IBIS and its implementations such as
gIBIS [Conklin88] and IBE [Lease90] can be considered as generic systems for
capturing deliberations in engineering disciplines and do not support explicit
representation of goals, or the results of deliberations. Neither of these models
supports knowledge acquisition and reuse, or domain characteristics representation.
Approaches for domain-oriented design support have been presented by Fisher et al.
[Fischer92] and Arango et al. [Arango93], [Arango93b] however, they are not



integrated with deliberation representation schemes, which, we believe, should be
done in the future.

REMAP [Ramesh92] is a conceptual model used to capture deliberations during
requirements analysis that relates process knowledge to the objects that are created
during the requirements engineering process. It embodies the IBIS model for
capturing argumentation and is supported by a system based on the Telos [Mylop90]
language implemented using the ConceptBase [Jarke91] environment. REMAP is
useful in capturing deliberations and knowledge when transforming requirements into
design and enhances previous approaches by adding explicit representation of
decisions, constraints and assumptions, and by introducing process knowledge
components. REMAP does not support all phases of software evolution and the
necessity for the development of a generic model for capturing and representing
process knowledge across various phases of systems development is clearly pointed
out by the authors.

The development of such a generic model is the main objective of our approach. The
representation of the software process model at a highly detailed level (step hierarchy,
products and product internal structure), the maintenance of a software evolution KB,
and the ability to use a variable deliberation recording model, are the principal
REMAP enhancements that PROFILE suggests. As a consequence, we handle
constraints and assumptions in a different way. Constraints are regarded as special
cases of decision factors, which are rule-based representations of evolution knowledge
and are applicable to evolution phases instead of to decisions and design objects.
Assumptions can be assigned to any entity instead of to arguments only, which allows
a better understanding of their role in software development. In addition, we provide a
set of mechanisms for decision support in software evolution.

Several other models for representing deliberations have been presented [Fischer92]
[Dong91] [Siddiqi90] [Rose91] [Toulmin84], but they are either less complete than
REMAP, or have a different orientation such as group coordination or domain
semantics capturing. Relevant studies also include [Rich92], [Oivo90],

5. Discussion

Reasoning is a new dimension in software documentation. Its necessity is not well
understood by developers, and existing data models and tools that support reasoning,
seem to be immature and not integrated with other tools used in software
development. Although there is much discussion of this topic, a common terminology
has not yet been agreed. Furthermore, little has been published about experience and
so far, there is not any commercially available CASE tool that supports any of the
models that have been presented.

We believe that further research is needed in integrating deliberation representation
models with existing methods and tools. A unified approach in using AI techniques in
Software Engineering is also useful, especially in determining qualitative similarities



among problem-solving contexts. These tasks cannot be accomplished unless enough
experience from real software development environments has been gained.

We are currently conducting experiments on the topic of measuring the overhead as
well as the long-term gain for developers when capturing deliberations. Such an
investigation could provide a basis for a classification of existing deliberation
representation models according to a cost-benefit ratio. We are also preparing a new
series of experiments in commercial software development organizations to support
both evaluation of the data model and measurements collection. Experience that will
be gained is expected to be valuable for this research.

Bibliography

[Arango93] Arango, Guillermo, and Eric Schoen, and Robert Pettengill, A
Process for Consolidating and Reusing Design Knowledge,
Proceedings of the 15th International Conference on Software
Engineering, IEEE Computer Society Press, pp. 231-242,  1993.

[Arango93b] Arango, G., and E. Shoen, R.Pettengill, and J.Hoskins, The Graft-
Host Method for Design Evolution, Proceedings of the 15th
International Conference on Software Engineering, IEEE Computer
Society Press,  1993.

[Conklin88] Conclin, j., and M.L.Begeman, gIBIS: A Hypertext Tool for
Exploratory Policy Discussion, Vol 6, No 4, pp. 303-331, 1988.

[Devanbu91] Devanbu, P., and R. Brachman, P. Selfridge, and B. Ballard,
LaSSIE: A Knowledge-Based Software Information System,
Communications of the ACM, Vol 34, No 5, pp. 3549, May 1991.

