
Automation
Computers

Applied Mathematics
ISSN 1221–437X
Vol. 12 (2003) no. 2

pp. 35–46

CSC in concurrent languages prototyping

Eneia Todoran and Nikolaos Papaspyrou

Abstract: In [11] we presented a compositional interpreter for a CSP-like language

and we showed that, by using the ”continuation semantics for concurrency”

(CSC) technique (recently introduced by us), denotational semantics can

be used as a prototyping method for concurrent programming languages.

In this paper we employ domains (which are complete partial orders) and

continuous functions in developing a denotational semantics which is a math-

ematical formalization of the compositional interpreter given in [11].

1 Introduction

The CSC (continuation semantics for concurrency) technique was introduced in [9, 10].
This technique can model both sequential and parallel composition in interleaving semantics
while providing the general advantages of the classic technique of continuations [2]. In sub-
sequent research work we showed that the CSC technique provides better flexibility than the
classic approach to concurrency semantics [12], and that - unlike the classic approach - it can
be used as a basic method in concurrent languages prototyping [11].

In [11], we showed how to apply the CSC technique in building a denotational (compo-
sitional) interpreter for a simple CSP-like language [3, 4] providing constructions for parallel
composition, synchronous communication, and a primitive for producing (intermediate) ob-
servables at the standard output file. The distinguished feature of the denotational interpreter
developed in [11] consists in the fact that it produces incrementally a stream of observables,
i.e. a single execution trace, rather than an element of some powerdomain construction. By
using a random number generator, an arbitrary execution trace can be chosen, thus simulating
the nondeterministic behaviour of a ”real” concurrent system.

The CSC technique was introduced in [9, 10] using metric semantics [1]. In [12, 11]
the denotational models were developed using the functional programming language Haskell
[6]. In this paper we employ domains (which are complete partial orders) and continuous
functions, and we provide a mathematical formalization of the approach introduced in [11].
We emphasize that, when the CSC technique is used in this mathematical framework no
communication attempts or silent steps need to be produced as final yields of a denotational
semantics. Throughout this paper, we rely on the mathematical apparatus and notation in
[8].

36 CSC in concurrent languages prototyping

2 Syntax and informal explanation

We consider a simple CSP-like language, called LCSP . The syntax of LCSP is given below
in BNF. We assume given a set (v ∈)V ar1 of (numerical) variables, a set (e ∈)Exp of numerical
expressions, a set (b ∈)BExp of boolean expressions, a set (c ∈)Chan of communication
channels, and a set (x ∈)PV ar of procedure variables (or procedure identifiers).

Definition 2.1 (Syntax of LCSP)
The set of statements in LCSP is given by the following grammar

2:

s(∈ Stmt) ::= skip | a ∙ s | if b then s else s | s ‖ s | call(x) | letrec x be s in s,

where:

a ::= v := e | write(e) | c!e | c?v

We assume that numerical and boolean expressions have no side effects and their evaluation
always terminates. For simplicity, variables are only of numerical type (i.e., we do not use
boolean variables, but variables can appear in boolean expressions such as: v1 < v2 + 10).

LCSP provides assignment (v := e), a primitive for writing the value of a numerical expres-
sion at the standard output file (write(e)), two constructs for synchronous communication
(c!e and c?v), a null command (skip), sequential composition (in the form of action prefixing:
a∙s), a conditional command (if b then s else s), parallel composition (s ‖ s), and recursion.
The constructs c!e and c?v are as in Occam [5]. Synchronized execution of two actions c!e and
c?v, occurring in parallel processes, results in the transmission of the value of the expression
e along the channel c from the process executing the c!e statement to the process executing
the c?v statement. The later assigns the received value to the variable v.

3 Semantics

Numerical expressions evaluate to natural numbers (∈ N), and boolean expressions eval-
uate to boolean values (∈ Bool = {true, false}). The meaning of expressions is defined with
respect to a given domain State of states:

(σ ∈)State = V ar → N.

The following valuations are assumed given:

E [[∙]] : Exp→ (State→ N),

B[[∙]] : BExp→ (State→ Bool)

1In this paper, the notation (x, y, ... ∈)X introduces the set X with typical variables x, y, Whenever we
use a set in a context where a domain is needed, we assume it is equipped with the discrete order.

2For simplicity, we ignore the nondeterministic choice construct considered in [11].

