
Continuations for Parallel Logic Programming

Eneia Todoran
Technical University of Cluj-Napoca

Dept. of Computer Science
Parallel and Distributed Systems Laboratory
Baritiu Str. 28, 3400, Cluj-Napoca, Romania.

Eneia.Todoran@cs.utcluj.ro

Nikolaos S. Papaspyrou
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Software Engineering Laboratory

Polytechnioupoli, 15780 Zografou, Greece.

nickie@softlab.ntua.gr

ABSTRACT
This paper gives denotational models for three logic pro-
gramming languages of progressive complexity, adopting the
\logic programming without logic" approach. The �rst lan-
guage is the control
ow kernel of sequential Prolog, featur-
ing sequential composition and backtracking. A committed-
choice concurrent logic language with parallel composition
(parallel AND) and don't care nondeterminism is studied
next. The third language is the core of Warren's basic An-
dorra model, combining parallel composition and don't care
nondeterminism with two forms of don't know nondetermin-
ism (interpreted as sequential and parallel OR) and favoring
deterministic over nondeterministic computation. We show
that continuations are a valuable tool in the analysis and
design of semantic models for both sequential and parallel
logic programming. Instead of using mathematical nota-
tion, we use the functional programming language Haskell
as a metalanguage for our denotational semantics, and em-
ploy monads in order to facilitate the transition from one
language under study to another.

Keywords
Parallel logic programming, basic Andorra model, denota-
tional semantics, continuations, monads, Haskell.

1. INTRODUCTION
The theory and practice of sequential logic programming
is now considered well-established, having been studied for
several decades [1, 17]. Over these years, researchers have
distinguished at least two basic categories of semantics for
logic programming: declarative and operational. Following
the idea that logic programming is logic + control [16], a
number of researchers have found it convenient to dedicate
their investigation not to the declarative semantics of logic
programming, but rather to the study of the various con-
trol
ow concepts encountered therein, an approach usually
called \logic programming without logic" that is advocated
in [5, 6]. Focusing on control
ow, it is possible to apply

techniques used in the theory of programming language se-
mantics and to develop operational and denotational models
for both sequential Prolog and parallel logic languages.

One of the �rst models of parallel logic programming was im-
plemented in the family of committed-choice languages [26],
well known representatives of which are Concurrent PRO-
LOG [25], PARLOG [13] and Guarded Horn Clauses (GHC)
[32]. Committed-choice languages support don't care nonde-
terminism and the parallel composition of goals. Further de-
scendants of these languages, such as Flat Concurrent Pro-
log [19] and Flat GHC [23], are based on
at guards.

In an attempt to combine the sequential logic programming
model of Prolog, which provides don't know nondetermin-
ism, with the model of committed-choice languages, the ba-
sic Andorra model (BAM) was proposed [34]. BAM, which is
also based on
at guards, has been implemented in Andorra-
I [4], PANDORA [2] and owes much to P-Prolog [36]. An-
dorra provides both don't care and don't know nondeter-
minism. The execution of a don't know choice can be very
expensive in practice when it contains more than one non
failing alternatives, a phenomenon called nondeterministic
promotion in which all AND-parallel goals are replicated
for each non failing alternative. For this reason, such don't
know goals are suspended in Andorra, until all other parallel
goals have been reduced.

Our aim in the present paper is to show that continua-
tions are very well suited for designing denotational seman-
tic models for the control
ow kernel of both sequential and
parallel logic programming. We de�ne three languages of
progressive complexity, largely representing the three cate-
gories of logic programming languages discussed in the pre-
vious three paragraphs, and provide denotational semantics
for each one of them, based on continuations. Our approach
follows the principles of \logic programming without logic".
Thus, in the de�nition of the three languages we abstract
from any articulation of the basic computation steps and
represent the elementary operations encountered in logic
programming (e.g. uni�cation, substitution generation, etc.)
as uninterpreted atomic actions. The logical connectives are
modelled by appropriate operators on processes.

Instead of using mathematical notation for the de�nition
of the denotational semantics, we use the functional pro-
gramming language Haskell [22]. In this way, we allow our
denotational semantics to be directly implementable, in the

257

Permission to make digital or hard copies of all or part of this work for
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPDP'00, Montreal, Canada.
Copyright 2000 ACM 1-58113-265-4/00/0009…$5.00.
PPDP'00,

form of an interpreter for the languages under study, and
thus to be easily tested and evaluated. At the same time,
we avoid unnecessary complexities accompanying the use of
domain theory or the theory of metric spaces, which could
have been adopted alternatively.

One of the most important drawbacks of classic denota-
tional semantics is its lack of modularity: small changes
in a language's de�nition often imply a complete rewrite
of its formal semantics. The use of monads has been pro-
posed as a remedy and has become quite popular both in
the denotational semantics and the functional programming
community [20, 33]. Monads, which are directly supported
in Haskell, are used in this paper in order to facilitate the
de�nition of a modular and elegant semantics for the three
languages under study in a uni�ed way.

A brief description of the three languages is given below,
together with our comments concerning the techniques used
in de�ning their semantics.

� Language L0: Pure sequential Prolog with backtrack-
ing (don't know nondeterminism). We have named
this language L0 because we consider it only an ap-
petizer for the parallel logic languages that follow. In
the denotational semantics for L0 we use the classic
technique of continuations [29, 18], which has been
advocated for capturing the semantics of backtrack-
ing of sequential Prolog in various papers [11, 12, 5].
It should be mentioned that numerous other opera-
tional and denotational semantics for sequential Prolog
have been proposed; many of these approaches include
extra-logical features, such as cuts and side e�ects, not
considered in the present paper.

