
A Type System for Certified Binaries

ZHONG SHAO and VALERY TRIFONOV
Yale University
BRATIN SAHA
Intel Corporation
and
NIKOLAOS PAPASPYROU
National Technical University of Athens

A certified binary is a value together with a proof that the value satisfies a given specification.
Existing compilers that generate certified code have focused on simple memory and control-flow
safety rather than more advanced properties. In this article, we present a general framework for
explicitly representing complex propositions and proofs in typed intermediate and assembly lan-
guages. The new framework allows us to reason about certified programs that involve effects while
still maintaining decidable typechecking. We show how to integrate an entire proof system (the
calculus of inductive constructions) into a compiler intermediate language and how the intermedi-
ate language can undergo complex transformations (CPS and closure conversion) while preserving
proofs represented in the type system. Our work provides a foundation for the process of automat-
ically generating certified binaries in a type-theoretic framework.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type structure

General Terms: Languages, Verification

Additional Key Words and Phrases: Certified code, proof-preserving compilation, typed intermedi-
ate languages

A preliminary version of this article appeared in the Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’02).
This work was supported in part by DARPA OASIS grant F30602-99-1-0519, National Science Foun-
dation (NSF) grant CCR-9901011, NSF ITR grant CCR-0081590, and NSF grant CCR-0208618.
Any opinions, findings, and conclusions contained in this article are those of the authors and do
not reflect the views of these agencies.
Authors’ addresses: Z. Shao and V. Trifonov, Department of Computer Science, Yale University,
P.O. Box 208285, New Haven, CT 06520; email: {shao, trifonov}@cs.yale.edu; B. Saha, Micropro-
cessor Technology Lab, Intel Corporation, Santa Clara, CA 95054; email: bratin.saha@intel.com;
N. Papaspyrou, National Technical University of Athens, Department of Electrical and Com-
puter Engineering, Software Engineering Laboratory, 15780 Zografou, Athens, Greece; email:
nickie@softlab.ntua.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0164-0925/05/0100-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005, Pages 1–45.

2 • Z. Shao et al.

1. INTRODUCTION

Proof-carrying code (PCC), as pioneered by Necula and Lee [1996] and Necula
[1997], allows a code producer to provide a machine-language program to a
host, along with a formal proof of its safety. The proof can be mechanically
checked by the host; the producer need not be trusted because a valid proof is
incontrovertible evidence of safety.

The PCC framework is general because it can be applied to certify arbitrary
data objects with complex specifications [Necula 1998; Appel and Felten 2001].
For example, the Foundational PCC system [Appel and Felty 2000] can cer-
tify any property expressible in Church’s higher-order logic. Harper [2000] and
Burstall and McKinna [1991] call all these proof-carrying constructs certified
binaries (or deliverables). A certified binary is a value (which can be a function,
a data structure, or a combination of both) together with a proof that the value
satisfies a given specification.

Unfortunately, little is known on how to construct or generate certified bi-
naries. Most existing certifying compilers [Necula and Lee 1998; Colby et al.
2000] have focused on simple memory and control-flow safety only. Typed inter-
mediate languages [Harper and Morrisett 1995] and typed assembly languages
[Morrisett et al. 1998] are effective techniques for automatically generating cer-
tified code; however, none of these type systems can rival the expressiveness of
the actual higher-order predicate logic (which could be used in any Foundational
PCC system).

In this article, we present a type-theoretic framework for constructing, com-
posing, and reasoning about certified binaries. Our plan is to use the formulae-
as-types principle [Howard 1980] to represent propositions and proofs in a
general type system, and then to investigate their relationship with compiler
intermediate and assembly languages. We show how to integrate an entire proof
system (the calculus of inductive constructions [Paulin-Mohring 1993; Coquand
and Huet 1988]) into an intermediate language, and how to define complex
transformations (CPS and closure conversion) of programs in this language so
that they preserve proofs represented in the type system. Our approach builds
upon a large body of previous work in the logic and theorem-proving commu-
nity (see Barendregt and Geuvers [1999] and Barendregt [1991] for a good
summary), and makes the following new contributions:

—We show how to design new typed intermediate languages that are capable
of representing and manipulating propositions and proofs. In particular, we
show how to maintain decidability of typechecking when reasoning about
certified programs that involve effects. This is different from the work done
in the logic community which focuses on strongly normalizing (primitive re-
cursive) programs.

—We maintain a phase distinction between compile-time typechecking and
run-time evaluation. This property is often lost in the presence of depen-
dent types (which are necessary for representing proofs in predicate logic).
We achieve this by never having the type language (see Section 3) depen-
dent on the computation language (see Section 4). Proofs are instead always
represented at the type level using dependent kinds.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 3

—We show how to use propositions to express program invariants and how to
use proofs to serve as static capabilities. Following Xi and Pfenning [1999],
we use singleton types [Hayashi 1991] to support the necessary interaction
between the type and computation languages. We can assign an accurate
type to unchecked vector (or array) access (see Section 4.3). Xi and Pfenning
[1999] can achieve the same using constraint checking, but their system does
not support arbitrary propositions and (explicit) proofs, so it is less general
than ours.

—We use a single type language to typecheck different compiler intermediate
languages. This is crucial because it is impractical to have separate proof
libraries for each intermediate language. We achieve this by using inductive
definitions to define all types used to classify computation terms. This in turn
nicely fits our work on (fully reflexive) intensional type analysis [Trifonov
et al. 2000] into a single system.

—We show how to perform CPS and closure conversion on our intermediate lan-
guages while still preserving proofs represented in the type system. Existing
algorithms [Morrisett et al. 1998; Harper and Lillibridge 1993; Minamide
et al. 1996; Barthe et al. 1999] all require that the transformation be per-
formed on the entire type language. This is impractical because proofs are
large in size; transforming them can alter their meanings and break the shar-
ing among different languages. We present new techniques that completely
solve these problems (Sections 5–6).

—Our type language is a variant of the calculus of inductive constructions
of Paulin-Mohring [1993] and Coquand and Huet [1988]. Following Werner
[1994], we give rigorous proofs for its meta-theoretic properties (subject re-
duction, strong normalization, confluence, and consistency of the underlying
logic). We also give the soundness proof for our sample computation language.
See Sections 3–4, the Appendix, and the companion technical report [Shao
et al. 2001] for details.

As far as we know, our work is the first comprehensive study on how to incor-
porate higher-order predicate logic (with inductive terms and predicates) into
typed intermediate languages. Our results are significant because they open
up many new exciting possibilities in the area of type-based language design
and compilation. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at the meta
level can now be expressed inside the actual language itself. For example, much
of the past work on program verification using Hoare-like logics may now be
captured and made explicit in a typed intermediate language.

From the standpoint of type-based language design, recent work [Harper
and Morrisett 1995; Xi and Pfenning 1999; Crary et al. 1999; Walker 2000;
Crary and Weirich 2000; Trifonov et al. 2000] has produced many specialized,
increasingly complex type systems, each with its own meta-theoretical proofs,
yet it is unclear how they will fit together. We can hope to replace them with
one very general type system whose meta theory is proved once and for all, and
that allows the definition of specialized type operators via the general mecha-
nism of inductive definitions. For example, inductive definitions subsume and

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

4 • Z. Shao et al.

Fig. 1. Typed λ-calculi—A skeleton.

generalize earlier systems for intensional type analysis [Harper and Morrisett
1995; Crary and Weirich 1999; Trifonov et al. 2000].

We have a prototype implementation of our new type system in the FLINT
compiler [Shao 1997; Shao et al. 1998], but making the implementation real-
istic still involves solving many remaining problems (e.g., efficient proof rep-
resentations). Nevertheless, we believe our current contributions constitute a
significant step toward the goal of providing a practical end-to-end compiler
that generates certified binaries.

2. APPROACH

Our main objectives are to design typed intermediate and low-level languages
that can directly manipulate propositions and proofs, and then to use them to
certify realistic programs. We want our type system to be simple but general;
we also want to support complex transformations (CPS and closure conversion)
that preserve proofs represented in the type system. In this section, we describe
the main challenges involved in achieving these goals and give a high-level
overview of our main techniques.

Before diving into the details, we first establish a few naming conventions
that we will use in the rest of this article. Typed intermediate languages are
usually structured in the same way as typed λ-calculi. Figure 1 gives a fragment
of a richly typed λ-calculus, organized into four levels: kind schema (kscm) u,
kind κ, type τ , and expression (exp) e. If we ignore kind schema and other ex-
tensions, this is just the higher-order polymorphic λ-calculus Fω [Girard 1972].

We divide each typed intermediate language into a type sub-language and
a computation sub-language. The type language contains the top three levels.
Kind schemas classify kind terms while kinds classify type terms. We often say
that a kind term κ has kind schema u, or a type term τ has kind κ. We assume
all kinds used to classify type terms have kind schema Kind, and all types used
to classify expressions have kind �. Both the function type τ1 → τ2 and the
polymorphic type ∀t: κ. τ have kind �. Following the tradition, we sometimes
say “a kind κ” to imply that κ has kind schema Kind, “a type τ ” to imply that τ

has kind �, and “a type constructor τ ” to imply that τ has kind “κ → · · ·→�.”
Kind terms with other kind schemas, or type terms with other kinds are strictly
referred to as “kind terms” or “type terms.”

The computation language contains just the lowest level, which is where
we write the actual program. This language will eventually be compiled into

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 5

machine code. We often use names such as computation terms, computation
values, and computation functions to refer to various constructs at this level.

2.1 Representing Propositions and Proofs

The first step is to represent propositions and proofs for a particular logic in a
type-theoretic setting. The most established technique is to use the formulae-as-
types principle (a.k.a. the Curry–Howard correspondence) [Howard 1980] to
map propositions and proofs into a typed λ-calculus. The essential idea, which
is inspired by constructive logic, is to use types (of kind �) to represent propo-
sitions, and expressions to represent proofs. A proof of an implication P ⊃ Q is
a function object that yields a proof of proposition Q when applied to a proof
of proposition P . A proof of a conjunction P ∧ Q is a pair (e1, e2) such that e1
is a proof of P and e2 is a proof of Q . A proof of disjunction P ∨ Q is a pair
(b, e)—a tagged union—where b is either 0 or 1 and if b=0, then e is a proof of
P ; if b= 1 then e is a proof of Q . There is no proof for the false proposition. A
proof of a universally quantified proposition ∀x∈B.P (x) is a function that maps
every element b of the domain B into a proof of P (b) where P is a unary predi-
cate on elements of B. Finally, a proof of an existentially quantified proposition
∃x∈B.P (x) is a pair (b, e) where b is an element of B and e is a proof of P (b).

Proof-checking in the logic now becomes typechecking in the corresponding
typed λ-calculus. There has been a large body of work done along this line in
the last 30 years; most type-based proof assistants are based on this fundamen-
tal principle. Good surveys of the previous work in this area can be found in
Barendregt [1991] and Barendregt and Geuvers [1999].

2.2 Representing Certified Binaries

Under the type-theoretic setting, a certified binary S is just a pair (v, e) that
consists of:

—a value v of type τ where v could be a function, a data structure, or any
combination of both; and

—a proof e of P (v) where P is a unary predicate on elements of type τ .

Here e is just an expression with type P (v). The predicate P is a dependent type
constructor with kind τ →�. The entire package S has a dependent strong-sum
type �x :τ.P (x).

For example, suppose Nat is the domain for natural numbers and Prime
is a unary predicate that asserts an element of Nat as a prime number; we
introduce a type nat representing Nat, and a type constructor prime (of kind
nat → �) representing Prime. We can build a certified prime-number package
by pairing a value v (a natural number) with a proof for the proposition prime(v);
the resulting certified binary has type �x :nat. prime(x).

Function values can be certified in the same way. Given a function f that
takes a natural number and returns another one as the result (i.e., f has type
nat → nat), in order to show that f always maps a prime to another prime, we

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

6 • Z. Shao et al.

need a proof for the following proposition:

∀x∈Nat. Prime(x) ⊃ Prime(f (x)).

In a typed setting, this universally quantified proposition is represented as a
dependent product type:

�x :nat. prime(x) → prime(f (x)).

The resulting certified binary has type

� f :nat → nat. �x :nat. prime(x) → prime(f (x)).

Here the type is not only dependent on values but also on function applications
such as f (x), so verifying the certified binary, which involves typechecking the
proof, in turn requires evaluating the underlying function application.

2.3 The Problems with Dependent Types

The above scheme unfortunately fails to work in the context of typed interme-
diate (or assembly) languages. There are at least four problems with dependent
types; the third and fourth are present even in the general context.

First, real programs often involve effects such as assignment, I/O, or nonter-
mination. Effects interact badly with dependent types. In our previous exam-
ple, suppose the function f does not terminate on certain inputs; then clearly,
typechecking—which could involve applying f —would become undecidable. It
is possible to use the effect discipline [Sheldon and Gifford 1990] to force types to
be dependent on pure computation only, but this does not work in some typed
λ-calculi; for example, a “pure” term in Girard’s λU [Girard 1972] could still
diverge.

Even if applying f does not involve any effects, we still have more serious
problems. In a type-preserving compiler, the body of the function f has to be
compiled down to typed low-level languages. A few compilers perform typed
CPS conversion [Morrisett et al. 1998], but in the presence of dependent types,
this is a very difficult problem [Barthe et al. 1999]. Also, typechecking in low-
level languages would now require performing the equivalent of β-reductions on
the low-level (assembly) code; this is awkward and difficult to support cleanly.

