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Abstract

Resumptions are a valuable tool in the analysis and de-
sign of semantic models for concurrent programming lan-
guages, in which computations consist of sequences of
atomic steps that may be interleaved. In this paper we con-
sider a general notion of resumption, parameterized by the
kind of computations that take place in the atomic steps.
We define a monad transformer which, given a monad
� that represents the atomic computations, constructs a
monad���� for interleaved computations. Moreover, we
use this monad transformer to define the denotational se-
mantics of a simple imperative language supporting non-
determinism and concurrency.

1 Introduction

Modern computer architectures and operating systems
have made it practical to execute different parts of a pro-
gram simultaneously. From the programmer’s point of
view, it is often not important whether the parts of a pro-
gram are executed by different physical processors or by a
single processor using a time-sharing strategy. New tools
are needed to define the semantics of concurrent program-
ming languages, which allow the parts of a program that
execute simultaneously to interact with one another, typi-
cally using the same memory variables.

Resumptions have long been suggested as a model of in-
terleaved computation in the semantics of concurrent pro-
gramming languages. In brief, a resumption is either a
computed value of some domain � or an atomic com-
putation that results in a new resumption. An extensive
treatment is offered in [dBak96] using the theory of com-

�This paper is based on work supported by the National Technical
University of Athens, under the Programme for the Support of Basic Re-
search “Archimedes”. Project title “SynSemAL: Syntax and Semantics
of Artificial Languages”.

plete metric spaces as the mathematical framework for
domains. Many variations of resumption domains (also
called branching domains) for specific instances of atomic
computations are investigated there.

In this paper, we propose a structured generalization of
this technique. We allow the atomic steps to perform any
type of computation, represented by an arbitrary monad
� . Thus, we define the resumption monad transformer �,
which transforms monad � to a new monad ���� rep-
resenting interleaved computations. Domains constructed
by ���� satisfy the isomorphism

������� � � � ����������

which defines the essence of resumption domains. By in-
troducing ���� we obtain a general framework for rea-
soning about such domains. For example, the domain

� � �� ��� �������

that is used in [dBak96] for defining the semantics of non-
uniform parallelism (ignoring some complexities related
to the use of complete metric spaces) is exactly the same
as the domain ���������� that we use in Section 4 for
the same purpose.

The rest of the paper is structured as follows. Sec-
tion 2 contains a brief introduction to monads as part of
the mathematical background that is required for this pa-
per. In Section 3 we define the resumption monad trans-
former � and in Section 4 we use it to present the deno-
tational semantics of a simple imperative language featur-
ing non-determinism and concurrency. We conclude with
Section 5.

2 Mathematical background

In this section we define part of the mathematical back-
ground that is necessary for the rest of the paper. We in-
troduce monads and monad transformers and discuss their
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connection with computations and the semantics of pro-
gramming languages. The reader is referred to [Papa01]
for a more complete and informative introduction, and to
the literature related to category theory [Pier91, Aspe91,
Barr96] and domain theory [Scot82, Gunt90].

2.1 Monads and monad transformers

The notion of monad, also called triple, is not new in the
context of category theory. In Computer Science, monads
became very popular in the 1990s. The categorical prop-
erties of monads are discussed in most books on category
theory, e.g. in [Barr96]. For a comprehensive introduc-
tions to monads and their use in denotational semantics
the user is referred to [Mogg90]. A somehow different ap-
proach to the definition of monads is found in [Wadl92],
which expresses the current practice of monads in func-
tional programming. The two approaches are equivalent.
In this paper, the categorical approach (presented here) is
used for the definition of monads, since it is much more
elegant, and the functional approach (presented in Sec-
tion 2.2) is used for describing the semantics of program-
ming languages.

Definition 2.1 A monad on a category � is a triple
��� �� ��, where � � � � � is an endofunctor, � �
Id� �� � and � � � � �� � are natural transforma-
tions. For all objects � in �, the following diagrams must
commute.

