Analele Stiintifice ale Universitdtii “Alexandru Ioan Cuza” din Iagi
Informatica, Tomul XV, 2004, 22-37

Scientific Annals of the “Alexandru Ioan Cuza” University of Iasi

Computer Science Section, Tome XV, 2004, 22-37

Continuation Semantics for Concurrency
and Concurrent Languages Prototyping

Eneia Todoran'
Nikolaos Papaspyrou?
Florian Boian®
Cosmina Ivan'

Abstract

This paper shows that, by using the ”continuation semantics for
concurrency” (CSC) technique (recently introduced by us), denota-
tional semantics can be used not only as a method for formal specifi-
cation and design, but also as a general method for compositional pro-
totyping of concurrent programming languages. In this new approach,
a denotational function uses continuations to produce incrementally
a stream of observables, i.e. a single execution trace, rather than an
element of some powerdomain construction. By using a random num-
ber generator, an arbitrary execution trace is chosen, thus simulating
the non-deterministic behavior of a ”real” concurrent system. In this
paper we employ classic (cpo-based) domains and we develop denota-
tional models for two concurrent languages of progressive complexity.
The first language provides a construct for parallel composition; the
second language extends the first one with primitives for CSP-like syn-
chronous communication. The both models are designed by using the
CSC technique.

!Technical University of Cluj-Napoca, Department of Computer Science, Baritiu Str.
28, (400027) Cluj-Napoca, ROMANIA; Phone/Fax: +40-264-401221 / +40-264-594491;

E-mail: {Eneia.Todoran , Cosmina.Ivan}@cs.utcluj.ro

*National Technical University of Athens, Department of Electrical and Computer
Engineering, Software Engineering Laboratory, Polytechnioupoli, 15780 Zografou, Athens,
GREECE; Phone/Fax: +30-1-7722486 / +30-1-7722519; E-mail: nickie@softlab.ntua.gr

3»Babes-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Department of Computer Science, M. Kogalniceanu Str. 1, Cluj-Napoca, RO-
MANIA; Phone/Fax: +40-264-405300 / +40-264-591906; E-mail: florin@cs.ubbcluj.ro

22

1 Introduction

Classic continuations and variations have proven useful for modeling a va-
riety of control structures, such as non-local exits, coroutines, multitask-
ing [17], tree-structured concurrency [5], synchronous and asynchronous
communication [13]. We have recently introduced a variant of the contin-
uations technique, named continuation semantics for concurrency (CSC)
[13, 16, 14], which provides excellent flexibility in the denotational model-
ing of concurrent systems [16, 14]. The CSC technique provides a ”pure”
continuation-based approach to communication and concurrency in which
all control structures - including the ones encountered in communicating sys-
tems - are modeled as operations manipulating continuations. Intuitively, it
is a semantic formalization of a process scheduler simulated on a sequential
machine. A continuation in the CSC approach is a configuration (e.g. a
multiset) of computations (partially evaluated denotations). Every moment
there is only one active computation; subsequently, another computation
taken from the continuation is planned for execution. In this way it is pos-
sible to obtain the desired interleaving behavior for parallel composition.
A prototype, is an initial version of a system which serves as a mecha-
nism for identifying and specifying system requirements. It is easy to use a
functional language and classic denotational semantic techniques to produce
prototype implementations for (various aspects of) sequential programming
languages (cf. also the early work of Peter Mosses on the use of denotational
descriptions in compiler generation [9, 10]). However, classic techniques
seem to fail in producing compositional prototypes for concurrent languages.
In this paper we show that by employing the CSC technique, denotational
semantics can be used not only as a method for formal specification and
design, but also as a general method for compositional prototyping of con-
current programming languages. In this new approach (introduced by us in
[15]) a denotational function uses continuations to produce incrementally a
stream of observables, i.e. a single execution trace, rather than an element
of some powerdomain construction. By using a random number generator,
an arbitrary execution trace is chosen, thus simulating the non-deterministic
behavior of a "real” concurrent system. The immediate implementation of
such a denotational model in an appropriate functional language is a com-
positional prototype for the concurrent programming language under study.
In [15], we showed how to use the CSC technique in designing a de-
notational (compositional) interpreter for a simple CSP-like language [6, 7]
providing constructs for parallel composition, synchronous communication,