Third, it is important to maintain a phase distinction between compile-time
typechecking and run-time evaluation. But having dependent strong-sum and
product types makes it harder to preserve this property, especially if the type-
dependent values are first-class citizens (certified binaries are used to validate
arbitrary data structures and program functions so they should be allowed to
be passed as arguments, returned as results, or stored in memory).

Finally, supporting subset types in the presence of dependent strong-sum
and product types is difficult if not impossible [Constable 1985; Nordstrom et al.
1990]. A certified binary of type �x : nat. prime(x) contains a natural number v
and a proof that v is a prime. However, in many cases, we just want v to belong
to a subset type {x : nat | prime(x)}, that is, v is a prime number but the proof
of this is not together with v; instead, it can be constructed from the current
context.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 7

2.4 Separating the Type and Computation Languages

We solve these problems by making sure that our type language is never depen-
dent on the computation language. Because the actual computation term has
to be compiled down to assembly code in any case, it is a bad idea to treat it as
part of types. This separation immediately gives us back the phase-distinction
property.

To represent propositions and proofs, we lift everything one level up: we use
kinds to represent propositions, and type terms for proofs. The domain Nat is
represented by a kind Nat; the predicate Prime is represented by a dependent
kind term Prime which maps a type term of kind Nat to a proposition. A proof
for proposition Prime(n) certifies that the type term n is a prime number.

To maintain decidable typechecking, we insist that the type language is
strongly normalizing and free of side effects. This is possible because the type
language no longer depends on any runtime computation. Given a type-level
function g of kind Nat→Nat, we can certify that it always maps a prime to an-
other prime by building a proof τp for the following proposition, now represented
as a dependent product kind:

�t :Nat.Prime(t)→Prime(g (t)).

Essentially, we circumvent the problems with dependent types by replacing
them with dependent kinds and by lifting everything (in the proof language)
one level up.

To reason about actual programs, we still have to connect terms in the type
language with those in the computation language. We follow Xi and Pfenning
[1999] and use singleton types [Hayashi 1991] to relate computation values to
type terms. In the previous example, we introduce a singleton type constructor
snat of kind Nat→�. Given a type term n of kind Nat, if a computation value v
has type snat (n), then v denotes the natural number represented by n.

A certified binary for a prime number now contains three parts: a type term n
of kind Nat, a proof for the proposition Prime(n), and a computation value of type
snat (n). We can pack it up into an existential package and make it a first-class
value with type:

∃n :Nat.∃t :Prime(n).snat (n).

Here we use ∃ rather than � to emphasize that types and kinds are no longer
dependent on computation terms. Under the erasure semantics [Crary et al.
1998], this certified binary is just an integer value of type snat (n) at run time.

Because there are strong separation between types and computation terms,
a value v of type ∃n : Nat.∃t : Prime(n).snat (n) is still implemented as a single
integer at runtime thus achieving the effect of the subset type.

We can also build certified binaries for programs that involve effects. Re-
turning to our example, assume again that f is a function in the computation
language which may not terminate on some inputs. Suppose we want to certify
that if the input to f is a prime, and the call to f does return, then the result is
also a prime. We can achieve this in two steps. First, we construct a type-level
function g of kind Nat→Nat to simulate the behavior of f (on all inputs where

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

8 • Z. Shao et al.

f does terminate) and show that f has the following type:

∀n :Nat. snat (n) → snat (g (n)).

Here following Figure 1, we use ∀ and → to denote the polymorphic and function
types for the computation language. The type for f says that if it takes an
integer of type snat (n) as input and does return, then it will return an integer
of type snat (g (n)). Second, we construct a proof τp showing that g always maps
a prime to another prime. The certified binary for f now also contains three
parts: the type-level function g , the proof τp, and the computation function f
itself. We can pack it into an existential package with type:

∃g :Nat→Nat. ∃p : (�t :Nat.Prime(t)→Prime(g (t))).
∀n :Nat. snat (n) → snat (g (n)).

Notice this type also contains function applications such as g (n), but g is a
type-level function which is always strongly normalizing, so typechecking is
still decidable.

It is important to understand the difference between typechecking and “type
inference.” The main objective of this paper is to develop a fully explicit frame-
work where proofs and assertions can be used to certify programs that may
contain side effects—the most important property is that typechecking (and
proof-checking) in the new framework must be decidable. Type inference (i.e.,
finding the proofs), on the other hand, could be undecidable: given an arbitrar-
ily complex function f , we clearly cannot hope to automatically construct the
corresponding g . In practice, however, it is often possible to first write down
the specification g and then to write the corresponding program f . Carrying
out this step and constructing the proof that f follows g is a challenging task,
as in any other PCC system [Necula 1998; Appel and Felty 2000].

2.5 Designing the Type Language

We can incorporate propositions and proofs into typed intermediate languages,
but designing the actual type language is still a challenge. For decidable
typechecking, the type language should not depend on the computation lan-
guage and it must satisfy the usual meta-theoretical properties (e.g., strong
normalization).

But the type language also has to fulfill its usual responsibilities. First, it
must provide a set of types (of kind �) to classify the computation terms. A
typical compiler intermediate language supports a large number of basic type
constructors (e.g., integer, array, record, tagged union, and function). These
types may change their forms during compilation, so different intermediate lan-
guages may have different definitions of �; for example, a computation function
at the source level may be turned into CPS-style, or later, to one whose argu-
ments are machine registers [Morrisett et al. 1998]. We also want to support
intensional type analysis [Harper and Morrisett 1995] which is crucial for type-
checking runtime services [Monnier et al. 2001].

Our solution is to provide a general mechanism of inductive definitions in
our type language and to define each such � as an inductive kind. This was

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 9

made possible only recently [Trifonov et al. 2000] and it relies on the use of
polymorphic kinds. Taking the type language in Figure 1 as an example, we
add kind variables k and polymorphic kinds �k : u. κ, and replace � and its
associated type constructors with inductive definitions (not shown):

(kscm) u ::= Kind | . . .

(kind) κ ::= κ1 →κ2 | k | �k :u. κ | . . .

(type) τ ::= t | λt: κ. τ | τ1 τ2 | λk :u. τ | τ [κ] | . . .

At the type level, we add kind abstraction λk :u. τ and kind application τ [κ].
The kind � is now inductively defined as follows (see Sections 3–4 for more
details):

Inductive � : Kind := →→ : �→�→�

| ∀∀ : �k :Kind. (k →�)→�
...

Here →→ and ∀∀ are two of the constructors (of �). The polymorphic type ∀t: κ. τ

is now written as ∀∀[κ] (λt: κ. τ); the function type τ1 →τ2 is just →→τ1τ2.
Inductive definitions also greatly increase the programming power of our

type language. We can introduce new data objects (e.g., integers, lists) and
define primitive recursive functions, all at the type level; these in turn are used
to help model the behaviors of the computation terms.

To have the type language double up as a proof language for higher-order
predicate logic, we add dependent product kind �t: κ1. κ2, which subsumes the
arrow kind κ1 → κ2; we also add kind-level functions to represent predicates.
Thus the type language naturally becomes the calculus of inductive construc-
tions [Paulin-Mohring 1993].

2.6 Proof-Preserving Compilation

Even with a proof system integrated into our intermediate languages, we still
have to make sure that they can be CPS- and closure-converted down to low-
level languages. These transformations should preserve proofs represented in
the type system; in fact, they should not traverse the proofs at all since doing
so is impractical with large proof libraries.

These challenges are nontrivial but the way we set up our type system makes
it easier to solve them. First, because our type language does not depend on
the computation language, we do not have the difficulties involved in CPS-
converting dependently typed λ-calculi [Barthe et al. 1999]. Second, all our
intermediate languages share the same type language, thus also the same proof
library; this is possible because the � kind (and the associated types) for each
intermediate language is just a regular inductive definition.

Finally, a type-preserving program transformation often requires translating
the source types (of the source � kind) into the target types (of the target �

kind). Existing CPS- and closure-conversion algorithms [Morrisett et al. 1998;
Harper and Lillibridge 1993; Minamide et al. 1996] all perform this translation
at the meta-level; they have to go through every type term (thus every proof
term in our setting) during the translation, because any type term may contain
a sub term that has the source � kind. In our framework, the fact that each

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

10 • Z. Shao et al.

� kind is inductively defined means that we can internalize and write the
type-translation function inside our type language itself. This leads to elegant
algorithms that do not traverse any proof terms but still preserve typing and
proofs (see Sections 5–6 for details).

2.7 Putting It All Together

A certifying compiler in our framework will have a series of intermediate lan-
guages, each corresponding to a particular stage in the compilation process;
all will share the same type language. An intermediate language is now just
the type language plus the corresponding computation terms, along with the
inductive definition for the corresponding � kind. In the rest of this article, we
first give a formal definition of our type language (which will be named TL from
now on) in Section 3; we then present a sample computation language λH in
Section 4; we show how λH can be CPS- and closure-converted into low-level
languages in Sections 5–6; finally, we discuss related work and then conclude.

3. THE TYPE LANGUAGE TL

Our type language TL resembles the calculus of inductive constructions (CIC)
implemented in the Coq proof assistant [Huet et al. 2000]. This is a great ad-
vantage because Coq is a very mature system and it has a large set of proof
libraries which we can potentially reuse. For this article, we decided not to di-
rectly use CIC as our type language for three reasons. First, CIC contains some
features designed for program extraction [Paulin-Mohring 1989], which are not
required in our case (where proofs are only used as specifications for the com-
putation terms). Second, as far as we know, there are still no formal studies
covering the entire CIC language. Third, for theoretical purposes, we want to
understand what are the most essential features for modeling certified bina-
ries. In practice, these differences are fairly minor. The main objectives of this
section is to give a quick introduction to the essential features in the Coq-like
dependent type theory.

3.1 Motivations

Following the discussion in Section 2.5, we organize TL into the following three
levels:

(kscm) u ::= z | �t: κ. u | �k :u. u′ | Kind

(kind) κ ::= k | λt: κ. κ ′ | κ[τ] | λk :u. κ | κ κ ′ | �t: κ. κ ′ | �k :u. κ

| �z :Kscm. κ | Ind(k :Kind){
κ} | Elim[κ ′, u](τ){
κ}
(type) τ ::= t | λt: κ. τ | τ τ ′ | λk :u. τ | τ [κ] | λz :Kscm. τ | τ [u]

| Ctor (i, κ) | Elim[κ ′, κ](τ ′){
τ }
Here kind schemas (kscm) classify kind terms while kinds classify type terms.
There are variables at all three levels: kind-schema variables z, kind variables
k, and type variables t. We have an external constant Kscm classifying all the
kind schemas; essentially, TL has an additional level above kscm, of which Kscm
is the sole member.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 11

A good way to comprehend TL is to look at its five � constructs: there are
three at the kind level and two at the kind-schema level. We use a few examples
to explain why each of them is necessary. Following the tradition, we use arrow
terms (e.g., κ1 → κ2) as a syntactic sugar for the nondependent � terms (e.g.,
�t: κ1. κ2 is nondependent if t does not occur free in κ2).

—Kinds �t: κ. κ ′ and κ →κ ′ are used to typecheck the type-level function λt: κ. τ

and the corresponding application form τ1 τ2. Assuming � and Nat are induc-
tive kinds (defined later) and Prime is a predicate with kind schema Nat→Kind,
we can write a type term such as λt: �. t, which has kind �→�, a type-level
arithmetic function such as plus which has kind Nat → Nat → Nat, or the uni-
versally quantified proposition in Section 2.2, which is represented as the
kind �t :Nat.Prime(t)→Prime(g (t)).

—Kinds �k :u. κ and u→κ are used to typecheck the type-level kind abstraction
λk : u. τ and its application form τ [κ]. As mentioned in Section 2.5, this is
needed to support intensional analysis of quantified types [Trifonov et al.
2000]. It can also be used to define logic connectives and constants, as in

True : Kind = �k :Kind. k →k
False : Kind = �k :Kind. k.

True has the polymorphic identity as a proof:

id : True = λk :Kind. λt: k. t,

but False is not inhabited (this is essentially the consistency property of TL
which we will show later).

—Kind �z :Kscm. κ is used to typecheck the type-level kind-schema abstraction
λz : Kscm. τ and the corresponding application τ [u]. This is not in the core
calculus of constructions [Coquand and Huet 1988]. We use it in the inductive
definition of � (see Section 4) where both the ∀∀Kscm and ∃∃Kscm constructors
have kind �z :Kscm. (z →�)→�. These two constructors in turn allow us to
typecheck predicate-polymorphic computation terms, which occur fairly often
since the closure-conversion phase turns all functions with free predicate
variables (e.g., Prime) into predicate-polymorphic ones.

—Kind schemas �t: κ. u and κ → u are used to typecheck the kind-level type
abstraction λt: κ. κ ′ and the application form κ[τ]. The predicate Prime has
kind schema Nat→Kind. A predicate with kind schema �t :Nat. Prime(t)→Kind
is only applicable to prime numbers. We can also define for instance a binary
relation:

LT : Nat→Nat→Kind

so that LT t1 t2 is a proposition asserting that the natural number represented
by t1 is less than that of t2.

—Kind schemas �k : u. u′ and u → u′ are used to typecheck the kind-level
function λk :u. κ and the application form κ1 κ2. We use it to write higher-order
predicates and logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind → Kind = λk :Kind. k →False

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

12 • Z. Shao et al.

Fig. 2. Examples of inductive definitions and elimination.

The consistency of TL implies that a proposition and its negation cannot be
both inhabited—otherwise applying the proof of the second to that of the first
would yield a proof of False.

