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Comparative Semantics for the Basic Andorra Model

Eneia Todoran, Paulina Mitrea and Nikolaos Papaspyrou

Abstract: This paper employs techniques from metric semantics in defining and re-

lating an operational and a denotational semantics for a simple abstract

language which embodies the main control flow notions of Warren’s Basic

Andorra Model. The both semantic models are designed with the ”contin-

uation semantics for concurrency” (CSC) technique.

1 Introduction

The Basic Andorra Model (BAM) was proposed by Warren [13] as a general framework for
combining AND parallelism with OR parallelism in logic programming. It reduces the number
of inferences (and thus it improves the execution speed) of logic programs by giving priority
to deterministic computations over nondeterministic computations as nondeterministic steps
could possibly (unnecessarily) multiply work. The BAM was implemented in the Andorra-I
system [5] and in Pandorra [2].
The first denotational model for BAM was developed by us in [12]. The semantic model

given in [12] was designed by using the ”continuation semantics for concurrency” (CSC)
technique [11]. Instead of using mathematical notation for the definition of the denotational
semantics, in [12] we used the functional programming language Haskell [7].
In this paper, we apply the methodology of metric semantics [Balaganskij-Vlasov(1996), 1]

in defining and relating an operational and a denotational semantics for a simple abstract
language which embodies the main control flow notions of BAM. The both semantic models
are designed with CSC. To the best of our knowledge, this is the first comparative semantic
study of BAM.

2 Theoretical preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging over X. For
any set X, we denote by |X| the cardinal number of X. |X| = 0 means that X is empty,
|X| <∞ means that X is finite and |X| =∞ means that X is an infinite set. For X a set we
denote by Pπ(X) the collection of all subsets of X which have property π. Let f ∈ X → Y .
The function f{y/x} : X → Y is defined by: f{y/x}(x) = y and for any x′ ∈ X, x′ 6= x,
f{y/x}(x′) = f(x′). If f : X → X and f(x) = x we call x a fixed point of f . When this fixed
point is unique (see 2.1) we write x = fix(f).
Following [Balaganskij-Vlasov(1996)], the study presented in this paper takes place in the

mathematical framework of 1-bounded complete metric spaces. We assume known the notions
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ofmetric and ultrametric space, isometry (distance preserving bijection between metric spaces;
we denote it by ’∼=’) and completeness of metric spaces. If (X, dX), (Y, dY ) are metric spaces
we recall that a function f : X → Y is a contraction if ∃c ∈ R, 0 ≤ c < 1: ∀x1, x2 ∈
X: dY (f(x1), f(x2)) ≤ c ∙ dX(x1, x2). Also, f is called non-expansive if dY (f(x1), f(x2)) ≤
dX(x1, x2). We denote the set of all c-contracting (non-expansive) functions from X to Y by

X
c
→Y (X

1
→Y ).

Theorem 2.1 (Banach) Let (X, dX) be a complete metric space. Each contracting function
f : X → X has a unique fixed point [3].

Let (a, b ∈)A be a set. The so-called discrete metric dA on A is defined as follows:
dA(a, b) = if a= b then 0 else 1 fi . The so-called Baire metric is defined on the set (x, y ∈
)A∞ = A∗∪Aω (i.e. A∞ is the collection of all finite and infinite words over A) by: dB(x, y) =
2−sup{n |x[n]=y[n]}, where for x∈A∞, x[n] denotes the prefix of x in case length(x)≥n and x
otherwise (where by convention 2−∞ = 0). For any set A, (A, dA) and (A

∞, dB) are complete
ultrametric spaces.

Definition 2.2 Let (X, dX), (Y, dY ) be (ultra) metric spaces. On (x ∈)X, (f ∈)X→Y (the
function space), ([x, y] ∈)X × Y (the cartesian product), (u, v ∈)X t Y (the disjoint union)
and on (U, V ∈)P(X) (the power set of X) one can define the following metrics:

(a) d 1
2
∙X : X ×X→[0, 1]: d 1

2
∙X(x1, x2) =

1
2 ∙ dX(x1, x2)

(b) dX→Y : (X→Y )× (X→Y )→[0, 1]: dX→Y (f1, f2) = supx∈XdY (f1(x), f2(x))

(c) dX×Y : (X×Y )×(X×Y )→[0, 1]: dX×Y ([x1, y1], [x2, y2]) = max{dX(x1, x2), dY (y1, y2)}

(d) dXtY : (X t Y )× (X t Y )→[0, 1]:

dXtY (u, v) = if u, v ∈ X then dX(u, v) else if u, v ∈ Y then dY (u, v) else 1 fi fi

(e) dH : P(X)× P(X)→[0, 1] is the so-called Hausdorff distance defined as follows:

dH(U, V ) = max{supu∈Ud(u, V ), supv∈V d(v, U)}, where d(u,W ) = infw∈Wd(u,w)

with the convention that sup ∅ = 0 and inf ∅ = 1.

We recall that given a metric space (X, dX) a subset A of X is called compact whenever each
sequence in A has a convergent subsequence with limit in A. We will use the abbreviations
Pco(∙) (Pnco(∙)) to denote the power set of compact (non-empty and compact) subsets of ’∙’.