Eneia Todoran and Nikolaos Papaspyrou 37

and we let ξ range over (ξ ∈) State→ N.
According to our design decision, the denotational semantics should produce arbitrary

execution traces of concurrent programs. The final yield of the denotational semantics is a
sequence of ”observables” (in our case natural numbers ∈ N), which is an element of the
following (recursively defined) domain:

O ∼= ({ε}+ {δ}+ (N×O))⊥,

where ε is the empty sequence, and δ is a constant that denotes deadlock. As it can be seen,
O is a lifted domain; the bottom element represents a non-terminating computation that
produces no observable effect.
To simulate the nondeterministic behavior of a ”real” concurrent system, the denotational

mapping uses a (pseudo-)random number generator; random numbers are natural numbers.
We put (ρ ∈)R = N and we assume given an initial random number ρ0(∈ R) and a mapping3:

r : R→ R

that produces a new random number from a given one.
The following domain is used for the denotational semantics:

(φ ∈)D = Cont→ R→ State→ O,

where Cont is the domain of continuations which, in the CSC approach, is a configuration
(typically a multiset) of computations (i.e. of elements of type D). Here, we implement this
concept as follows:

(γ ∈)Cont = Id×Kont

(ϑ ∈)Kont = Id→ Proc

(p ∈)Proc = Sched×D

The elements of the domain Id are process identifiers; they are auxiliary entities that can
be used in the representation of continuations in the CSC approach. For an appropriate
semantic modeling Id should contain an infinite number of elements. In the present setting
it is convenient to put

3A very simple example of such a pseudo-random number generator can be defined as follows:

r(ρ) = (25173× ρ+ 13849)%65536,

where ρ0 = 17489.

38 CSC in concurrent languages prototyping

(ι ∈)Id = N.

An element ϑ ∈ Kont is a multiset of processes, where each process is a pair containing some
scheduling information and a computation (of type D). A continuation γ = (ι, ϑ) ∈ Cont
implements a dynamic pool of processes; only elements ϑ(ι) for ι < ι are handled by the
semantic functions, and ι always points to the next free location in ϑ.

The domain Sched is defined as follows:

(ς ∈)Sched = {null}+ {proc}+ Snd+Rcv,

where

Snd = Chan× (State→ N)

Rcv = Chan× V ar.

For easier readability, we denote typical elements (c, ξ) of Snd by c!ξ, and we denote typical
elements (c, v) of Rcv by c?v.

Whenever convenient, for any continuation γ = (ι, ϑ) ∈ Cont we will use the following
abbreviations:

• γ[ι]
not.
= ϑ(ι)

• γ〈ι〉
not.
= let (ς, φ) = ϑ(ι) in φ

• 〈γ | ι1 7→ p1 | ... | ιn 7→ pn〉
not.
= (ι, (ϑ | ι1 7→ p1 | ... | ιn 7→ pn))

We see that, in order to get a good mathematical foundation for our design, we need to
solve the following domain equation (in which Id, Sched and E do not depend on D):

D ∼= (Id× (Id→ (Sched×D)))→ E,

where E = R → State → O is a domain with least element (⊥E = λρ.λσ.⊥O), which means
that D also has a least element; more precisely ⊥D = λγ.⊥E .
Finally, to deal with recursion we define semantic environments as follows:

(η ∈)Env = PV ar → D.

Eneia Todoran and Nikolaos Papaspyrou 39

We emphasize that, apart from O,D,Proc, Cont,Kont and Env, all domains that are
employed in the semantic constructions given in sections 3 and 4 are discretely ordered.
Continuations play a central role ı̂n the CSC approach [10, 12, 11]. As shown in [11], the

information contained in continuations suffices for all process scheduling purposes, including
process synchronization, termination and deadlock detection. In the sequel, we only present
a particular solution to the problem of designing such a ”pure” continuation-based approach
to communication and concurrency using domains and continuous functions.
We begin by defining the predicate terminates : Cont→ Bool that formalizes the intuitive

notion of termination.

terminates(ι, ϑ) =
∧

0≤ι<ι

isnull(ϑ(ι)),

where isnull : Proc→ Bool is given by:

isnull(ς, φ) = (ς = null).

It is easy to prove the continuity of terminates, but we defer the issue to 4.
For scheduling purposes, it is also convenient to introduce the following domain:

(π ∈)Π = {nil}+ Id+ Id× Id× (State→ N)× V ar.