TL also provides a general mechanism for defining inductive types [Paulin-
Mohring 1993]. The term Ind(k : Kind){
κ} introduces an inductive kind k with
constructors whose kinds are listed in
κ. Here k must only occur “positively”
inside each κi (see Appendix A for the formal definition of positivity). The term
Ctor (i, κ) refers to the ith constructor in an inductive kind κ. For presentation,
we will use a more friendly syntax in the rest of this article. An inductive kind
I = Ind(k :Kind){
κ} will be written as:

Inductive I : Kind := c1 : [I/k]κ1
| c2 : [I/k]κ2...
| cn : [I/k]κn.

We give an explicit name ci to each constructor, so ci is just an abbreviation
of Ctor (i, I). For simplicity, the current version of TL does not include parame-
terized inductive kinds, but supporting them is quite straightforward [Werner
1994; Paulin-Mohring 1993].

TL provides two iterators to support primitive recursion on inductive kinds.
The small elimination Elim[κ ′, κ](τ ′){
τ } takes a type term τ ′ of inductive kind
κ ′, performs the iterative operation specified by
τ (which contains a branch
for each constructor of κ ′), and returns a type term of kind κ[τ ′] as the result.
The large elimination Elim[κ ′, u](τ){
κ} takes a type term τ of inductive kind κ ′,
performs the iterative operation specified by
κ, and returns a kind term of kind
schema u as the result. These iterators generalize the Typerec operator used in
intensional type analysis [Harper and Morrisett 1995; Crary and Weirich 1999;
Trifonov et al. 2000].

Figure 2 gives a few examples of inductive definitions including the induc-
tive kinds Bool and Nat and several type-level functions which we will use in
Section 4. The small elimination for Nat takes the form Elim[Nat, κ](τ ′){τ1; τ2}.
Here, κ is a dependent kind with kind schema Nat → Kind; τ ′ is the argument
which has kind Nat. The term in the zero branch, τ1, has kind κ[τ ′]. The term

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 13

Fig. 3. Syntax of the type language TL.

in the succ branch, τ2, has kind Nat → κ[τ ′] → κ[τ ′]. TL uses the ι-reduction to
perform the iterator operation. For example, the two ι-reduction rules for Nat
work as follows:

Elim[Nat, κ](zero){τ1; τ2} �ι τ1
Elim[Nat, κ](succ τ){τ1; τ2} �ι τ2 τ (Elim[Nat, κ](τ){τ1; τ2})

The general ι-reduction rule is defined formally in Appendix A. In our examples,
we take the liberty of using the pattern-matching syntax (as in ML) to express
the iterator operations, but they can be easily converted back to the Elim form.

In Figure 2, plus is a function which calculates the sum of two natural num-
bers. The function ifez behaves like a switch statement: if its argument is zero, it
returns a function that selects the first branch; otherwise, the result takes the
second branch and applies it to the predecessor of the argument. The function
le evaluates to true if its first argument is less than or equal to the second. The
function lt performs the less-than comparison.

The definition of function Cond, which implements a conditional with result
at the kind level, is expanded into TL using large elimination on Bool, of the
form Elim[Bool, u](τ){κ1; κ2}, where τ is of kind Bool, and both the true and false
branches (κ1 and κ2) have kind schema u.

3.2 Formalization

We want to give a formal semantics to TL and then reason about its meta-
theoretic properties. But the five � constructs have many similarities, so in the
rest of this article, we will model TL as a pure type system (PTS) [Barendregt
1991] extended with inductive definitions. Intuitively, instead of having a sepa-
rate syntactic category for each level, we collapse all kind schemas u, kind terms
κ, type terms τ , and the external constant Kscm into a single set of pseudoterms
(ptm), denoted as A or B. Similar constructs can now share typing rules and
reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is now only
one � construct (�X : A. B), one λ-abstraction (λX : A. B), and one application
form (A B); two iterators for inductive definitions are also merged into one
(Elim[A′, B′](A){
B}). We use X and Y to represent generic variables, but we will
still use t, k, and z if the class of a variable is specific.

TL has the following PTS specification which we will use to derive its typing
rules:

S = {Kind, Kscm, Ext}
A = {Kind :Kscm, Kscm :Ext}
R = {(Kind, Kind), (Kscm, Kind), (Ext, Kind),

(Kind, Kscm), (Kscm, Kscm)}.
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

14 • Z. Shao et al.

Here S is the set of emphsorts used to denote universes. We have added the
constant Ext to support quantification over Kscm. The names we use for sorts
reflect the fact that we have lifted the language one level up; they are related
to other systems via the following table:

System Notation

TL Kind Kscm Ext

Werner [1994] Set Type Ext

Coq/CIC[Huet et al. 2000] Set, Prop Type(0) Type(1)
Barendregt [1991] ∗ � �

The axioms in the set A denote the relationship between different sorts; an
axiom “s1 :s2” means that s2 classifies s1. The pairs (rules) in the set R are used
to define the well-formed � constructs, from which we can deduce the set of
well-formed λ-definitions and applications. For example, the five rules for TL
can be related to the five � constructs through the following table:

�X : A. B λX : A. B A B

(Kind, Kind) �t: κ1. κ2 λt: κ. τ τ1 τ2

(Kscm, Kind) �k :u. κ λk :u. τ τ [κ]
(Ext, Kind) �z :Kscm. κ λz :Kscm. τ τ [u]

(Kind, Kscm) �t: κ. u λt: κ1. κ2 κ[τ]
(Kscm, Kscm) �k :u1. u2 λk :u. κ κ κ ′

We define a context
 as a list of bindings from variables to pseudoterms:

(ctxt)
 ::= · |
, X : A

The typing judgment for TL in PTS style now takes the form

 A : A′,
meaning that within context
, the pseudoterm A is well formed and has A′ as
its classifier. We can now write a single typing rule for all the � constructs:

 A : s1
, X : A
 B : s2 (s1, s2) ∈ R

 �X : A. B : s2

(PROD)

Taking rule (Kind, Kscm) as an example, to build a well-formed term �X : A. B,
which will be a kind schema (because s2 is Kscm), we need to show that A is a
well-formed kind and B is a well formed kind schema assuming X has kind A.

We can also share the typing rules for all λ-definitions and applications:

, X : A
 B : B′

 �X : A. B′ : s

 λX : A. B : �X : A. B′ (FUN)

 A : �X : B′. A′

 B : B′

 A B : [B/X]A′ (APP)

The reduction relations can also be shared. TL supports the standard β- and
η-reductions (denoted by �β and �η) plus the previously mentioned ι-reduction
(denoted by �ι) on inductive objects (see Appendix A). The relations �β , �η,
and �ι are the contextual closures of the relations �β , �η, and �ι respectively.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 15

We use � and � for the unions of the above relations. We also write =βηι for the
reflexive, symmetric, and transitive closure of �.

The complete typing rules for TL and the definitions of all the reduction
relations are given in Appendix A. Following Werner [1994] and Geuvers [1993],
we have shown that TL satisfies all the key meta-theoretic properties, including
subject reduction, strong normalization, Church–Rosser (and confluence), and
consistency of the underlying logic. The detailed proofs for these properties are
given in the companion technical report [Shao et al. 2001].

THEOREM 3.1 (SUBJECT REDUCTION). If the judgment

 A : B is derivable,
and A � A′, then

 A′ : B is derivable.

PROOF SKETCH. The detailed proof is given in the companion technical re-
port [Shao et al. 2001]. We first define a calculus of unmarked terms. These
are TL terms with no annotations at lambda abstractions. We show that this
language is confluent. From this, we can prove that TL satisfies a weak form
of confluence (also known as the Geuvers lemma [Geuvers 1993]); it says that a
term that is equal to one in head normal form can be reduced to an η-expanded
version of this head normal form. From the weak confluence, we then prove the
inversion lemma which relates the structure of a term to its typing derivation.
We then prove the uniqueness of types and subject reduction for βι reductions.
Finally, we prove the strengthening lemma and then subject reduction for η

reduction.

THEOREM 3.2 (STRONG NORMALIZATION). All well typed terms are strongly
normalizing.

PROOF SKETCH. The detailed proof is presented in our technical report [Shao
et al. 2001]. It is a straightforward extension of the proof given by Werner [1994].
First, we introduce a calculus of pure terms; this is just the pure λ-calculus
extended with a recursive filtering operator; we do this so that we can operate
in a confluent calculus. We then define a notion of reducibility candidates; every
kind schema gives rise to a reducibility candidate; we also show how these
candidates can be constructed inductively. We define a notion of well constructed
kinds which is a weak form of typing. We associate an interpretation to each
well formed kind. We show that under adequate conditions, this interpretation
is a candidate. We show that type level constructs such as abstractions and
constructors belong to the candidate associated with their kind. We show that
the interpretation of a kind remains the same under βη reduction. We then
define a notion of kinds that are invariant on their domain—these are kinds
whose interpretation remains the same upon reduction. We show that kinds
formed with large elimination are invariant on their domain. From here, we can
show the strong normalization of the calculus of pure terms; we show that, if a
type is well formed, then the pure term derived from it is strongly normalizing.
Finally, we reduce the strong normalization of all well formed terms to the
strong normalization of pure terms.

THEOREM 3.3 (CHURCH–ROSSER). Let

 A : B and

 A′ : B be two deriv-
able judgments. If A =βηι A′, and if A and A′ are in normal form, then A = A′.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

16 • Z. Shao et al.

Fig. 4. Syntax of the computation language λH .

PROOF SKETCH. The detailed proof is given in the companion technical report
[Shao et al. 2001]. We first prove that a well typed term in βι normal form has
the same η reductions as its corresponding unmarked term. From here, we
know that if A and A′ are in normal form, then their corresponding unmarked
terms are equal. We then show that the annotations in the λ-abstractions are
equal.

THEOREM 3.4 (CONSISTENCY OF THE LOGIC). There exists no term A for which
·
 A : False.

PROOF SKETCH. Suppose A is a term for which ·
 A : False. By Theorem 3.2,
there exists a normal form B for A. By Theorem 3.1, ·
 B : False. We can show
now that this leads to a contradiction by case analysis of the possible normal
forms of types in the calculus.

4. THE COMPUTATION LANGUAGE λH

The language of computations λH for our high-level certified intermediate for-
mat uses proofs, constructed in the type language, to verify propositions that
ensure the runtime safety of the program. Furthermore, in comparison with
other higher-order typed calculi, the types assigned to programs can be more
refined, since program invariants expressible in higher-order predicate logic
can be represented in our type language. These more precise types serve as
more complete specifications of the behavior of program components, and thus
allow the static verification of more programs.

One approach to presenting a language of computations is to encode its syn-
tax and semantics in a proof system, with the benefit of obtaining machine-
checkable proofs of its properties, for instance, type safety. This appears to
be even more promising for a system with a type language like CIC, which is
more expressive than higher-order predicate logic: The CIC proofs of some pro-
gram properties, embedded as type terms in the program, may not be easily
representable in meta-logical terms, thus it may be simpler to perform all the
reasoning in CIC. However our exposition of the language TL is focused on its
use as a type language, and consequently it does not include all features of CIC.
We therefore leave this possibility for future work, and give a standard meta-
logical presentation instead; we address some of the issues related to adequacy
in our discussion of type safety.

In this section, we use the unqualified “term” to refer to a computation term
(expression) e, with syntax defined in Figure 4. Most of the constructs are

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 17

borrowed from standard higher-order typed calculi. To simplify the exposition
we only consider constants representing natural numbers (n is the value rep-
resenting n ∈ N) and Boolean values (tt and ff). The term-level abstraction and
application are standard; type abstractions and fixed points are restricted to
function values, with the call-by-value semantics in mind and to simplify the
CPS and closure conversions. The type variable bound by a type abstraction, as
well as the one bound by the open construct for packages of existential type, can
have either a kind or a kind schema. Dually, the type argument in a type appli-
cation, and the witness type term A in the package construction 〈X = A, e : A′〉
can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and comparisons
have nonstandard static semantics, on which we focus in Section 4.2, but their
runtime behavior is standard. The branching construct is parameterized at the
type level with a proposition (which is dependent on the value of the test term)
and its proof; the proof is passed to the executed branch.

4.1 Dynamic Semantics

We present a small step call-by-value operational semantics for λH in the style
of Wright and Felleisen [1994]. The values are defined inductively by

v ::= n | tt | ff | f | fix x : A. f | 〈X = A, v : A′〉 | 〈v0, . . . , vn−1〉 |

The reduction relation ↪→ is specified by the following rules.

(λx : A. e) v ↪→ [v/x]e (R-β)

(
X : B. f)[A] ↪→ [A/X] f (R-TY-β)

sel[A](〈v0, . . . , vn−1〉, m) ↪→ vm (m < n) (R-SEL)

open 〈X ′ = A, v : A′〉 as 〈X , x〉 in e ↪→ [v/x][A/X]e (R-OPEN)

(fix x : A. f) v ↪→ ([fix x : A. f /x] f) v (R-FIX)

(fix x : A. f)[A′] ↪→ ([fix x : A. f /x] f)[A′] (R-TYFIX)

m +n ↪→ m + n (R-ADD)

m <n ↪→ tt (m < n) (R-LT-T)

m <n ↪→ ff (m ≥ n) (R-LT-F)

if [B, A](tt, X 1. e1, X 2. e2) ↪→ [A/X 1]e1 (R-IF-T)

if [B, A](ff, X 1. e1, X 2. e2) ↪→ [A/X 2]e2 (R-IF-F)

An evaluation context E encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X = A, E : A′〉 | open E as 〈X , x〉 in e
| 〈v0, . . . , vi−1, E, ei+1, . . . , en−1〉 | sel[A](E, e) | sel[A](v, E)
| if [A, A′](E, X 1. e1, X 2. e2) | E aop e | v aop E | E cop e | v cop E.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

18 • Z. Shao et al.