23

and a primitive for producing intermediate outputs (observables) at the
standard output file. The interpreter was implemented in the functional
programming language Haskell [4]. The compositional interpreter given in
[15] generates incrementally a single stream of observables and it simulates
the selection of an arbitrary execution trace by using a (pseudo-)random
number generator.

The CSC technique was introduced in [13, 14] using metric semantics
[2]. In [16, 15] the denotational models were developed using Haskell. In
this paper we employ classic (cpo-based) domains and we develop denota-
tional semantic models for two simple concurrent languages of progressive
complexity. The first language provides a construct for parallel composi-
tion; the second language extends the first one with primitives for CSP-like
synchronous communication. The second denotational model is a mathe-
matical formalization of the compositional interpreter given in [15]. As it
will be seen, when the CSC technique is employed in this mathematical
framework no communication attempts or silent steps need to be produced
as final yields of a denotational semantics. Throughout this paper, we rely
on the mathematical apparatus and notation in [12]. To the best of our
knowledge, denotational semantics have never been used systematically as
a method for concurrent languages prototyping and all our attempts to solve
the problem by using only classic compositional techniques have failed.

2 A simple language with parallel composition

In this section we consider a very simple imperative concurrent language,
called L. The semantics of L is given here without mathematical justifica-
tions. The mathematical justifications are postponed to sections 3 and 4.
In section 3 we give a denotational semantic model for a language Lcsp
which strictly extends L with CSP-like synchronous communication, and in
section 4 we solve our main domain equation.

We assume given a set (v €)Var? of (numerical) variables, a set (e €
)Ezp of numerical expressions, a set (b €) BEzp of boolean expressions, and
a set (z €)PVar of procedure variables. The syntax of L is given in below
in BNF.

“The notation (z, v, ... €)X introduces the set X with typical variables x, y, When-
ever we use a set in a context where a domain is needed, we assume it is equipped with
the discrete order.

24

Definition 1 (Syntaz of L)
The set (s €)Stmt of statements in L is given by the following grammar:

s(€ Stmt) ::= skip | a;s | if bthen selses| s s |
call(z) | letrec z be s in s,

where the set of elementary actions is defined by:

a=v:=e| write(e).

L provides assignment (v := e), a primitive for writing the value of a nu-
merical expression at the standard output file (write(e)), a null command
(skip), sequential composition (in the form of action prefixing: a;s), a con-
ditional command (if b then s else s), parallel composition (s || s), and
recursion.

The meaning of expressions is defined by two valuations £[-] : Ezp —
(State - N) and B[-] : BEzp — (State — Bool), where (o €)State =
Var — N is the domain of states.

According to our design decision, the denotational semantics should
produce arbitrary execution traces of concurrent programs. The final yield
of the denotational semantics is a sequence of ”observables” (in our case
natural numbers € N), which is an element of the following (recursively
defined) domain: O = ({e¢} + (N x O)), where € is the empty sequence.
O is a lifted domain; the bottom element (L) represents a non-terminating
computation that produces no observable effect.

To simulate the nondeterministic behavior of a concurrent system, the
denotational mapping uses a (pseudo-)random number generator; random
numbers are natural numbers. We put (p €)R = N and we assume given an
initial random number py(€ R) and a mapping r : R — R that produces a
new random number from a given one®.

