
Logic-Enhanced Type Systems: Programming Language Support
for Reasoning about Security and Other Program Properties

Nikolaos S. Papaspyrou Dimitrios Ch. Vytiniotis Vassilios M. Koutavas

National Technical University of Athens
School of Electrical and Computer Engineering

Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou, Athens, Greece.

E-mail:
�
nickie, dvitin, vkoutav � @softlab.ntua.gr

Abstract

Existing compilers that produce certified code (e.g. the
Java compiler) focus on relatively simple and informally
specified safety properties that are enforced by an elabo-
rate run-time system with a significant performance over-
head. Recent research supports the opinion that it is pos-
sible to design and implement a general framework for
formally reasoning about security and other interesting
program properties using low-level languages with strong
type systems. In such a language, a certified binary file
is simply a program whose type provides a collection of
properties that the program satisfies; the type checker can
determine statically and with little cost whether a given
certified binary is sound and, if it is, the program can be
executed with no further performance overhead. In this
paper, we exemplify how a formal logic can be embedded
in the type system of a programming language. Without
plunging into details, we discuss a number of interesting
program properties that can be certified and what is to be
expected in the foreseeable future.

1 Introduction

Modern software systems are organized as groups of small
collaborating components, independently developed and
deployed. These may be physically distributed over a net-
work: executable code can be transferred from one com-
puting device to another just as any form of data. In this
setting, platform independence and interoperability are es-
sential non-functional requirements. The former urges for
a standardized intermediate form of code that will eventu-
ally be translated to native code. The latter is even more
critical, as the transferred code is expected to integrate
with the existing software in the target computing device.

In such distributed software systems, it is not reasonable
to assume that executable code can be fully trusted. The
transferred code may cause problems either on purpose
(e.g. viruses, malicious attacks) or inadvertently, if it con-
tains bugs that jeopardize the stability and security of the
target computing device. As a variety of applications from

different areas (e.g. telecommunications, electronic com-
merce, tele-medicine, distance education) largely depend
on the quality of such code, it is evident that, to guarantee
our safety in the information and knowledge society, we
must assure the flawless behaviour of executable code.

In the mid 1990s, Sun’s Java platform became the first
widely known attempt to tackle the problems of portabil-
ity and security of executable code [1]. A similar idea
was later advocated by Microsoft’s .NET framework [2], in
which programs written in a variety of programming lan-
guages can be translated to a common intermediate lan-
guage and then executed by a Common Language Run-
time. On both platforms, the security of executable code is
a responsibility of the virtual machine which surveys that
executed software components satisfy a predetermined
safety policy, hardwired in the implementation of the vir-
tual machine and allowing for minor customization.

There are a few disadvantages in this approach. The vir-
tual machine must scrutinize the execution of the dis-
trusted code and this results in some inevitable perfor-
mance loss. The safety guarantee is only valid as long
as the virtual machine is well designed and correctly im-
plemented and, given the size and complexity of its im-
plementation, one can hardly be certain that it is. Further-
more, programmers are often forced to deceive the vir-
tual machine or weaken the safety policy in order to pro-
gram real applications in an efficient way. In response to
this problem, both platforms suggest the use of crypto-
graphic authentication techniques to guarantee that a pos-
sibly harmful component comes from a trusted source.

In parallel to the developments of the software industry,
many researchers have dealt with the problem of security
of executable code. Their goals have been: (i) to avoid
performance loss by statically verifying software compo-
nents and then translating to native code; (ii) to blindly
trust very few and very simple things, including the safety
policy and the implementation of the runtime environ-
ment; and (iii) to design programming languages expres-
sive enough to allow the efficient implementation of com-
ponents without sidestepping safety measures. Some of
the most promising approaches are briefly presented in � 2.

1

They all propose the use of a sound formal logic in com-
bination with the programming language; the safety pol-
icy and other program properties are expressed as propo-
sitions provable in this logic.

In this paper we exemplify how a formal logic for rea-
soning about security and other interesting properties of
executable code can be embedded in the type system of a
programming language. We outline a framework for veri-
fying arbitrary properties of software components with the
following objectives in mind: (i) Formality: a formal logic
for specifying properties of software components, visible
and available as a reasoning tool inside the programming
language; (ii) Expressive power: a logic powerful enough
to express and verify arbitrary properties, even if program-
mers are required to provide assistance in proving these
properties; (iii) Flexibility: source and target language in-
dependence, flexible safety policy; (iv) Scalability: the
“logical” component must not increase in size and com-
plexity disproportionately to the size of the code itself.