The notation E{e} stands for the term obtained by replacing the hole • in E
by e. The single step computation �→ relates E{e} to E{e′} when e ↪→ e′, and �→∗

is its reflexive transitive closure.
As shown the semantics is standard except for some additional passing of

type terms in R-SEL and R-IF-T/F. However an inspection of the rules shows
that types are irrelevant for the evaluation, hence a type-erasure semantics,
in which all type-related operations and parameters are erased, would be
entirely standard.

4.2 Static Semantics

The static semantics of λH shows the benefits of using a type language as ex-
pressive as TL. We can now define the type constructors of λH as constructors
of an inductive kind �, instead of having them built into λH . As we will show
in Section 5, this property is crucial for the conversion to CPS, since it makes
possible transforming direct-style types to CPS types within the type language.

Inductive � : Kind := snat :Nat→�

| sbool :Bool→�

| →→ :�→�→�

| tup :Nat→ (Nat→�)→�

| ∀∀Kind :�k :Kind. (k →�)→�

| ∃∃Kind :�k :Kind. (k →�)→�

| ∀∀Kscm :�z :Kscm. (z →�)→�

| ∃∃Kscm :�z :Kscm. (z →�)→�

Informally, all well-formed computations have types of kind �, including sin-
gleton types of natural numbers snat A and Boolean values sbool B, as well as
function, tuple, polymorphic and existential types. To improve readability we
also define the syntactic sugar

A → B ≡ →→ A B
∀s X : A. B
∃s X : A. B

≡
≡

∀∀s A (λX : A. B)
∃∃s A (λX : A. B)

}
where s ∈ {Kind, Kscm}

and often drop the sort s when s = Kind; for example the type void, containing
no values, is defined as ∀ t :�. t ≡ ∀∀Kind � (λt :�. t).

Using this syntactic sugar we can give a familiar look to many of the for-
mation rules for λH expressions and functional values. Figure 5 contains the
inference rules for deriving judgments of the form
; �
 e : A, which assign
type A to the expression e in a context
 and a type environment � defined by

(type env) � ::= · | �, x: A

We introduce some of the notation used in these rules in the course of the
discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to numeric and
boolean constants. For instance the constant 1 has type snat (succ zero) in any
valid environment. In rule E-NAT we use the meta-function ·̂ to map natural
numbers n ∈ N to their representations as type terms. It is defined inductively
by 0̂ = zero and n̂+1 = succ n̂, so

 n̂ : Nat holds for all valid
 and n ∈ N.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 19

Fig. 5. Static semantics of the computation language λH .

Singleton types play a central role in reflecting properties of values in the
type language, where we can reason about them constructively. For instance
rules E-ADD and E-LT use respectively the type terms plus and lt (defined in
Section 3) to reflect the semantics of the term operations into the type level via
singleton types.

However, if we could assign only singleton types to computation terms, in
a decidable type system we would only be able to typecheck terminating pro-
grams. We regain expressiveness of the computation language using existential
types to hide some of the too detailed type information. Thus, for example, one
can define the usual types of all natural numbers and boolean values as

nat : � = ∃ t :Nat. snat t
bool : � = ∃ t :Bool. sbool t.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

20 • Z. Shao et al.

For any term e with singleton type snat A the package 〈t = A, e :snat t〉 has type
nat. Since in a type-erasure semantics of λH all types and operations on them
are erased, there is no runtime overhead for the packaging. For each n ∈ N

there is a value of this type denoted by n̂ ≡ 〈t = n̂, n : snat t〉. Operations on
terms of type nat are derived from operations on terms of singleton types of the
form snat A; for example, an addition function of type nat → nat → nat is defined
as the expression

add = λx1 :nat. λx2 :nat.
open x1 as 〈t1, x′

1〉 in
open x2 as 〈t2, x′

2〉 in
〈t =plus t1 t2, x′

1 + x′
2 :snat t〉.

Rule E-TUP assigns to a tuple a type of the form tup A B, in which the tup
constructor is applied to a type A representing the tuple size, and a function B
mapping offsets to the types of the tuple components. This function is defined
in terms of operations on lists of types:

Inductive List : Kind := nil :List | cons :�→List→List

nth : List→Nat→�

nth nil = λt :Nat. void
nth (cons t1 t2) = λt :Nat. ifez t � t1 (nth t2)

Thus, nth L n̂ reduces to the n-th element of the list L when n is less than the
length of L, and to void otherwise. We also use the infix form A::A′ ≡ cons A A′.
The type of pairs is derived: A × A′ ≡ tup 2̂ (nth (A::A′::nil)). Thus, for instance,
·;·
 〈42, 7〉 : snat 4̂2 × snat 7̂ is a valid judgment.

The rules for selection and testing for the less-than relation (the only com-
parison we discuss for brevity) refer to the kind term LT with kind schema
Nat → Nat → Kind. Intuitively, LT represents a binary relation on kind Nat, so
LT m̂ n̂ is the kind of type terms representing proofs of m < n. LT can be thought
of as the parameterized inductive kind of proofs constructed from instances of
the axioms ∀n ∈ N. 0 < n+1 and ∀m, n ∈ N. m < n ⊃ m+1 < n+1:

Inductive LT : Nat→Nat→Kind
:= ltzs :�t :Nat. LT zero (succ t)

| ltss :�t :Nat. �t ′ :Nat. LT t t ′ →LT (succ t) (succ t ′)

To simplify the presentation of our type language, we allowed inductive kinds of
kind scheme Kind only. Thus, to stay within the scope of this article, we actually
use a Church encoding of LT (given in Section 4.3); this is sufficient since we
never analyze proof objects, so the full power of elimination is unnecessary for
our use of LT.

In the component selection construct sel[A](e, e′) the type A represents a proof
that the value of the subscript e′ is less than the size of the tuple e. In rule E-
SEL, this condition is expressed as an application of the type term LT. Due to the
consistency of the logic represented in the type language, only the existence
and not the structure of the proof object A is important. Since its existence
is ensured statically in a well-formed expression, A would be eliminated in a
type-erasure semantics.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 21

The conditional if [B, A](e, X 1. e1, X 2. e2) allows information obtained dy-
namically (e.g., through comparisons) to be made available for static reasoning
in the form of proof parameters to its branches. The type term A represents a
proof of the proposition encoded by either B true or B false, depending on the
value of e. This proof is bound to the type variable (X 1 or X 2) of the appropriate
branch, which can use it in the construction of other proofs, or with a proof-
consuming primitive like sel. The correspondence between the value of e and
the kind of A is again established through a singleton Boolean type. Thus for
instance if the run-time value of e asserts the truthfulness of some proposition
P , since the type parameter A′′ of the singleton type of e reflects the value of e
at the type level, we can define B so that B A′′ represents P or ¬P , depending
on whether A′′ =βηι true or A′′ =βηι false, and reason in each of the two branches
under the assumption that P or ¬P , respectively. Of course, for this reasoning
to be sound, we need a proof that A′′ indeed reflects the truthfulness of P , that
is, we need a proof term A of kind B A′′.

In fact, if is more flexible than that, because B false does not have to be the
negation of B true, one can have imprecise information flow into the branches.
In particular, the encoding of the usual oblivious (in proof-passing sense) if is
possible using B = λt :Bool. True; Section 4.3 gives another example, where the
information is precise only in one branch of the conditional.

4.3 Example: Bound Check Elimination

A simple example of the generation, propagation, and use of proofs in λH is a
function which computes the sum of the components of any vector of naturals.
Let us first introduce some auxiliary types and functions. The type assigned to
a homogeneous tuple (vector) of n terms of type A is βηι-convertible to the form
vec n̂ A for

vec : Nat→�→�

vec = λt :Nat. λt ′ :�. tup t (nth (repeat t t ′)),

where

repeat : Nat→�→List

repeat zero = λt ′ :�. nil
repeat (succ t) = λt ′ :�. t ′::(repeat t) t ′.

Then we can define a term that sums the elements of a vector with a given
length as follows:

sumVec : ∀ t :Nat. snat t → vec t nat → nat
≡
t :Nat. λn :snat t. λv :vec t nat.

(fix loop :nat → nat → nat.
λi :nat. λsum :nat. open i as 〈t ′, i′〉 in

if [LTOrTrue t ′ t, ltPrf t ′ t]
(i′ <n,

t1. loop (add i 1̂) (add sum (sel[t1](v, i′))),
t2. sum)) 0̂ 0̂,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

22 • Z. Shao et al.

where
LTOrTrue : Nat→Nat→Bool→Kind

LTOrTrue = λt1 :Nat. λt2 :Nat. λt :Bool. Cond t (LT t1 t2)True

and ltPrf of kind �t ′ : Nat. �t : Nat. LTOrTrue t ′ t (lt t ′ t) is a type term defined
below; as its kind suggests, ltPrf A A′ evaluates to a proof of LT A A′, if A and A′

represent natural numbers n and n′ such that n < n′.
The comparison i′ <n, used in this example as a loop termination test, checks

whether the index i′ is smaller than the vector size n. If it is, the adequacy of
the type term lt with respect to the less-than relation ensures that the type
term ltPrf t ′ t represents a proof of the corresponding proposition at the type
level, namely LT t ′ t. This proof is then bound to t1 in the first branch of the
if, and the sel construct uses it to verify that the i′-th element of v exists, thus
avoiding a second test. The type safety of λH (Theorem 4.6) guarantees that
implementations of sel need not check the subscript at runtime. Since the proof
t2 is ignored in the “else” branch, ltPrf t ′ t is defined to reduce to the trivial proof
of True when the value of i′ is not less than that of n.

The usual vector type, which keeps the length packaged with the content, is

vector : �→�

vector = λt :�. ∃ t ′ :Nat. snat t ′ × vec t ′ t.

Now we can write a wrapper function for sumVec operating on packaged vectors.

sumVector : vector nat → nat
≡ λv :vector nat.

open v as 〈t ′, v′〉 in sumVec[t′] (sel[ltPrf 0̂ 2̂](v′, 0)) (sel[ltPrf 1̂ 2̂](v′, 1))

Next, we show the type term ltPrf which generates the proof of the proposition
LTOrTrue t ′ t (lt t ′ t). We first present a Church encoding of the kind term LT and
its “constructors” ltzs and ltss.

LT : Nat→Nat→Kind

LT = λt :Nat. λt ′ :Nat.
�R :Nat→Nat→Kind.

(�t :Nat. R zero (succ t))→
(�t :Nat. �t ′ :Nat. R t t ′ → R (succ t) (succ t ′))→
R t t ′

ltzs : �t :Nat. LT zero (succ t)
ltzs = λt :Nat. λR :Nat→Nat→Kind.

λz : (�t :Nat. R zero (succ t)).
λs : (�t :Nat. �t ′ :Nat. R t t ′ → R (succ t) (succ t ′)).

z t

ltss : �t :Nat. �t ′ :Nat. LT t t ′ →LT (succ t) (succ t ′)
ltss = λt :Nat. λt ′ :Nat. λp :LT t t ′. λR :Nat→Nat→Kind.

λz : (�t :Nat. R zero (succ t)).
λs : (�t :Nat. �t ′ :Nat. R t t ′ → R (succ t) (succ t ′)).

s t t ′ (p R z s)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 23

Next, we define dependent conditionals on kinds Nat and Bool.

dep ifez : �t :Nat. �k :Nat→Kind. k zero→ (�t ′ :Nat. k (succ t ′))→k t
dep ifez zero = λk :Nat→Kind. λt1 :k zero. λt2 : (�t ′ :Nat. k (succ t ′)). t1
dep ifez (succ t) = λk :Nat→Kind. λt1 :k zero. λt2 : (�t ′ :Nat. k (succ t ′)). t2 t

dep if : �t :Bool. �k :Bool→Kind. k true→k false→k t
dep if true = λk :Bool→Kind. λt1 :k true. λt2 :k false. t1
dep if false = λk :Bool→Kind. λt1 :k true. λt2 :k false. t2

Note that, unlike the examples in Figure 2, the types of the branches in each
of these definitions are different: The type of the true branch of dep if is

�k :Bool→Kind. k true→k false→k true,

while that of its false branch is

�k :Bool→Kind. k true→k false→k false.

This is achieved by specifying the kind term

λt :Bool. �k :Bool→Kind. k true→k false→k t

as the second parameter of the Elim construct for which the sugared definition of
dep if above stands. The resulting elimination term is type-correct because the
type of each branch is obtained by applying this kind term to the corresponding
constructor of Bool.

Finally, we define some abbreviations, and then the proof generator itself.

LTcond : Nat→Nat→Kind

LTcond = λt ′ :Nat. λt :Nat. LTOrTrue t ′ t (lt t ′ t)

LTsucc : Nat→Nat→Bool→Kind

LTsucc = λt ′ :Nat. λt :Nat. λt ′′ :Bool.
LTOrTrue t ′ t t ′′ →LTOrTrue (succ t ′) (succ t) t ′′

ltPrf : �t ′ :Nat. �t :Nat. LTcond t ′ t
ltPrf = λt ′ :Nat.

Elim[Nat, λt ′
1 :Nat. �t1 :Nat. LTcond t ′

1 t1](t ′){
λt1 :Nat. dep ifez t1 (LTcond zero) id ltzs;
λt ′

1 :Nat. λtP : (�t1 :Nat. LTcond t ′
1 t1). λt1 :Nat.

dep ifez
t1
(LTcond (succ t ′

1))
id
(λt1 :Nat. dep if (lt t ′

1 t1) (LTsucc t ′
1 t1) (ltss t ′

1 t1) (id True) (tP t1))}.