� Language L1: Commited-choice concurrent logic lan-
guage, providing parallel composition and don't care
nondeterminismwith
at guards. L1 is basically equiv-
alent to the core of Flat Concurrent Prolog [19] and
Flat GHC [23]. The denotational semantics of L1 can
be de�ned using the classic direct approach to concur-
rency semantics as in [7, 5]. In our de�nition, we use
the \continuation semantics for concurrency" (CSC)
technique introduced in [30]. This technique can model
both sequential and parallel composition in interleav-
ing semantics, while providing the general advantages
of the classic technique of continuations [10].

� Language L2: The basic Andorra model [34] which
incorporates parallel composition, don't care nonde-
terminism and Prolog-like don't know nondetermin-
ism. To the best of our knowledge, no denotational
semantics for Andorra has been published and all our
attempts to model the behaviour of the model by using
various combinations of the direct approach to concur-
rency and the classic technique of continuations have
failed. We consider the denotational model that we
propose in section 4 as the most signi�cant result of
this paper. It is based on the CSC technique, which
can capture the semantics of all features present in L2:
AND parallelism, Prolog's backtracking (implemented
as sequential OR) and OR parallelism. Moreover, our
semantics models the process suspension mechanism

which follows from the Andorra principle: determinis-
tic computation is given priority over nondeterministic
computation. A more detailed description of the basic
Andorra model [34] is given in section 4.

In L2, OR parallelism is implemented as a \true" par-
allel composition operator, an interleaving semantics
for which has been studied in [31], in the absence
of AND parallelism. All other denotational models
known to us, e.g. [9, 8], implement OR parallelism in
the context of concurrent (constraint) logic program-
ming as don't care nondeterminism, and each trace
corresponds to (at most) one logical solution of the
program. Obviously, this approach is no longer appro-
priate for a language with don't know nondeterminism,
like Andorra.

The rest of the paper is structured as follows. The next
three sections de�ne the three languages L0, L1 and L2,
study their denotational semantics using continuations and
provide implementations of the semantics in Haskell. In the
last two sections we discuss related work and present some
concluding remarks and directions for future research.

2. SEQUENTIAL LOGIC PROGRAMMING
The �rst language under study, called L0, is intended as
a simpli�ed approximation of sequential Prolog. The fea-
tures that it combines are: failure, atomic actions, recursion,
sequential composition (sequential AND) and backtracking
(sequential OR). A simple grammar for the language L0 is
given below.

p ::= (x=s ;)� s
s ::= g j call(x) j s : s j h l i
g ::= fail j a
l ::= � j g?s (+ g?s)�

A program is a sequence of declarations followed by a state-
ment. Declarations associate statements with procedure
variables, i.e. elements of the syntactic class x , and can be
recursive. Statements consist of elementary statements, i.e.
elements of the syntactic class g , recursive calls and applica-
tions of the sequential composition and backtracking oper-
ators. Elementary statements are failure and interpretation
of a single atomic action, i.e. an element of the syntactic
class a. Finally, the backtracking operator takes a (possibly
empty) list of operands, i.e. an element of the syntactic class
l , each operand being a statement guarded by an elementary
statement (which can model head uni�cation).

The abstract syntax of L0 can be implemented in Haskell as
follows:

type Act = String

type PVar = String

data Stmt = A Atomic
| Rec PVar
| Sand (Stmt, Stmt)
| Sor LStmt

258

data Atomic = Fail | Act Act

type LStmt = [(Atomic, Stmt)]

It is not necessary to implement declarations and programs
directly. Declarations can be modelled in Haskell as func-
tions of type:

type Decl = PVar -> Stmt

In order to simplify the de�nition of the semantics, we as-
sume that there is a distinguished element of this type which
contains all the declarations of a given program.

decl :: Decl

The main semantic function maps each statement of L0 to
a computation, i.e. an element of the semantic class D. Al-
though the selection of an appropriate D for L0 is relatively
easy, it is our goal to make this selection as general and ab-
stract as possible, in order to simplify the transition to the
languages of the following sections. We will use the tech-
nique of continuations, therefore it is reasonable to assume
that computations are functions, mapping the current con-
tinuation to the �nal answer of the program. The semantic
class C, as yet unspeci�ed, represents continuations and the
semantic class P represents program answers.

sem :: Stmt -> D

type D = C -> P

In the study of logic programming without logic, a reason-
able choice for a program answer is a sequence of observa-
tions that result from the program's execution. Finding an
appropriate P for L0 is again easy, however our tendency for
generalization leads us to the introduction of three monads,
under the following rationale.

� The performance of some atomic actions may not be
observable in the program answer. It is therefore rea-
sonable to distinguish between the observations, which
are present in a program answer, and the atomic ac-
tions, which are present in the abstract syntax. The re-
lation between the two can be best modelled by monad
ObsM, which is used below to map the syntactic class
Act of atomic actions to the semantic class Obs of ob-
servations.

type Obs = ObsM Act

� As mentioned above, sequences of observations are re-
quired in program answers. The monad SeqM helps
in the abstraction of implementation details and maps
Obs to the semantic class Seq of sequences of observa-
tions.

type Seq = SeqM Obs

� Are logic programs deterministic? The answer varies:
the language L0 is certainly deterministic, but we will
not expect the same from the languages of the follow-
ing sections. In general, program answers are expected
to consist of a set of elements of Seq and, again, we
�nd it reasonable to hide the implementation details
behind the monad PosM of possible program answers.
This monad maps Seq to P as shown below.

type P = PosM Seq

The reader is referred to the appendix for a brief introduc-
tion to monads and how they are used in Haskell. Apart
from hiding implementation details, the use of monads im-
proves the semantics in terms of modularity and elegance
and smoothens the transition from L0 to the languages of
the following sections.