[Dong91] Dong, Jinghuan, and Chris Wild, and Kurt Maly, A Software
Development and Evolution Model Based on Decision-making,
Proceedings of the 3rd International Conference on Software
Engineering and Knowledge Engineering, Knowledge Systems Inst.,
Skokie, IL, USA, pp. 9-14,  1991.

[Fischer92] Fischer, Gerhard, and A. Girgensohn, K. Nakakoji, and David
Redmiles, Supporting Software Designers with Integrated
Domain-Oriented Design Environments, IEEE Transactions on
Software Engineering, Vol 18, No 6, pp. 511-522, June 1992.

[Jarke91] Jarke, M., Conceptbase 3.0 user manual, Univ. Passau, Passau,
Germany, Tech. Rep. MIP-9107, March 1991.

[Lease90] Lease, M., and M. Lively, and J. Leggett, Using an Issue-based
hypertext system to capture the software life-cycle process,
Hypermedia, vol. 2, no. 1, 1990.



[Lee90] Lee, Jintae, SIBYL: A Qualitative Decision Management System,
Artificial Intelligence at MIT: Expanding Frontiers, Winston and
Shellard, editors, MIT Press, Cambridge, MA, Vol 1, Ch. 5,  1990.

[Lee91] Lee, Jintae, Extending the Potts and Bruns Model for Recording
Design Rationale, Proceedings of the 13th International Conference
on Software Engineering, IEEE Computer Society Press, pp. 114-
125,  1991.

[Lehman80] Lehman, M.M., Program life cycles and laws of software
evolution, Proceedings IEEE  special issue on Software
Engineering, pp.1060-1076, September 1980,

[Lehman91] Lehman, M.M., Software Engineering, the software process and
their support, IEE Software Engineering Journal, special issue on
Software Environments and Factories, 6(5), pp. 243-258, September
1991

[Mylop90] Mylopoulos, J., and A. Borgida, and M. Jarke, and M. Koubarakis,
Telos: Representing knowledge about information systems, ACM
Trans. Inform. Syst., vol 8, pp. 325-362, October 1990.

[Oivo90] Oivo, Markku, Knowledge-Based Support for Embedded
Computer Software Analysis and Design, Technical Research
Centre of Finland, ISBN 951-38-3763-7, September 1990.

[Potts88] Potts, Collin, and Glenn Bruns, Recording the Reasons for Design
Decisions, Proceedings of the 10th International Conference on
Software Engineering, IEEE Computer Society Press, pp. 418-427,
1988.

[Ramesh92] Ramesh, B., and V. Dhar, Supporting Systems Development by
Capturing Deliberations During Requirements Engineering, IEEE
Transactions on Software Engineering, Vol 18, No 6, pp. 498-510,
June 1992.

[Rose91] Rose, T., and M. Jarke, and M. Gocek, and M. Maltzahn, and H.
Nissen, A decision based configuration process environment,
Software Eng. J., vol. 6 no.5, pp. 332-346, 1991.

[Rich92] Rich, Charles, and Yishai A. Feldman, Seven Layers of Knowledge
Representation and Reasoning in Support of Software
Development, IEEE Transactions on Software Engineering, Vol 18,
No 6, pp. 451-469, June 1992.

[Siddiqi90] Siddiqi, J.I., and J.H.Sumiga, and B. Khazaei, Use of a Blackboard
Framework to Model Software Design, Empirical Foundations of
Information and Software Science V, Edited by P.Zunde and
D.Hocking, Plenum press, NY, pp. 99-107,  1990.



[Toulmin84] Toulmin, S., and R. Rieke, and A. Janik, An introduction to
reasoning, 2nd edition, NY Macmillan, 1984

[Vesc95] V.C.Vescoukis, Software Design Decisions, proceedings of CAiSE
95 W3, Jyvaskyla, Finland, June 1995.

[Humphrey89] Humphrey, S. Watt, Managing the Software Process, SEI, Addison-
Wesley 1989, ISBN 0-201-18095-2.