4.4 Example: Type Conversions

The language λH offers only the bare minimum of constructs for programming
with TL types. However, the reader may recall that λH is an intermediate

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

24 • Z. Shao et al.

language, and ease of programming in it is not necessarily of high importance.
Much more important is that it has the flexibility to express the more complex
relationships between terms and types in other languages, to do this in terms of
simple constructs, which are relatively simple to reason about and transform,
and do it at no run-time cost. To a large extent, this flexibility comes from the
use of type-level proof terms in λH .

One example of the power of programming with proof terms is the ability
to use λH in a way which allows more general type conversions than those
permitted by rule E-CONV. This rule allows the conversion of a term’s type only
to other βηι-equivalent types, but not to types which are provably equivalent
in some weaker sense. For instance, it is impossible to convert a λH -term of
type vec (plus t1 t2) nat to a term of type vec (plus t2 t1) nat in a context where the
distinct type variables t1 and t2 have kind Nat, because the type terms plus t1 t2
and plus t2 t1, being different normal forms, are not βηι-equivalent.

A solution is to instead define and use types which represent equivalence
classes with respect to a relation of interest, in this case raw datatypes of λH
packaged together with proof terms of type equivalence. When a parameter of
a type constructor must be subjected to conversions in our program, we can
replace it by a derived type constructor that hides the actual “value” of this
parameter, and exposes only an equivalent value, with a proof of their equiv-
alence hidden in the package. Thus the singleton integer type snat (A) can be
replaced by the type snatp(A), defined as follows:

snatp : Nat→�

snatp = λt ′ :Nat. ∃ t :Nat. ∃ P :Eq Nat t ′ t. snat (t).

In a package of type snatp(A), the variable P is bound to a proof of the equality
between A and the witness type bound to t, which represents the actual value of
the term-level integer component. As we will show shortly, this allows to easily
convert a term of type snatp(A) to type snatp(A′) when A and A′ represent natural
numbers provably equal in the given context. The kind of equality proofs Eq can
be defined in CIC following Paulin-Mohring [1993] as

Eq : �k :Kind. k →k →Kind

Eq = λk :Kind. λt :k. Ind(k′ :k →Kind){k′ t}

refl : �k :Kind. �t :k. Eq k t t
refl = λk :Kind. λt :k. Ctor (1, Eq k t)

and its elimination allows us to define a type term showing this is actually
Leibniz equality:

Leibniz :�k :Kind. �t :k. �t ′ :k. Eq k t t ′ →�P :k →Kind. P t → P t ′.

By this definition of equality, the normal form of a term representing a proof
of equality between closed types A and A′ is an application of the constructor
refl, whose kind ensures that the types are βηι-equivalent. The expressiveness
comes from the possibility to construct proofs of equality using case analy-
sis with dependent elimination to relate different normal forms. Consider the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 25

following example. Proving that zero is a left unit of plus is trivial:

leftUnit : �t :Nat. Eq Nat t (plus zero t)
leftUnit = refl Nat

because in accordance with our definition of plus, we have plus zero t � t. Not
so with proving that zero is a right unit of plus: The type term plus t zero is in
normal form (assuming plus stands for the elimination term of TL defined in
user-friendly form in Figure 2), not convertible to t. However, it is possible to
encode an inductive proof, using dependent elimination on Nat:

rightUnit : �t :Nat. Eq Nat t (plus t zero)
rightUnit zero = refl Nat zero
rightUnit (succ t) = eqf Nat Nat succ t (plus t zero) (rightUnit t),

where

eqf : �k :Kind. �k′ :Kind. �f :k →k′. �t :k. �t ′ :k. Eq k t t ′ →Eq k′ (f t) (f t ′)
eqf = λk :Kind. λk′ :Kind. λf :k →k′. λt :k. λt ′ :k. λp :Eq k t t ′.

Leibniz k t t ′ p (λt ′′ :k. Eq k′ (f t) (f t ′′)) (refl k′ (f t)).

The type term eqf constructs a proof of equality between the results of two
applications of a function, given a proof of equality between the arguments.
In rightUnit, it is employed to obtain from the inductive hypothesis (with proof
represented by rightUnit t) a proof of Eq Nat (succ t) (succ (plus t zero)), which by the
definition of plus is βηι-equivalent to the goal Eq Nat (succ t) (plus (succ t) zero).
The dependency between the parameter of rightUnit and the types of the right-
hand side branches must be specified using λt : Nat. Eq Nat t (plus t zero) as the
second parameter of the Elim term in the unsugared TL definition of rightUnit;
the type of the zero branch is βηι-equivalent to Eq Nat zero (plus zero zero), and
that of the succ branch with parameter t is Eq Nat (succ t) (plus (succ t) zero).

Returning to type conversions in λH , suppose now that we have a vector of
length plus t1 t2, while a function we want to apply to it expects a vector of
length plus t2 t1. Let us define the proof-augmented version of the vector type
as follows.

vecp : Nat→�→�

vecp = λt ′ :Nat. λt1 :�. ∃ t :Nat. ∃ P :Eq Nat t ′ t. vec t t1.

The “old” vectors can be trivially converted to the new type by giving them the
same size they had: If v1 has type vec A B, then

〈t = A, 〈P= refl Nat A, v1 :vec A B〉
: ∃ P :Eq Nat A t. vec t B〉

has type vecp A B. Selection from these vectors can be performed for the same
index expressions as for the corresponding “old” vectors—constructing a proof
of LT A′ t from proofs of LT A′ A and Eq Nat A t is straightforward. Conversion of
the type of some term v from vecp (plus t1 t2) nat to vecp (plus t2 t1) nat is performed

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

26 • Z. Shao et al.

by the expression

open v as 〈t, v′〉 in open v′ as 〈P, v′′〉 in
〈t = t,
〈P=eqTrans Nat (plus t2 t1) (plus t1 t2) t (plusSym t2 t1) P,

v′′ :vec t nat〉
: ∃ P :Eq Nat (plus t2 t1) t. vec t nat〉,

where eqTrans is a proof of the transitivity of equality

eqTrans : �k :Kind. �t :k. �t ′ :k. �t ′′ :k. Eq k t t ′ →Eq k t ′ t ′′ →Eq k t t ′′

eqTrans = λk :Kind. λt :k. λt ′ :k. λt ′′ :k. λp :Eq k t t ′.
λp′ :Eq k t ′ t ′′. Leibniz k t ′ t ′′ p′ (Eq k t) p

and plusSym is a proof of the symmetry of plus (using the lemma succPlus proving
that ∀n, m ∈ N. (n + m) + 1 = n + (m + 1)):

plusSym : �t :Nat. �t ′ :Nat. Eq Nat (plus t t ′) (plus t ′ t)
plusSym zero = rightUnit
plusSym (succ t) = λt ′ :Nat. eqTrans Nat

(plus (succ t) t ′)
(succ (plus t ′ t))
(plus t ′ (succ t))
(eqf Nat Nat succ (plus t t ′) (plus t ′ t) (plusSym t t ′))
(succPlus t ′ t)

succPlus : �t :Nat. �t ′ :Nat. Eq Nat (succ (plus t t ′)) (plus t (succ t ′))
succPlus zero = λt ′ :Nat. refl Nat (succ t ′)
succPlus (succ t) = λt ′ :Nat. eqf Nat Nat succ

(succ (plus t t ′))
(plus t (succ t ′))
(succPlus t t ′)

Similar proof terms can be found, among many other, in standard proof libraries
(e.g., that of Coq [Huet et al. 2000]).

Due to the explicit use of proof terms, this technique for support of type con-
versions can also exploit equivalences which are valid only locally, for instance
in a branch of a term-level conditional. To simplify the following example, let
us extend the computation language with a comparison for equality between
natural numbers with the obvious semantics.1 In the following example, two
vectors of unrelated (in general) sizes can be converted to the same type if they

1Comparison for equality can be derived from the less-than comparison of λH ; we will also need a
straightforward to define proof term for �t : Nat. �t ′ : Nat. Not (LT t t ′) → Not (LT t ′ t) → Eq Nat t t ′ or
equivalent.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 27

are dynamically determined to have the same size.

t :Nat. λn :snat (t). λv :vecp t nat.

t ′ :Nat. λn′ :snat (t ′). λv′ :vecp t ′ nat.
if [EqOrTrue t t ′, eqPrf t t ′]

(n = n′,
P. . . . open v′ as 〈t1, x〉 in open x as 〈P1, y〉 in

〈t2 = t1, 〈P2 =eqTrans Nat t t ′ t1 P P1, y :vec t1 nat〉
: ∃ P2 :Eq Nat t t2. vec t2 nat〉

, . . .

. . . .)

where EqOrTrue and eqPrf are the analogues of LTOrTrue and ltPrf from Section 4.3.
The proof of Eq Nat t t2, bound to P2, is constructed by transitivity from the proof
of Eq Nat t t ′, bound to P by the conditional, and the proof of Eq Nat t ′ t2, extracted
from the package v′ and bound to P1. As a result, the type of the open term, which
is a repackaged v′, is vecp t nat—the type of v.

Notice that all terms involved in the type conversions have no computational
overhead and will be eliminated under type-erasure semantics; we emphasized
this fact in the examples by placing the conversions inline.

As with the kind term LT, strictly speaking TL does not allow the above defi-
nition of Eq, but its Church encoding has the same properties for our purposes,
since we do not need dependent or large elimination of equality proof terms for
the proof compositions shown here. The Church encoding of the equality kind,
its “constructor,” and its elimination are as follows:

Eq = λk :Kind. λt :k. λt ′ :k. �P :k →Kind. P t →P t ′

refl = λk :Kind. λt :k. λP :k →Kind. λp :P t. p

Leibniz = λk :Kind. λt :k. λt ′ :k. λp :Eq k t t ′. p

Clearly, there are opportunities to generalize this style to weaker relations of
equivalence, which reveal partial information about the hidden type parame-
ters. We will not explore this topic here.

4.5 Type Safety

The type safety of λH is a corollary of its properties of progress and subject
reduction. A pivoting element in proving progress (Lemma 4.3) is the connection
between the existence of a proof (type) term of kind LT m̂ n̂, provided by rule
E-SEL, and the existence of a (metalogical) proof of the side condition m < n,
required by rule R-SEL. Similarly, subject reduction (Lemma 4.5) in the cases
of R-ADD and R-LT-T/F relies on the adequate representation of addition and
comparison by plus and lt.

LEMMA 4.1 (ADEQUACY OF THE TL REPRESENTATION OF ARITHMETIC).
(1) For all m, n ∈ N, plus m̂ n̂ =βηι m̂+n.
(2) For all m, n ∈ N, lt m̂ n̂ =βηι true if and only if m < n.
(3) For all m, n ∈ N, m < n if and only if there exists a type A such that

·
 A : LT m̂ n̂.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

28 • Z. Shao et al.

PROOF SKETCH

(1) By induction on m and inspection of the definition of plus.
(2) By induction on m and the definition of le (Figure 2); for the forward direction

the auxiliary inductive hypothesis is that for all n, if le m̂ n̂, then m ≤ n.
(3) For the forward direction it suffices to observe that the structure of the

metalogical proof of m < n (in terms of the above axioms of ordering) can
be directly reflected in a type term of kind LT m̂ n̂. The inverse direction
is shown by examining the structure of closed type terms of this kind in
normal form.

We also need a guarantee that the equivalence of constructor applications
implies the equivalence of the constructors and their arguments.

LEMMA 4.2. If Ctor (i, I)
A =βηι Ctor (i′, I ′)
A′, then i = i′, I =βηι I ′, and

A =βηι

A′.

PROOF SKETCH. A corollary of the confluence of TL (Theorem 3.3).

LEMMA 4.3 (PROGRESS). If ·;·
 e : A, then either e is a value, or there exists
e′ such that e �→ e′.

PROOF SKETCH. By standard techniques [Wright and Felleisen 1994] using
induction on the typing derivation for e. Due to the transitivity of =βηι any
derivation of
; �
 e : A can be converted to a standard form in which there
is an application of rule E-CONV at its root, whose first premise ends with an
instance of a rule other than E-CONV, all of whose term derivation premises are
in standard form.

The interesting case is that of the dependently typed sel construct.
If e = sel[A′](v, v′), by inspection of the typing rules the derivation of ·;·
 e : A

in standard form must have an instance of rule E-SEL in the premise of its root.
Hence, the subderivation for v must assign to it a tuple type, and the whole
derivation has the form

D
·;·
 v : tup A2 A′′

D′

·;·
 v′ : snat A1

E
·
 A′ : LT A1 A2

·;·
 sel[A′](v, v′) : A′′ A1

·;·
 sel[A′](v, v′) : A
,

where A =βηι A′′ A1. By inspection of the typing rules, rules other than E-CONV

assign to all values types which are applications of constructors of �. Since the
derivationD is in standard form, it ends with an E-CONV, in the premise of which
another rule assigns v a type βηι-equivalent to tup A2 A′′. Then, by Lemma 4.2,
this type must be an application of tup, and again by inspection the only rule
which applies is E-TUP, which implies v = 〈v0, . . . , vn−1〉, and the derivation D
must have the form

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈v0, . . . , vn−1〉 : tup n̂ A′′
1

.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 29

Also by Lemma 4.2 A2 =βηι n̂. Similarly, the only rule assigning to a value a type
convertible to that in the conclusion of D′ is E-NAT, hence A1 =βηι m̂ for some
m ∈ N, and v′ = m. Then, by adequacy of LT (Lemma 4.1(3)), the conclusion of
E implies that m < n. Hence, by rule R-SEL, e �→ vm.