In the definition of the denotational semantics for L we employ the
following domain: (¢ €)D = Cont — R — State — O, where Cont is
the domain of continuations which, in the CSC approach, is a configuration
(e.g. a multiset) of computations. Here, we implement this concept as
follows: (y €)Cont = Id x Kont, (9 €)Kont = Id — Proc, and (p €
)Proc = Sched x D. The elements of Id are process identifiers. In the
present setting it is convenient to put: (v €)Id = N. An element ¢ €
Kont is a multiset of processes, where each process is a pair containing

A very simple example of such a pseudo-random number generator can be defined as
follows: po = 17489 and r(p) = (25173 x p + 13849) % 65536.

25

some scheduling information and a computation (an element of type D).
A continuation v = (z,9) € Cont implements a dynamic pool of processes;
only elements ¥(¢) for ¢ < 7 are handled by the semantic functions, and 7
always points to the next free location in . This means that continuations
are finite structures.

In this section the domain Sched is defined by: (¢ €)Sched = {null} +
{proc}. Finally, to deal with recursion we define semantic environments as
follows: (n €)Env = PVar — D.

We see that, in order to get a good mathematical foundation for our
design, we need to solve the following domain equation (where Id, Sched
and F do not depend on D): D = (Id x (Id — (Sched x D))) — E, where
E = R — State — O is a domain with least element (Lg = Ap.Ao. L),
which means that D also has a least element; more precisely Lp = Ay.Lg.
In section 3 we will employ a semantic domain defined by a very similar
equation; in fact, only the domains Sched and O are slightly modified in
section 3, but the both equations can be solved in the same way. The
solution is given in section 4.

In the definition of the denotational semantics we use a predicate
terminates : Cont — Bool, given by

terminates(t,9) = if (1 = 0) then true else Ao, isnull(9(1));

this predicate formalizes the intuitive notion of termination for a continua-
tion. Here, isnull : Proc — Bool is given by: isnull(s, ¢) = (¢ = null).

Ounly processes (s, ¢) € Proc such that ¢ # null are planned for ex-
ecution. In the definition of the denotational semantics, we assume given
a mapping sched : (Cont x R) — Id which uses a random number to
simulates an arbitrary selection of a process in a continuation 7 such that
—terminates(y). For a given (non-terminating) continuation v = (z,9) and
random number p, sched(y, p) will return a (randomly chosen) process iden-
tifier » € Id such that + < 7, and 9(¢) = (proc, ¢) for some ¢ € D. A detailed
design for such a scheduling mapping is given in section 3 for a more complex
language with synchronous communication.

Definition 2 (Denotational prototype semantics for L)
(a) We define k(€ D) as follows:

K(2,9)(p)(0) =

26

€, if terminates(z,?)

¢ (T, (9] v (null, $))(rp)(o), if ~terminates(z,d) and
sched((z,9),p) = and
9(e) = (proc, ¢)

(b) The denotational semantics [-] : Stmt — Env — D is defined as
follows:

[skip | nypo = kypo
[v:=es]nypo = k((proc, [s]n) = Y)p(o v Ele]o)
[write(e); s]nypo = (E]e] o, x((proc, [s]n) = v)po)
[if b then s; else s2]| nypo =
if B[b]o then [s1]nypo else [s2]nypo

[call(z) [nypo = n(z)ypo
[letrec z be s; in sy | nypo =

[s2]1(n |z fizx(Ap.[s1] (n |z 8)))ypo
[s1 1l s2]mypo =

{ [s1]n((proc, [s2]n) == 7)(rp)o, if p%2=0
[s2]n((proc, [s1]n) = Y)(rp)o, if ph2=1

In this (and subsequent) definitions % is the modulo operator; Also, we

have used the notation p : (7,9) not- (newld(z), (¥ |z — p)), with
newld(t) = v+ 1, for any p € Proc and for any ~ = (7,9) € Cont.