����
������ ����� �

�����
����

�
�
�
�

id����
� ��

�
�
�

id����

����

��

�

�����
������ �����

�����

�����

�
�� � ����

��

�

The transformation � is called the unit of the monad,
whereas the transformation � is called the multiplication
or join.

The commutativity of these two diagrams is equiva-
lent to the following three equations, commonly called the
three monad laws:

�� Æ ����� � id���� (1st Monad Law)
�� Æ����� � id���� (2nd Monad Law)
�� Æ����� � �� Æ ����� (3rd Monad Law)

Definition 2.2 If � is a category, a monad transformer on
� is a mapping between monads on �.1

2.2 Monads and computations

An alternative approach to the definition of monads has
become very popular in the functional programming com-
munity. According to this, a monad on category ��� is
defined as a triple ��� unit�� ���. In this triple � is a
domain constructor, unit� � � � ���� is a continuous
function and �� � ���� � �� � ����� � ���� is a
binary operation.

In the semantics of programming languages, domains
constructed by monad � typically denote computations,
e.g. the domain ���� denotes computations returning
values of the domain �. The result of unit� 	 is sim-
ply a computation returning the value 	 and the result of

 �� � is the combined computation of 
, returning 	,
followed by computation ��	�. Monad transformers are
useful to transform between different types of computa-
tions [Lian95, Lian98].

The following equations connect a monad
��� unit�� ��� defined using the functional approach
with a monad ��� �� �� defined using the categorical
approach.

unit� � �


 �� � � �� Æ����� 


� � unit�
� � �
 
 �� id
���� � �
 
 �� �unit� Æ ��

In the functional approach, the three monad laws can be
formulated as follows.


 �� unit� � 


�unit� 	� �� � � � 	


 �� �� 	 �� 	� �� �� � �
 �� �� �� �

An interesting remark is that these three laws are enough
to prove that the equivalent ��� �� ��, as defined above, is
indeed a monad, i.e. that � is a functor (preserves func-
tion identities and composition) and � and � are natural
transformations.

In this setting, it is useful to define two special classes
of monads, equipped with additional operations that are

1Many options for the definition of monad transformers have been
suggested in literature. Given a category �, monads on � and monad
morphisms (which have not been defined in this paper) form a cate-
gory ������. Monad transformers can be defined as mappings be-
tween objects in ������, as endofunctors on ������, as premonads
on ������ (i.e. endofunctors with a unit), and as monads on ������.
In this paper we have selected the first option.
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useful for modeling the semantics of concurrency in pro-
gramming languages.

Definition 2.3 A multi-monad is a monad � with a bi-
nary operation �� � ��������� � ����, where �

is a domain.

Definition 2.4 A strong monad is a monad � with a bi-
nary operation ��� � ���� � ���� � ��� � ��,
where � and � are domains.

The binary operation � of a multi-monad is used to ex-
press disjunction in computations. In other words, if � is
a multimonad, � is a domain and 
��
� � ���� are
two computations, the computation 
� � 
� indicates a
(possibly non-deterministic) option between 
� and 
�.
Moreover, the binary operation �� of a strong monad is
used to express conjunction in computations. Let � be a
strong monad, let � and � be domains. If 
� � ����
and 
� � ���� are two computations, the computation

� �� 
� indicates that both 
� and 
� will be per-
formed and their results will be combined. The option
here relates to the order, if any, in which the two compu-
tations will be performed.

3 Resumption monad transformer

The notion of execution interleaving is a well known one
in the theory of concurrency. In this context, computations
are considered to be sequences of atomic steps the nature
of which depends on our notion of computation. In iso-
lation, these atomic steps are performed one after another
until the computation is complete. Given two computa-
tions � and �, an interleaved computation of � and �

consists of an arbitrary merging of the atomic steps that
constitute � and �. Interleaving easily extends to more
than two computations. The atomic steps of any computa-
tion must still be executed in the right order, but this pro-
cess can be interrupted by the execution of atomic steps
belonging to other computations.

Our primary goal is to define a monad transformer �
capable of modelling generic interleaved computations.
In this way, if we are given a monad � which models
the computations taking place at the atomic steps, we can
obtain a monad ���� which models interleaved compu-
tations of such atomic steps. One possible solution to
this problem is to use the long suggested technique of re-
sumptions, illustrated in [Schm86, dBak96] for specific
instances of � .