For the semantics of L0, observations need not be di�eren-
tiated from atomic actions. Also, L0 is deterministic and
program answers consist of one sequence. Therefore, mon-
ads ObsM and PosM can be substituted by the identity monad
Id, which is de�ned in the appendix. Haskell's list monad is
a perfect candidate for monad SeqM. Moreover, in the study
of L0 the class C of continuations needs not be di�erent
from the class P of program answers, i.e. a continuation is
the answer of the fragment of the program that remains to
be executed.

type ObsM a = Id a

type SeqM a = [a]
type PosM a = Id a

type C = P

The operations on sequences of observations can easily be
implemented in terms of Haskell's operations on lists. The
empty sequence s0, the sequence pre�xing operator prefixS
and the sequence concatenation seqS are de�ned below.

s0 :: Seq
s0 = []

prefixS :: Obs -> Seq -> Seq
prefixS = (:)

seqS :: Seq -> Seq -> Seq
seqS = (++)

Operations on program answers can be de�ned using op-
erations on sequences and the properties of monad PosM.
The empty answer p0 contains an empty sequence of obser-
vations. Function prefixP implements the pre�xing of an
observation to a program answer. Finally, function lsorP
takes as argument a list of program answers p1; : : : ; pn and
returns a new program answer p. If s1; : : : ; sn are sequences
of observations in p1; : : : ; pn respectively, then the concate-
nation of all s1; : : : ; sn is a sequence of p.

p0 :: P

259

p0 = return s0

prefixP :: Obs -> P -> P
prefixP o p = p >>= (return . prefixS o)

lsorP :: [P] -> P
lsorP [] = p0

lsorP (p:ps) = do {
s1 <- p;
s2 <- lsorP ps;
return (s1 `seqS` s2)

}

According to our selection of C = P, the empty continuation
is simply an empty program answer.

c0 :: C
c0 = p0

Function cont implements continuation completion. It maps
a continuation to the program answer that would result if
the continuation alone was left to execute. In the semantics
of L0, cont is the identity function, but this will not be true
in the languages studied in the following sections.

cont :: C -> P
cont = id

The failure computation d0 ignores the current continuation
and returns an empty program answer. Function lsorD im-
plements the backtracking (sequential OR) operator, which
takes a list of computations, passes the current continuation
to each of them and concatenates the results using lsorD.
Function addCont takes a computation d and a continuation
c and returns an extended continuation that performs both
d and c. In its implementation below, addCont simply ap-
plies d to c, thus resulting in the sequential execution of �rst
d then c.

d0 :: D
d0 c = p0

lsorD :: [D] -> D
lsorD l c = lsorP (map (\d -> d c) l)

addCont :: D -> C -> C
addCont d c = d c

After the de�nition of the auxiliary operations on sequences,
program answers, continuations and computations, the de�-
nition of the semantics of L0 is straightforward. The mean-
ing of fail is the failure computation, whereas the mean-
ing of an atomic action is the pre�xing of the associated
observation to the completion of the current continuation.
Recursive calls are easily handled and so is the sequential
composition operator, which extends the current continu-
ation with the computation of the second statement and
then passes the result to the computation of the �rst state-
ment. Finally, the meaning of the backtracking operator

NL0> d (read "a . b")
["a","b"]

NL0> d (read "a . fail . b")

["a"]

NL0> d (read "<a ? b + fail ? c + d ? e>")
["a","b","d","e"]

Figure 1: Example, semantics of L0.

is implemented using function lsorD, where candidates for
execution are the statements with non-failing guards.

sem (A Fail) = d0
sem (A (Act a)) = prefixP (return a) . cont
sem (Rec x) = sem (decl x)

sem (Sand (s1, s2)) = sem s1 . addCont (sem s2)
sem (Sor ls) = lsorD

[prefixP (return a) . cont . addCont (sem s)
| (Act(a), s) <- ls]

The meaning of a complete program is simply the meaning
of its statement applied to the empty continuation.

d :: Stmt -> P

d s = sem s c0

The semantics of a few example programs in L0 are shown
in Figure 1. The �rst two examples illustrate sequential
composition and the fail statement. The last example il-
lustrates the backtracking mechanism.1

3. CONCURRENT LOGIC
PROGRAMMING

In concurrent logic programming, sequential composition
and backtracking give way to parallel composition (paral-
lel AND) and general (don't care) nondeterministic choice.
The second language under study, called L1, is intended
as a core concurrent logic programming language and com-
bines these two with the basic features of L0 (failure, atomic
actions, recursion). Other features present in L0, such as se-
quential composition and backtracking, have been removed
from L1. The possibility of retaining them is discussed in
section 6.

In the grammar for L1 the rule for statements has been
replaced by:

s ::= g j call(x) j � o � j s k s
o ::= � j g :s (+ g :s)�

where, in addition to features already present in L0,�o� is
the nondeterministic choice between the guarded statements

1Additional Haskell code supports the parsing of programs.
The appendix contains information on how to obtain the
complete code.

260

of o, and s1 k s2 is the (interleaved) parallel execution of s1
and s2.

At this point, we should notice the semantic di�erence be-
tween the symbol ?, used in the rule for the syntactic class l
in the previous section, and the symbol : used in the rule for
the syntactic class o in the de�nition above. The symbol ?
can be viewed as a simple sequential composition operator,
pre�xing a
at guard to a statement. If the guard succeeds,
the statement is executed and other alternatives in l may
follow. In this way, ? provides don't know nondeterminism.
On the other hand, the symbol : can be viewed as a \com-
mit" operator and provides don't care nondeterminism. If
the guard succeeds, the statement is executed but no other
alternative in o can follow.