The other cases are straightforward; as a representative, consider e = e1 e2.
If e1 is not a value, then by inductive hypothesis e1 �→ e′

1; therefore, e1 = E1{e11}
and e′

1 = E1{e′
11} for some evaluation context E1 and redex e11 such that e11 ↪→

e′
11; then e �→ E{e′

11}, where E = E1 e2. The subcase when e1 is a value, but e2
is not, is similar. If both e1 and e2 are values, then the typing derivation for e
ends with an instance of rule E-CONV applied to a derivation with an instance
of E-APP at its root, where a derivation for e1 is in the premise for the subterm
with an arrow type. Reasoning as in the case for sel above, since e1 is a value
and only rules E-FUN and E-FIX (again excluding E-CONV due to the standard
form of the derivation) assign an arrow type to a value, we have that e1 must
be either an abstraction or a fixpoint (of an arrow type). Then e reduces by rule
R-β or R-FIX, respectively, with the empty evaluation context.

A standard type substitution lemma is used in the proof of Subject Reduction
for the cases of redexes with type-level parameters.

LEMMA 4.4 (TYPE SUBSTITUTION). If
, X : B; �
 e : A′ and

 A : B, then

; [A/X]�
 [A/X]e : [A/X]A′.

PROOF SKETCH. By induction on the typing derivation for e.

LEMMA 4.5 (SUBJECT REDUCTION). If ·;·
 e : A and e �→ e′, then ·;·
 e′ : A.

PROOF SKETCH. Since evaluation contexts bind no variables, it suffices to
prove subject reduction for ↪→ and use a standard term substitution lemma.
We show only some cases of redexes involving sel and if.

—The derivation for e = sel[A′](〈v0, . . . , vn−1〉, m) in standard form has the shape

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈
v〉 : tup n̂ A′′
1

·;·
 〈
v〉 : tup A2 A′′

D′
·;·
 m : snat m̂
·;·
 m : snat A1

E
·
 A′ : LT A1 A2

·;·
 sel[A′](〈v0, . . . , vn−1〉, m) : A′′ A1
,

·;·
 sel[A′](〈v0, . . . , vn−1〉, m) : A

where A =βηι A′′ A1, A′′
1 =βηι A′′, and A1 =βηι m̂. Since e �→ e′ only by rule

R-SEL, we have m < n and e′ = vm, so from Dm and A′′
1 m̂ =βηι A′′ m̂ =βηι

A′′ A1 =βηι A we obtain a derivation of ·;·
 e′ : A.
—In the case of if, the standard derivation D of

·;·
 if [B, A′](tt, X 1. e1, X 2. e2) : A

ends with an instance of E-CONV, preceded by an instance of E-IF. Using the
notation from Figure 5, from the premises of this rule it follows that we have
a derivation E of ·
 A′ : B A′′, and A′′ =βηι true (since rule E-TRUE assigns
sbool true to tt), hence we have ·
 A′ : B true by CONV. By Lemma 4.4, from

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

30 • Z. Shao et al.

E and the derivation of X 1 : B true; ·
 e1 : A (provided as another premise),
since X 1 is not free in A (ensured by the premise ·
 A : �) we obtain a
derivation of ·;·
 [A′/X 1]e1 : A.

THEOREM 4.6 (SAFETY OF λH). If ·;·
 e : A, then either e �→∗ v and ·;·
 v : A,
or e diverges (i.e., for each e′, if e �→∗ e′, then there exists e′′ such that e′ �→ e′′).

PROOF SKETCH. Follows from Lemmas 4.3 and 4.5.

4.6 Discussion

The proof of Progress of λH relies critically on the adequacy of the representation
of meta-proofs of natural numbers being in the less-than relation, that is, that
for closed A and B the kind LT A B is inhabited if and only if A and B represent
natural numbers related by less-than. In the case of the less-than relation
and LT, this fact was proved in Lemma 4.1. However, it must be kept in mind
when considering extensions of λH that since CIC and TL are more expressive
than higher-order predicate logic, adequacy of the representations of meta-
proofs does not hold in general; hence, the existence of a term of the kind of
the proposition does not imply that there is a meta-proof of the proposition. For
instance, the ability to eliminate inductive kinds in TL allows analysis of proof
derivations—a technique which allows the construction of proof terms without
counterpart in standard meta-reasoning. This issue does not arise for first-order
proof representations (whose constructors have no parameters of a function
kind) such as LT, and we do not expect it to be a concern in practice. In cases
when it does arise, it could be resolved by using the underlying consistent logic
of CIC in place of the meta-logic; for instance, in our presentation the question
of adequacy is raised because the operational semantics of λH is defined in
meta-logical terms, but this question would be moot if λH and its semantics
were defined as CIC terms. To eliminate the interaction with the meta-logic,
this approach should be applied all the way down to the hardware specification
(as done in some PCC system [Appel and Felty 2000]); we plan to pursue this
in the future.

The language λH is intended only as an illustration of the expressiveness
of type systems based on TL. As we showed in Section 4.4, type conversions
can be programmed in λH ; however, it is also easy to extend λH with a type
conversion construct cast, which allows conversion between any types which
the programmer can prove are in a given relation of equivalence. The strongest
such equivalence relation in TL is represented by Eq, and in this case the typing
rule for cast is

; �
 e : A

 B : Eq � A A′

; �
 cast[A, A′, B]e : A′ (E-CAST)

The dynamic semantics of cast is trivial:

cast[A, A′, B]e ↪→ e (R-CAST)

The proof of the soundness of this extension is based on the observation
(following from Theorem 3.3, the Church–Rosser property of TL) that if the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 31

judgment ·
 B : Eq � A A′ is derivable (which is what we have in the
corresponding case of the proof of Subject Reduction), then the normal form
B′ of B is an application of refl to some kind equivalent to � and to some type
A1. But the kind of this application is then Eq � A1 A1, while the kind of B′

is Eq � A A′, so either A = A1, or there is an application of rule CONV in the
derivation for B′, with a proof of A =βηι A1 in the premise, and similarly for A′

vs. A1. Thus we can obtain a proof that A =βηι A′, and the rest of the meta-proof
is the same as for E-CONV.2

In a language equipped with this construct, the programmer provides the
compiler with proofs of correctness of type conversions, which legalizes more
conversions than in any decidable type system with a built-in notion of con-
version. Reusing definitions from Section 4.4, the cast from snat (plus t t ′) to
snat (plus t ′ t) is

cast[snat (plus t t ′),
snat (plus t ′ t),
eqf Nat � snat (plus t t ′) (plus t ′ t) (plusSym t t ′)]

e

5. CPS CONVERSION

In this section, we show how to perform CPS conversion on λH while still pre-
serving proofs represented in the type system. This stage transforms all uncon-
ditional control transfers, including function invocation and return, to function
calls and gives explicit names to all intermediate computations. In this way,
evaluation order is explicit and there is no need for a control stack.

There are two interesting points in our approach to CPS conversion. First, as
we discuss in detail later in this section, arbitrary terms of the type language
that appear in computation terms are not transformed. Second, the transforma-
tion of types is encoded as a function in our type language and, as will become
apparent later in this section, this fact is important for proving that our CPS
conversion is type-correct.

We start by defining a version of λH using type-annotated terms. By f̄ and ē,
we denote the terms without annotations. Type annotations allow us to present
the CPS transformation based on syntactic instead of typing derivations.

(exp) e ::= ēA

ē ::= x | n | tt | ff | f | fix x : A. f | e e′ | e[A] | 〈X = A, e : A′〉
| open e as 〈X , x〉 in e′ | 〈e0, . . . , en−1〉 | sel[A](e, e′)
| e aop e′ | e cop e′ | if [A, A′](e, X 1. e1, X 2. e2)

(fun) f ::= f̄ A

f̄ ::= λx : A. e |
X : A. f .

2Again, this proof of soundness goes through with either an inductive definition of Eq, as in CIC,
or with its Church encoding, since no large or dependent elimination of proof terms is used.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

32 • Z. Shao et al.

We call the target calculus for this phase λK , with syntax:

(val) v ::= x | n | tt | ff | 〈X = A, v : A′〉 | 〈v0, . . . , vn−1〉
| fix x ′[X 1 : A1, . . . , X n : An](x : A). e

(exp) e ::= v[A1, . . . , An](v′) | let x = v in e | let 〈X , x〉 = open v in e
| let x = sel[A](v, v′) in e | let x = v aop v′ in e | let x = v cop v′ in e
| if [A, A′](v, X 1. e1, X 2. e2).

Expressions in λK consist of a series of let bindings followed by a function ap-
plication or a conditional branch. There is only one abstraction mechanism, fix,
which combines type and value abstraction. Multiple arguments may be passed
by packing them in a tuple. We use the following syntactic sugar to denote non-
recursive function definitions and value applications in λK (here x ′ is a fresh
variable):

λx : A. e ≡ fix x ′[](x : A). e
v v′ ≡ v[](v′)

X 1 : A1. . . .
X n : An. λx : A. e ≡ fix x ′[X 1 : A1, . . . , X n : An](x : A). e

λK shares the TL type language with λH . The types for λK all have kind �K
which, as in λH , is an inductive kind defined in TL. The �K kind has all the
constructors of � plus one more (func). Since functions in CPS do not return
values, the function type constructor of �K has a different kind:

→→ : �K →�K

We use the more conventional syntax A→⊥ for →→ A (i.e., the type of functions
taking a parameter of type A). As will become apparent shortly in the static
semantics of λK , no value of λK has type A→⊥. The latter is used in conjunction
with the new constructor func to form the types of function values:

func : �K →�K .

Every function value is implicitly associated with a closure environment (for
all the free variables), so the func constructor is useful in the closure-conversion
phase (see Section 6). In the case of function values, the type parameter of
func is an element of �K constructed by application of →→, ∀∀Kind or ∀∀Kscm . The
func constructor allows us to build one closure for each polymorphic function
definition (even though it contains both type abstraction and term abstraction).

In the static semantics of λK we use two forms of judgments. As in λH , the
judgment
; �
K v : A indicates that the value v is well formed and of type
A in the type and value contexts
 and � respectively. Moreover,
; �
K e
indicates that the expression e is well formed in
 and �. In both forms of
judgments, we omit the subscript from
K when it can be deduced from the
context.

The static semantics of λK is specified by the formation rules in Figure 6.
We omit the rules for environment formation, variables, constants, tuples,
packages, and type conversion on values, which are the same as in λH , and we
give only one example for arithmetic and comparison operators. Except for the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 33

Fig. 6. Static semantics of λK .

rules K-FIX and K-APP, which must take into account the presence of func, the
static semantics for λK is a natural consequence of the static semantics for λH .

Typed CPS conversion involves the translation of both types and computation
terms. Earlier algorithms [Harper and Lillibridge 1993; Morrisett et al. 1998]
require traversing and transforming every term in the type language (which
would include all the proofs in our setting). This is impractical because proofs
are large in size, and transforming them can alter their meanings and break
the sharing among different intermediate languages.

To see the actual problem, let us convert the λH expression 〈X = A, e : B〉 to
CPS, assuming that it has type ∃X : A′. B. We use Ktyp to denote the meta-level
translation function for the type language and Kexp for the computation
language. Under previous algorithms, the translation also transforms the
witness A:

Kexp[[〈X = A, e : B〉]] =
λk :Ktyp[[∃X : A′. B]].Kexp[[e]] (λx :Ktyp[[[A/X]B]]. k 〈X =Ktyp[[A]], x :Ktyp[[B]]〉).
Here, we CPS-convert e and apply it to a continuation, which puts the result
of its evaluation in a package and hands it to the return continuation k. With
proper definition of Ktyp and assuming that Ktyp[[X]] = X on all variables X ,
we can show that the two types Ktyp[[[A/X]B]] and [Ktyp[[A]]/X](Ktyp[[B]])
are equivalent (under =βηι). Thus, the translation preserves typing.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

34 • Z. Shao et al.

But we do not want to touch the witness A, so the translation function should
be defined as follows:

Kexp[[〈X = A, e : B〉]] =
λk :Ktyp[[∃X : A′. B]].Kexp[[e]] (λx :Ktyp[[[A/X]B]]. k 〈X = A, x :Ktyp[[B]]〉)

To preserve typing, we have to make sure that the two types Ktyp[[[A/X]B]]
and [A/X](Ktyp[[B]]) are equivalent. This seems impossible to achieve if Ktyp
is defined at the meta level.

Our solution is to internalize the definition of Ktyp in our type language. We
replace Ktyp by a type function K of kind � → �K . For readability, we use the
pattern-matching syntax, but it can be easily coded using the Elim construct.

K (snat t) = snat t
K (sbool t) = sbool t
K (t1 → t2) = func ((K(t1) × K c(t2))→⊥)
K (tup t1 t2) = tup t1 (λt :Nat. K(t2 t))
K (∀∀Kind k t) = func (∀∀Kind k (λt1 :k. K c(t t1)→⊥))
K (∃∃Kind k t) = ∃∃Kind k (λt1 :k. K(t t1))
K (∀∀Kscm z t) = func (∀∀Kscm z (λk :z. K c(t k)→⊥))
K (∃∃Kscm z t) = ∃∃Kscm z (λk :z. K(t k)),

where

K c ≡ λt :�. func (K(t)→⊥).