Generalizing this technique, the domain ������� of
resumptions must satisfy the following isomorphism:

������� � � � ����������

In this domain, atomic steps are arbitrary computations
defined by � . The left part of the sum represents an al-
ready evaluated result, i.e. a computation that consists of
zero atomic steps. The right part represents a computation
that requires at least one atomic step. The result of this
atomic step is a new element of the resumption domain.

We start by considering an arbitrary locally continu-
ous monad � on ���. The rest of the section is or-
ganized as follows. In Section 3.1 we define an endo-
functor �� � ��� � ��� . In Section 3.2 we de-
fine two natural transformations unit � Id �� �� and
join � ��

� �� �� and in Section 3.3 we prove that
��� � unit � join� satisfies the three monad laws. In this
way we define the monad transformer �. Next, in Sec-
tion 3.4 we prove that ������� satisfies the aforemen-
tioned isomorphism by constructing the two components
�� and �� of the isomorphism. Finally, in Section 3.5 we
define a few additional operations on domains constructed
by ����.

Most proofs of the results contained in this section have
been omitted due to space restrictions. The reader is re-
ferred to [Papa01] for more details.

3.1 Functor ��
We start by defining for each domain � an endofunctor
���� � ���� ���, and some auxiliary functions. The
domain ������� that we are trying to define is a fixed
point of ����.

Definition 3.1 Let �, � and � be domains and � � � �
� a continuous function. We define the following map-
pings:

������� � � � ����
������� � � inl � inr Æ���� �

Theorem 3.1 ���� � ���� ��� is a functor.

Definition 3.2 Let � be a domain. We define the pair of
functions �� � � � ������� and �� � ������� � �

to be equal to 	.

We proceed by defining a mapping of objects and a
mapping of functions, which will define the endofunctor
�� � ���� ��� at the end of this section.

Definition 3.3 Let � be a domain. The domain�� ���
is the set

�� ��� � 
 ������� � �� � � �� � �
�
������

 �� � ��������������� �

with its elements ordered pointwise:

������� ��� ��� ������� �
�� � � �� ��������� ��
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Definition 3.4 Let � be a domain. For all 
�� � �, we
define a function ��	�� � �	������ � �������� by:

��	�� � id�������� , if 
 � �

��	���� � ��	�� Æ�
�
������� , if 
 � �

��	���� � �	������� Æ ��	�� , if 
 � �

Definition 3.5 Let � be a domain, � � �, � � ��������
and ��	�	�� � �� ���. We define the pair of func-
tions ��� � �������� � �� ��� and ��� � �� ��� �
�������� as follows:

��� � � ���	�� ��	��

��� ��	�	�� � ��

Definition 3.6 Let � and � be domains and � � � � � a
continuous function. For all � � � we define a continuous
function �
��� � � ����
��� � �������� by:

�

��
� � � 	

�

��
��� � � � inl Æ �� inr Æ���
��� �� �

Definition 3.7 Let � and � be domains and � � � � �

a continuous function. We define a continuous function
�� ��� � �� ��� � �� ��� by:

�� ��� ������� � ��
��� � ������

The central result of this section is Theorem 3.2 in
which we prove that �� is a functor. For doing so, we
make use of the following lemmata.

Lemma 3.1 For all 
�� � �, ��	 Æ ��� � ��	��.

Lemma 3.2 Let � be a domain. Then for all � � �,

�
�
� id
 � id��������

Lemma 3.3 Let �, � and � be domains, � � � � � and
� � � � � continuous functions. Then for all � � �,

�
��� �� Æ �� � ����� � Æ �
��� �

We can now proceed with the proof of Theorem 3.2.

Theorem 3.2 �� � ���� ��� is a functor.

Proof We must prove that�� preserves identities and
the composition of continuous functions.