The first three clauses in the definition of [-] define the behavior of primi-
tive commands. Only a write(e) statement produces an observable result.
Assignments and null (i.e. skip) commands do not contribute to the final
yield of [-]. However, unlike skip and write(e), an assignment command
changes the current state. The second and third clauses in the definition of
[-] treat action prefixing constructs of the form a; s (where a can be either
an assignment or a write(e) statement); in both cases the denotation of s is
added to the continuation. The following three clauses define the semantics
of conditional statements and recursion in a standard manner. Following
the CSC approach [13, 16], the semantics of parallel composition is based on
a nondeterministic choice (implemented here by using the random number
generator) between two alternative computations: one starting from the
first statement and the other starting from the second one. The denota-
tional semantics does not only depend on ”traditional arguments” - such

27

as semantic environment, continuation, and state - but also on a random
number, that is used to simulate the nonterministic behaviour of a ”real”
concurrent system, by choosing at random a single execution trace.

In the definition above fiz is the classical fixed point operator®. It
is not difficult to see that, provided terminates and sched are continuous
mappings, k and [-] are also continuous. We postpone well-definedness and
continuity issues to section 3 where we define the semantics of a language
that strictly subsumes L.

3 A CSP-like language

In this section we consider a language, called Logp, that extends L with
CSP-like synchronous communication. Let (v€)Var, (e€)Exp, (b€)BExp,
and (z €)PVar be as in section 2. In defining the syntax of Losp we also
employ a set (¢ €)Chan of communication channels.

Definition 3 (Syntaz of Losp)
The set of statements in Logp is given by the following grammar:

s(€ Stmt) ::== skip | a;s | if bthen selse s| s | s |
call(z) | letrec z be s in s,

where: a=v:=e| write(e) |cle| c?v.

All constructs, apart from cle and c?v are as in section 2. The con-
structs cle and c?v are as in Occam [8]. Synchronized execution of two
actions cle and c?v, occurring in parallel processes, results in the transmis-
sion of the value of the expression e along the channel ¢ from the process
executing the cle statement to the process executing the c?v statement. The
latter assigns the received value to the variable v.

As in section 2, we use a domain (o €)State = Var — N of states,
and valuations £[-] : Exzp — (State — N), and B[] : BExp — (State —
Bool), for numerical and boolean expressions. In the present setting, it is
also convenient to let £ range over (£ €) State — N.

The domain that we employ in the definition of the denotational (pro-
totype) semantics for Logp is very similar to the one that we have used for

51f f : X — X is a continuous mapping and X is a domain with least element 1x
then fix : (X = X) — X is defined as follows: fiz(f) = ||;c,, f'(Lx). It is well-known
that fiz is a continuous mapping, and that fiz(f) is the least fixed point of f.

28

L. In fact, only the definitions for domains O and Sched are more elaborate
than they were in section 2. In the present setting, O reflects the possibility
of an ’abnormal’ termination represented by a new constant ¢ interpreted
as deadlock, and the information embodied in Sched allows us to represent
(pairs of) communicating processes. Apart from these changes, all domain
definitions look as in section 2. However, to avoid ambiguities we give here
all domain definitions for Logp:

(¢ €)D = Cont — R — State — O,

(v €)Cont = Id x Kont, (9 €)Kont = Id — Proc,
(p €)Proc = Sched x D, O = ({e} +{6} + (Nx0)),
(s €)Sched = {null} + {proc} + Snd + Rcv,

Snd = Chan x (State — N), Rcv = Chan x Var, and

(n €)Env = PVar — D.

O is a domain with least element, which easily implies that both R —
State — O and D are domains with least elements. It is not difficult to see
that, the above definitions lead us to the domain equation that is solved in
section 4. We emphasize that, apart from O, D, Proc, Cont, Kont and Env,
all domains that are employed in the semantic constructions given in this
section are discretely ordered.