The implementation of the abstract syntax for L1 requires
the following modi�cation in the Haskell code. The type
LStmt is also used for implementing the syntactic class o.

data Stmt = A Atomic

| Rec PVar
| Ned LStmt
| Pand (Stmt, Stmt)

The nondeterministic features of L1 compel a rede�nition of
monad PosM, which must support multiple program answers.
Haskell's list monad is again a reasonable choice; however,
since our intention is to use Haskell's lists to model sets, it is
necessary to implement a set union operation for removing
multiply occurring elements. Function unionP returns the
union of two program answers, whereas lunionP returns the
union of a list of program answers. Notice that the empty
program answer is returned if the list is empty.

type PosM a = [a]

unionP :: P -> P -> P
unionP [] ys = ys
unionP (x:xs) ys = if x `elem` ys then

xs `unionP` ys
else

x : (xs `unionP` ys)

lunionP :: [P] -> P
lunionP [] = p0
lunionP l = foldl1 unionP l

In the presence of interleaved execution, we are forced to
reconsider our notion of continuation. Following the CSC
technique [30], we de�ne continuations to be multisets of
computations that are executed in parallel, and we again
implement multisets as Haskell's lists. The empty continu-
ation c0 is now indeed an empty list of computations and
addCont adds a computation to the continuation.

newtype C = C [D]

c0 :: C

c0 = C []

addCont :: D -> C -> C
addCont d (C l) = C (d : l)

Finally, the completion function cont returns the union of
all possible interleaved executions of the computations in-
cluded in the continuation. Operator plusP combines two
alternative program answers and is, for the time being, a
synonym to unionP. Its presence is necessary if the compu-
tation model is biased towards speci�c program answers and
will be justi�ed in the following section.

cont :: C -> P
cont (C []) = p0
cont (C l) =

let cont' :: [D] -> [D] -> P

cont' [] l2 = []
cont' (d:l1) l2 =

d (C (l1++l2)) `plusP` cont' l1 (d:l2)
in cont' l []

plusP :: P -> P -> P

plusP = unionP

The implementation of the nondeterministic choice opera-
tor is simply based on the union of program answers of the
alternatives, which are all applied to the current continua-
tion. Similarly, the implementation of parallel composition
is based on the (possibly) biased combination of two alter-
native computations: one starting from the �rst statement
and one starting from the second. The semantics of the two
constructs and the de�nitions of the two auxiliary functions,
lunionD and plusD, are given below.

sem (Ned ls) = lunionD
[prefixP (return a) . cont . addCont (sem s)

| (Act a, s) <- ls]
sem (Pand (s1, s2)) =

(sem s1 . addCont (sem s2)) `plusD`
(sem s2 . addCont (sem s1))

lunionD :: [D] -> D

lunionD l c = lunionP (map (\d -> d c) l)

plusD :: D -> D -> D
plusD d1 d2 c = d1 c `plusP` d2 c

A number of example programs in L1 are shown in Figure 2
with the corresponding semantics. The �rst two examples
illustrate the semantics of parallel composition, according
to which the atomic actions can be executed in any order,
whereas the third example illustrates the semantics of non-
deterministic choice. The last example is a combination of
the two features.

4. THE BASIC ANDORRA MODEL
The third language under study, called L2, is the core of
Warren's Basic Andorra Model. The language contains all
the features that were studied in the previous sections, with
the exception of sequential composition (sequential AND),

261

NL1> d (read "a || b")
[["a","b"],["b","a"]]

NL1> d (read "a || b || c")

[["a","b","c"],["a","c","b"],["b","c","a"],
["b","a","c"],["c","b","a"],["c","a","b"]]

NL1> d (read "<<a : b + fail : c + d : e>>")
[["a","b"],["d","e"]]

NL1> d (read "a || <<fail : b + c : d>>")
[["a","c","d"],["c","d","a"],["c","a","d"]]

Figure 2: Example, semantics of L1.

plus an additional don't know nondeterministic operator
#h l i, implemented as parallel OR. The grammar rule for
statements in L2 is given below,

s ::= g j call(x) j h l i j � o � j s k s j #h l i

and the Haskell implementation of the abstract syntax for
L2 is the following.

data Stmt = A Atomic
| Rec PVar

| Sor LStmt
| Ned LStmt
| Pand (Stmt, Stmt)
| Por LStmt

The basic characteristic of this language is the Andorra prin-
ciple, which gives priority to deterministic computation over
nondeterministic computation. The rationale behind this
principle is that nondeterministic reduction steps (nondeter-
ministic promotion) are likely to multiply work. By follow-
ing this principle, a logic programming language equipped
with parallel AND can indeed reduce the number of steps
required for the execution of a program, as compared to a
sequential version of the language like L0.

Following the Andorra principle, execution in L2 favors de-
terminate goals over nondeterminate ones in parallel con-
junctions. Elementary goals and don't care goals are de-
terminate and can always be reduced. On the other hand,
don't know goals can only be reduced if they are determi-
nate, i.e. if at most one of the alternatives has a non failing
guard. The reduction of nondeterminate goals is delayed as
much as possible. When only nondeterminate goals remain
to be reduced, then the alternatives of a don't know goal are
tried either in order (sequential OR) or concurrently (paral-
lel OR).

