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SUMMARY

The embedding of a small but expressive language of multidimensional functional programming in a well
known and widely used language of object-oriented programming leads to the combination of two radically
different programming models. In this paper, we formally define the syntax and semantics of GLU�, which
can be thought of as the multidimensional core of Lucid and GLU, and we describe its implementation
as a language embedded in C++. With the aid of a few examples, we argue that the marriage of the two
programming models is not only compatible and natural, but also that it produces a new and interesting
hybrid language. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multidimensional languages are particularly suited for programming dynamic systems whose state
varies in one or more dimensions. Temporal and dataflow languages are particularly useful and well
studied members of this family. Multidimensional languages are based on intensional logic [1] and
typically adopt characteristics of other functional or logic programming languages. Lucid, designed
by Ashcroft and Wadge [2,3], started as a simple, non-imperative temporal programming language but
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soon developed into an inherently parallel multidimensional programming language [4]. Its descendant
GLU (Granular Lucid) emphasizes the parallel programming aspects of multidimensionality [5,6].
A large number of publications in the last two decades describe the two languages and present a wide
variety of applications in areas such as real-time applications [7,8], scientific programming [9,10],
temporal databases [11], multidimensional spreadsheets [12], digital signal processing [13], attribute
grammars [14], version control [15] and Internet publishing [16].

Although a promising approach, multidimensional programming has not appealed to the community
of imperative programming. The two paradigms interface very poorly: on the one hand conventional
imperative programming languages have no room for multidimensionality; on the other, existing
multidimensional languages cannot take advantage of imperative features and techniques, developed
over years of research, that typically result in much better performance. A convergence of the two
paradigms would be beneficial for software developers, provided that the virtues of the two were to be
respected.

Taking into account the popularity and success of imperative programming languages, which
indisputably have the biggest part of the pie in software development, embedding multidimensional
features in them seems to be a particularly suitable way to attempt this convergence. In this way,
it is possible to reuse the syntax, semantics, implementations, libraries, tools and in general the
whole infrastructure of an existing, widely spread programming language and in addition to use
the embedded multidimensional features to facilitate the programming of specialized applications.
The same approach has been proposed for the implementation of domain specific languages (DSLs),
which have recently attracted the interest of many researchers from many different scientific areas [17].
Although multidimensional languages have a much wider domain of applications than a typical DSL,
the two cases present many similarities.

Following this line of thought, in this paper we propose the embedding of a concise multidimensional
language, which we call GLU�, in C++. The language GLU� consists of the core of multidimensional
features that are present in Lucid and GLU. It can be considered as a language orthogonal to C++ and
is implemented as a collection of C++ classes and class templates. The syntax and semantics of C++
remain unchanged. Programmers, however, are able to use multidimensional objects which can take
the form of lazy arrays and lazy functions.

The choice of C++ as the host language is a natural one. It is a very popular object-oriented
programming language with numerous applications and a large amount of existing libraries and tools.
Furthermore, C++ is especially suited for embedding DSLs. This is partly due to the expressiveness of
the object-oriented programming model and partly to some particular characteristics of C++, such as
parametric polymorphism with the use of templates, exception handling, operator overloading and the
presence of a powerful preprocessor.

A similar embedding of multidimensional characteristics in a conventional programming language
has been proposed by Panos Rondogiannis [18]. In his approach, Java is used as the host language;
however its syntax and semantics are slightly changed and a custom preprocessor is needed to
translate the embedded programs into pure Java code. Furthermore, the embedded language supports
only a subset of the dimensional operators of GLU�, multidimensionality is limited to zero-order
objects (i.e. streams or lazy arrays) and some additional restrictions are imposed, due to the details
of his implementation. Our approach is clearly in the same direction. It contributes by removing
the aforementioned shortcomings, resulting in a deeper embedding of multidimensionality in an
object-oriented programming language. Furthermore, our approach uses dimensionality analysis to
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calculate the maximal set of dimensions in which the value of an expression varies, leading to a much
more efficient implementation.

The rest of the paper is structured as follows. Section 2 contains a brief introduction to
multidimensional programming and GLU, as a provision for the unaware reader. In Section 3 we
formally define GLU�. In Section 4 we describe the embedding of GLU� in C++ from the programmer’s
point of view. Implementation details of this embedding are given in Section 5. Section 6 illustrates
the convergence of the two paradigms with some characteristic examples of GLU�/C++ programs.
The paper ends with a premature evaluation of our approach in Section 7 and a few concluding remarks.

2. MULTIDIMENSIONAL PROGRAMMING

In multidimensional languages like GLU, the values of expressions depend on an implicit context that
is captured by a set of dimensions. Consider an expression which is meant to provide the temperature
in degrees Celcius. In a typical imperative program, this expression could have the numerical value 25.
However, in the real world it is the case that temperature varies in at least two ways: (i) between
different locations in space, and (ii) between different moments in time. The numerical value 25 only
captures the temperature at a specific place and time. The specific value of an expression in a given
context is called the expression’s extension. However, in a GLU program the same expression could
be viewed as a multidimensional entity, varying in two dimensions: space and time. In this way, its
value in some context (e.g. in Athens in the month of May) could be 25, but in another context (e.g. in
midwinter Siberia) it could be −40. The collection of all possible extensions of an expression in all
different contexts is called the expression’s intension. Intensions are commonly the principal type of
data values in multidimensional programming languages.

There can be as many dimensions as a program requires. The value of a given expression may vary
in some of these dimensions, while remaining constant in others. In Lucid and GLU, dimensions are
discrete and linear: points along a dimension are indexed by the natural numbers 0, 1, 2, etc‡. A set of
dimensional operators, like first, next and fby, can be used to switch between different points.
In GLU, dimensional operators are tagged with the dimension upon which they act. To understand
all this, let us see a few examples. The following line defines the infinite stream of natural numbers
along dimension t. (Parentheses are not required, but they are used here and elsewhere in this paper
for reasons of clarity.)

nat = 0 fby.t (nat + 1) ;

Translated in words, this equation says that the first value of nat along dimension t is 0 and that each
next value in the sequence can be computed by increasing the previous value by 1. Using an explicit
subscript for the context in which nat is evaluated, this means that

natt=0 = 0

natt=i+1 = natt=i + 1 for all i ≥ 0

‡Another possibility (not discussed in this paper) is to have branching dimensions, which are tree-like in nature. An example of
a temporal programming language based on branching-time logic is Cactus [19].
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The dimensional operatorfby.t, read ‘followed by, in dimensiont’, allows us to suppress the explicit
dimension indices.