Theorem 2.3 Let (X, dX), (Y, dY ), d 1
2
∙X , dX→Y , dX×Y , dXtY and dH be as in definition 2.2.

In case dX , dY are ultrametrics, so are d 1
2
∙X , dX→Y , dX×Y , dXtY and dH . If in addition

(X, dX), (Y, dY ) are complete then (X, d 1
2
∙X), (X→Y, dX→Y ), (X

1
→Y, dX→Y ), (X×Y, dX×Y ),

(X t Y, dXtY ), (Pco(X), dH) and (Pnco(X), dH) are also complete metric spaces.

In the sequel we will often suppress the metrics part in domain definitions. In particular we
will write 12 ∙X instead of (X, d 12 ∙X

).
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3 Syntax and Operational Semantics (O)

We consider a simple abstract language, called LBAM , which embodies the main control
flow notions of Warren’s Basic Andorra Model [13]. The syntax of LBAM is summarized in 3.1.
The basic components are a set (a ∈)Act of atomic actions (denoting primitive relations that
evaluate to true; we assume that true∈Act), a special symbol fail (denoting any primitive
relation that evaluates to false) and a set (x, y, z... ∈)PV ar of procedure variables. We also
let b range over (b ∈)Act ∪ {fail}.

Definition 3.1 We define the syntax of LBAM as follows:

(a) (Statements) s(∈ Stat) ::= a | fail | �c� | 〈k〉 | #〈k〉 | x | s‖s, where

c(∈CStat) ::= (b→s) | c+c

k(∈KStat) ::= (b?s) | k+k

Let also: o(∈OStat)::=�c� | 〈k〉 | #〈k〉.

(b) (Guarded statements) g(∈ GStat) ::= a | fail | �c� | 〈k〉 | #〈k〉 | g‖g

(c) (Declarations) (D ∈)Decl=Pvar→GStat. Following [Balaganskij-Vlasov(1996)], we
work with a fixed declaration D!

(e) (Programs) (ρ ∈)LBAM = Decl×Stat.

LBAM provides an operator for parallel composition
′‖′ (interpreted as parallel AND),

an n-ary operator for don’t care nondeterministic choice ′��′ and two n-ary operators for
don’t know nondeterministic choice ′〈〉′ (implemented as sequential OR, i.e. as a backtracking
mechanism) and respectively ′#〈〉′ (implemented as parallel OR). In LBAM we encounter don’t
care goals, which are constructs of the form �b1→s1 + ... + bn→sn�, and don’t know goals,
which are constructs of the form 〈b1?s1 + ...+ bn?sn〉 or #〈b1?s1 + ...+ bn?sn〉. Following the
terminology in AKL [6], the guard operator ′→′ is called commit, and ′?′ is called wait. The
“prefix” b of a construct b→s or b?s is either an element a∈Act or the symbol fail. These
prefixes will be the only means for detecting the determinacy of a nondeterministic choice
statement. This design decision is in the spirit of Warren’s Basic Andorra Model [13] which is
based on flat guards (the so-called Extended Andorra Model [6], [14], which is based on deep
guards is not discussed in this paper).
Our restriction to guarded recursion (3.1(b), 3.1(c)) is natural in the context of logic

programming where the execution of each goal starts with head unification.
Execution in LBAM alternates between (the determinate or) the AND-parallel phase and

the nondeterminate phase which is activated by the deadlock phase. In the AND-parallel
phase all goals in a conjunction are reduced concurrently. A don’t care goal can always be
reduced. A don’t know goal can be reduced only if it is determinate, i.e. if at most one of its
prefixes is 6=fail. When only (don’t know) nondeterminate goals remain the deadlock phase is
activated that chooses one of the alternatives for a don’t know goal and proceeds. The multiple
alternatives may be tried either in sequence (giving rise to a backtracking mechanism) or in
parallel (giving rise to OR-parallelism).
In 3.2 we introduce a predicate det which returns true if a goal is determinate and false

if the goal is nondeterminate. The auxiliary mappings NFc, NFk and NFo are used for
computing the non-failing alternatives of a nondeterministic choice statement. The well-
definedness of det follows by induction on the complexity measure cs defined in 3.7.
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Definition 3.2

(a) Let c̃(∈C̃Stat) ::= (a→s) | c̃+c̃. We define NFc:CStat→(C̃Stat∪{fail}) by putting:

NFc(fail→s)=fail, NFc(a→s)=a→s, and NFc(c1 + c2)=NFc(c1)+̃NFc(c2),

where +̃:(C̃Stat∪{fail})2→(C̃Stat∪{fail}) is given by:

fail+̃fail=fail, fail+̃c̃=c̃+̃fail=c̃, and c̃1+̃c̃2=c̃1+c̃2.