Following this behaviour, the semantic model for L2 needs to
distinguish between determinate and nondeterminate reduc-
tion steps. This can be achieved by modifying our notion of
observation. In the case of a determinate reduction step, the
observation is always a single atomic action, as it has been
in the semantics of the previous sections. However, in the

case of a nondeterminate reduction step, i.e. when a don't
know goal with more than one alternatives must be reduced,
the observation is a multiset containing the atomic actions
guarding the alternatives of the nondeterminate goal. We
need to modify the de�nition of monad ObsM, and again we
use Haskell's lists to implement multisets.

type ObsM a = [a]

In order to model the semantics of biased execution be-
haviour in L2, we need to modify the de�nition of function
plusP. The new version of this function distinguishes be-
tween determinate and nondeterminate goals. If either of
the two program answers p1 and p2 that must be combined
contains a determinate goal, i.e. contains a sequence starting
with a simple observation, then the combined answer con-
tains only the determinate goals of p1 and p2. Otherwise,
all nondeterminate goals are combined.2

plusP :: P -> P -> P
plusP p1 p2 =

let det :: P -> P

det [] = []
det ([] : p) = [] : (det p)
det (([a] : s) : p) = ([a] : s) : (det p)
det (_ : p) = det p

in case det p1 `unionP` det p2 of
[] -> p1 `unionP` p2

p -> p

The implementation of the backtracking operator requires a
small modi�cation from its original de�nition in section 2.
The reason is that the set union operation needs to be ap-
plied to the resulting program answer, in order to eliminate
multiple answers.

lsorP :: [P] -> P
lsorP [] = p0
lsorP (p:ps) = lunionP (do {

s1 <- p;

s2 <- lsorP ps;
return [s1 `seqS` s2]

})

The semantics of the parallel OR construct requires a num-
ber of additional operations in our semantics. Function parS
takes two sequences of observations and generates a program
answer that contains all possible interleaved executions of
the two sequences. Functions lporP and lporD extend the
same operation to lists of program answers and lists of com-
putations respectively.

parS :: Seq -> Seq -> P

2It is worthwhile noticing that our semantics does not decide
the determinacy of goals based on the abstract syntax, but
on program answers. The laziness of Haskell prevents our
implementation of the semantics from computing the whole
program answer, before deciding which goals are determi-
nate, and this leads to improved performance.

262

parS q1 q2 =

let parS' :: Seq -> Seq -> P
parS' [] s = [s]
parS' (o:s) s' = prefixP o (s `parS` s')

in (q1 `parS'` q2) `unionP` (q2 `parS'` q1)

lporP :: [P] -> P

lporP [] = p0
lporP (p:ps) = lunionP (do {

s1 <- p;
s2 <- lporP ps;
return (s1 `parS` s2)

})

lporD :: [D] -> D
lporD l c = lporP (map (\d -> d c) l)

To complete the semantics of L2, we only need to address
the two don't know nondeterministic operators of the lan-
guage. In both cases, for each alternative with a non failing
guard the corresponding statement is added to the current
continuation. The list of computations formed in this way is
passed to the appropriate function, lsorD or lporD, and the
prepended observation contains all the non failing guards.

sem (Sor ls) =

let sor :: [(Act, D)] -> D
sor [] = d0
sor l = prefixP (map fst l) .

lsorD (map snd l)
in sor [(a, cont . addCont (sem s))

| (Act a, s) <- ls]

sem (Por ls) =
let por :: [(Act, D)] -> D

por [] = d0
por l = prefixP (map fst l) .

lporD (map snd l)

in por [(a, cont . addCont (sem s))
| (Act a, s) <- ls]

Examples from our implementation of the semantics of L2
are given in Figure 3. The �rst six examples are also con-
tained in either Figure 1 or Figure 2. With the exception
of the �rst and fourth example, which contain nondetermi-
nate sequential OR goals, the obtained results are the same
with those obtained in the previous �gures. In the �rst and
fourth example, the results are also similar but all non fail-
ing guards of the sequential OR goals are combined in one
observation.

The last three examples illustrate the biased execution be-
haviour towards determinate goals. In the �rst one, the
reduction of the nondeterminate sequential OR goal is de-
layed in the presence of a and b. After these two have been
executed, in any order, the nondeterminate goal can be re-
duced. Notice that the same example would produce 46
di�erent program answers, if the Andorra principle was not
followed. Two of these answers would correspond to the an-
swers obtained here, and the rest would be the result of the
nondeterministic promotion that would follow the reduction
of the sequential OR goal. The next example is similar, only
the nondeterminate goal is a parallel OR.

The last example is the most complex one, where four goals
are executed in AND parallel. After the interleaved execu-
tion of the two determinate goals a || b, a state is reached
where the only goals that remain are the two nondetermi-
nate ones: <C ? c + D ? d> || <E ? e + F ? f>. In this
state an arbitrary nondeterminate goal is selected and exe-
cution can only proceed by nondeterministic promotion, i.e.
by making copies of the other goal for each alternative of the
selected one. For example the �rst trace shown in Figure 3
is obtained when the nondeterminate goal <E ? e + F ? f>
is selected for nondeterministic promotion. After perform-
ing the nondeterministic promotion step, which produces
the observable ["E","F"], the execution proceeds with two
computations: �rst e || <C ? c + D ? d>, which produces
the sequence of observables ["e"],["C","D"],["c"],["d"],
and upon backtracking f || <C ? c + D ? d>, which pro-
duces ["f"],["C","D"],["c"],["d"].

5. RELATED WORK
The classic technique of continuations [29, 18] has been ad-
vocated for capturing the semantics of backtracking of se-
quential Prolog in various papers [11, 12, 5]. More recently,
the list monad has been used for describing the semantics
of Prolog's clause unfolding and the advantages of adopting
monads in the higher-order logic programming framework
of �Prolog have been investigated [3].