As a second example, consider the following program which defines the infinite stream fib of
Fibonacci numbers along dimension t, using an auxiliary stream g.

fib = 0 fby.t g ;
g = 1 fby.t (g + fib) ;

When t is 0 we have fib = 0 and g = 1. When t is 1, the value of fib is equal to the value of g
when t is 0, i.e. 1. The value of fib when t is 2 is equal to the value of g when t is 1, which is in
turn equal to the sum of the values of g and fib when t is 0, i.e. 0 + 1 = 1.

GLU supports a rich set of dimensional operators. Operators first.t and next.t are in a sense
the inverses of fby.t: the former switches to point 0 in the given dimension, while the latter switches
to the next point relative to the current one. For example, assume that in the current context t is 41.
Then in the current context, nat = 41, while first.t nat = 0 and next.t nat = 42.
Operator @.t, read as ‘at, in dimension t’ switches to the point in dimension t that is given by its
right operand. Thus, in any context we have nat @.t 42 = 42 and fib @.t 6 = 8. By contrast,
the operator #.t, read as ‘index of dimension t’ does not require any operands: it simply returns the
current point in dimension t.

Operators asa.t and wvr.t are the most complex dimensional operators of GLU. The former,
read ‘as soon as, in dimension t’, returns the value of its left operand at the first point in dimension t
where the right operand evaluates to true. For example, fib asa.t (fib > 25) = 34, i.e. the
first Fibonacci number that exceeds 25. Operator wvr.t, read ‘whenever, in dimension t’, selects
from its left operand only the values at those points in dimension t where the right operand evaluates
to true. For example, fib wvr.t (fib % 2 == 0) produces the infinite stream of even
Fibonacci numbers: 0, 2, 8, 34, 144, . . .

GLU also supports higher-order functions, with the restriction that their results cannot be of function
type. In general, functions in GLU accept a number of data parameters and a number of dimension
parameters. The former resemble parameters in a functional language with lazy evaluation, except for
their multidimensional nature. The latter are used to abstract over dimensions. Let us clarify this with
an example of a function that rotates the d1 dimension of a stream x into its d2 dimension:

realign.d1,d2 (x) = x @.d1 #.d2 ;

In this definition, d1 and d2 are dimension parameters and x is a data parameter. The result of
realign.t,z(fib) is the infinite stream of Fibonacci numbers ordered along dimension z instead
of dimension t.

Expressions may also contain local definitions with the use of where clauses. As a last example,
let us see a function which computes the running average of a given stream x in a dimension d.
This definition uses three auxiliary local streams: mean, diff and count.

runningAverage.d (x) = mean
where mean = x fby.d (mean + diff) ;

diff = (next.d x - mean) / (next.d count) ;
count = 1 fby.d (count + 1) ;

end;
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P ::= D∗ E

D ::= τ v = E ;

τ ::= real | bool
E ::= v | n | true | false | unop E | E binop E | if E then E else E | #.d

| first.d E | next.d E | E fby.d E | E @.d E | E asa.d E | E wvr.d E

unop ::= - | !
binop ::= * | / | % | + | - | == | != | < | > | <= | >= | && | ||

Figure 1. Abstract syntax of GLU�.

3. DEFINITION OF GLU�

GLU� is a small subset of GLU supporting most of its dimensional operators. In addition, it
encompasses a lazy expression language with two basic data types (real and Boolean) and a primitive
language of recursive definitions. The abstract syntax of the language is given in Figure 1. A program
(P ) in GLU� is a sequence of definitions (D) followed by an expression (E) that must be evaluated.
The nonterminals τ , unop and binop stand for types, unary and binary operators, respectively. Variable
identifiers are denoted by v, dimension identifiers by d and numeric constants by n.

Although GLU� is of functional origin, we should emphasize that it does not support functions
directly. The introduction of functions (even of higher order) would not complicate the syntax and
semantics of the language significantly. However, their presence is not necessary since GLU� is
intended as a language embedded in C++, which provides a mechanism for defining functions.
Supporting lazy first-class higher-order functions directly in GLU� would be hard to implement
efficiently in C++. Moreover, previous results suggest that the omission of functions from a
multidimensional language does not harm it much, in terms of expressiveness [20,21]. Notice that
C++’s functions are at least as general as those of GLU, which does not support unnamed functions
(lambda abstractions) and currying. Furthermore, C++’s templates can be used to create polymorphic
functions, which is not possible in GLU.

For the formal definition of the semantics of GLU� we use the denotational approach [22,23].
We distinguish between static, typing and dynamic semantics.

3.1. Static semantics

The basic domains Var and Dim contain variable and dimension identifiers. Two additional domains,
Type and Ent represent data types and type environments, respectively. As an abuse of notation,
we do not distinguish between elements of the syntactic classes v, d and τ and the elements of the
corresponding semantic domains Var, Dim and Type.

τ : Type = {real, bool}
� : Ent = P(Var × Type)
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P(A) is the powerdomain of A. Intuitively a type environment is a set of pairs, each defining the type
of a program variable. By �0 we represent the empty type environment:

�0 = Ø

The purpose of static semantics is to define the type environment that corresponds to the whole
program. Thus, the static meanings of definitions and sequences of definitions, denoted as {| D |} and
{| D∗ |}, respectively, are type environments. An empty sequence of definitions produces the empty
type environment. The powerdomain union operator is used to concatenate two type environments in
adjacent definitions.

{| ε |} = �0

{| DD∗ |} = {| D |} ∪ {|D∗|}
The type environment corresponding to a single definition contains a single pair, which is produced by
using the powerdomain singleton operator.