(b) Let k̂(∈K̂Stat)::=(a?s) | k̂+k̂. We define NFk:KStat→(K̂Stat∪{fail}) by putting:

NFk(fail?s)=fail, NFk(a?s)=a?s, and NFk(k1 + k2)=NFk(k1)+̂NFk(k2),

where +̂:(K̂Stat∪{fail})2→(K̂Stat∪{fail}) is defined as follows:

fail+̂fail=fail, fail+̂k̂=k̂+̂fail=k̂, and k̂1+̂k̂2=k̂1+k̂2.

(c) We also define NFo : OStat→(C̃Stat∪K̂Stat∪{fail}) as follows:

NFo(�c�) = NFc(c)

NFo(〈k〉) = NFo(#〈k〉) = NFk(k)

(d) (Determinate statements) det : Stat→Bool(= {true, false}):

det(a) = det(fail) = det(�c�) = true

det(〈k〉) = det(#〈k〉) = if length(NFk(k)) ≤ 1 then true else false fi

det(x) = det(D(x))

det(s1 ‖ s2) = det(s1) ∨ det(s2)

We proceed with the definition of a transition system for LBAM . Following [11], we
employ the CSC technique, and use process identifiers for the representation of resumptions
and continuations.

Definition 3.3 (Process identifiers) We use a set (α ∈)Id of process identifiers - which we
assume to be infinite - together with a function να : Pfinite(Id)→Id, such that να(A)/∈A,
for any A∈Pfinite(Id). A possible example of such a set Id and function να is Id=N and
να(A)=max{n | n∈A}+ 1. Let moreover ν : P(Id)→Id be defined (for A∈P(Id)) by ν(A) =
if |A|<∞ then να(A) else α fi , where α is some arbitrary element of Id.

Definition 3.4

(a) (Resumptions) Let (r∈)R = Id→({↑}∪Stat), and id : R→P(Id), id(r) = {α | r(α) 6=↑}.
The class (r ∈)Res(⊆ R) of resumptions is given by:

Res = {r | r ∈ R, | id(r) |<∞}

Let r0 = λα. ↑. We define the predicate deadlock : Res→Bool as follows:

deadlock(r) =

if r=λα. ↑ then false else if (∃α ∈ id(r) : det(r(α))) then false else true fi fi
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(b) (Nondeterministic alternatives) (η∈)N = Res ∪ (Stat×Id×Res). We say that a non-
deterministic alternative η is derivable if either η∈Res or η=[s, α, r](∈Stat×Id×Res)
and α/∈id(r). We note by (η ∈)Ned the class of derivable nondeterministic alternatives.

(c) (Configurations) Consider the signature Sig = {+,⊕}, and let SigN = Sig ∪Ned. All
the nondeterministic alternatives η(∈ Ned) have arity 0 in SigN (and hence are to be
considered as constants in the extended signature). The key idea is that we consider an
expression like η1 + η2 (or η1 ⊕ η2) as a term - albeit a mixed one - in the sense that
it consists of both a syntactic entity + (or ⊕) and semantic entities η1, η2. Such mixed
terms were first used in [8]. The set of non-terminal configurations is Conf = T (SigN ),
where T (SigN ) denotes the set of (closed) terms generated by SigN . Let also

√
be a

special symbol (
√
/∈ Conf) that we use to indicate termination in computations. Let t

range over (t ∈)Conf√ = Conf ∪ {
√
}.

Intuitively, configurations are OR-trees. ’+’ corresponds to sequential OR, and ’⊕’ corre-
sponds to parallel OR. Each nondeterministic alternative η ∈ Ned contains a finite collection
of processes, corresponding to the so-called process teams in Andorra [5].

Definition 3.5 (Transition labels) Let (π ∈)ACT = Act+ and ($∈)ACTε = Act∗ =
ACT ∪ {ε} (ε is the empty sequence). We find it convenient to use the notation [a1, ..., an]
for sequences over ACT . [a]-steps are called deterministic steps. [a1, ..., an]-steps are called
nondeterministic steps when n > 1.

The operational semantics for LBAM is based on a transition relation ⊆ (Conf ×ACT ×

Conf)∪(Conf×{ε}×{
√
}), with elements [t,$, t′] written in the notation t

$

→ t′. We use the

predicate t↓ which is true if t
ε

→
√
is an element of the transition relation and false otherwise.

Our restriction to the class of derivable nondeterministic alternatives in the definition of Conf
will be justified in lemma 3.10. In the definition of the transition relation for LBAM we use
the following conventions:

premise

conclusion1
...

conclusionn

is an abbreviation for
premise

conclusion1
...

premise

conclusionn

and

t1 → t2 is an abbreviation for
t2

$

→ t′

t1
$

→ t′

Definition 3.6 (Transition system for LBAM : TBAM ) The transition relation for LBAM is
the smallest subset of (Conf ×ACT ×Conf)∪ (Conf ×{ε}×{

√
}), satisfying the axioms and

rules below. In rules (R9) and (R10), α′=ν(id(r)) and α′′=ν(id(r) ∪ {α′}). Also, in axiom
(A6) we assume left associativity in the expression r{s1/α}+ ...+r{sn/α}, which thus denotes
(...(r{s1/α}+ r{s2/α})+ ...+ r{sn/α}). Similarly, in (A7) r{s1/α}⊕ ...⊕ r{sn/α} denotes
(...(r{s1/α} ⊕ r{s2/α})⊕ ...⊕ r{sn/α}).
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(A1) [a, α, r]
[a]