Our continuation-based approach to the semantics of par-
allelism in logic programming seems to be new. All papers
known to us (including [5, 6, 7, 8, 9]) follow the classic (di-
rect) approach to concurrency, where the semantic designer
de�nes the various operators for parallel composition on pro-
cesses as functions that manipulate �nal semantic values.
The CSC technique [30] used in the present paper provides
a di�erent way of computing the interleaved execution of
parallel processes, which is based on manipulating contin-
uations. Even though the two approaches are di�erent, all
our experiments show that they behave the same in the case
of a language like L1 which provides parallel composition
(AND parallelism) and (don't care) nondeterminism.

To the best of our knowledge no denotational semantics for
languages based on the Andorra model like L2 has been
published and all our attempts to model the behaviour of
L2 by using various combinations of the direct approach to
concurrency and the classic technique of continuations have
failed. This con�rms our belief expressed in [30] that the
CSC technique can provide more
exibility than the clas-
sic (direct) approach to concurrency in handling complex
operations on processes.

Operational semantics for languages similar to L2, com-
bining reactive behaviour (related to AND parallelism in
logic programming) and search (backtracking and OR par-
allelism), are given in [15, 27]. Both papers formalize im-
plementations of the extended Andorra model, i.e. the ex-
tension of the basic Andorra model with deep guards. The
�rst gives an operational semantics for the Andorra Kernel
Language (AKL) [14], whereas the second presents a cal-
culus (also operational in nature) intended as a semantic
foundation for Oz [28].

263

NL2> d (read "<a ? b + fail ? c + d ? e>")
[[["a","d"],["b"],["e"]]]

NL2> d (read "a || b")

[[["a"],["b"]],[["b"],["a"]]]

NL2> d (read "a || b || c")
[[["a"],["b"],["c"]],[["a"],["c"],["b"]],[["b"],["c"],["a"]],
[["b"],["a"],["c"]],[["c"],["b"],["a"]],[["c"],["a"],["b"]]]

NL2> d (read "<A ? a || b + B ? d || e>")
[[["A","B"],["a"],["b"],["d"],["e"]],[["A","B"],["a"],["b"],["e"],["d"]],
[["A","B"],["b"],["a"],["d"],["e"]],[["A","B"],["b"],["a"],["e"],["d"]]]

NL2> d (read "<<a : b + fail : c + d : e>>")

[[["a"],["b"]],[["d"],["e"]]]

NL2> d (read "a || <<fail : b + c : d>>")
[[["a"],["c"],["d"]],[["c"],["d"],["a"]],[["c"],["a"],["d"]]]

NL2> d (read "a || <c ? d + e ? f> || b")

[[["a"],["b"],["c","e"],["d"],["f"]],[["b"],["a"],["c","e"],["d"],["f"]]]

NL2> d (read "a || #<c ? d + e ? f> || b")
[[["a"],["b"],["c","e"],["d"],["f"]],[["a"],["b"],["c","e"],["f"],["d"]],
[["b"],["a"],["c","e"],["d"],["f"]],[["b"],["a"],["c","e"],["f"],["d"]]]

NL2> d (read "a || <C ? c + D ? d> || b || <E ? e + F ? f>")
[[["a"],["b"],["E","F"],["e"],["C","D"],["c"],["d"],["f"],["C","D"],["c"],["d"]],
[["a"],["b"],["C","D"],["c"],["E","F"],["e"],["f"],["d"],["E","F"],["e"],["f"]],
[["b"],["a"],["C","D"],["c"],["E","F"],["e"],["f"],["d"],["E","F"],["e"],["f"]],
[["b"],["a"],["E","F"],["e"],["C","D"],["c"],["d"],["f"],["C","D"],["c"],["d"]]]

Figure 3: Example, semantics of L2.

A recent work worth mentioning is presented in [24], where
the authors propose an axiomatization of the semantics of
logic languages similar to L2, focusing on control
ow con-
cepts. Using a functional library of primitive operators and
the equational machinery of functional languages, the au-
thors �nd that the primitive scheduling operators of logic
programming obey the laws found in the categorical theory
of monads. The authors identify three such monads, one
corresponding to a depth-�rst scheduling strategy, one to
breadth-�rst strategy and one that allows both strategies.
The semantics that they propose is denotational in nature
and implemented in Haskell. Their language features two
basic control
ow operators, conjunction and disjunction,
which can be interpreted sequentially or in parallel, depend-
ing on the scheduling strategy. Our approach di�ers in two
ways. First, the sequential and parallel forms of the con-
trol
ow operators are distinct and present in the language
simultaneously. Second, our approach models the Andorra
principle.

6. CONCLUDING REMARKS AND
FUTURE RESEARCH

In this paper, we have shown that continuations can be used
as a tool for the systematic speci�cation and design of both
sequential and parallel logic programming languages. We
have studied three languages of progressive semantic com-

plexity in a uni�ed way and shown that a careful selection
of monads can indeed enhance the modularity and elegance
of the semantics and facilitate the introduction of additional
features or additional execution principles. Furthermore, we
have implemented our semantics in Haskell, thus providing a
directly executable prototype for the three languages under
study. With minor modi�cations, our Haskell implementa-
tion can serve as the basis of a prototype interpreter, which
would randomly choose between alternative execution paths.

The main contribution of our work is an accurate denota-
tional semantics for the basic Andorra model, using the CSC
technique. To the best of our knowledge, no other denota-
tional semantics for Andorra has been previously published.
The basic Andorra model is incorporated in various logic
and constraint-based languages and we believe that, in the
future, parallel and distributed languages will combine reac-
tive behaviour and search mechanisms in their design. For
this combinations of concepts, we have shown that the CSC
technique is an adequate speci�cation tool. Moreover, lit-
tle previous experience exists with building concurrent lan-
guages systematically from their denotational description.
Our Haskell implementation of Andorra using the CSC tech-
nique is an important step in this direction.