{|τv=E; |} = {〈v, τ 〉}

3.2. Typing semantics

The typing semantics of GLU� associates types with syntactic elements of GLU� and detects typing
errors in programs. It is defined using typing judgements of the form � � p : θ , where � is a type
environment, p is a program phrase (i.e. a part of the program according to abstract syntax) and θ

is a phrase type. In particular, θ can be one of the following: prog[τ ], defn, or exp[τ ]. The first
and third alternatives represent programs or expressions that compute results of type τ . The second
represents definitions or sequences of definitions. The complete typing semantics for GLU� is presented
in Figure 2 using a set of inference rules.

3.3. Dynamic semantics

The dynamic semantics of GLU� is given in Figure 3. The domains T, N and R denote respectively
the flat domains of truth values, natural and real numbers. The elements of domain V are simple
values of the GLU� data types. In the standard way of defining the semantics of multidimensional
languages, the elements of W represent possible worlds, mapping each dimension to a natural number
giving the dimension’s present index. Domain D contains the denotations of expressions, which are
functions from possible worlds to simple values. In this way, an expression’s value is multidimensional.
Also, the elements of domain Env are environments mapping the defined variables to their denotations.
The distinguished elements w0 : W and ρ0 : Env, used as the initial world and environment,
are constant functions with a value of ⊥. Bottom elements are used to model both runtime errors
(e.g. division by zero) and nontermination.

In the semantic functions defining the dynamic semantics of GLU� in Figure 3, the least fixed point
operator is required in the denotation of programs to allow recursive definitions. If f is a function,
we use the notation f {a 	→ b} to denote a function f ′ such that f ′(a) = b and f ′(x) = f (x) for
all x �= a. The denotations of unary and binary operators are straightforward and have been omitted.
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Programs and definitions

Γ = {|D∗ |} Γ � D∗ : defn Γ � E : exp[τ ]

� D∗ E : prog[τ ]

Γ � ε : defn
Γ � D : defn Γ � D∗ : defn

Γ � D D∗ : defn

Γ � E : exp[τ ]

Γ � τ v = E ; : defn

Simple expressions

〈v, τ 〉 ∈ Γ

Γ � v : exp[τ ] Γ � n : exp[real] Γ � true : exp[bool]

Γ � false : exp[bool]

Γ � E : exp[real]

Γ � - E : exp[real]

Γ � E : exp[bool]

Γ � ! E : exp[bool]

Γ � E1 : exp[real] Γ � E2 : exp[real]
binop ∈ { +, -, *, /, % }

Γ � E1 binop E2 : exp[real]

Γ � E1 : exp[τ ] Γ � E2 : exp[τ ]
binop ∈ { ==, !=, >, <, >=, <= }
Γ � E1 binop E2 : exp[bool]

Γ � E1 : exp[bool] Γ � E2 : exp[bool]
binop ∈ { &&, || }

Γ � E1 binop E2 : exp[bool]

Γ � E : exp[bool]
Γ � E1 : exp[τ ] Γ � E2 : exp[τ ]

Γ � if E then E1 else E2 : exp[τ ]

Expressions with dimensional operators

Γ � E : exp[τ ]

Γ � first.d E : exp[τ ]

Γ � E : exp[τ ]

Γ � next.d E : exp[τ ] Γ � #.d : exp[real]

Γ � E1 : exp[τ ] Γ � E2 : exp[τ ]

Γ � E1 fby.d E2 : exp[τ ]

Γ � E1 : exp[τ ] Γ � E2 : exp[real]

Γ � E1 @.d E2 : exp[τ ]

Γ � E1 : exp[τ ] Γ � E2 : exp[bool]

Γ � E1 asa.d E2 : exp[τ ]

Γ � E1 : exp[τ ] Γ � E2 : exp[bool]

Γ � E1 wvr.d E2 : exp[τ ]

Figure 2. Typing semantics of GLU�.

The semantics of simple expressions, not involving dimensional operators, are also standard. Non-
dimensional operators have a pointwise semantics: the current possible world is propagated to all their
operands.

In the denotation of expressions, the most interesting cases are those of the dimensional operators;
these are the only equations in which the current possible world w is used. The first five equations
are easy; they manipulate w in a simple way, accessing the index of a given dimension and possibly
switching to a different point. The equations for the dimensional operators asa and wvr are the
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Domains

V = R ⊕ T
w : W = Dim → N

D = W → V
ρ : Env = Var → D

Semantics of programs

[[P ]] : V
[[D∗ E ]] =

let ρ = fix (λρ : Env. [[D∗ ]] ρ ρ0)
in [[E ]] ρ w0

Semantics of definitions

[[D∗ ]] : Env → Env → Env
[[ε ]] ρ ρ′ = ρ′
[[D D∗ ]] ρ ρ′ = [[D∗ ]] ρ ([[D ]] ρ ρ′)

[[D ]] : Env → Env → Env
[[τ v = E ;]] ρ ρ′ = ρ′{v 	→ [[E ]] ρ}
Semantics of simple expressions

[[E ]] : Env → D
[[v ]] ρ w = ρ v w

[[n]] ρ w = n

[[true]] ρ w = true
[[false]] ρ w = false
[[unop E ]] ρ w = [[unop ]] ([[E ]] ρ w)

[[E1 binop E2 ]] ρ w =
[[binop ]] 〈[[E1 ]] ρ w, [[E2 ]] ρ w〉

[[if E then E1 else E2 ]] ρ w =
if [[E ]] ρ w then [[E1 ]] ρ w else [[E2 ]] ρ w

Semantics of operators

[[unop ]] : V → V
[[binop ]] : V × V → V

Semantics of dimensional operators

[[#.d ]] ρ w = w d

[[first.d E ]] ρ w = [[E ]] ρ w{d 	→ 0}
[[next.d E ]] ρ w = [[E ]] ρ w{d 	→ w d + 1}
[[E1 @.d E2 ]] ρ w =

let n = round ([[E2 ]] ρ w)
in [[E1 ]] ρ w{d 	→ n}

[[E1 fby.d E2 ]] ρ w =
if w d = 0 then

[[E1 ]] ρ w
else

[[E2 ]] ρ w{d 	→ w d − 1}
[[E1 asa.d E2 ]] ρ w =

fix (λf : N → V. λn : N.
if [[E2 ]] ρ w{d 	→ n} then

[[E1 ]] ρ w{d 	→ n}
else

f (n + 1)
) 0

[[E1 wvr.d E2 ]] ρ w =
fix (λf : N → N → V. λn : N. λm : N.