2 Programming language support
for certified code: An overview

Typed Intermediate Language (TIL) [3] and Typed Assem-
bly Language (TAL) [4] were two of the earliest general
attempts to extend low-level languages with strong type
systems that can be used for code certification. Appropri-
ate type checkers can guarantee that some, usually simple,
safety requirements are met by verifying the type correct-
ness of programs before execution. Moreover, because the
safety policy is embedded in the language, safety proofs
can be constructed automatically by the compiler.

Proof-Carrying Code (PCC) is a general framework to
tackle system integrity and security problems, using prin-
ciples and techniques from logic and programming lan-
guage semantics [5]. Certified binaries in the PCC frame-
work are packages containing executable code and a rep-
resentation of a proof that this code meets a given safety
policy. By validating the attached proof, one can guaran-
tee the safety of executing a certified binary. In summary,
the PCC framework requires a relatively simple trusted in-
frastructure and does not impose run-time penalties.

In comparison with TAL, PCC uses a general-purpose
first-order predicate logic and can express more elabo-
rate security properties. On the other hand it uses explicit
safety proofs, which in general cannot be produced au-
tomatically, and its underlying programming language is
less expressive than TAL. Both approaches however share
a basic principle: the logic in which safety proofs are ex-
pressed contains a built-in understanding of the underlying
programming language and its type system.

Foundational Proof-Carrying Code (FPCC) intends to
minimize the size of the components that must be blindly
trusted (or proved in a meta-theory) in a PCC system [6].
FPCC uses a general-purpose higher-order predicate logic
and a few axioms of arithmetic, which can be used as a

foundation of modern mathematics. This logic is used to
define the safety policy, the type system and the semantics
of the underlying programming language. In the FPCC
framework, certified binaries are packages containing exe-
cutable code and a representation of a foundational safety
proof, i.e. a proof which explicitly defines, down to the
foundations of mathematics, all required concepts and ex-
plicitly proves all required properties of these concepts.

Compared with TAL and PCC, FPCC is more flexible. It
is not restricted to a particular underlying programming
language, nor to a given subset of logic or mathematics.
Foundational proofs may contain the definition of a novel
type system for the target language and new arguments
to prove the safety policy. FPCC is also more secure, as
fewer and simpler things need to be trusted. In contrast,
foundational proofs are longer and harder to construct.

Recent attempts combine the benefits of TAL for automat-
ically constructing certified code with the minimality and
expressive power of FPCC. Shao et al. have proposed a
type-theoretic framework for constructing, composing and
reasoning about certified binaries [7]. Their work is based
on the “formulae as types” principle [8]; propositions and
proofs are expressed in a general and powerful type lan-
guage encompassing higher-order predicate logic. The
same type language is used in the underlying program-
ming language; in this way, programs and proofs are ele-
gantly integrated and formal reasoning can be performed
inside the language itself. An approach similar in spirit
but different in the details of the logic has been proposed
by Crary and Vanderwaart [9]. The similarity of the two
lies in the embedding of a logic capable of representing
program properties in the language’s type system.

3 An embedding of logic

Following the approach presented in [7], we split the lan-
guage in which software components are written in two:
the type language and the computation language.

The type language is the part of the language where all the
logical reasoning takes place. It is a variant of the Calcu-
lus of Inductive Constructions [10], as implemented in the
Coq proof assistant [11], which incorporates higher-order
predicate logic. The type language serves as a uniform
logical tool, the common denominator of all programming
languages used for implementing software components.

A large body of theories useful for reasoning about soft-
ware components can be defined in the type language. The
Coq proof assistant has a vast library of theories including
intuitionistic, classical and linear logic, Peano and binary
arithmetic, rational and real numbers, sets, relations, ab-
stract data structures, and many case studies coming from
various areas of mathematics and computer science. These
theories can be directly “translated” to our type language
and, in similar fashion, new theories can be encoded.

The computation language is the part of the language
in which all the computations are described. It is de-
fined by: (i) syntactic rules, which specify the syntax of

2

well-formed both computation terms and types; (ii) typ-
ing rules, which specify which well-formed computation
terms are well-typed; and (iii) semantic rules, which spec-
ify how a software component that is represented by a
well-formed and well-typed computation term behaves
during execution. All these components can be formally
defined in the type language itself. In this way, program-
mers are not restricted to a single computation language
or even to a given set of possible computation languages.