We assume given a continuous mapping sched : (Cont×R)→ Π that uses a random number
ρ(∈ R) to model a random choice of a process or of a pair of communicating processes in a
continuation γ(∈ Cont). More precisely, the mapping sched(γ, ρ) behaves as follows:

• it either chooses at random a process identifier ι ∈ Id such that γ[ι] = (proc, φ) for some
φ ∈ D, or

• it chooses at random a pair of process identifiers ι1, ι2 ∈ Id such that γ[ι1] = (c!ξ, φ1)
and γ[ι2] = (c?v, φ2), for some c ∈ Chan, ξ(∈ State→ N) and v(∈ V ar), in which
case the components v and ξ (of the distributed assignment that is performed upon
synchronization) are returned together with the process identifiers ι1 and ι2, or,

• when none of the above choices are possible, it returns nil, which signifies deadlock
detection.

Section 4 offers an example of such a function sched.
We are now prepared for the definition of the denotational semantics.

Definition 3.1 (Denotational semantics for LCSP)

(a) We define κ(∈ D) as follows:

κ = fix(K),

with K : D → D given by:

40 CSC in concurrent languages prototyping

K(k)(γ)(ρ)(σ)

=

ε, if terminates(γ)
δ, if ¬terminates(γ) and

sched(γ, ρ) = nil

γ〈ι〉 〈γ | ι 7→ γ[ι] 〉 (rρ)(σ), if ¬terminates(γ) and
sched(γ, ρ) = ι

k 〈γ | ι1 7→ γ̃[ι1] | ι2 7→ γ̃[ι2] 〉 (rρ)(σ | v 7→ ξ σ), if ¬terminates(γ) and
sched(γ, ρ) = (ι1, ι2, ξ, v)

where we have used the following notations: (̃ς, φ)
not.
= (proc, φ), and (ς, φ)

not.
= (null, φ).

(b) The denotational semantics [[∙]] : Stmt→ Env → D is defined as follows:

[[skip]] ηγρσ = κγρσ

[[v := e ∙ s]] ηγρσ = κ((proc, [[s]] η) :: γ)ρ (σ | v 7→ E [[e]]σ)

[[write(e) ∙ s]] ηγρσ = (E [[e]]σ, κ((proc, [[s]] η) :: γ)ρσ)

[[c!e ∙ s]] ηγρσ = κ((c! E [[e]] , [[s]] η) :: γ)ρσ

[[c?v ∙ s]] ηγρσ = κ((c?v, [[s]] η) :: γ)ρσ

[[if b then s1 else s2]] ηγρσ =

{
[[s1]] ηγρσ, if B[[b]]σ = true
[[s2]] ηγρσ, if B[[b]]σ = false

[[s1 ‖ s2]] ηγρσ =

{
[[s1]] η((proc, [[s2]] η) :: γ)(rρ)σ, if ρ%2 = 0
[[s2]] η((proc, [[s1]] η) :: γ)(rρ)σ, if ρ%2 = 1

[[call(x)]] ηγρσ = η(x)γρσ

[[letrec x be s1 in s2]] ηγρσ = [[s2]] (η | x 7→ fix(λφ. [[s1]] (η | x 7→ φ)))γρσ

where we have used the notation:

p :: (ι, ϑ)
not.
= (newId(ι), (ϑ | ι 7→ p))

with newId(ι) = ι+ 1, for any p ∈ Proc and for any γ = (ι, ϑ) ∈ Cont.

(c) Moreover, we can define a mapping D[[∙]] : Stmt → State → O that computes a
possible execution trace for any statement evaluated in any state as follows:

D[[s]] = [[s]] η0(0, ϑ0)ρ0,

where η0 and γ0 = (0, ϑ0) are ”initial” values for the semantic environment and contin-
uation, and ρ0 is the initial random number; remark that terminates(γ0) = true, but
there is no need to impose constraints on η0 or ϑ0.

Eneia Todoran and Nikolaos Papaspyrou 41

Of course, in the definition above fix is the classical fixed point operator4. It is not difficult
to see that (provided terminates and sched are continuous mappings) K is a continuous
mapping and thus κ is well-defined and continuous, and [[∙]] is also continuous.
A distinguished feature of our semantic model consists in the fact that, the final yield of

the denotational model is not an element of some powerdomain construction but rather a sin-
gle stream of observables (i.e. a single execution trace). Moreover, the denotational semantics
does not only depend on ”traditional arguments” - such as semantic environment, continua-
tion, and state - but also on a random number, that is used to simulate the nonterministic
behaviour of a ”real” concurrent system, by choosing at random a single execution trace.