if [[E2 ]] ρ w{d 	→ n} then
if w d = m then

[[E1 ]] ρ w{d 	→ n}
else

f (n + 1) (m + 1)
else

f (n + 1) m
) 0 0

Figure 3. Dynamic semantics of GLU�.

most complex ones. Notice that application of these operators implicitly requires traversing the given
dimension d . This may result in non-termination. The least fixed point operator is again required in
order to model this behaviour.

3.4. Dimensionality analysis

In the implementation of a multidimensional programming language, it is useful to know the maximal
set of dimensions in which the value of an expression may vary. This set can be determined by a
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Programs

D[[P]] : P(Dim)

D[[D∗ E ]] =
let δ = fix (λδ : End. D[[D∗ ]] δ δ0)
in D[[E ]] δ

Definitions

D[[D∗ ]] : End → End → End

D[[ε ]] δ δ′ = δ′
D[[D D∗ ]] δ δ′ = D[[D∗ ]] δ (D[[D]] δ δ′)

D[[D]] : End → End → End

D[[τ v = E ]] δ δ′ = δ′{v 	→ D[[E ]] δ}

Simple expressions

D[[E ]] : End → P(Dim)

D[[v ]] δ = δ v
D[[n]] δ = Ø

D[[true]] δ = Ø
D[[false]] δ = Ø
D[[unop E ]] δ = D[[E ]] δ
D[[E1 binop E2 ]] δ = D[[E1 ]] δ ∪ D[[E2 ]] δ
D[[if E then E1 else E2 ]] δ =

D[[E ]] δ ∪ D[[E1 ]] δ ∪ D[[E2 ]] δ

Expressions with dimensional operators

D[[#.d ]] δ = {d}
D[[first.d E ]] δ =

D[[E ]] δ − {d}
D[[next.d E ]] δ =

D[[E ]] δ
D[[E1 fby.d E2 ]] δ =

D[[E1 ]] δ ∪ D[[E2 ]] δ ∪ {d}
D[[E1 @.d E2 ]] δ =

(D[[E1 ]] δ − {d}) ∪ D[[E2 ]] δ
D[[E1 asa.d E2 ]] δ =

(D[[E1 ]] δ ∪ D[[E2 ]] δ) − {d}
D[[E1 wvr.d E2 ]] δ =

D[[E1 ]] δ ∪ D[[E2 ]] δ

Figure 4. Dimensionality analysis for GLU�.

purely syntactic process, which is called dimensionality analysis or rank analysis [24]. Elements of the
domain End are environments that associate GLU� variables with the set of dimensions in which these
variables vary.

δ : End = Var → P(Dim)

By δ0 we denote the element of End which maps all variables to the empty set. The semantic
function D, which calculates the dimensionality of GLU� programs, definitions and expressions, is
defined in Figure 4. The most interesting cases in this definition are again those of the dimensional
operators.

Let us apply dimensionality analysis to a simple GLU� program containing the definitions below,
which have been copied from the example of Figure 6.

real ints = 2 fby.x ints + 1;
real sieve = ints fby.y (sieve wvr.x sieve % prime != 0);
real prime = first.x sieve;

It is not necessary to understand what this program does, at this point; this will be explained in
Section 6.1. Using the equations of Figure 4, we can deduce that variable ints varies only in
dimension x, variable sieve varies in x and y, whereas variable prime varies only in y.
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Dimensionality analysis is not always guaranteed to produce exact results. Consider, for example, the
stream nat of Section 2, which produces the natural numbers in ascending order along dimension t.
The operator #.t has exactly the same effect and, therefore, the expression

nat - #.t

is bound to be equal to 0 everywhere. An exact dimensionality analysis for this expression should
return the empty set of dimensions. However, using the equations of Figure 4, the result that one obtains
is {t}. Both nat and #.t vary along dimension t and it is not possible by a simple syntactic process
to determine that their values are equal. In this sense, dimensionality analysis produces the maximal
set of dimensions along which a multidimensional expression can vary. The exact set is guaranteed to
be a subset of the maximal.

4. PROGRAMMING IN GLU�/C++

In this section, we describe the embedding of GLU� into C++ from the programmer’s point of view.
In order to use the facilities described in this section, programmers need to include the header file
glu.hpp in their C++ source code:

#include "glu.hpp"

Implementation details that should not concern the programmer, such as the representation of
multidimensional objects, object copying and warehousing, are the subject of Section 5.

4.1. Dimensions and multidimensional objects

Programmers may declare new dimensions by creating new instances of the class Dimension.
This instantiation does not require any parameters and new dimensions are distinct from all previously
defined dimensions. For example, the following code declares a new dimension t:

Dimension t;

A multidimensional object is represented as an instance of the class GLU<T>, where T is the type
of the object’s extensions. T can be any C++ type that is equipped with a copy constructor (whether
explicit or implicit). A multidimensional object must first be declared. For example, the following line

GLU<int> nat;

declares a multidimensional object nat with an extension of type int. Then the object’s definition
can be provided, e.g.

nat = fby(t, 0, 1 + nat);

which is only a little clumsier than the equivalent GLU� definition. Note that, for technical reasons, it is
necessary for the C++ declaration of nat to be separated from the definition of nat, as this definition
is recursive.
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The definition of nat uses the C++ operators = and +, which have been overloaded and take
multidimensional objects as operands. All non-dimensional operators of GLU� have been implemented
as overloaded versions of the C++ builtin operators. However, the dimensional operators of GLU�

have been implemented as C++ template functions, such as fby which is used in the definition
of nat. Dimensions are specified in the first parameter of these functions. Operators @, # and the
if. . .then. . .else construct of GLU� have been implemented as the C++ template functions at,
value and cond, respectively.