The interpretation of the above definitions is similar to the one given in
section 2 for L. Thus, D is the domain of computations, Cont is the domain
of continuations, O is used as final yield for the denotational mapping,
Sched embodies scheduling information, and Env is the domain of semantic
environments that helps us deal with recursion. Continuations are again
”finite structures”. More precisely, for any continuation v = (7,49) € Cont,
only elements ¥(¢) for ¢+ < 7 are handled by the semantic functions, and
7 always points to the next free location in 9. Moreover, we put again
(¢t €)Id = N, (p €)R = N, and we use the random number generator
(a mapping r : R — R together with some ’initial’ random number pg) as
given in section 2. However, the new definitions for O and Sched show that,
computations specified in Logp may end in deadlock, and that continuations
may contain communication attempts. The scheduling of processes needs
to be more elaborate in the present setting.

29

In the present setting we introduce some new notations. For easier
readability, we denote typical elements (c, &) of Snd by cl¢, and we denote
typical elements (¢, v) of Rev by c¢?v. Also, for any v = (7,9) € Cont we will
use the following abbreviations: v[i] "2 9(1), v(t) "< let (s, ¢) = 9(1) in ¢,

not.

and (y|tu—=pi]| | tn—opn) = @0 tu—=p1] | tnpn))-

As shown in [15], in the CSC approach the information contained in
continuations suffices for all process scheduling purposes, including process
synchronization, termination and deadlock detection. We first formalize
the intuitive notion of termination for Logp by defining (as in the previ-
ous section) a predicate terminates : Cont — Bool, terminates(i,9) =
if (£=0) then true else Ay, ., isnull(9(:)), where isnull : Proc — Bool
is given by isnull(s,$) = (¢ = null). It is easy to prove the continuity of
terminates, but we defer the issue to 3.1.

For scheduling purposes, it is also convenient to introduce the following
auxiliary domain:

(m €)II = {nil} + Id + Id x Id x (State — N) x Var.

We assume given a continuous mapping sched : (Cont x R) — II that uses
a random number p(€ R) to model a random choice of a process or of a pair
of communicating processes in a continuation y(€ Cont). More precisely,
the mapping sched(7, p) behaves as follows. It either (1) chooses at random
a process identifier + € Id such that y[i] = (proc,$) for some ¢ € D, or
(2) it chooses at random a pair of process identifiers v1,t9 € Id such that
v[e1] = (cl€, ¢1) and ~[t2] = (c?v, ¢2), for some ¢ € Chan, {(€ State — N)
and v(€ Var), in which case the components v and ¢ (of the distributed
assignment that is performed upon synchronization) are returned together
with the process identifiers 11 and 9, or, (3) when none of the above choices
are possible, it returns nil, which signifies deadlock detection. Section 3.1
offers an example of such a function sched.

Apart from the clauses for synchronous communication, the denota-
tional function [-] for Lesp looks very similar to the one given in section
2 for L; however, the semantic domains are different and the auxiliary map-
ping x is more complex.

Definition 4 (Denotational prototype semantics for Losp)

(a) We define k(€ D) as follows:
k= fiz(K),

30

with K : D — D given by:

K(k)()(p)(o) =
[e, if terminates(7y)
J, if —terminates(y) and sched(v, p) = nil

Y (v [o= yld) (rp)(o),
if —terminates(y) and sched(y,p) =1

o~ P

k(v lu = au] | e le]) (rp)(o | v Eo),
if =terminates(y) and sched(v, p) = (t1,t2,&,v)

\

—~—

where we have used the following notations: (s, @) not- (proc, ¢), and

(5, 9) " (null, ¢).

(b) The denotational semantics [-] : Stmt — Env — D is defined as
follows:

[skip | nypo = kypo
[v:=es]nypo = k((proc, [s]n) = Y)plo|v— E[e]o)
[write(e); s nypo = (E[e] o, x((proc, [s]n) = 7)po)
[cle;s]nypo = k((ctE€[e], [s]n) = v)po
[c?v; s]mypo = K((cTv, [s]n) = v)po
[if b then s; else s2 | nypo =

if B[b]o then [s1]nypo else [s2]nypo
[s1]l s2]nypo =

{ [s1]n((proc, [s2]n) = 7)(rp)o, if ph2=0

[s2]n((proc, [s1]n) = ¥)(rp)o, if p%2 =1

[call(z) | nypo = n(z)ypo
[letrec = be s in sy nypo =

[s2](n]z fiz(Ag.[s1](n |z ¢)))ypo

where we have used the notation:
p = (50) "% (newld(@), (9 | T p)),
with newld(t) = ¢+ 1, for any p € Proc and v = (7,9) € Cont.