The separation between the type language and the compu-
tation language allows us to preserve desired properties of
the former, such as substitution of equals for equals and
strong normalization, without sacrificing the expressive
power of the latter. To allow reasoning about properties
of software components at the level of the programming
language, it is useful to incorporate (a part of) the type
language in the type system of the computation language.

3.1 Overview of the type language

The abstract syntax of the type language is given by the
following grammar:

� ���������
	���
�������������	
����� ������� �"!#�%$&!'� ��()� �%*+!,� ��(�� � �-�

�/.1032546!�� �87 �:9� � �%;=<>0�?@)A@4CB �)�87�D��E FHGJI �"KHL 4 � � � 9�M7 � 9� �

where N denotes a variable, O and P denote terms, Q de-
notes a subset of terms called sorts, R denotes a natural
number and

9O denotes a sequence of terms.

Sorts are the constants of the type language. Apart from
sorts and variables, a term can be a product $ N � O (P ,
an abstraction * N � O (P , an application O-P , an induc-
tive type .H032�4 N � O 7 � 9O � , a constructor of an inductive
type ;S<T0U?C)AV4 R � O 7 or an elimination of an inductive type��E FHGJI O K1L 4 O � P 9P 7 � 9O � .

The typing relation in the type language determines the
semantic validity of terms. For any pair of terms, O � P
is read “ O has type P ”. Among sorts, we have �W�X	%��
������
and
������Y�Z����	 . Products are essentially dependent func-
tion types: an abstraction * N � O (P has type $ N � O (P K
provided that P � P K and, if it is applied to a term of type
O , it produces a term of type P K . We write O'[�P instead
of $ N � O (P if N does not occur free in P .

Inductive types can be defined by using .H032 . As an exam-
ple, the types \ <W<TE of Boolean values and]_^ 	 of natural
numbers can be defined as follows:

\ <�<TEa` .H032�4 N �b�W�X	 7 � NdcCN � �e�W�
	
]f^ 	 ` .H032�4 N �b�W�X	 7 � NdcCNg[hN � �e�W�
	

Inside .10�2 , the variable N is a synonym for the inductive
type that is being defined. \ <�<TE and]_^ 	 have two con-
structors each; the types of the constructors are given in-
side the braces. ;=<>0�?@)A@4 R � O 7 provides access to the R -th
constructor of an inductive type O but it is convenient to
give constructors descriptive names:

)A6iU� ` ;S<T0U?C)A@4kj � \ <W<>E 7 � \ <W<>El ^ E ?C�m` ;S<T0U?C)A@4@n � \ <W<>E 7 � \ <W<>Eo
�pA�< ` ;S<T0U?C)A@4kj �]_^ 	 7 �]_^ 	?
i3qXq ` ;S<T0U?C)A@4@n �]_^ 	 7 �]_^ 	 [r]f^ 	
Although an abuse of notation, it is convenient to use dec-
imal numerals for elements of]f^ 	 ; we will write s instead
of ?Xi�qtq:4u?
i3qXq=o
��Av< 7 .
Most interesting operations on elements of inductive types
require the use of ��E FHG , whose rôle is twofold. First of all,
it provides access to the components of which an element
of an inductive type was built, i.e. the constructor that was
used and the parameters that were applied to it. Moreover,
it allows primitive recursion on inductive types. As a sim-
ple example, consider the negation of a Boolean value:

0�<�	 � \ <W<TE [w\ <W<>E` *yxT� \ <W<>E (��E FHGJI \ <W<>E L 4bx5� \ <W<>E 7 � l ^ E ?C� c)A6iU� �

The Boolean value x is inspected and the result is
l ^ E ?z� if x

is)Abi�� , or)A6i�� if x is
l ^ E ?C� . The type of the result returned

by ��E FHG is given inside the square brackets.

The type language features three types of reductions: { ,| and } . The first two are well-known from the study of* -calculus; the third is used in the elimination of induc-
tive types. In addition, ~ -reduction allows the renaming of
bound variables. When 0U<p	 is applied to a Boolean value,
the result is computed with a sequence of reductions:

0�<�	W)A6iU�
[�� ��E FHG�I \ <W<>E L 46;=<>0�?@)A@4kj � \ <W<>E 7 � \ <�<TE 7 � l ^ E ?C� c)Abi�� �
[d� l ^ E ?z�

As a more involved example, consider a function which
tests whether a natural number is odd.