Normal C++ objects of type T are automatically ‘promoted’ to multidimensional objects of type
GLU<T> in the presence of operators that expect multidimensional objects. For example, in the
definition of nat, the integers 0 and 1 are treated as constant multidimensional objects of type
GLU<int>.

4.2. Evaluation

To evaluate the extension of a multidimensional object one needs to specify a possible world,
i.e. an instance of the class PossibleWorld. Such an object contains a mapping of dimensions
to values of type DimValue, which is an appropriate unsigned integer type. The constant object
PossibleWorld::empty represents an empty mapping. Empty mappings can also be created by
instantiating the class PossibleWorld:

PossibleWorld w;

The method set may be used to alter a possible world. If t is a dimension, the following line alters
the possible world w by mapping the dimension t to value 42.

w.set(t, 42);

To find the extension of a multidimensional object in a given possible world, one must call the
object’s evaluate method. Given the previous definitions, the following line evaluates nat when t
is 42 and assigns the result, which is also 42, to the integer variable n.

int n = nat.evaluate(w);

There is a distinguished object of class PossibleWorld, which is called theWorld. If the
parameter to an evaluate method is omitted, theWorld is used instead. The C++ operator <<,
which has been overloaded to handle multidimensional objects, uses theWorld to evaluate its
operand and subsequently outputs the result. To illustrate this, the following lines write the value 42 to
the standard output.

theWorld.set(t, 42);
cout << nat;

4.3. Lazy functions and methods

GLU� does not directly support functions, however it is possible to use the functions of C++ for this
purpose. The programmer should only take into account a basic semantic difference: functions in GLU�

are expected to be lazy (as they are in Lucid and GLU), whereas in C++ functions are eager. The kind
of problems that arise because of this difference is illustrated in the following example:
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GLU<int> f (int x)
{

return fby(t, x, f(x) + 1);
}

This function is meant to produce the increasing stream of integer numbers, in dimension t, starting
from x. However, this code is not correct. In C++, the occurrence of f(x) in the body of f causes
the function to be called again with the same argument, leading to nontermination. In this case, it is
obvious that the evaluation of f(x) in the body of f must be delayed. This is achieved by using the
template lazy, which converts f to a lazy function object.

GLU<int> f (int x)
{

return fby(t, x, lazy(f)(x) + 1);
}

In this way, it is not f but lazy(f) that is applied to x and our implementation causes the actual call
to f to be delayed until the result of function f is evaluated.

In general, if f is a function that expects N ≥ 0 arguments of types T1, . . . ,TN and returns a result
of type GLU<R>, then lazy(f) is an object of the class

LazyFunctionN<R, T1,..., TN>

This object has an overloaded function application operator, taking N arguments of the right types and
returning a result of type GLU<R>.

A similar technique is used to support lazy method invocation, in case the extension of a
multidimensional object is an instance of a C++ class. Let C be a class with a method m that expects
N ≥ 0 arguments of types T1, . . . ,TN and returns a result of type R. Let x be a multidimensional object
of type GLU<C>. Then, lazymethod(x, C::m) is a lazy method object of the class:

LazyMethod<C, R, T1,..., TN>

This object also has an overloaded function application operator, taking N arguments of the right types
and returning a result of type GLU<R>. The extension of the result is obtained by invoking m on the
extension of x and passing the supplied arguments. The reader is referred to Section 6.3 for a full
example of lazy method invocation.

5. IMPLEMENTATION

Figure 5 presents the hierarchy of C++ classes and class templates in the implementation of GLU�.
Following UML notation, the hollow arrows denote the subclass relation. The class templates that are
noted with a star (∗) in this figure are repeated for each operator of C++ that will be used in embedded
GLU� code. Those noted with two stars (∗∗) are repeated for a different number of arguments, as
discussed in Section 4.3.
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Implementation<T>RefCount

Dimension

PossibleWorld

Warehouse

WarehouseKey

UnOpImplementation<A,R>

BinOpImplementation<A,B,R>

ConstImplementation<T>

WrappedImplementation<T>

CondImplementation<T>

PlusImplementation<T>

FbyImplementation<T>

FirstImplementation<T>

NextImplementation<T>

AtImplementation<T>

HashImplementation

AsaImplementation<T>

UMinusImplementation<T>

LazyMethod1<C,R,T1>

LazyFunction1<R,T1>

Wrapper<I>

WarehouseBase

LazyWrapper<T>

WarehouseEntry<T>

LazyAppImplementation1<R,T1>

LazyMethodImplementation1<C,R,T1>

TiImplementation<T>

Figure 5. Class hierarchy in the implementation of GLU�.

5.1. Wrappers and reference counting

Evaluation on demand is the driving philosophy in the implementation of a multidimensional language.
For this reason, GLU� is implemented as an interpreter embedded in C++, with objects modelling both
values and expressions that have not yet been evaluated. In contrast to C++ which supports mutable
variables and objects, multidimensional objects in GLU� are immutable. All operations on such objects
lead to the creation of new objects that, when evaluated, will force the evaluation of the operands.

A naı̈ve embedding of GLU� as an interpreted language in C++ could require the frequent copying
of objects, which is expensive both in terms of execution time and memory use. To avoid this problem,
the implementation of GLU� distinguishes between wrapper objects and implementation objects,
following a model known in object-oriented development as the letter/envelope idiom [25]. The objects
that are frequently copied are wrappers, which contain pointers to implementations and whose copying
is inexpensive. Implementations are seldom copied. In this way, one or more wrappers can refer to the
same implementation and a reference counting mechanism is required. This mechanism works on the
assumption that the embedded GLU� objects are purely functional: the programmer is not allowed to
use arbitrary C++ code to alter their values.