(c) Moreover, we can define a mapping D[-] : Stmt — State — O that
computes a possible execution trace for any statement evaluated in any
state as follows:

31

D[s] = [s]m0(0,90)po,

where ny and vy = (0,99) are 7initial” values for the semantic environ-
ment and continuation, and py is the initial random number; remark
that terminates(vyg) = true, but there is no need to impose constraints
on ny or Y.

It is easy to see that (provided terminates and sched are continuous map-
pings) K is a continuous mapping and thus & is well-defined and continuous,
and [-] is also continuous.

3.1 A process scheduler with random choice

The specification that we gave in section 3 does not determine a unique
function sched : (Cont x R) — II. In this section we only present a possible
design for sched.

All operations involved in process scheduling are essentially iterations
on continuations. The basic idea is that, given a continuation v = (7,9),
we need to process somehow the information contained in all elements 9(¢),
for 0 < ¢ < 7. In fact, the type of ¢ is Id — Proc, but we only need
to be able to process various derived information embodied in functions
of types Id — Bool, Id — N, or Id — II. It is thus convenient to define
iterators that can handle functions f of type (f €)Id — A, for any discretely
ordered domain A. Let thus A be discretely ordered; we define iter4 :
(Idx ((Ax A) - A) x (Id - A) x A) — A by:

a, if =0
op(f(t —1),itera(t — 1,0p, f,a)), ife¢>0

For example, we have itera(3,op, f,a) = op(f(2),op(f(1),0p(f(0),a))).
The well-definedness of iter 4 follows by induction. Also, continuity of iter 4
follows easily when A is discretely ordered”. In the sequel, we will employ
the following notation which seems more readable:

Z.te"'A([/a op, fa a) = {

"In our case, A can only be Bool,N or II, which are all discretely ordered, and Id is
also discretely ordered. It is easy to see that the mappings itera are indeed continuous,
because:

e if A and B are discretely ordered domains then so are A x B, and A — B (and
A+ B), and

e if B is any domain, and A is discretely ordered, then any function f : A — B is
continuous.

32

opia(f) "L itera(s, op, f,a)

The mappings op,'4(f) provide us with useful abstractions. For example,
the predicate terminates can be expressed as follows: terminates(z,9) =

/\t:ue:Bool(Ab'isnuu(ﬁ(l’)))'
We also use these abstract iterators in the definition of the process

scheduler function sched : (Cont x R) — II. sched(y,p) computes the
number of processes and the number of synchronization pairs in a given
continuation v € Cont, and next it uses this information to choose at ran-
dom - i.e. by using the random number p € R - an element of type II.

sched(y,p) = let np = |[y|F,ng = |7|° in
if ((np+mng)=0) then nil
else let i = p%(np +mng) in
if (¢ < np) then ithp(vy,1) else iths(y,i — np)

|-|7,]-|¥ : Cont — N are cardinal computing functions defined as follows:

1(5,9)[” = “Fon(Aez(proc(s, 9)))
1,9)|° = Fon(ir Fon(ea-2(sync(ua, 12,9))))

where proc: (Id x Kont) — II and sync : (Id x Id x Kont) — II are:

Ly if 9(¢) = (proc, ¢)

nil, otherwise

proc(t,d) = {
sync(ty, L2,) =

{ (t1,02,€,v), if 9(1) = (c1)€, 41),9(e2) = (c2?v,¢2), and c1 = ¢z

nil, otherwise

and z : II — N is defined by: z(7) = if # = nil then 0 else 1.

