
Denotational prototype semantics for a simple CSP-like language

Eneia Todoran1 Nikolaos Papaspyrou2 Kalman Pusztai1

1Technical University of Cluj-Napoca
Department of Computer Science
Baritiu Street, 28, Cluj-Napoca

Romania
{Eneia.Todoran,Kalman.Pusztai}@cs.utcluj.ro

2National Technical University of Athens
Department of Electrical and Computer Engineering

Polytechnioupoly, 15780 Zografou, Athens
Greece

nickie@softlab.ntua.gr

Abstract – This paper shows that, by using the ”continuation se-
mantics for concurrency” (CSC) technique (recently introduced by
us), denotational semantics can be used not only as a method for
formal specification and design, but also as a method for concur-
rent languages prototyping. In this new approach, a denotational
function uses continuations to produce incrementally a stream of
observables, i.e. a single execution trace, rather than an element
of some powerdomain construction. By using a random number
generator, an arbitrary execution trace is chosen, thus simulating
the non-deterministic behavior of a ”real” concurrent system. In
this paper we employ classic (cpo-based) domains in developing
a denotational prototype semantics for a simple concurrent lan-
guage providing constructs for CSP-like synchronous communica-
tion. The CSC technique plays the main role in the design of the
denotational model.

I. INTRODUCTION

In software engineering, a prototype is an initial version of

a system which is used to demonstrate concepts, try out design

options and, generally, to find out more about the problem and

its possible solutions. Ideally, a prototype serves as a mecha-

nism for identifying software requirements. Rapid development

of the prototype is essential so that costs are controlled and users

can experiment with the prototype early in the software process.

Denotational semantics is a well-known method for formal

specification and design of computer languages; its main char-

acteristic is compositionality. It is easy to use a functional lan-

guage and classic denotational techniques to produce rapidly

compositional prototypes for various (aspects of) sequential

programming languages (we only mention here the early work

of Peter Mosses on the use of denotational descriptions in com-

piler generation [7, 8]. However, to the best of our knowledge,

denotational semantics have never been used systematically as

a prototyping method for concurrent languages, and all our at-

tempts to get a satisfactory solution to this problem by using

only classic compositional techniques have failed.

Our present aim is to show that, by using the "continuation

semantics for concurrency" (CSC) technique - recently intro-

duced by us [13, 14] - denotational semantics can be used not

only as a method for formal specification and design, but also as

a method for compositional prototyping of concurrent program-

ming languages. In this new approach, a denotational function

uses continuations to produce incrementally a stream of observ-

ables, i.e. a single execution trace, rather than an element of

some powerdomain construction1. By using a random number

generator, an arbitrary execution trace is chosen, thus simulat-

ing the non-deterministic behavior of a ”real” concurrent sys-

tem. We call such a denotational model a denotational pro-
totype. The immediate implementation of such a denotational

model in an appropriate functional language (such as Haskell

[10]) is a compositional (prototype) interpreter for the concur-

rent language under study.

The CSC technique was introduced in [13] using metric se-

mantics [2]. In this paper we employ classic (cpo-based) do-

mains and continuous functions in developing a denotational

prototype semantics for a simple concurrent language, pro-

viding constructs for parallel composition and CSP-like syn-

chronous communication [4, 5]; the CSC technique plays the

main role in the semantic design. We emphasize that, when the

CSC technique is used in this mathematical framework no com-

munication attempts or silent steps need to be produced as final

yields of a denotational semantics. Throughout this paper, we

rely on the mathematical apparatus and notation in [12, 6].

II. SYNTAX AND INFORMAL EXPLANATION

We consider a simple CSP-like language, called LCSP . The

syntax of LCSP is given below in BNF. We assume given a

set (v ∈)V ar2 of (numerical) variables, a set (e ∈)Exp of

numerical expressions, a set (b ∈)BExp of boolean expres-

sions, a set (c ∈)Chan of communication channels, and a set

(x ∈)PV ar of procedure variables (or procedure identifiers).

Definition 1 (Syntax of LCSP )
The set (s ∈)Stmt of statements in LCSP is given by the fol-
lowing grammar:

1As shown in [13], the CSC technique can be used without difficulty to
produce elements of appropriate powerdomain constructions, but this is not the
subject of the present paper.

2In this paper, the notation (x, y, ... ∈)X introduces the set X with typical
variables x, y, .... Whenever we use a set in a context where a domain is needed,
we assume it is equipped with the discrete order.