→ r

(A2) [fail, α, r] ↓

(A3) [o, α, r] ↓ if NFo(o) = fail

(A4) [o, α, r]
[a]

→ r{s/α} if (NFo(o)=a→s ∨ NFo(o)=a?s)

(A5) [�c�, α, r]
[ai]

→ r{si/α} ∀1≤i≤n if (NFc(c) = a1→s1+...+an→sn, n > 1)

(A6) [〈k〉, α, r]
π

→ r{s1/α}+ ...+ r{sn/α} if (NFk(k) = a1?s1+...+an?sn, n > 1)

where π = [a1, ..., an]

(A7) [#〈k〉, α, r]
π

→ r{s1/α} ⊕ ...⊕ r{sn/α} if (NFk(k) = a1?s1+...+an?sn, n > 1)

where π = [a1, ..., an]

(R8) [x, α, r]→ [D(x), α, r]

(R9) [s1‖s2, α, r]→ [s1, α′, r{s2/α′′}] if not(det(s1 ‖ s2)) ∨ det(s1)

(R10) [s1‖s2, α, r]→ [s2, α′′, r{s1/α′}] if not(det(s1 ‖ s2)) ∨ det(s2)

(A11) r0 ↓

(R12) r → [r(α), α, r{↑ /α}] ∀α ∈ id(r) if deadlock(r)

(R13) r → [r(α), α, r{↑ /α}] ∀α ∈ id(r) : det(r(α)) if not(deadlock(r))

(R14-16)

t1 ↓ t2
$

→ t′2

t1 + t2
$

→ t′2

t1 ⊕ t2
$

→ t′2

t2 ⊕ t1
$

→ t′2

(R17-19)

t1
π

→ t′1

t1 + t2
π

→ t′1 + t2

t1 ⊕ t2
π

→ t′1 ⊕ t2
t2 ⊕ t1

π

→ t2 ⊕ t′1

We offer some explanations.

• A configuration [s, α, r] contains an active process s with identifier α. The other pro-
cesses are contained in the resumption r. Following the CSC technique [11], any process
remains active only until it executes an atomic action. Subsequently, another process
taken from the resumption is planned for execution. In this way it is obtained the
interleaving behavior in the case of AND parallelism. Thus, in the modeling of AND
parallelism we employ the CSC technique [11]. The sequential OR and the parallel OR
operators are modeled using classic techniques (see the rules (R14-R19)).

• Axiom (A1) describes an elementary step. For simplicity, no formal distinction is made
between failure and successful termination. Thus, if t fails or terminates successfully we
put t↓. In (A3), failure is produced by a construction �c�, 〈k〉 or #〈k〉.
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• Axiom (A4) describes a don’t care nondeterministic choice. An arbitrary non-failing
alternative of a �b1→s1 + ...+ bn→sn� construction is selected for execution; there
is no backtracking in this case.

• Axioms (A6) and (A7) model nondeterministic promotion. In each case, the resumption
r, is replicated for each nondeterministic alternative of a don’t know nondeterministic
choice statement, 〈k〉 or #〈k〉1.

• The Andorra principle [13] gives priority to determinate goals over nondeterminate goals
in parallel conjunctions. This priority mechanism is expressed in rules (R9), (R10),
(R12) and (R13). In rule (R9), s1 is selected for execution if it is determinate or if
both s1 and s2 are nondeterminate. Rule (R10) is symmetric. Axiom (A11) models
termination. Rule (R12) expresses the fact that in a deadlock state (when all the goals
in a parallel conjunction are nondeterminate) any goal can be planned for execution.
Rule (R13) gives priority to an (arbitrary) determinate goal.

In 3.7 we introduce some complexity measures which will be used in inductive reasonings.
The mapping cs is well defined due to our restriction to guarded recursion.

Definition 3.7 (Complexity measures) cs : Stat → N, cη : Ned → N and ct : Conf → N are
defined as follows:

cs(a) = 1

cs(fail) = 1

cs(o) = 1

cs(x) = cs(D(x))

cs(s1 ‖ s2) = 1 +max(cs(s1), cs(s2))

cη(r0) = 1

cη(r( 6= r0)) = 1 +max{cη([r(α), α, r{↑ /α}]) | α ∈ id(r)}

cη([s, α, r]) = cs(s)

ct(η) = cη(η)

ct(t1 + t2) = 1 + ct(t1) + ct(t2)

ct(t1 ⊕ t2) = 1 + ct(t1) + ct(t2)

Definition 3.8 (Operational semantics for LBAM )

(1) Let (p ∈)P = Pnco(ACT∞), (S ∈)SemO = Conf → P. We define the mapping
Φ : SemO→SemO by:

Φ(S)(t) = {ε | t ↓} ∪
⋃
{π.S(t′) | t

π

→ t′}

(2) We put O = fix(Φ) and define O[[∙]] : Stat→ P as follows:

O[[s]] = O([s, ν(∅), r0]).