The base classes RefCount and Wrapper<I> are used for this purpose, where I is the type
of the wrapped implementation. When an object derived from Wrapper<I> is linked to an object
derived from RefCount, the reference counter in the second object is increased. When the wrapper
is destroyed or redirected to a different implementation, the reference counter is decreased; if its value
becomes zero, the implementation object is destroyed.
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5.2. Dimensions and possible worlds

The classes Dimension and PossibleWorld lay the foundations for the multidimensionality
of GLU�. Dimensions are simple objects which contain identifiers unique for each distinct GLU�

dimension. Possible world objects, however, contain mappings from dimensions to unsigned integer
values of type DimValue.

5.3. Warehouse for evaluated expressions

In order to improve the performance of C++ programs with embedded GLU� code, we equip our
implementation with a warehouse of evaluated expressions. Once the value of an embedded GLU�

expression is computed in a given possible world, this value is stored (cached) in the warehouse
for future use. This is possible because of GLU�’s purely functional character. More precisely, let
us suppose that the value of a GLU� expression E must be computed in the possible world w.
Our implementation proceeds by doing the following.

(1) It retrieves the set S of dimensions on which E depends. This set follows syntactically from the
rules of dimensionality analysis given in Section 3.4. It is computed once, when the expression’s
implementation object is built, without significant overhead.

(2) It forms the set X of pairs (d, v), where d ∈ S and v is the value (index) of d in w. We call X a
subworld.

(3) It searches the warehouse for the value of E in subworld X. If this is found, nothing more needs
to be done. Otherwise the implementation proceeds to the next step.

(4) It computes the value of E in w. This may require the values of other expressions in the same or
in different possible worlds—in the same way, if these are found in the warehouse they need not
be recomputed.

(5) After computing the value of E, it stores in the warehouse the fact that E is equal to this value
in subworld X.

It should be noted here that, in contrast to other Lucid/GLU implementations that only store values
of variables in the warehouse, our implementation stores values of arbitrary expressions, including
their subexpressions. This leads to improved performance in the case of programs containing function
calls and wvr. It is possible because each expression E is represented in memory by an implementation
object. A unique identifier for this implementation object and the subworld X form the key of the entry
stored in the warehouse that contains the value of E in X. The key is represented in our implementation
by the class WarehouseKey and the entry by the class WarehouseEntry<T>. The warehouse
itself is an instance of the class Warehouse.

A hash table is used for searching and updating the warehouse efficiently, based on the technique
proposed by Faustini and Wadge [26], but significantly extended with support for multiple dimensions
and dimensionality analysis, as mentioned above. The hashing function uses the identifier of E and a
combination of the indices in X; when a possible match is found in the hash table, it must be determined
whether X is really a subworld of w. The size of the hash table is finite and, when the warehouse is
full, the newly computed values can replace older values of a lesser priority. Priority is a function of
age, hits and effort required to recompute a value.
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5.4. Lazy implementations and wrappers

The embedding of GLU� in C++ is based on a number of lazy implementation classes which represent
the language constructs of GLU�. The class LazyWrapper<T> is very useful: it builds wrappers
for multidimensional objects, where T is the type of the objects’ extensions. In fact, GLU<T> is
only a shorter synonym for LazyWrapper<T>. Each such wrapper contains a pointer to a lazy
implementation object.

The abstract class Implementation<T> is the base class of the hierarchy of lazy implementation
objects in Figure 5. This class contains a method that evaluates a multidimensional object in a given
possible world, as well as methods that calculate the set of dimensions on which such an object
depends, for collaboration with the warehouse. Its subclasses correspond to the various language
constructs of GLU�, e.g. ConstImplementation<T> implements a constant object whose value
does not vary in any dimension and FbyImplementation<T> implements the dimensional
operator fby.

5.5. Implementation of wvr

The implementation of operator wvr requires special attention, in order to efficiently collaborate with
the warehouse. Consider the expression wvr(d, a, b) and let w be a possible world that maps di-
mension d to m. Our implementation of wvr in [27] evaluates this expression in w by iteration: starting
from point d = 0, it evaluates b for all points of dimension d until b becomes true for the (m+ 1)-th
time. Using this evaluation strategy, however, even if the same expression has already been evaluated
in many different possible worlds, the information stored in the warehouse does not help. To illustrate
this, consider the following simple code that outputs the first n = 1000 even natural numbers:

const int n = 1000;
GLU<int> even;

even = wvr(t, nat, nat % 2 == 0);
for (int i = 0; i < n; i++)

cout << at(t, even, i) << endl;

Using our implementation in [27], this code takes time quadratic in n. The problem is that each loop
re-evaluates even from the beginning: the iteration that is required to evaluate the wvr always starts
from 0.

To improve the performance of wvr, in our implementation we extend GLU� with a hidden
dimensional operator ti, standing for ‘truth index’. If d is a dimension and E is a Boolean
multidimensional expression, then ti.d E is the stream of all points in dimension d at which E
evaluates to true. Using ti, the operator wvr can be implemented as

a wvr.d b ≡ a @.d (ti.d b)

The importance of this equivalent implementation will become apparent immediately, when the
evaluation strategy for the expression ti.d b at point d = m is explained. An iteration is used again
for this purpose. However, this time the iteration can have a better starting point if m > 0: it suffices
to start from one plus the value of ti.d b at point d = m − 1. If the values of ti.d b are stored
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#include <iostream.h>
#include "glu.hpp"

int main ()
{

GLU<unsigned long int> ints, sieve, prime;
Dimension x, y;

ints = fby(x, 2, ints + 1);
sieve = fby(y, ints,

wvr(x, sieve, sieve % prime != 0));
prime = first(x, sieve);

for (DimValue i=0; i<100; i++)
cout << at(y, prime, i) << endl;

}

↑ ...
...

...
...