4 A process scheduler with random choice

The specification that we gave in section 3 does not determine a unique function sched :
(Cont×R)→ Π. In this section we only present a possible design for sched.
All operations involved in process scheduling are essentially iterations on continuations.

The basic idea is that, given a continuation γ = (ι, ϑ), we need to process somehow the
information contained in all elements ϑ(ι), for 0 ≤ ι < ι. In fact, the type of ϑ is Id→ Proc,
but we only need to be able to process various derived information embodied in functions
of types Id → Bool, Id → N, or Id → Π. It is thus convenient to define iterators that can
handle functions f of type (f ∈)Id→ A, for any discretely ordered domain A. Let thus A be
discretely ordered; we define iterA : (Id× ((A×A)→ A)× (Id→ A)×A)→ A as follows:

iterA(ι, op, f, a) =

{
a, if ι = 0
op(f(ι− 1), iterA(ι− 1, op, f, a)), if ι > 0

The well-definedness of iterA follows by induction. Also, continuity of iterA follows easily
when A is discretely ordered5. This definition gives us:

iterA(0, op, f, a) = a

iterA(1, op, f, a) = op(f(0), a)
iterA(2, op, f, a) = op(f(1), op(f(0), a))
iterA(3, op, f, a) = op(f(2), op(f(1), op(f(0), a)))

and so on. In the sequel, we will employ the following notation which seems often more
readable:

4If f : X → X is a continuous mapping and X is a domain with least element ⊥X then fix : (X → X)→ X
is defined as follows: fix(f) =

⊔
i∈ω f

i(⊥X). It is well-known that fix is a continuous mapping, and that
fix(f) =

⊔
i∈ω f

i(⊥X) is the least fixed point of f .
5In our case, A can only be Bool,N or Π, which are all discretely ordered, and Id is also discretely ordered.

It is easy to see that the mappings iterA are indeed continuous, because:

• if A and B are discretely ordered domains then so are A×B, and A→ B (and A+B), and

• if B is any domain, and A is discretely ordered, then any function f : A→ B is continuous.

42 CSC in concurrent languages prototyping

op ιa:A(f)
not.
= iterA(ι, op, f, a)

The mappings op ιa:A(f) provide us with useful abstractions. For example, the predicate
terminates (introduced together with the predicate isnull in section 3) can be expressed as
follows:

terminates(ι, ϑ) =
∧ ι

true:Bool
(λι.isnull(ϑ(ι))) (=

∧

0≤ι<ι

isnull(ϑ(ι))).

We also use these abstract iterators in the definition of the process scheduler function
sched : (Cont × R) → Π. sched(γ, ρ) computes the number of processes and the number of
synchronization pairs in a given continuation γ ∈ Cont, and next it uses this information to
choose at random - i.e. by using the random number ρ ∈ R - an element of type Π.

sched(γ, ρ) =

let nP = |γ|P , nS = |γ|S in

if ((nP + nS) = 0) then nil

else let i = ρ%(nP + nS) in

if (i < nP) then ithP (γ, i)

else ithS(γ, i− nP)

| ∙ |P , | ∙ |S : Cont→ N are cardinal computing functions defined as follows:

|(ι, ϑ)|P = + ι0:N(λι.z(proc(ι, ϑ)))

|(ι, ϑ)|S = + ι0:N(λι1.+
ι
0:N(λι2.z(sync(ι1, ι2, ϑ))))

where the mappings proc : (Id×Kont)→ Π and sync : (Id× Id×Kont)→ Π are given by:

proc(ι, ϑ) =

{
ι, if ϑ(ι) = (proc, φ)
nil, otherwise

sync(ι1, ι2, ϑ) =

{
(ι1, ι2, ξ, v), if ϑ(ι1) = (c1!ξ, φ1), ϑ(ι2) = (c2?v, φ2), and c1 = c2
nil, otherwise

Eneia Todoran and Nikolaos Papaspyrou 43

and z : Π→ N is:

z(π) =

{
0, if π = nil
1, otherwise

One can easily check that proc, sync and isnull (isnull was introduced in section 3) are
monotone mappings6. By using the fact that, if A is any domain and B is discretely ordered
then any monotone function f : A → B is continuous, it follows that proc, sync and isnull
are continuous mappings. z : Π → N is also continuous; in this case it suffices to see that Π
is discretely ordered.