1Left associativity is assumed in the expressions occurring in (A6) and (A7). However, with the introduction
of the denotational semantics for LBAM - which equals the operational semantics - we will see that the order
does not matter. The point is that the nondeterministic alternatives are executed either in sequence or in
parallel and the both operations are associative.
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Remarks 3.9

(1) One can prove that TBAM is finitely branching and thus it induces a compact operational
semantics by induction on ct(t).

(2) The mapping Φ is contracting in particular due to the ”π. ∙ ∙ ∙ ”-step in its definition.

(3) Lemma 3.10(2) can be proved by induction on ct(t1). 3.10(1) is immediate, and 3.10(3)
follows easily from the rules of TBAM .

Lemma 3.10

(1) [s, ν(∅), r0] ∈ Conf .

(2) If t1 ∈ Conf and t1
$

→ t2 then $=ε and t2=
√
or $∈ACT and t2∈Conf .

(3) If t1 ∈ Conf and t1 → t2 then t2 ∈ Conf .

4 Denotational semantics (D)

Following [12], in the definition of the denotational semantics for LBAM we employ the
CSC technique [11]. We use classic techniques in the modeling of OR parallelism; the CSC
technique is employed in the semantic modeling of AND parallelism.
In the definition of the denotational semantics D for LBAM we use the same semantic

universe as in the case of operational semantics: (p ∈)P = Pnco(ACT∞); we also use the
typical variable q to range over (q ∈)ACT∞. The operator ] (introduced in 4.1(3)) is used
in the semantic modeling of the Andorra priority mechanism. ] gives priority to determinate
steps of the form [a] over nondeterminate steps of the form [a1, ..., an] (n > 1).

Definition 4.1

(1) Det,NDet : P→ P are given by (obviously, p = Det(p) ∪NDet(p)):

Det(p) = {ε | ε ∈ p} ∪ {[a].q | [a].q ∈ p}

NDet(p) = {[a1, ..., an].q | [a1, ..., an].q ∈ p, n > 1}

(2) DET,NDET : P→ Bool(= {true, false}) are given by:

DET (p) = if (p = Det(p)) then true else false fi

NDET (p) = if (p = NDet(p)) then true else false fi

(3) ] : P× P→ P is defined by:

p1 ] p2 = if (NDET (p1)∧NDET (p2)) then (p1 ∪ p2) else (Det(p1) ∪Det(p2)) fi

It is easy to check that ] is well defined, non-expansive, associative and commutative. To
model the OR connectives in LBAM we use the operators + and ⊕ defined below. + is an
operator for sequential composition. ⊕ is an operator for parallel composition in interleaving
semantics (i.e. a merge operator); we also use the operator bb (a left merge). Such operators
can be formally defined as fixed points of appropriate higher order contractions using classic
techniques. One can show that + and ⊕ are well defined, non-expansive and associative; ⊕
is also commutative. bb is well defined and non-expansive.
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Definition 4.2 The operators +,⊕, bb : P× P
1

→ P are defined as follows:

p+p′ = {p′ | ε ∈ p} ∪
⋃
{π.(pπ+p′) | pπ 6= ∅}

p⊕p′ = pbb p′ ∪ p′bb p, with pbb p′ = {p′ | ε ∈ p} ∪
⋃
{π.(pπ⊕p′) | pπ 6= ∅},

where we used the notation: pπ
def.
= {q | π.q ∈ p} for π ∈ ACT , p ∈ P and q ∈ ACT∞.

The denotational semantics D for LBAM is of the type SemD=Stat→ D, where:

D ∼= Id→ Cont
1

→ P

(γ ∈)Cont ∼= Id→ ({↑} t 12 ∙D) (Cont is the domain of continuations)

In the equations above the sets Id and {↑} are equipped with the discrete metric, which is
an ultrametric. The other metric spaces are built up using the composite metrics given in
2.2. By using [1, Balaganskij-Vlasov(1996)], the solutions for D and Cont can be obtained as
complete ultrametric spaces.
In 4.3 we introduce the auxiliary mapping Id used in the definition of the denotational

semantics, which is given in 4.5. Lemma 4.4 states two simple properties of Id.

Definition 4.3 Id : Cont→ P(Id) is defined as follows Id(γ) = {α | γ(α) 6=↑}.

Lemma 4.4

(a) If Id(γ1) 6= Id(γ2) then d(γ1, γ2) = 1.

(b) If A = Id(γ1) = Id(γ2) then d(γ1, γ2) =
1
2 ∙supα∈Ad(γ1(α), γ2(α)).