...
x 13 25 37 47 53 · · ·

12 23 35 43 47 · · ·
11 21 31 41 43 · · ·
10 19 29 37 41 · · ·
9 17 25 31 37 · · ·
8 15 23 29 31 · · ·
7 13 19 23 29 · · ·
6 11 17 19 23 · · ·
5 9 13 17 19 · · ·
4 7 11 13 17 · · ·
3 5 7 11 13 · · ·
2 3 5 7 11 · · ·

sieve y →

Figure 6. GLU�/C++ program that displays the first 100 prime numbers.

in the warehouse (as is the case with all multidimensional expressions in our implementation), there
is a significant improvement in performance. The example that prints the first n even natural numbers
requires only linear time.

6. EXAMPLES

The embedding of GLU� in C++ leads to an interesting hybrid programming language.
Its expressiveness is apparent in the examples of this section. The first two have been adapted from
examples of GLU programs in the recent PhD thesis of Joey Paquet [10], whose subject was the
application of multidimensional intensional programming for the coding of scientific algorithms.
Only minor modifications were necessary wherever GLU’s functions and where clauses were used.
The third example gives us a taste of multidimensional object-oriented programming.

6.1. Eratosthene’s sieve

The program of Figure 6 computes the first 100 prime numbers in increasing order, using the algorithm
known as Eratosthene’s sieve. The prime numbers are computed in the infinite stream prime, along
the y dimension. Let us notice that the implementation of this algorithm in GLU� requires just three
lines of code, the first of which defines the stream ints of natural numbers greater than or equal to 2,
along dimension x.

real ints = 2 fby.x ints + 1;
real sieve = ints fby.y (sieve wvr.x sieve % prime != 0);
real prime = first.x sieve;

The variable sieve is a two-dimensional stream varying in x and y; we can think of its values
in terms of rows and columns as shown in Figure 6. The stream prime is defined as the first row of
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#include <iostream.h>
#include "glu.hpp"

int main ()
{

GLU<int> hamming;
Dimension t;

hamming =
fby(t, 1,

merge(t,
merge(t,

2 * hamming,
3 * hamming),

5 * hamming));

for (DimValue i=0; i<100; i++)
cout << at(t, hamming, i)

<< endl;
}

template <class T>
GLU<T> upon (const Dimension & d,

const GLU<T> & x,
const GLU<bool> & y)

{
GLU<DimValue> w;

w = fby(d, 0, cond(y, w+1, w));
return at(d, x, w);

}

template <class T>
GLU<T> merge (const Dimension & d,

const GLU<T> & x,
const GLU<T> & y)

{
GLU<T> xx, yy;

xx = upon(d, x, xx <= yy);
yy = upon(d, y, yy <= xx);
return cond(xx < yy, xx, yy);

}

Figure 7. GLU�/C++ program that displays the first 100 Hamming numbers.

sieve, i.e. when x is 0. The first column of sieve contains ints. Each subsequent column contains
the elements of the previous column that are not multiples of the first element. This is achieved with the
operator wvr, which selects the elements of sieve, along dimension x, for which sieve % prime
!= 0 is true.

6.2. Hamming numbers

The natural numbers of the form 2i · 3j · 5k , where i, j, k ∈ N, are called Hamming numbers.
The following GLU (not GLU�) program computes all Hamming numbers in increasing order in the
infinite stream hamming along dimension t. The function merge takes as input two streams sorted
in increasing order along dimension d and produces a single stream, sorted in increasing order with
duplicate elements removed. The dimensional operatorupon.d only allows its left operand to advance
in dimension d if its right operand is true. (For a longer description of how this program works, the
reader is referred to [10].)

merge.d (x, y) = if xx < yy then xx else yy fi
where xx = x upon.d (yy >= xx);

yy = y upon.d (xx >= yy);
end;

dimension t;
hamming = 1 fby.t merge.t(merge.t(2 * hamming, 3 * hamming), 5 * hamming);
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#include <iostream.h>
#include "glu.hpp"

typedef enum {
GREEN = 0,
YELLOW = 1,
RED = 2

} State;

const int COLORS = 3;
const int timePerLight [COLORS] =

{ 5, 1, 8 };
const char * const stateName [COLORS] =

{ "green", "yellow", "red" };

class TrafficLight
{
private:

State state;
int timer;

public:
TrafficLight (State s, int t = 0) :

state(s)
{

if (t > 0)
timer = t;

else
timer = timePerLight[s];

}

TrafficLight next () const
{

int t = timer - 1;

if (t <= 0) {
State s = (state + 1) % COLORS;
t = timePerLight[s];
return TrafficLight(s, t);

}
else

return TrafficLight(state, t);
}

friend ostream & operator << (
ostream & str,
const TrafficLight & light)

{
str << stateName[light.state];
return str;

}
};

int main ()
{

GLU<TrafficLight> light;
Dimension t;

light = fby(t, TrafficLight(RED),
lazymethod(light,

TrafficLight::next)());

for (DimValue i=0; i<100; i++)
cout << at(t, light, i) << endl;

}

Figure 8. GLU�/C++ program that simulates a traffic light.

We should note here that this program uses features of GLU that are not supported in GLU�:
functions, the where structure for the definition of local variables and the operator upon. Fortunately,
the first two can be expressed in C++ and upon can be expressed in terms of the other dimensional
operators. The C++ program in Figure 7 is an almost direct translation of the above. The definition
of upon can be found in introductory texts of GLU, e.g. [6]. The implementations of both upon and
merge illustrate how it is possible to define polymorphic functions (templates) that have dimensions
as parameters. Notice, however, that upon and merge are eager C++ function templates. They can be
defined in this way because they are not recursive. In Section 7 it will be verified that this has a huge
impact on the program’s performance.
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6.3. Traffic lights

In this example we show how arbitrary C++ classes can be used in GLU�/C++ programs as the
extensions of multidimensional values. The program shown in Figure 8 simulates the behaviour of
a traffic light over a dimension t, which represents time. At a given moment, the light is represented
by an object of the class TrafficLight. The field state contains the current colour of the light,
whereas timer contains the time that remains until the light changes colour. Method next informs
us of what will happen at the next moment in time. A light stays green for 5 moments (units of time),
yellow for 1 moment and red for 8 moments. The cycle is then repeated.