<�2�2 �]_^ 	 [w\ <W<>E` * R �]f^ 	 (��E FHGJI \ <W<TE L 4 R �]_^ 	 7 � l ^ E ?C� c*:���]_^ 	 (*yxT� \ <W<>E (0�<�	>x �

In this case, again, the number R is inspected. If it is o
�pA�< ,
the result is

l ^ E ?C� . Otherwise, if R is of the form ?
i3qXq��
for some ���]_^ 	 , the result depends on whether � is
odd or not, i.e. <�2�2 is a primitive recursive function. In
the second clause of ��E FHG , the parameter x is the result of
doing the same elimination on � instead of R . A longer
sequence of reductions is required when <�2�2 is applied:

<�2�28n
[�� ��E FHG�I \ <W<>E L 4u?Xi�qtqSo
��Av<:�]_^ 	 7 � (X(t(�
[d� 46*_���]_^ 	 (*+x5� \ <W<TE (0U<p	�x 7 o
��Av<��E FHGJI \ <W<TE L 4ko
��Av<+�]_^ 	 7 � (X(t(�� � 0�<�	=��E FHGJI \ <W<>E L 4ko
��Av<+�]_^ 	 7 � (X(t(�
[� 0�<�	 l ^ E ?z� �)A6i��

3.2 Propositions, proofs and theories

So far, it has been demonstrated how the type language
can be used to define mathematical objects, such as sets.

3

Based on the “formulae as types” principle [8], it is pos-
sible to encode propositions and proofs as well. Proposi-
tions are terms of type �W�
	 . A proof of a proposition �
is a term ��� such that ��� � � . Functions �a[�� corre-
spond to logical implication, whereas products $ N � O (�
correspond to universal quantification. Inductive types can
be used to define specific propositions or operators; their
constructors correspond to logical axioms. For example:

fAbi�� ` .103254 N � �W�
	 7 � N � � �W�X	
� ^ E ?C� ` .103254 N � �W�
	 7 � � � �W�X	

The constructor of
fAbi�� is an axiom stating that
fAbi�� is
a valid proposition. In contrast,

� ^ E ?C� has no constructors.
Negation and conjunction can be easily defined as follows.

��A�<T�] <p	 � �W�X	 [���
	` * � �b�W�X	 (� [� ^ E ?C���A�<T���%032 � �W�X	 [���
	 [�W�
	` * � �b�W�X	 (* � � �W�
	 (.H03254 N �b�W�
	 7 � � [� [N �
For convenience, we write
�� and �
��� instead of��Av<>�] <�	 � and �pA�<T���%032 ��� .

Similarly, we can define properties of mathematical ob-
jects, e.g. equality and inequality for numbers. We can
then prove theorems about these properties, e.g. the tran-
sitivity and antisymmetry of � . The theories built in this
way are the tool that helps us reason about programs.

4 Reasoning about programs

Using an appropriate type system for the computation lan-
guage, the static type checking of computation terms can
guarantee a number of desired execution properties. In-
tegrity and confidentiality are such properties: executable
code must not harm the target computing device by cor-
rupting the contents of memory or user files and must
not have access to private information. Termination,
time/space complexity and correctness are even more im-
portant, but the construction of proofs for these properties
is bound to require the programmer’s assistance in general.

In the rest of this section, we assume that such a type sys-
tem has been defined for an intermediate functional com-
putation language. For lack of space, this language cannot
be presented here in detail; we refer the reader to [7, 12].
We assume that the types of the computation language in-
clude 0 ^)i�A ^ E and FH0U	@���p�pA numbers; functions (written as� � � K to avoid confusion with functions of the type lan-
guage); ^ AbA ^ � s of given length; universally and existen-
tially quantified types, written as �yN � O (� and �ZN � O (� ,
where O is an object of the type language; and singleton
types, such as ?X0 ^ 	 R , where R �]_^ 	 is an object of the type
language. An expression of type ?
0 ^ 	 R is simply a natural
number whose value is known to be equal to R . As shown
in the examples that follow, using quantified and single-
ton types it is possible to create a connection between the
computation language and the type language, so as to use
the logical reasoning power of the latter in the former.