Definition 4.5 (Denotational semantics (D) for LBAM )

(1) Let C : Cont→ P be given by:

C(γ) = if (|Id(γ)|=0 ∨ |Id(γ)|=∞) then {ε} else ]α∈Id(γ) γ(α)(α)(γ{↑ /α}) fi

(2) We define Ψ : SemD → SemD for S ∈ SemD as follows:

(1) Ψ(S)(a)(α)(γ) = [a].C(γ)

(2) Ψ(S)(fail)(α)(γ) = {ε}

(3) Ψ(S)(o)(α)(γ) = {ε} if NFo(o) = fail

(4) Ψ(S)(o)(α)(γ) = [a].C(γ{S(s)/α}) if NFo(o) = a→s ∨ NFo(o) = a?s

(5) Ψ(S)(�c�)(α)(γ) = [a1].C(γ{S(s1)/α}) ∪ ... ∪ [an].C(γ{S(sn)/α})

if NFc(c) = a1→s1+...+an→sn, n > 1

(6) Ψ(S)(〈k〉)(α)(γ) = [a1, ..., an].(C(γ{S(s1)/α})+...+C(γ{S(sn)/α}))

if NFk(k) = a1?s1+...+an?sn, n > 1

(7) Ψ(S)(#〈k〉)(α)(γ) = [a1, ..., an].(C(γ{S(s1)/α})⊕...⊕C(γ{S(sn)/α}))

if NFk(k) = a1?s1+...+an?sn, n > 1

(8) Ψ(S)(x)(α)(γ) = Ψ(S)(D(x))(α)(γ)

(9) Ψ(S)(s1‖s2)(α)(γ) = Ψ(S)(s1)(α′)(γ{S(s2)/α′′}) ]Ψ(S)(s2)(α′′)(γ{S(s1)/α′})
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where in clause (9) α′=ν(Id(γ)) and α′′=ν(Id(γ) ∪ {α′}).

(3) We put D = fix(Ψ). Let γ0 = λα. ↑. We define D[[∙]] : Stat→ P by:

D[[s]]=D(s)(ν(∅))(γ0).

Some explanations may help.

• The denotational semantics uses the CSC technique to model the AND parallelism. The
OR parallelism is modeled by using the ⊕ operator introduced in 4.2. The operator +
models the backtracking mechanism in LBAM . We model failure by an ε-step because
we do not want to interrupt the collection of multiple solutions generated by the don’t
know nondeterminism in LBAM .

• Clauses (1-4) handle determinate goals. Clause (5) models the don’t care nondetermin-
ism in LBAM . Clauses (6) and (7), model the semantics of don’t know goals. Such goals
give rise to nondeterministic promotion, which is modeled denotationally by making
copies of the continuation for each alternative of a nondeterminate goal. Next, these
alternatives are executed either in sequence (clause (6)) or in parallel (clause (7)).

• The operator ] gives priority to determinate steps of the form [a] over nondeterminate
steps of the form [a1, ..., an] (n > 1) in a parallel conjunction.

Definition 4.5 is formally justified by using lemmas 4.6 and 4.7. We do not give here the
proofs for lemmas 4.6 and 4.7, which are very similar to the proofs for corresponding lemmas
given for the denotational models studied in [11]. By using 4.7(3), the higher order mapping
Ψ introduced in 4.5 has a unique fixed point.

Lemma 4.6

(1) C : Cont→ P is well defined (i.e. ∀γ ∈ Cont, C(γ) is compact).

(2) ∀γ1γ2 ∈ Cont : d(C(γ1), C(γ2)) ≤ 2∙d(γ1, γ2).

Lemma 4.7 For any S ∈ SemD, s ∈ Stat, α ∈ Id and γ ∈ Cont we have:

(1) Ψ(S)(s)(α)(γ) ∈ P (it is well defined).

(2) Ψ(S)(s)(α) is non-expansive in γ.

(3) Ψ is 12 -contractive in S.

Example 4.8 Let α0 = ν(∅) and αi = ν({αj | 0 ≤ j < i}), for i > 0. Let also (D ∈ Decl)
D(x) = 〈a3?a′3+a4?a

′
4〉‖a2. We compute the denotation of a1‖x.

D[[a1‖x]]=D(a1‖x)(α0)(γ0) = D(a1)(α1)(γ0{D(x)/α2}) ] D(x)(α2)(γ0{D(a1)/α1})

We begin with the first sub-expression.

D(a1)(α1)(γ0{D(x)/α2}) = [a1].C(γ0{D(x)/α2}) = [a1].D(x)(α2)(γ0)

= [a1].(D(〈a3?a′3+a4?a
′
4〉)(α3)(γ0{D(a2)/α4}) ] D(a2)(α4)(γ0{D(〈a3?a

′
3+a4?a

′
4〉)/α3})
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It is easy to check that D(〈a3?a′3+a4?a
′
4〉)(α3)(γ0{D(a2)/α4}) = [a3, a4].p (for p ∈ P). It is

not necessary to compute p because the process [a3, a4].p is removed by the operator ] from
the result of the denotational semantics. We compute the other operand of ].

D(a2)(α4)(γ0{D(〈a3?a′3+a4?a
′
4〉)/α3}) = [a2].C(γ0{D(〈a3?a

′
3+a4?a

′
4〉)/α3})

= [a2].D(〈a3?a′3+a4?a
′
4〉)(α3)(γ0) = [a2].{[a3, a4][a

′
3][a

′
4]} = {[a2][a3, a4][a

′
3][a

′
4]}

Therefore we have:

D(a1)(α1)(γ0{D(x)/α2}) = [a1].([a3, a4].p][a2][a3, a4][a′3][a
′
4]) = {[a1][a2][a3, a4][a

′
3][a

′
4]}

For the other sub-expression we get: D(x)(α2)(γ0{D(a1)/α1}) = {[a2][a1][a3, a4][a′3][a
′
4]}.