It would be possible to include the backtracking operator of

264

L0 (sequential OR) as a form of don't know nondeterministic
operator in L1, by modifying the de�nition of lsorP as we
do in section 4. This would not add semantic complexity to
L1. However, retaining sequential composition (sequential
AND) in either L1 or L2 would complicate a bit the seman-
tics of these two languages. The reader is referred to [30],
where the semantics of sequential composition is de�ned in
a concurrent language by using partial ordering relations on
continuations.

In this paper we have found it convenient to follow the \logic
programming without logic" approach advocated in [5] and
to focus on the control
ow kernel of (parallel) logic pro-
gramming. Accordingly, we have abstracted from any artic-
ulation in the basic computation steps and ignored concepts
like uni�cation, substitution generation, etc. However, it
is not diÆcult to add such concepts to the semantic mod-
els given in this paper and to obtain full denotational de-
scriptions of (parallel) logic languages. As explained in [5],
in general this can be achieved by interpreting the elemen-
tary actions as computational steps that are relevant for the
logic language under consideration, while leaving the already
available (abstract) control
ow kernel intact.

The semantic framework presented in this paper is very

exible, allowing for further re�nements. In the future we
are mainly interested in the application of the CSC tech-
nique in the speci�cation and design of concurrent constraint
(logic) programming languages. In [30] it is shown that the
CSC technique can express the asynchronous communica-
tion mechanism encountered in concurrent constraint (logic)
programming (see also [8]) in a simple and elegant way, by
augmenting the semantic function with an additional param-
eter (that can be used to model a constraint store) shared
by all processes in the continuation. We know how to obtain
full descriptions of concurrent constraint (logic) languages,
by adding this (asynchronous) communication mechanism
to the semantic models given in this paper for L1 and L2.
However, the subject is not trivial, and thus we defer its
treatment to a forthcoming paper.

In the present work we have only considered languages with

at guards. One of our next aims is to apply the CSC tech-
nique to parallel logic programming languages with deep
guards. In doing so, we intend to move from the basic An-
dorra model to the extended Andorra model [35], which has
been implemented in languages (that incorporate the con-
straint programming paradigm) like AKL [14, 15] and Oz
[27, 28].

Future research will also be directed to the tighter combi-
nation of continuations and monads, in order to improve
the
exibility, elegance and modularity of the semantic de-
scriptions. Based on our previous results concerning the
interleaved semantics of expression evaluation under an un-
speci�ed evaluation order [21], we believe that it is possible
to de�ne monads for the CSC technique which would ab-
stract the underlying execution behaviour.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their
useful comments on the �rst version of this paper.

8. REFERENCES
[1] K. R. Apt. Logic programming. In J. van Leeuwen,

editor, Handbook of theoretical computer science,
volume B, pages 493{574. Elsevier Science Publishers
B.V., 1990.

[2] R. Bahgat. PANDORA: nondeterministic parallel logic
programming. World Scienti�c, 1993.

[3] Y. Bekkers and P. Tarau. Monadic constructs for logic
programming. In J. Lloyd, editor, Proceedings of
ILSP'95, pages 51{65, Portland, OR, Dec. 1995. MIT
Press.

[4] V. Costa, D. H. D. Warren, and R. Yang. Andorra-I: a
parallel Prolog system that transparently exploits
both and- and or-parallelism. In Proceedings of the 3rd
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM Press, 1991.

[5] J. W. de Bakker. Comparative semantics for
ow of
control in logic programming without logic.
Information and Computation, 94:123{179, 1991.

[6] J. W. de Bakker and E. P. de Vink. Control
ow
semantics. Foundations of Computing Series. MIT
Press, Cambridge, MA, 1996.

[7] J. W. de Bakker and J. N. Kok. Comparative metric
semantics for concurrent Prolog. Theoretical Computer
Science, 75:15{43, 1990.

[8] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J.
M. M. Rutten. A paradigm for asynchronous
communication and its application to concurrent
constraint programming. In K. R. Apt, J. W.
de Bakker, and J. J. M. M. Rutten, editors, Logic
programming languages: constraints, functions and
objects, pages 82{114. MIT Press, 1993.

[9] F. S. de Boer, A. Piero, and C. Palamidessi.
Nondeterminism and in�nite computations in
constraint programming. Theoretical Computer
Science, 151:37{78, 1995.

[10] A. de Bruin. Experiments with continuation
semantics: jumps, backtracking, dynamic networks.
PhD thesis, Vrije Universiteit, Amsterdam, 1986.

[11] A. de Bruin and E. P. de Vink. Continuation
semantics for Prolog with cut. In Proceedings of
TAPSOFT'89, volume 351 of LNCS, pages 178{192.
Springer Verlag, 1989.

[12] E. P. de Vink. Comparative semantics for Prolog with
cut. Science of Computer Programming, 13:237{264,
1989.

[13] S. Gregory. Parallel logic programming in PARLOG.
Addison-Wesley, 1987.

[14] S. Haridi and S. Janson. Kernell Andorra Prolog and
its computation model. In Proceedings of the
International Conference on Logic Programming
(ICLP'90). MIT Press, 1990.

265

[15] S. Haridi and C. Palamidessi. Structural operational
semantics of kernel Andorra Prolog. In Proceedings of
the Conference on Parallel Architectures and
Languages Europe (PARLE'91). Springer Verlag, 1991.