The definition of K is in the spirit of the interp function of Crary and Weirich
[1999]. However, interp cannot be used in defining a similar CPS conversion,
because its domain does not cover (nor is there an injection to it from) all types
appearing in type annotations. In λH , these types are in the inductive kind �

and can be analyzed by K. We can now prove K ([A/X]B) =βηι [A/X](K (B)) by
first reducing B to its normal form B′. Clearly, K ([A/X]B) =βηι K ([A/X]B′)
and [A/X](K (B′)) =βηι [A/X](K (B)). Finally, we can show the equivalence
K ([A/X]B′) =βηι [A/X](K (B′)) by induction over the structure of the normal
form B′.

The definition of the CPS transformation for computation terms of λH to com-
putation terms of λK is given in Figure 7. As an example of how CPS conversion
works, let us consider the transformation of function abstraction (λx : A. e). The
result is a function value that takes as a parameter a pair xarg, consisting of
the original abstraction’s parameter x and the current continuation k. After
accessing the two elements of this pair, the function value applies the CPS con-
version of the abstraction’s body to k. On the other hand, the transformation of
a function application (e1 e2) gives a function value that takes as a parameter
the current continuation k. By applying the CPS conversions of e1 and e2 to
appropriate continuations, this function value ultimately applies the function
corresponding to e1 to a pair consisting of the value corresponding to e2 and the
continuation k.

The following proposition states that our CPS conversion preserves typing.
As we discussed earlier, it is important for its proof that K has been encoded as
a function in TL.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 35

Fig. 7. CPS conversion: from λH to λK .

PROPOSITION 5.1 (TYPE CORRECTNESS OF CPS CONVERSION). If ·;·
H e : A,
then ·;·
K Kexp[[ēA]] : func (K c(A)→⊥).

PROOF SKETCH. By induction on the typing derivation for e.

6. CLOSURE CONVERSION

In this section, we address the issue of how to make closures explicit for all the
CPS terms in λK . This stage rewrites all functions so that they contain no free
variables. Any variables that appear free in a function value are packaged in an
environment, which together with the closed code of the function form a closure.
When a function is applied, the closed code and the environment are extracted
from the closure and then the closed code is called with the environment as an
additional parameter.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

36 • Z. Shao et al.

Our approach to closure conversion is based on Morrisett et al. [1998], who
adopt a type-erasure interpretation of polymorphism. We use the same idea
for existential types. As in the case of CPS conversion, there are again two
interesting points in our approach. Arbitrary terms of the type language that
appear in computation terms are not transformed. Moreover, the transforma-
tion of types is again encoded as a function in our type language and this is
crucial for proving that closure conversion is type-correct.

We call the language we use for this phase λC; its syntax is:

(val) v ::= x | n | tt | ff | fix x ′[X 1 : A1, . . . , X n : An](x : A). e | v[A]
| 〈v0, . . . , vn−1〉 | 〈X = A, v : A′〉

(exp) e ::= v v′ | let x = v in e | let x = sel[A](v, v′) in e
| let 〈X , x〉 = open v in e | let x = v aop v′ in e

. | let x = v cop v′ in e | if [B, A](v, X 1. e1, X 2. e2)

λC is similar to λK , the main difference being that type application and value
application are again separate. Type applications are values in λC reflecting
the fact that they have no runtime effect in a type-erasure interpretation. We
use the same kind of types �K as in λK .

The main difference in the static semantics between λK and λC is that in the
latter the body of a function must not contain free type or term variables. This
is formalized in the rule C-FIX below. The rules C-TAPP and C-APP corresponding
to the separate type and value application in λC are standard.

for all i < n ·
 Ai : si

·, X 1 : A1, . . . , X n : An
 A : � ·, X 1 : A1, . . . , X n : An; ·, x ′ : B, x : A
 e

; �
 fix x ′[X 1 : A1, . . . , X n : An](x : A). e : B
where B = ∀s1 X 1 : A1 . . . ∀sn X n : An. A→⊥

(C-FIX)

; �
 v : ∀s X : A′. B

 A : A′

; �
 v[A] : [A/X]B
(C-TAPP)

; �
 v1 : A→⊥
; �
 v2 : A

; �
 v1 v2

(C-APP)

We define the transformation of types as a function Cl: �K →�K →�K , the
second argument of which represents the type of the closure environment. As
in CPS conversion, we write Cl as a TL function so that the closure-conversion
algorithm does not have to traverse proofs represented in the type system.

Cl (snat t) = λt ′ :�K . snat t
Cl (sbool t) = λt ′ :�K . sbool t
Cl (t →⊥) = λt ′ :�K . (t ′ × Cl (t) ⊥)→⊥
Cl (func t) = λt ′ :�K . ∃ t1 :�K . (Cl (t) t1 × t1)
Cl (tup t1 t2) = λt ′ :�K . tup t1 (λt ′′ :Nat. Cl (t2 t ′′) t ′)
Cl (∀∀Kind k t) = λt ′ :�K . ∀∀Kind k (λt1 :k. Cl (t t1) t ′)
Cl (∃∃Kind k t) = λt ′ :�K . ∃∃Kind k (λt1 :k. Cl (t t1) t ′)
Cl (∀∀Kscm z t) = λt ′ :�K . ∀∀Kind z (λk :z. Cl (t k) t ′)
Cl (∃∃Kscm z t) = λt ′ :�K . ∃∃Kscm z (λk :z. Cl (t k) t ′)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 37

Fig. 8. Closure conversion: from λK to λC .

The definition of the closure transformation for the computation terms of λK
is given in Figure 8. To understand how closure conversion works, let us again
consider the transformations of function abstraction and function application.
The former is the heart of closure conversion and clearly the most involved case.
A λK term of the form fix x ′[X 1 : A1, . . . , X n : An](x : A). e is transformed to a pack-
age 〈X = Aenv, 〈vcode[Y1] · · · [Ym], venv〉 : AX 〉. The first part of this package is the
type of the closure environment Aenv. The second part is a pair consisting of the
transformed function body vcode[Y1] · · · [Ym] and the closure environment venv.
The closure environment is a tuple containing the values of all term variables
x0, . . . , xk−1 that are free in e. On the other hand, the transformed function body
takes as parameters: (i) all type variables Y1, . . . , Ym that are free in e, (ii) the
type parameters X 1, . . . , X n of the original function, and (iii) a pair xarg con-
taining the closure environment xenv and the term parameter x of the original

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

38 • Z. Shao et al.

function. From the transformation of function abstractions, one immediately
notices that quantification over kind schemas is required: the definition of A′

X
uses ∀∀Kscm if Ai : Kscm.

Inversely, the transformation of function application opens the package and
reveals the type Xenv and value xenv of the closure environment, as well as the
function’s body xcode. It then applies the body to the actual parameters and to
xenv.

The following proposition states that our closure conversion preserves typing.
As in the case of CPS conversion, the fact that Cl has been encoded as a function
in TL is important for its proof.

PROPOSITION 6.1 (TYPE CORRECTNESS OF CLOSURE CONVERSION). If ·;·
K v : A,
then ·;·
C Cval[[v]] : Cl (A) ⊥.

PROOF SKETCH. By induction on the typing derivation for v.

7. RELATED WORK

Our type language is a variant of the calculus of constructions [Coquand and
Huet 1988] extended with inductive definitions (with both small and large elim-
ination) [Paulin-Mohring 1993; Werner 1994]. We omitted parameterized in-
ductive kinds and dependent large elimination to simplify our presentation,
however, all our meta-theoretic proofs carry over to a language that includes
them. We support η-reduction in our language while the official Coq system does
not. The proofs for the properties of TL are adapted from Geuvers [1993] and
Werner [1994] (which in turn borrows ideas from Altenkirch [1993]); the main
difference is that our language has kind-schema variables and a new product
formation rule (Ext, Kind) which are not in Werner’s system.

The Coq proof assistant provides support for extracting programs from proofs
[Paulin-Mohring 1993]. It separates propositions and sets into two distinct uni-
verses Prop and Set. We do not distinguish between them because we are not
aiming to extract programs from our proofs, instead, we are using proofs as
specifications for our computation terms.

Burstall and McKinna [1991] proposed the notion of deliverables, which is es-
sentially the same as our notion of certified binaries. They use dependent strong
sums to model each deliverable and give its categorical semantics. Their work
does not support programs with effects and has all the problems mentioned in
Section 2.3.

Xi and Pfenning’s DML [Xi and Pfenning 1999] is the first language that
nicely combines dependent types with programs that may involve effects. Our
ideas of using singleton types and lifting the level of the proof language are
directly inspired by their work. DML does not support explicit proofs in its type
language; any assertions (or constraints) must be resolved fully automatically
in order to ensure decidable typechecking. As a result, DML’s assertion lan-
guage only allows integer linear inequalities. Our system, on the other hand,
allows arbitrary propositions and proofs. An assertion in our system can use
any integer constraints but a certified program must explicitly provide proofs
on how these constraints are satisfied. Our system is best suited for use in

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 39

compiler typed intermediate languages while the DML type system is more
suitable for use in a source programming language. Another difference is that
DML does not define the � kind as an inductive definition so it does not sup-
port intensional type analysis [Trifonov et al. 2000] and it is unclear how it can
preserve proofs during compilation.

We have discussed the relationship between our work and those on PCC,
typed assembly languages, and intensional type analysis in Section 1. Inductive
definitions subsume and generalize earlier systems on intensional type analysis
[Harper and Morrisett 1995; Crary and Weirich 1999; Trifonov et al. 2000]; the
type-analysis construct in the computation language can be eliminated using
the technique proposed by Crary et al. [1998].

The work presented in this article showed one way of having types and proofs
coexist in an intermediate language for certified binaries, that is, by embed-
ding predicates and proofs directly into types. Another possibility, which we
did not address, is to embed types into the logic which proofs are carried out—
essentially using pre- and post-conditions as in Hoare logic to express type
invariants. Unfortunately, Hoare logic does not work well with higher-order
functions, for example, it is unclear how to describe an assertion that a formal
parameter (of another function) has a function type (as simple as int→int). Foun-
dational PCC [Appel and Felty 2000] requires explicit construction of the fixed
point (using index-based semantic model) to support higher-order functions—
which is probably too complex for compiler intermediate languages.

Concurrently with our work, Crary and Vanderwaart [2001] recently pro-
posed a system called LTT, which also aims at adding explicit proofs to typed
intermediate languages. LTT uses Linear LF [Cervesato and Pfenning 1996]
as its proof language. It shares some similarities with our system in that both
are using singleton types [Xi and Pfenning 1999] to circumvent the problems
of dependent types. However, since LF does not have inductive definitions and
the Elim construct, it is unclear how LTT can support intensional type analy-
sis and type-level primitive recursive functions [Crary and Weirich 2000]. In
fact, to define � as an inductive kind [Trifonov et al. 2000], LTT would have
to add proof-kind variables and proof-kind polymorphism, which could signifi-
cantly complicate the meta-theory of its proof language. LTT requires different
type languages for different intermediate languages; it is unclear whether it
can preserve proofs during CPS and closure conversion. The power of linear
reasoning in LTT is desirable for tracking ephemeral properties that hold only
for certain program states; we are working on adding such support into our
framework.

8. CONCLUSIONS

We presented a general framework for explicitly representing propositions and
proofs in typed intermediate or assembly languages. We showed how to inte-
grate an entire proof system into our type language and how to perform CPS
and closure conversion while still preserving proofs represented in the type sys-
tem. Our work is a first step toward the goal of building realistic infrastructure
for certified programming and certifying compilation.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

40 • Z. Shao et al.

Our type system is fairly concise and simple with respect to the number of
syntactic constructs, yet it is powerful enough to express all the propositions
and proofs in the higher-order predicate logic (extended with induction princi-
ples). In the future, we would like to use our type system to express advanced
program invariants such as those involved in low-level mutable recursive data
structures.

Our type language is not designed around any particular programming lan-
guage. We can use it to typecheck as many different computation languages
as we like; all we need is to define the corresponding � kind as an inductive
definition. We hope to evolve our framework into a realistic typed common in-
termediate format.

APPENDIX

In this appendix, we supply the rest of the details involved in the formalization
of our type language TL.

A. FORMALIZATION OF TL

Most of our notation and definitions are directly borrowed from Werner [1994].
In addition to the symbols defined in the syntax, we will also use C to denote
general terms, Y and Z for variables, and I for inductive definitions.

To ensure that the interpretation of inductive definitions remains consistent
and they can be interpreted as terms closed under their introduction rules, we
impose positivity constraints on the constructors of an inductive definition. The
positivity constraints are defined in Definitions A.1 and A.2.

Definition A.1. A term A is strictly positive in X if A is either X or �Y :
B. A′, where A′ is strictly positive in X , X does not occur free in B, and X �= Y .

Definition A.2. A term C is a well-formed constructor kind for X (written
wfcX (C)) if it has one of the following forms:

(1) X ;
(2) �Y : B. C′, where Y �= X , X is not free in B, and C′ is a well-formed

constructor kind for X ; or
(3) B′ →C′, where B′ is strictly positive in X and C′ is a well-formed constructor

kind for X .

Note that in the definition of wfcX (C) the second clause covers the case when
C is of the form B → C′ and X does not occur free in B. Therefore, we only
allow the occurrence of X in the nondependent case.

In the rest of this article, we often write well-formed constructor kinds for X
as �
Y :
B. X . We also denote terms that are strictly positive in X by �
Y :
B. X ,
where X is not free in
B.

Definition A.3. Let C be a well-formed constructor kind for X . Then C is
of the form �
Y :
B. X . If all the Y ’s are t ’s, that is, C is of the form �
t :
B. X ,
then we say that C is a small constructor kind (or just a small constructor when
there is no ambiguity) and denote it as small(C).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 41

Our inductive definitions reside in Kind, whereas a small constructor does not
make universal quantification over objects of type Kind. Therefore, an inductive
definition with small constructors is a predicative definition. While dealing with
impredicative inductive definitions, we must forbid projections on universes
equal to or bigger than the one inhabited by the definition. In particular, we
restrict large elimination to inductive definitions with only small constructors.