Finally, we get: D[[a1‖x]] = {[a1][a2][a3, a4][a′3][a
′
4], [a2][a1][a3, a4][a

′
3][a

′
4]}.

The denotation of the nondeterminate goal is:

D[[〈a3?a′3+a4?a
′
4〉]]=D(〈a3?a

′
3+a4?a

′
4〉)(α0)(γ0) = {[a3, a4][a

′
3][a

′
4]}.

5 Relating O and D

In this section we show that ∀s ∈ Stat : O[[s]]=D[[s]]. In 5.1 we introduce an auxiliary
mapping R : Conf → P and we show that O=R (lemma 5.5) by using Banach’s fixed point
theorem 2.1. Lemmas 5.3 and 5.4 are useful in the proof of lemma 5.5. The desired result
(O[[s]]=D[[s]]) is obtained in 5.6.

Definition 5.1 Let Γ : Res→ Cont be given by:

Γ(r) = λα. if r(α) =↑ then ↑ else D(r(α)) fi

We define R : Conf → P as follows:

R(r) = C(Γ(r)) R([s, α, r]) = D(s)(α)(Γ(r))

R(t1 + t2) = R(t1) +R(t2) R(t1 ⊕ t2) = R(t1)⊕R(t2)

Remark 5.2 The operators + and ⊕ (introduced in section 4) are associative. We have:

R(t1 + (t2 + t3)) = R(t1) +R(t2 + t3) = R(t1) + (R(t2) +R(t3))

= (R(t1) +R(t2)) +R(t3) = R(t1 + t2) +R(t3) = R((t1 + t2) + t3)

Thus, in order to simplify the notation in 5.3(8) we will write R(t1 + ... + tn) instead of
R((...(t1+ t2)+ ...tn)). Similarly, in 5.3(9) we will write R(t1⊕ ...⊕ tn) instead of R((...(t1⊕
t2)⊕ ...⊕ tn)). Similar notations will be used in 5.5. The notation conventions used here and
in 3.6 are formally justified in 5.5, where we show that R = O.

Lemma 5.3

(1) R(r0) = {ε}.

(2) If r 6= r0 then R(r) = ]α∈id(r)R([r(α), α, r{↑ /α}]).

(3) R([a, α, r]) = [a].R(r).
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(4) R([fail, α, r]) = {ε}.

(5) If NFo(o) = fail then R([o, α, r]) = {ε}.

(6) If NFo(o) = a→s or NFo(o) = a?s then R([o, α, r]) = [a].R(r{s/α}).

(7) If NFc(c) = a1→s1 + ...+ an→sn and n > 1 then:

R([�c�, α, r]) = [a1].R(r{s1/α}) ∪ ... ∪ [an].R(r{sn/α}).

(8) If NFk(k) = a1?s1 + ...+ an?sn and n > 1 then:

R([〈k〉, α, r]) = [a1, ..., an].R(r{s1/α}+ ...+ r{sn/α}).

(9) If NFk(k) = a1?s1 + ...+ an?sn and n > 1 then:

R([#〈k〉, α, r]) = [a1, ..., an].R(r{s1/α} ⊕ ...⊕ r{sn/α}).

(10) R([x, α, r]) = R([D(x), α, r]).

(11) Let α′ = ν(id(r)), α′′ = ν(id(r) ∪ {α′}). We have:

R([s1‖s2, α, r]) = R([s1, α′, r{s2/α′′}]) ]R([s2, α′′, r{s1/α′}])

Lemma 5.3 can be proved without difficulty by applying the definition of R.

Lemma 5.4

(1) If t ↓ then ε∈R(t).

(2) ∀α ∈ Id, ∀r ∈ Res, α /∈ id(r) : det(s) = DET (R([s, α, r])).

(3) ∀α ∈ Id, ∀r ∈ Res, α /∈ id(r) : not(det(s)) = NDET (R([s, α, r])).

(4) If deadlock(r) then R(r) = ∪α∈id(r)R([r(α), α, r{↑ /α}]).

(5) If r 6= r0 and not(deadlock(r)) then R(r) = ∪α∈id(r):det(r(α))R([r(α), α, r{↑ /α}]).

(6) not(deadlock(r)) = DET (R(r)).

(7) deadlock(r) = NDET (R(r)).

(8) R([s1 ‖ s2, α, r]) =

( if ( not(det(s1 ‖ s2))∨ det(s1)) then R([s1, α′, r{s2/α′′}]) else ∅ fi )∪

( if ( not(det(s1 ‖ s2))∨ det(s2)) then R([s2, α′′, r{s1/α′}]) else ∅ fi )

where α′ = ν(id(r)) and α′′ = ν(id(r) ∪ {α′}).