The mapping ithP : (Cont × N) → Π searches throughout a space of processes, and the
mapping ithS : (Cont × N) → Π searches throughout a space of pairs of processes that can
synchronize. Both ithP (γ, i) and ithS(γ, i) return a reference (more precisely an element of
type Π) to the element that is on the i’th position in the corresponding search space. The
search is performed with respect to the natural ordering on Id = N, respectively with respect
to (a relationship that is derived from) the lexical order on Id× Id. The definitions for ithP
and ithS are given below.

ithP ((ι, ϑ), i) =

⊕ ι
nil:Π(λι. if (posP (ι, (ι, ϑ)) = i) then proc(ι, ϑ) else nil)

ithS((ι, ϑ), i) =

⊕ ι
nil:Π(λι1.

⊕ ι
nil:Π(λι2. if (posS(ι1, ι2, (ι, ϑ)) = i) then sync(ι1, ι2, ϑ) else nil))

The auxiliary binary operator ⊕ : (Π × Π) → Π simply helps in selecting the first non-nil
element in a sequence:

⊕(π1, π2) =

{
π2, if π1 = nil
π1, otherwise

Finally, for any continuation γ, the operator posP (ι, γ) determines the position of the
process with identifier ι, and the operator posS(ι1, ι2, γ) determines the position of a pair of
processes that can synchronize and have identifiers ι1 and ι2. In the first case, the position
of the process with identifier ι is determined with respect to the natural ordering on Id = N,
and we compute it by counting the number of processes with identifiers ι′ < ι. The definition
of the auxiliary mapping posP : (Id× Cont)→ N is as follows:

posP (ι, (ι, ϑ)) = +
ι
0:N(λι

′.z(proc(ι′, ϑ)))

6To show this one uses the fact that, if (ς1, φ1) v (ς2, φ2) then ς1 = ς2 (for every (ς1, φ1), (ς2, φ2) ∈ Proc);
this is so because ς1, ς2 ∈ Sched and Sched is discretely ordered.

44 CSC in concurrent languages prototyping

For the definition of posS : (Id × Id × Cont) → Id we consider the lexical order. According
to the lexical order, (ι′1, ι

′
2) < (ι1, ι2) if either ι

′
1 = ι1 and ι

′
2 < ι2, or ι

′
1 < ι1. But, for a given

continuation γ = (ι, ϑ), we only consider pairs (ι1, ι2) such that ι1 < ι and ι2 < ι; this means
that, we have to consider a relationship over Id×Id which (for convenience we also denote by
’<’, and which) is defined as follows: (ι′1, ι

′
2) < (ι1, ι2) if either ι

′
1 = ι1 and ι

′
2 < ι2, or ι

′
1 < ι1

in which case we must have ι′2 < ι. The definition of posS is given by:

posS(ι1, ι2, (ι, ϑ)) =
(
+ ι20:N(λι

′
2.z(sync(ι1, ι

′
2, ϑ)))

)
+
(
+ ι10:N(λι

′
1.+

ι
0:N(λι

′
2.z(sync(ι

′
1, ι
′
2, ϑ))))

)

5 Solving our domain equation

We show how to solve an equation of the form:

D = (E1 × (E1 → (E2 ×D)))→ E,

where E is a domain with least element7, and E1, E2 are arbitrary domains. In solving this
equation we follow the approach (and use the notation) in [8].
We can define D0 = ∅ and put

Di+1 = (E1 × (E1 → (E2 ×Di)))→ E.

Following [8], we want to build a co-limiting cone of domains and embeddings, but we need to
ensure that the corresponding projections are total. Obviously, there is a unique embedding
of D0 into D1, but the projection corresponding to this embedding is not total. However, we
note that D1, which is:

D1 = ∅ → E,

has exactly one element: the mapping with empty graph; we denote this element by d0. Next,
we consider D2 which is:

D2 = (E1 × (E1 → (E2 ×D1)))→ E.