Next, we define the set of reductions on our terms. The definition of β- and
η-reduction is standard. The ι-reduction defines primitive recursion over induc-
tive objects.

Definition A.4. Let C be a well-formed constructor kind for X and let A,
B′, and I be terms. We define �X , I,B′ (C, A) inductively on the structure of C:

�X , I,B′ (X , A) def= A

�X , I,B′ (�Y : B. C′, A) def= λY : B. �X , I,B′ (C′, A Y)

�X , I,B′ ((�
Y :
B. X)→C′, A) def=
λZ : (�
Y :
B. I). �X , I,B′ (C′, A Z (λ
Y :
B. B′ (Z
Y))).

Definition A.5. The reduction relations on our terms are defined as:

(λX : A. B) A′ �β [A′/X]B

λX : A. (B X) �η B, if X /∈ FV(B)

Elim[I, A′′](Ctor (i, I)
A){
B} �ι (�X , I,B′ (Ci, Bi))
A
where I = Ind(X :Kind){
C}

B′ = λY : I. (Elim[I, A′′](Y){
B}).
Recall that in Section 3.2 we introduced the relations �β , �η, and �ι as the
contextual closures of the relations �β , �η, and �ι respectively; we write � and
� for the unions of the above relations, and =βηι for the reflexive, symmetric,
and transitive closure of �.

Let us examine the ι-reduction in detail. In Elim[I, A′′](A){
B}, the term A of
type I is being analyzed. The sequence
B contains the set of branches of Elim,
one for each constructor of I . In the case when Ci = X , which implies that A is
of the form Ctor (i, I), the Elim just selects the Bi branch:

Elim[I, A′′](Ctor (i, I)){
B} �ι Bi.

In the case when Ci = �
Y :
B. X , where X does not occur free in
B, A must
be of the form Ctor (i, I)
A, with Ai of type Bi. The Elim selects the Bi branch
and passes the constructor arguments to it. Accordingly, the reduction yields
(by application of the meta-level function �):

Elim[I, A′′](Ctor (i, I)
A){
B} �ι Bi
A.

The recursive case is the most interesting. For simplicity assume that the ith
constructor has the form (�
Y :
B′. X) → �
Y ′ :
B′′. X . Therefore, A is of the
form Ctor (i, I)
A with A1 being the recursive component of type �
Y :
B′. I , and

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

42 • Z. Shao et al.

A2 . . . , An being nonrecursive. The reduction rule then yields:

Elim[I, A′′](Ctor (i, I)
A){
B} �ι Bi A1 (λ
Y :
B′. Elim[I, A′′](A1
Y){
B}) A2 · · · An.

The Elim construct selects the Bi branch and passes the arguments A1, . . . , An,
and the result of recursively processing A1. In the general case, it would process
each recursive argument.

For example, suppose the kind Nat of natural numbers is defined as

Ind(Nat :Kind){Nat; Nat → Nat},
with the constructor zero defined as Ctor (1, Nat) and the constructor succ de-
fined as Ctor (2, Nat). Consider Elim[Nat, A′′](A){B0; BS}, where B0 and BS are the
branches for the zero and succ constructors. Then we have:

Elim[Nat, A′′](Ctor (1, Nat)){B0; BS} �ι B0
Elim[Nat, A′′](Ctor (2, Nat) N){B0; BS} �ι BS N (Elim[Nat, A′′](N){B0; BS})

The following two definitions introduce the meta-level functions ζ and �,
which compute the types of the branches of the small and large elimination
constructs, respectively. The cases follow from the ι-reduction rule in Defini-
tion A.5.

Definition A.6. Let C be a well-formed constructor kind for X and let A,
B′, and I be terms. We define ζX , I (C, A, B′) inductively on the structure of C:

ζX , I (X , A, B′) def= A B′

ζX , I (�Y : B. C′, A, B′) def= �Y : B. ζX , I (C′, A, B′ Y)

ζX , I ((�
Y :
B. X) → C′, A, B′) def=
�Z : (�
Y :
B. I). (�
Y :
B. (A (Z
Y))) → ζX , I (C′, A, B′ Z),

where X is not free in B and
B.

Definition A.7. Let C be a well-formed constructor kind for X and let A
and I be two terms. We define �X , I (C, A) inductively on the structure of C:

�X , I (X , A) def= A

�X , I (�Y : B. C′, A) def= �Y : B. �X , I (C′, A)

�X , I (B′ →C′, A) def= [I/X]B′ → [A/X]B′ →�X , I (C′, A),

where X is not free in B and B′ is strictly positive in X .

The complete typing rules for TL are listed in Figure 9. The three weakening
rules make sure that all variables are bound to the correct classes of terms
in the context. There are no separate context-formation rules; a context
 is
well-formed if we can derive the judgment

 Kind : Kscm (notice we can only
add new variables to the context via the weakening rules).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 43

Fig. 9. Formation rules of TL.

ACKNOWLEDGMENTS

We would like to thank Thorsten Altenkirch, Gilles Barthe, Thierry Coquand,
Antony Courtney, Karl Crary, Xinyu Feng, Christopher League, Zhaohui Luo,
Christine Paulin-Mohring, Stefan Monnier, Henrik Nilsson, Walid Taha, and
anonymous referees for discussions and comments on this and an earlier version

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

44 • Z. Shao et al.

of this article. Benjamin Werner helped us understand the intricacies in the
strong-normalization proof for the core calculus of inductive constructions.

REFERENCES

ALTENKIRCH, T. 1993. Constructions, inductive types and strong normalization. Ph.D. disserta-
tion. University of Edinburgh, UK.

APPEL, A. W. AND FELTEN, E. W. 2001. Models for security policies in proof-carrying code. Tech.
Rep. CS-TR-636-01, Princeton Univ., Princeton, N.J.

APPEL, A. W. AND FELTY, A. P. 2000. A semantic model of types and machine instructions for
proof-carrying code. In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages. ACM, New York, pp. 243–253.

BARENDREGT, H. P. 1991. Lambda calculi with types. In Handbook of Logic in Computer Science,
vol. 2, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford Univ. Press.

BARENDREGT, H. P. AND GEUVERS, H. 1999. Proof-assistants using dependent type systems. In
Handbook of Automated Reasoning, A. Robinson and A. Voronkov, Eds. Elsevier, Amsterdam,
The Netherlands.

BARTHE, G., HATCLIFF, J., AND SORENSEN, M. 1999. CPS translations and applications: The cube
and beyond. Higher Order and Symbolic Computation 12, 2 (Sept.), 125–170.

BURSTALL, R. AND MCKINNA, J. 1991. Deliverables: An approach to program development in con-
structions. Tech. Rep. ECS-LFCS-91-133, Univ. of Edinburgh, UK.

CERVESATO, I. AND PFENNING, F. 1996. A linear logical framework. In Proceedings of the 11th IEEE
Symposium on Logic in Computer Science. 264–275.

COLBY, C., LEE, P., NECULA, G. C., BLAU, F., PLESKO, M., AND CLINE, K. 2000. A certifying compiler
for Java. In Proceedings of the 2000 ACM Conference on Programming Language Design and
Implementation. ACM, New York, 95–107.

CONSTABLE, R. 1985. Constructive mathematics as a programming logic I: Some principles of
theory. Ann. Disc. Math. 24.

COQUAND, T. AND HUET, G. 1988. The calculus of constructions. Inf. Comput. 76, 95–120.
CRARY, K. AND VANDERWAART, J. 2001. An expressive, scalable type theory for certified code. Tech.

Rep. CMU-CS-01-113, School of Computer Science, Carnegie Mellon Univ., Pittsburgh, Pa.
CRARY, K., WALKER, D., AND MORRISETT, G. 1999. Typed memory management in a calculus of ca-

pabilities. In Proceedings of the 26th ACM Symposium on Principles of Programming Languages.
ACM , New York, 262–275.

CRARY, K. AND WEIRICH, S. 1999. Flexible type analysis. In Proceedings of the 1999 ACM SIGPLAN
International Conference on Functional Programming. ACM, New York, 233–248.

CRARY, K. AND WEIRICH, S. 2000. Resource bound certification. In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages. ACM, New York, 184–198.

CRARY, K., WEIRICH, S., AND MORRISETT, G. 1998. Intensional polymorphism in type-erasure se-
mantics. In Proceedings of the 1998 ACM SIGPLAN Int’l Conf. on Functional Prog. ACM, New
York, 301–312.

GEUVERS, H. 1993. Logics and type systems. Ph.D. thesis, Catholic University of Nijmegen, The
Netherlands.

GIRARD, J.-Y. 1972. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Ph.D. thesis, University of Paris VII.

HARPER, R. 2000. The practice of type theory. Talk presented at 2000 Alan J. Perlis Symposium,
Yale University, New Haven, Conn.

HARPER, R. AND LILLIBRIDGE, M. 1993. Explicit polymorphism and CPS conversion. In Proceedings
of the 20th ACM Symposium on Principles of Programming Languages. ACM, New York, 206–
219.

HARPER, R. AND MORRISETT, G. 1995. Compiling polymorphism using intensional type analysis. In
Proceedings of the 22nd ACM Symposium on Principles of Programming Languages. ACM, New
York, 130–141.

HAYASHI, S. 1991. Singleton, union and intersection types for program extraction. In Proceedings
of the International Conference on Theoretical Aspects of Computer Software, A. R. Meyer, Ed.
701–730.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

A Type System for Certified Binaries • 45

HOWARD, W. A. 1980. The formulae-as-types notion of constructions. In To H.B.Curry: Essays on
Computational Logic, Lambda Calculus and Formalism. Academic Press, Orlando, Fla.

HUET, G., PAULIN-MOHRING, C., ET AL. 2000. The Coq proof assistant reference manual. Part of the
Coq system version 6.3.1.

MINAMIDE, Y., MORRISETT, G., AND HARPER, R. 1996. Typed closure conversion. In Proceedings of
the 23rd ACM Symposium on Principles of Programming Languages. ACM, New York, 271–283.

MONNIER, S., SAHA, B., AND SHAO, Z. 2001. Principled scavenging. In Proceedings of the 2001 ACM
Conference on Programming Language Design and Implementation. ACM, New York, 81–91.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. 1998. From System F to typed assembly
language. In Proceedings of the 25th ACM Symposium on Principles of Programming Languages.
ACM, New York, 85–97.

NECULA, G. 1997. Proof-carrying code. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages. ACM, New York, 106–119.

NECULA, G. 1998. Compiling with proofs. Ph.D. dissertation, School of Computer Science,
Carnegie Mellon Univ, Pittsburgh, Pa.

NECULA, G. AND LEE, P. 1996. Safe kernel extensions without run-time checking. In Proceedings of
the 2nd USENIX Symposium on Operating System Design and Implementation. USENIX Assoc.,
229–243.

NECULA, G. AND LEE, P. 1998. The design and implementation of a certifying compiler. In Proceed-
ings of the 1998 ACM Conference on Programming Language Design and Implementation. ACM,
New York, 333–344.

NORDSTROM, B., PETERSSON, K., AND SMITH, J. 1990. Programming in Martin-Löf’s type theory.
Oxford University Press.

PAULIN-MOHRING, C. 1989. Extracting Fω ’s programs from proofs in the Calculus of Constructions.
In Proceedings of the 16th ACM Symposium on Principles of Programming Languages. ACM, New
York, 89–104.

PAULIN-MOHRING, C. 1993. Inductive definitions in the system Coq–Rules and properties. In Pro-
ceedings of the TLCA, M. Bezem and J. Groote, Eds. Lecture Notes in Computer Science, vol. 664,
Springer-Verlag, New York.

SHAO, Z. 1997. An overview of the FLINT/ML compiler. In Proceedings of the 1997 ACM SIGPLAN
Workshop on Types in Compilation. ACM, New York.

SHAO, Z., LEAGUE, C., AND MONNIER, S. 1998. Implementing typed intermediate languages. In
Proceedings of the 1998 ACM SIGPLAN International Conference on Functional Programming.
ACM, New York, 313–323.

SHAO, Z., SAHA, B., TRIFONOV, V., AND PAPASPYROU, N. 2001. A type system for certified binaries. Tech.
Rep. YALEU/DCS/TR-1211, Dept. of Computer Science, Yale University, New Haven, Conn.

SHELDON, M. A. AND GIFFORD, D. K. 1990. Static dependent types for first class modules. In Pro-
ceedings of the 1990 ACM Conference on LISP and Functional Programming. ACM, New York,
20–29.

TRIFONOV, V., SAHA, B., AND SHAO, Z. 2000. Fully reflexive intensional type analysis. In Proceedings
of the 2000 ACM SIGPLAN International Conference on Functional Programming. ACM, New
York, 82–93.

WALKER, D. 2000. A type system for expressive security policies. In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages. ACM, New York, 254–267.

WERNER, B. 1994. Une théorie des constructions inductives. Ph.D. dissertation. A L’Université
Paris 7, Paris, France.

WRIGHT, A. K. AND FELLEISEN, M. 1994. A syntactic approach to type soundness. Inf. Comput. 115, 1,
38–94.

XI, H. AND PFENNING, F. 1999. Dependent types in practical programming. In Proceedings of the
26th ACM Symposium on Principles of Programming Languages. ACM, New York, 214–227.

Received November 2001; revised April 2003 and November 2003; accepted May 2004

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 1, January 2005.