One can easily check that proc, sync and isnull are monotone map-
pings®. By using the fact that, if A is any domain and B is discretely
ordered then any monotone function f : A — B is continuous, it follows

8To show this one uses the fact that, if (s1,¢1) C (s2,¢2) then ¢; = ¢ (for every

(s1,61), (2, p2) € Proc); this is so because ¢1,52 € Sched and Sched is discretely ordered.

33

that proc, sync and isnull are continuous mappings. z : II — N is also
continuous; in this case it suffices to see that II is discretely ordered.

The mapping ithp : (Cont x N) — II searches throughout a space of
processes, and the mapping ithg : (Cont x N) — II searches throughout
a space of pairs of processes that can synchronize. Both ithp(y,7) and
ithg(7y,1) return a reference to the element that is on the 7’th position in
the corresponding search space. The search is performed with respect to
the natural ordering on Id = N, respectively with respect to (a relationship
that is derived from) the lexical order on Id x Id. The definitions for ithp
and ithg are given below.

ithp((7,9),i) =
D, (. if (posp(e, (7,9)) = 4) then proc(s,d) else nil)
iths((z,9),1) =

@nzil:H(ALl' @nzil:H(ALQ' if (pOSS(Ll, L2, (Za 19)) = 7’) then Sy‘nC(Ll, L2, 19)
else nil))

The auxiliary binary operator @ : (I x IT) — II simply helps in selecting the
first non-nil element in a sequence: &(m1,me) = if 71 = nil then mo else .

Finally, for any continuation 7, the operator posp(t,7y) determines the
position of the process with identifier ¢, and the operator poss(t1,t2,7)
determines the position of a pair of processes that can synchronize and have
identifiers ¢; and (9. In the first case, the position of the process with
identifier ¢+ is determined with respect to the natural ordering on Id = N,
and we compute it by counting the number of processes with identifiers
! < 1. The definition of the auxiliary mapping posp : (Id x Cont) — N is
as follows:

posp(t, (7,9)) = “on(\.z(proc(t, 9)))

For the definition of posg : (Id x Id x Cont) — Id we consider the lexical
order. According to the lexical order, (¢},¢)) < (t1,t2) if either ¢f = 1
and ¢}, < 19, or / < 11. But, for a given continuation y = (z7,9), we only
consider pairs (1,¢2) such that 11 < 7 and 19 < 7; this means that, we have
to consider a relationship over Id x I'd which (for convenience we also denote
by ’<’, and which) is defined as follows: (},¢5) < (t1,e2) if either Jf = 11
and ¢}, < 19, or ¢} < ¢1 in which case we must have ¢}, < 7. The definition of
posg is given by:

34

poss(i1,te, (2,9)) =
(Fomrd2(sync(u, i, 9)))

+ (Fromul Fon(n.2(sync(eh, ih,)

4 Solving our domain equation

In sections 2 and 3 we have employed domains defined by equations of the
following form:

D = (B, x (E; — (B, x D))) — E,

where E is a domain with least element®, and E;, E are arbitrary domains.

In solving this equation we follow the approach (and use the notation)
in [12]. We can define Dy = () and put D; 1 = (Ey x(Ey — (EaxD;))) — E.
We want to build a co-limiting cone of domains and embeddings, but we
need to ensure that the corresponding projections are total. Obviously, there
is a unique embedding of Dy into D;, but the projection corresponding to
this embedding is not total. However, we note that D;, which is D; =
() — E, has exactly one element: the mapping with empty graph; we denote
this element by dy. Next, we consider Dy which is: Dy = (E; x (E; —
(B2 x Dy))) — E. We can define the embedding f; : D1 < Dy as follows:
fi(do) = My.LE (= Lp,), where -y ranges over F; x (Ey — (E2 x D1)). The
corresponding projection (ff(d) = dy for any d € D,) is total. By using
the framework in [12] we infer that

fir1 = (idg, x (idg, 5 (dg, x f;))) > idg

is a good definition for all ¢ > 0. Indeed, idg,,idg, and idg are identity
functions, and one can easily check by induction that the projection fZ-P
corresponding to f; is total for any i € w (ff is total, and from the fact
that f{ is total it follows that f{, is also total).