� ����� c�� ��� ������I � L c� � �"!$#%�%&'�%(*)
+ #-,.���

�0/ �5I � L & � ���21 � #"�
� ��� � �3��I � L c� � � �54 �

#"�6(

!$#-1$76#985!$))":;� � ��� ��</;�=&>�%1 � #?�
�0/ ��I � L & � ���@1 � #?�!$)$)": 4 �A4 � 7 �5I � L
#*!6B"#
!$)$)": 4 �A4 � 7 � ���# !6B"# � ������=!-))": �C��I � L

(a) In imperative form (b) In functional form

Figure 1: Program that finds the minimum of an array.

4.1 Array bounds and integrity issues

Consider a part of a program which finds the smallest ele-
ment in an array of R integer numbers (Fig. 1). If we are
concerned with security, we want to know that during its
execution the program will respect the bounds of the ar-
ray. This is a critical integrity issue: many security holes
that currently exist in systems software are due to buffer
overrun, which is essentially a violation of array bounds.

As a remedy to this problem, the computation language
supports a selection operator for arrays that has the formB"#*! I �D� L 4E� � � 7 . Suppose that � has type ^ A6A ^ � R � for some
natural number R and some type � and that

�
has type?X0 ^ 	 F , i.e. it is a natural number with value F . Then, for

the expression
B"# ! I � � L 4E� � � 7 to type check, � � must be a

proof of the proposition F & R . In this way, to use the
selection operator the programmer must provide a proof
that array bounds are respected. Security is guaranteed
at no performance loss. It remains to be seen how the
programmer can provide such a proof.

Fig. 2 shows the complete program in the computation lan-
guage. Compared to the functional version of Fig. 1, one
can see that everything additional is written in the type
language. Explicit types have been added and, as its type
says, to call

/G���6($H.�I�
one must provide a proof that RKJ j .

This proof is used in the last line, when the first element
of the array ��I � L is accessed.

There are two more uses of the array selection operator in
the

1 � #?� clause of the first
�0/

. Before �5I � L is accessed, a
proof of F & R must be provided. This is precisely the con-
dition of the

�0/
and our intuition tells us that such a proof

must exist, otherwise we wouldn’t be in the
1 � #"� clause.

The form of the conditional in the computation language
follows our intuition: for

�0/ I L � �M� L 4 # � �D�N (# N � ���O (# O 7 to
type check,

#
must be of the singleton type ?QP�<W<TEVx and L

must be of type \ <W<TE [�W�X	 , i.e. a function returning two
propositions, one for each of the Boolean values)A6i�� andl ^ E ?z� . Depending on the value of x , control passes either
to the

1 � #"� or to the
#*!6B"#

clause. The two propositions
returned by L provide information about what will hold
if control passes to one of the two clauses; �R� must be a
proof of the proposition L�x . Inside the two clauses, �R�N
and ���O can be used as proofs of L)A6i�� and L l ^ E ?z� respec-
tively. In simple words, � �N is the proof that F & R . For a
better understanding of

�0/
the reader is referred to [7, 12].

4

/G���6($H.�I� � �yR �]_^ 	 (� B � �z4 RKJ j 7
(?X0 ^ 	 R � ^ A6A ^ � R FH0U	@������A � FH0t	@�I�p��A� :9)*!�� R �]_^ 	 (:9)*!�� B � �C4 R J j 7)(! � � + (� � �u?X0 ^ 	 R (! � � + (� �:� ^ A6A ^ � R FH0t	@�I�p��A (!$#-1$76#98 !$))?: � � F��]_^ 	 (?
0 ^ 	*F � FH0U	@������A � FH0t	@�I�p��A� :9)*!�� F��]_^ 	 (! � � + (� � �k?
0 ^ 	 F (! � � + (� � ��� � FH0U	@������A (�0/ I 2��tq�F 2 ^ P�E �+4 F & R 7)� E 	��_�tq�F 2 ^ P�E ���ZA l F R L 4 � &>� �
�D�N (�0/ I *+x5� \ <W<>E (��A�<T��
fA6i�� � ��Av<>�3
fA6iU��� A l L 4 B?#*! I ���N L 4E� � � 7 & � ��� �� �N (!$)$)": I F 4 n L 4 � 4 � 7 B"#*! I �D�N L 4E� � � 7
�� �O (!$)$)": I F 4 n L 4 � 4 � 7 � ��� 7
�
�D�O (� �I� 7��� !$))?: I1n L � B?#*! IH0 ^ 		� 	�
�	z����GJG R j8B � L 4 � � � 7

Figure 2: A secure version of the program in Fig. 1.