Proof We only treat 5.4(2) and 5.4(3). We prove 5.4(2) and 5.4(3) together with:

∀s ∈ Stat, α ∈ Id, r ∈ Res [DET (R([s, α, r])) ∨NDET (R([s, α, r])) = true](∗)

by simultaneous induction on cs(s). We consider two basic sub-cases, for which cs(s) = 1.

Case s ≡ a. det(a) = true, DET (R([a, α, r])) = [5.3(3)] DET ([a].R(r)) = true, and
NDET (R([a, α, r])) = false.
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Case s ≡ 〈k〉, when NFk(k) = a1?s1+...+an?sn (n > 1). In this case we have det(〈k〉) =
false, DET (R(〈k〉)) [5.3(8)] = DET ([a1, ..., an].R(r{s1/α} + ... + r{sn/α})) = false,
and NDET (R([〈k〉, α, r])) = true.

We also consider one sub-case when cs(s) > 1.

Case s ≡ x. We have det(x)=det(D(x))
ind.
= DET (R([D(x), α, r]))=DET (R([x, α, r])),

and not(det(x)) = not(det(D(x)))
ind.
= NDET (R([D(x), α, r])) = NDET (R([x, α, r])).

Also, by using the property 5.3(10) we get DET (R([x, α, r])) ∨ NDET (R([x, α, r]))

= DET (R([D(x), α, r])) ∨NDET (R([D(x), α, r]))
ind.
= true.

2

From 5.4(2, 3, 6, 7) we infer that ∀t ∈ Conf either DET (R(t)) or NDET (R(t)), i.e. we
either have R(t) = Det(R(t)) or we have R(t) = NDet(R(t)). For LBAM , this expresses the
natural property that a process can not execute alternatively deterministic and nondetermin-
istic actions. Any process, can perform nondeterministic steps only in the deadlock state, in
which it can not execute any deterministic action. In an ordinary state (i.e. in a non-deadlock
state) any process can only execute deterministic steps. All these are a natural consequence
of the fact that in LBAM deterministic steps are given priority over nondeterministic steps.

Lemma 5.5 R = fix(Φ) (with Φ defined in 3.8). By using 2.1 we infer R = O.

Proof We show that R(t) = Φ(R)(t), ∀t ∈ Conf by induction on ct(t). We treat three
sub-cases.

Case t = r0. Φ(R)(r0) = {ε} = [5.3(1)] R(r0)

Case t = [#〈k〉, α, r], when NFk(k) = a1?s1 + ...+ an?sn and n > 1.

Φ(R)([#〈k〉, α, r]) = [def. Φ] [a1, ..., an].R(r{s1/α} ⊕ ...⊕ r{sn/α})

=[5.3(9)] R([#〈k〉, α, r])

Case t = [s1 ‖ s2, α, r]. Let t1 = [s1, α′, r{s2/α′′}] and t2 = [s2, α′′, r{s1/α′}].

Φ(R)([s1 ‖ s2, α, r]) [def. Φ]

=( if ( not(det(s1 ‖ s2))∨ det(s1)) then {ε | t1 ↓} ∪
⋃
{π.R(t′) | t1

π

→ t′} else ∅ fi )∪

( if ( not(det(s1 ‖ s2))∨ det(s2)) then {ε | t2 ↓} ∪
⋃
{π.R(t′) | t2

π

→ t′} else ∅ fi )

= ( if ( not(det(s1 ‖ s2))∨ det(s1)) then Φ(R)(t1) else ∅ fi )∪

( if ( not(det(s1 ‖ s2))∨ det(s2)) then Φ(R)(t2) else ∅ fi ) [ind.]

= ( if ( not(det(s1 ‖ s2))∨ det(s1)) then R(t1) else ∅ fi )∪

( if ( not(det(s1 ‖ s2))∨ det(s2)) then R(t2) else ∅ fi ) [5.4(8)]

= R([s1 ‖ s2, α, r])

2

By using 5.5 we obtain the main result of the paper.

Theorem 5.6 O[[s]] = D[[s]], ∀s ∈ Stat.

Proof O[[s]] = O([s, ν(∅), r0]) = [5.5] R([s, ν(∅), r0]) = D(s)(ν(∅))(γ0) = D[[s]] 2
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6 Concluding remarks and future work

In this paper we applied the CSC technique [11] in the semantic modeling of a simple
abstract language LBAM embodying the main control flow notions of Warren’s Basic Andorra
Model [13]. By using techniques from metric semantics [Balaganskij-Vlasov(1996)], we defined
and related an operational and a denotational semantics for LBAM .
The semantic framework presented in this paper is very flexible, allowing for further refine-

ments. In the near future we are mainly interested in the application of the CSC technique
in the specification and design of concurrent constraint (logic) programming languages [9].
We also plan to apply the CSC technique to parallel logic programming languages with deep
guards. In doing so, we intend to move from the Basic Andorra Model (which is based on
flat guards) to the Extended Andorra Model [14], which has been implemented in languages
(that incorporate the constraint programming paradigm) like AKL [6] and Oz [10].
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