[16] R. Kowalski. Algorithm = logic + control.
Communications of the ACM, 22:424{435, 1979.

[17] J. W. Lloyd. Foundations of logic programming.
Springer Verlag, 2nd edition, 1987.

[18] A. Mazurkiewicz. Proving algorithms by tail
functions. Information and Control, 18:220{226, 1971.

[19] C. Mierkovsky, S. Taylor, E. Shapiro, J. Levy, and
M. Safra. The design and implementation of
at
concurrent Prolog. Technical Report CS85-09,
Weizmain Institute, Department of Applied
Mathematics, Israel, 1985.

[20] E. Moggi. An abstract view of programming
languages. Technical Report ECS-LFCS-90-113,
University of Edinburgh, Laboratory for Foundations
of Computer Science, 1990.

[21] N. S. Papaspyrou and D. Ma�co�s. A study of evaluation
order semantics in expressions with side e�ects.
Journal of Functional Programming, 2000. to appear.

[22] S. Peyton Jones and J. H. (editors). Report on the
programming language Haskell 98: a non-strict purely
functional language, 1999. Available from
http://haskell.org/.

[23] G. A. Ringwood. PARLOG 86 and the dinning
logicians. Communications of the ACM, 31:10{25,
1988.

[24] S. Seres and M. Spivey. Algebra of logic programming.
In Proceedings of the International Conference on
Logic Programming (ICLP'99), 1999.

[25] E. Y. Shapiro. A subset of concurrent Prolog and its
interpreter. Technical Report TR-003, ICOT, Tokyo,
1983.

[26] E. Y. Shapiro. The family of concurrent logic
programming languages. ACM Computer Surveys,
21:412{510, 1989.

[27] G. Smolka. A calculus for higher-order concurrent
constraint programming with deep guards. Research
Report RR-94-03, Deutsches Forschungszentrum f�ur
Kunstliche Intelligenz (DFKI), Saarbrucken, Germany,
1994.

[28] G. Smolka. The Oz programming model. In Computer
Science Today, volume 1000 of LNCS, pages 324{343.
Springer Verlag, 1995.

[29] C. Strachey and C. P. Wadsworth. Continuations: a
mathematical semantics for handling full jumps.
Technical Monograph PRG-11, Oxford University,
Programming Research Group, 1974.

[30] E. Todoran. Metric semantics for synchronous and
assynchronous communication: a continuations based
approach. Electronic Notes on Theoretical Computer
Science, 28:119{146, 2000.

[31] E. Todoran, J. den Hartog, and E. P. de Vink.
Comparative metric semantics for commit in
or-parallel logic programming. In Proceedings of the
International Logic Programming Symposium 97,
pages 101{115. MIT Press, 1997.

[32] K. Ueda. Guarded Horn clauses: a parallel logic
programming language with the concept of a guard. In
M. Nivat and K. Fuchi, editors, Proceedings of
Programming of Future Generation Computers, pages
441{456. North Holland, 1988.

[33] P. Wadler. The essence of functional programming. In
Proceedings of the 19th Annual Symposium on
Principles of Programming Languages (POPL'92),
Jan. 1992.

[34] D. H. D. Warren. The Andorra principle. Talk given
at the Gigalips Workshop, Swedish Institute of
Computer Science (SICS), Stockholm, Sweden, 1988.

[35] D. H. D. Warren. Extended Andorra model with
implicit control. Talk given at a Parallel Logic
Programming Workshop, Eilat, Israel, 1990.

[36] R. Yang. P-Prolog: a parallel logic programming
language. World Scienti�c, 1987.

APPENDIX
A. COMPLETE CODE
Due to space restrictions, the Haskell code presented in
this paper does not implement the pretty-printing and pars-
ing of L0, L1 and L2 programs. Apart from this, how-
ever, the paper is self contained. The complete code can
be obtained from ftp://ftp.softlab.ntua.gr/pub/users/
nickie/papers/ppdp00.code.tar.gz.

B. MONADS IN HASKELL
The rest of the appendix contains a brief introduction to
monads and their use in Haskell. More detailed introduc-
tions to the theory and practice of monads can be found in
[20, 33]. Almost all there is to know about Haskell [22], in-
cluding several papers on monads, can be found in Haskell's
home page (http://haskell.org/).

A monad is a triple of the form (m; return; >>=), where the
�rst element m is a type constructor of kind � ! �, mapping
an arbitrary type a to a new type m a. The following code
contains the de�nition of the standard Haskell class Monad,
based on the previous description. The types of the poly-
morphic functions return and >>= are speci�ed and the last
line de�nes >>= as an in�x left associative operator of very
low precedence.

class Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

infixl 1 >>=

Types constructed by monad m can be considered as de-
noting computations, e.g. the type m a denotes computa-
tions returning values of type a. Therefore, the de�nition

266

of a monad m re
ects a notion of computation. The result
of return v is a trivial computation, simply returning the
value v. Assuming z :: m a and f :: a -> mb, the re-
sult of z >>= f is the combined computation of z, returning
v, followed by the computation f v. Thus, return can be
seen as a way of inserting values in computations, whereas
>>= can be seen as a way of extracting values from compu-
tations, in order to use them in subsequent computations.

Three monad laws, which every monad is required to satisfy,
insure the soundness of this correspondance between monads
and computations:

Law 1: return v >>= f = f v
Law 2: z >>= return = z
Law 3: z >>= (\v -> f v >>= g) = z >>= f >>= g

The identity monad Id can be implemented as follows. It is
trivial to check that it satis�es the monad laws.

newtype Id a = Id a

instance Monad Id where
return = Id

Id a >>= f = f a

267