� � � � c� � �?!$# 4 �%4 � 7
�
4 �%4 � 7 & � �%(*)

� ��� �24 �

!-#-1 76#985!$))?:�� �
�0/ 4 ��4 � 7�� 4 ��4 � 7 J �
1 � #"���
#*!*B"#2!$)$)": 4 �@4 � 7

�I�=!$))": �
(a) In imperative form (b) In functional form

Figure 3: Program that finds the integer square root.

4.2 A simple correctness proof

The computation language can also be used for reasoning
about the (partial) correctness of programs. Consider a
function calculating the integer square root of R (Fig. 3).
The function’s type can contain a complete specification:

�yR �@.10U	 (� B � �C4 R�� j 7
(?�FH0U	 R �
�
� �C.10U	 (��� � �C4 ��� j ��� O � RC� 4 � 4 n 7 O J R 7)(?�FH0U	 �

i.e. given an integer whose value is R�� j , there exists a
result value ��� j such that � O �dR and 4 � 4 n 7 O J R .

In constructing a complete correctness proof for this func-
tion, the programmer must provide the loop invariant,
which is again encoded in the type of function

!$))?:
:

��� �V.10t	 (��� � �z4 ��� j ��� O � R 7
(?)FH0t	 � �
�
� �C.10U	 (��� � �C4 ��� j ��� O � RC� 4 � 4 n 7 O J R 7)(?�FH0U	 �

The complete program, including the proof of partial cor-
rectness, is 16 lines long. It is omitted for lack of space.

5 Conclusion

In this paper, we have presented a type system enhanced
with higher-order predicate logic and shown how it can be
used for reasoning about program properties. This formal
reasoning can be expressed inside the programming lan-
guage, thus laying the foundations for principled develop-
ment of software with explicit and verifiable properties.

Our research in this area is at a preliminary stage and
the current state-of-the-art is still far from reaching ma-
turity. This approach builds upon a large body of work in
logic and theorem-proving and attempts to incorporate this
work in industrial-strength compilers. Although many and

difficult problems, both theoretical and practical, must be
solved before programmers harvest the crop of this effort,
we believe that this approach is a significant step towards
building and using efficient executable code which prov-
ably satisfies arbitrary desired properties.

Acknowledgement. This work builds on a past collabora-
tion with Zhong Shao, Valery Trifonov, Bratin Saha and other
members of the FLINT group at Yale University, to whom the
original vision described in this paper should be attributed.

References
[1] J. Gosling, B. Joy, and G. Steele, The Java Language Spec-

ification. Addison-Wesley, 1996.

[2] Microsoft .NET home page, URL: http://msdn.
microsoft.com/net/.

[3] R. Harper and G. Morrisett, “Compiling polymorphism us-
ing intensional type analysis,” in Proc. 22nd ACM Symp.
on Principles of Prog. Lang., pp. 130–141, 1995.

[4] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From
System F to typed assembly language,” in Proc. 25th ACM
Symp. on Principles of Prog. Lang., pp. 85–97, 1998.

[5] G. Necula, Compiling with Proofs. PhD thesis, Carnegie
Mellon University, Sept. 1998.

[6] A. W. Appel, “Foundational proof-carrying code,” in Proc.
16th IEEE Symp. on Logic in Computer Science, pp. 247–
258, 2001.

[7] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou, “A type
system for certified binaries,” in Proc. 29th ACM Symp. on
Principles of Prog. Lang, pp. 217–232, 2002.

[8] W. A. Howard, “The formulae-as-types notion of construc-
tions,” in To H. B. Curry: Essays on Computation Logic,
Lambda Calculus and Formalism, Academic Press, 1980.

[9] K. Crary and J. C. Vanderwaart, “An expressive, scalable
type theory for certified code,” in Proc. 7th ACM Intl. Conf.
on Functional Prog., pp. 191–205, 2002.

[10] B. Werner, Une Théorie des Constructions Inductives.
Thèse de doctorat, Université Paris VII, May 1994.

[11] The Coq Proof Assistant Reference Manual, URL:
http://coq.inria.fr/.

[12] V. M. Koutavas, “Calvin to NFlint compiler,” Tech. Rep.
CSD-SW-TR-2-02, National Technical Univ. of Athens,
Software Engineering Laboratory, Oct. 2002. In Greek.

5