We can define the embedding f1 : D1 Δ D2 as follows: f1(d0) = λγ.⊥E (= ⊥D2), where
γ ranges over E1 × (E1 → (E2 ×D1)). The corresponding projection (fP1 (d) = d0 for any
d ∈ D2) is total. By using the framework in [8] we infer that

fi+1 = (idE1 × (idE1
E
→ (idE2 × fi)))

E
→ idE

7In the original equation E = R→ State→ O. The least element of this domain is λρ.λσ.⊥O.

Eneia Todoran and Nikolaos Papaspyrou 45

is a good definition for all i > 0. Indeed, idE1 , idE2 and idE are identity functions, and one
can easily check by induction that the projection fPi corresponding to fi is total for any i ∈ ω
(fP1 is total, and from the fact that f

P
i is total it follows that f

P
i+1 is also total).

We can then construct the co-limiting cone from the ω-sequence of domains and embed-
dings

D1
f1
Δ D2

f2
Δ ∙ ∙ ∙

fi−1
Δ Di

fi
Δ Di+1

fi+1
Δ ∙ ∙ ∙

as in [8] and obtain a domain D such that

D ∼= (E1 × (E1 → (E2 ×D)))→ E.

6 Concluding remarks and future work

In this paper we have presented a mathematical formalization for the denotational inter-
preter developed in [11] for a CSP-like language. Following [11], we used the CSC technique
[9, 10, 12] in the design of the denotational model. We worked in a category of complete
partial orders and continuous mappings [7], and we used the notation in [8]. We showed that,
when the CSC technique is employed in this mathematical framework no communication at-
tempts or silent steps need to be produced as final yields of a denotational semantics. What
we get here is a ”pure” continuation-based approach to communication and concurrency in
which all scheduling tasks can be modeled as operations on continuations.

The use of process identifiers in the representation of continuations (first considered in
[10]) is a distinguished feature of the semantic construction given in this paper. We plan to
design a denotational model similar to the one given in this paper but based on continuations
which are represented as lists of processes, i.e. as elements of a domain of the form: Cont ∼=
({empty}+ (Proc× Cont))⊥. As shown in [9], powerdomains could also be employed in the
representation of continuations. We plan to study the advantages and the disadvantages of
the various representations of continuations when the CSC technique is used in concurrent
languages prototyping.

References

[1] J.W.de Bakker, E.P.de Vink. Control flow semantics. MIT Press, 1996.

[2] A. de Bruin. Experiments with continuation semantics: jumps, backtracking, dynamic
networks. Ph.D. thesis, Vrije Universiteit, Amsterdam, 1986.

[3] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21:667–677, 1978.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[5] INMOS Ltd. Occam programming manual. Prentice-Hall, 1984.

46 CSC in concurrent languages prototyping

[6] S. Peyton Jones, and J. Hughes (editors). Report on the programming lan-
guage Haskell 98: a non-strict purely functional language, 1999. Available from
http://www.haskell.org/.

[7] G.D. Plotkin. The category of Complete Partial Orders: a tool for making meanings.
Lecture notes for the Summer School on Foundations of Artificial Intelligence and
Computer Science, Pisa, June 1978.

[8] R.D. Tennent. Semantics of Programming Languages. Prentice-Hall, 1991.

[9] E. Todoran. Continuation Semantics for Concurrency. ACAM 6(1):31-46, 1997.

[10] E. Todoran. Metric semantics for synchronous and asynchronous communication: a
continuation-based approach. In Proc. of FCT’99 Workshop on Distributed Systems,
Electronic Notes in Theoretical Computer Science (ENTCS), 28:119–146, Elsevier,
2000.

[11] E. Todoran. Denotational interpreter for a CSP-like language. Automation, Comput-
ers, Applied Mathematics (ACAM), 11(2):19-33, 2002.

[12] E. Todoran, and N. Papaspyrou. Continuations for parallel logic programming, In
Proc. of 2nd International ACM-SIGPLAN Conference on Principles and practice of
Declarative Programming (PPDP’00), pages 257–267, 2000.

Eneia Todoran
Eneia Todoran
Technical University of Cluj-Napoca
Department of Computer Science
Baritiu Str. 28, (3400) Cluj-Napoca
Romania
e-mail: Eneia.Todoran@cs.utcluj.ro

Nikolaos Papaspyrou
National Technical University of Athens
Department of Electrical and Computer Engineering
Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou
Greece
e-mail: nikie@softlab.ntua.gr