The most interesting part of this program is the definition of variable light:

light = fby(t, TrafficLight(RED), lazymethod(light, TrafficLight::next)());

In simple words, this says that the light is red when t is 0 and each subsequent value is the
result of applying method next to the current value. One would simply expect light.next()
in the second part of the fby. However, this is not possible because next is a method of
TrafficLight, not GLU<TrafficLight>, and the dot operator cannot be overloaded in C++.
As mentioned in Section 4.3, the function template lazymethod delays the invocation of method
TrafficLight::next in such a way that the method is applied to the extensions of light when
they are evaluated.

7. EVALUATION

Table I shows timings in seconds for the first two examples of Section 6 on a Sun Ultra workstation
(Ultrasparc I, 140 MHz, 192 MB RAM). For each example, the first column shows the size of the
problem, i.e. which element of prime or hamming is to be computed, and the next columns show the
execution time. We compare our implementation with: (i) the GLU implementation [28], v. 960730;
(ii) the FC++ library supporting functional programming in C++ [29], v. 1.1 beta; and (iii) the Hugs
Haskell Interpreter, v. January 2001 beta. The GNU C/C++ compiler, v. 2.95.2, was used whenever
a C/C++ compiler was required, with the best possible optimization flags. Missing timings in Table I
either mean that the execution time would be extremely long, or that the corresponding program did
not terminate successfully.

We should remark however that this comparison is far from fair. Of all implementations, only
GLU�/C++ and GLU support multiple dimensions and could be compared with more or less equivalent
programs. In the case of FC++ and Hugs we had to use lazy infinite lists instead of one-dimensional
streams and we circumvented the use of two-dimensional streams in the first example. In the second
example we give two timings for GLU and Hugs. Column (1) corresponds to a translation of the source
program that is as faithful to the original as possible. By contrast, the program in column (2) uses the
builtin operatorupon in the case of GLU and a custom merge function in the case of Hugs, that differs
from the one in Figure 7. The same merge function is used in FC++. In all cases, the performance is
significantly improved.

In the case of prime numbers, it is obvious that true multidimensional implementations perform
poorly compared with lazy lists. GLU�/C++ takes approximately the same time as GLU. This result is
highly in favour of our implementation; it would be reasonable for the GLU compiler to do better, since
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Table I. Performance results.

Prime numbers Hamming numbers

GLU Hugs
GLU�/ GLU�/

n C++ GLU FC++ Hugs n C++ (1) (2) FC++ (1) (2)

10 <0.1 <0.1 <0.1 1.1 10 <0.1 0.5 0.4 <0.1 1.3 1.3
50 0.6 0.7 <0.1 1.2 20 <0.1 7.2 6.0 <0.1 1.3 1.3

100 2.5 2.5 0.2 1.5 50 0.1 1456.5 167.3 0.3 1.6 1.3
200 10.0 9.8 0.9 2.5 100 0.2 2.2 2.7 1.3
300 22.5 24.6 2.0 4.3 200 0.4 7.3 1.3
400 39.4 3.6 6.5 500 0.9 41.7 1.4
500 60.4 5.6 9.5 1000 1.7 1.5

1000 243.0 33.7 2000 3.4 1.8

it translates its source program to C code which is subsequently compiled and executed. In the case
of Hamming numbers, the results are quite surprising: for GLU�/C++ and the custom Hugs program
execution time increases linearly in n, whereas for other programs execution time increases much more
rapidly. This implies that the calls to the merge function introduce unnecessary recalculations by
confusing GLU’s warehouse and the lazy call-by-need evaluation strategy. In the GLU�/C++ program,
upon and merge are eager C++ function templates; this allows intermediate results to be stored in
the warehouse and avoids unnecessary recalculations. If these functions are defined using lazy, this
advantage is lost and the program performs slightly better than the unoptimized GLU program.

Overall, we find our performance results satisfactory and encouraging, taking into account that
GLU�/C++ is a hybrid system implemented as an interpreter embedded in C++.

8. CONCLUSION

Several attempts have been made to embed support for the lazy functional programming paradigm in
object-oriented languages with notable success. As far as we know, the integration of multidimensional
and object-oriented programming in a single language has inspired two different approaches.
The first sought the extension of Lucid with objects [30] and culminated with OLucid, a Java-like
language encompassing much of first-order Lucid with emphasis on multithreaded and distributed
execution [31]. In a symmetric way, the second approach sought the extension of existing object-
oriented languages with multidimensional features [18].

Our work presented in this paper is aligned with the second approach. It accomplishes a
clean embedding of a small multidimensional core (GLU�) in a mainstream object-oriented
programming language (C++). Our contribution with respect to previous work is twofold. First, more
multidimensionality can be supported without changing in the least the syntax and semantics of the
host language. GLU� supports most of the dimensional operators of GLU and, by using features of
C++, the embedded language supports (uncurried) multidimensional higher-order functions (both eager

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:609–630



GLU� EMBEDDED IN C++ 629

and lazy), dimensional abstraction, local definitions and parametric polymorphism. Second, the use of
dimensionality analysis has improved the overall performance of our implementation.

GLU�/C++ combines the expressive power of C++ with a small and purely functional
multidimensional core. In this way, it exploits the expressiveness of the multidimensional programming
model, while at the same time staying compatible with the host language C++. The evaluation of our
implementation is not yet complete. The embedding that we have achieved so far is quite natural,
however few syntactic improvements can be expected in this direction. We believe that performance
can be significantly improved, especially with a better design of the warehouse.

One interesting direction for future research is the investigation of the hybrid language’s
applications. As GLU�/C++ can support multidimensional variables whose extensions are elaborate
data structures, it remains to be seen whether multidimensional programming can find applications
in areas of computation other than scientific computing [10]. Of course, the data structures must be
purely functional, but it has been shown that this does not necessarily imply poor performance [32].
Another direction worth investigating is the introduction of branching dimensions in GLU�. Apart from
the possible applications that this entails, the existence of branching dimensions would allow us
to compare our implementation of lazy functions with the standard implementation of functions in
intensional languages.
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