We get the co-limiting cone from the w-sequence of domains and em-
beddings

f f Ji- fi fi
D1<1]D242 QlDiQDi_H <+]1

as in [12] and obtain a domain D such that: D = (E; x(Ey; — (EexD)))— E.

9In the equations given in sections 2 and 3, E = R — State — O, and L g = Ap.Xo.Lo.

35

5 Concluding remarks and future work

The work given in this paper suggests that, by employing the CSC tech-
nique [13, 16], denotational semantics can be used as a general method for
concurrent languages prototyping. We plan to validate this idea by em-
ploying the CSC technique in the development of denotational prototype
models for more complex concurrent languages, including POOL [1], and
Concurrent Idealized Algol [3]. For the CSC technique, we also plan to
study whether there exists a formal relationship between denotational mod-
els that yield elements of powerdomain constructions and corresponding de-
notational (prototype) models that yield single arbitrary execution traces.
Such a theoretical study could be accomplished both within the classic do-
main theory [11] and within the mathematical framework of complete metric
spaces [2].

References

[1] America, P.: Issues in the design of a parallel object-oriented lan-
guage, Formal Aspects of Computing, 1:366-411, 1989.

[2] De Bakker, J.W., De Vink, E.P.: Control flow semantics, MIT
Press, 1996.

[3] Brookes, S.: The essence of parallel Algol, Information and Compu-
tation, 179(1):118-149,2002.

[4] Haskell home page, http://www.haskell.org/

[5] Hieb, R., Dybvig, R.K. , Anderson, C.W.: Subcontinuations,
Lisp and Symbolic Computation, 7(1):83-110, 1994.

[6] Hoare, C.A.R.: Communicating Sequential Processes, Communica-
tions of the ACM, 21:667-677, 1978.

[7] Hoare, C.A.R.: Communicating Sequential Processes, Prentice-Hall,
1985.

[8] INMOS Ltd.: Occam programming manual, Prentice-Hall, 1984.

[9] Mosses, P.D.: Mathematical semantics and compiler generation,
Ph.D. thesis, Univ. Oxford, 1975.

36

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mosses, P.D.: SIS, Semantics Implementation System: Reference
manual and user guide, Tech. monograph MD-30, Computer Science
Dept., Aarhus Univ., 1979.

Plotkin, G.D.: The category of complete partial orders: a tool for
making meanings, Lecture notes for the Summer School on Foundations
of Artificial Intelligence and Computer Science, Pisa, June 1978.

Tennent, R.D.: Semantics of Programming Languages, Prentice-
Hall, 1991.

Todoran, E.: Metric semantics for synchronous and asynchronous
communication: a continuation-based approach, In Proc. of FCT’99
Workshop on Distributed Systems, Electronic Notes in Theoretical
Computer Science (ENTCS), 28:119-146, Elsevier, 2000.

Todoran, E.: Semantic techniques in concurrent languages develop-
ment, Ph.D. thesis, Technical University of Cluj-Napoca, Romania,
2000.

Todoran, E.: Denotational interpreter for a CSP-like language, Au-
tomation, Computers, Applied Mathematics, 11(2):19-33, 2002.

Todoran, E., Papaspyrou, N.: Continuations for parallel logic pro-
gramming, In Proc. of 2nd International ACM-SIGPLAN Conference
on Principles and practice of Declarative Programming (PPDP’00),
pages 257-267, 2000.

Wand, M.: Continuation-based multiprocessing, In Conference record
of the 1980 Lisp Conference, pages 19-28, 1980.

37