1. Let � be a domain and ������� � �� ���.

�� �id� �������
= � Definition of�� �

���� id ������
= � Lemma 3.2 �

�id�������� ������
= � Identity function �

�������
= � Identity function �

id�� �� �������

2. Let � and � be domains, � � � � � and � � � � �

continuous functions and ������� � �� ���.

�� �� Æ �� �������
= � Definition of�� �

��
��� �� Æ �� ������
= � Lemma 3.3 �

������� � Æ �
��� �� ������
= � Composition �

������ � ��
��� � �������
= � Definition of�� �
�� ��� ��
��� � ������

= � Definition of�� �
�� ��� ��� ��� ��������

= � Composition �
��� ��� Æ�� ���� ������� �

3.2 Unit and join

Having defined �� as a functor, we now define the two
monad operations unit and join . For each one, we prove
that it is a natural transformation.

Definition 3.8 Let � be a domain. For all � � � we
define a continuous function ��� � � � �������� by:

��� � 	
����� � inl

Definition 3.9 Let � be a domain and � � �. We define
the function unit� � � � �� ��� by:

unit� � � ���� �����

Lemma 3.4 Let � and � be domains, � � � � � a
continuous function. Then, for all � � �,

�
��� � Æ �
� � ��� Æ �

Theorem 3.3 unit � Id ���� is a natural transforma-
tion.

Proof Let � and � be domains and � � � � � a
continuous function. We must show that unit � Æ � �
�� ��� Æ unit
. Let � � �.

unit� �� ��
= � Definition of unit �

���� �� ������
= � Composition �

����� Æ �� �����
= � Lemma 3.4 �

���
��� Æ �
� � �����
= � Composition �

��
��� ��
� ������
= � Definition of�� �
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�� ��� ��
� �����
= � Definition of unit �
�� ��� �unit
 �� �

Definition 3.10 Let � be a domain. For all � � � we
define a continuous function ��� � ��

���� ������ �

�������� by:

��� � 	
������ � ������� inr Æ����� � �

Definition 3.11 Let � be a domain and ������� �
��
� ���. We define the function join� � ��

� ��� �
�� ��� by:

join� ������� � ���� ������

Lemma 3.5 Let � and � be domains, � � � � � a
continuous function. Then for all � � �,

��� Æ �
�� �
���� ���
� ��� ���� � �
��� � Æ �
�

Theorem 3.4 join � ��
� �� �� is a natural transfor-

mation.

Proof Let � and � be domains and � � � � �

a continuous function. We must show that join� Æ
�� ��� ���� � �� ��� Æ join
. Let ������� �
��
� ���.

join� ��� ��� ���� ��������
= � Definition of�� �

join� ��
�� �
���� ���
� ��� ���� ������

= � Definition of join �

���� ��
�� �
���� ���
� ��� ���� �������

= � Composition �
����� Æ �

�� �
���� ���
� ��� ����� ������

= � Lemma 3.5 �
���
��� � Æ �
� � ������

= � Composition �
��
��� � ��
� �������

= � Definition of�� ��� �
�� ��� ��
� ������

= � Definition of join �
�� ��� �join
 �������� �

3.3 Monad ����

In this section we prove that functor�� together with the
natural transformations unit and join defines a monad.
The three theorems of this section verify the three monad
laws. The following lemmata are necessary for proving
the monad laws. Let � be a domain.

Lemma 3.6 For all � � �, ��� Æ �
�� ���
� � ���.

Lemma 3.7 For all � � �,

��� Æ �
���� ���
� unit� � id��������

Lemma 3.8 For all � � �,

��� Æ �
��

� ������ ���
� join� � ��� Æ �

�� ���
�

We can now proceed by proving the three monad laws.

Theorem 3.5 (1st Monad Law)

join� Æ unit�� ��� � id�� ���

Proof Let ������� � �� ���. Then

join� �unit�� ��� ��������
= � Definition of unit �

join� ��
�� ���
� ��	�	������

= � Definition of join �

���� ��
�� ���
� ��	�	�������

= � Composition �
����� Æ �

�� ���
� � ��	�	������

= � Lemma 3.6 �
���� ��	�	������

= � Definition of ��� �
������� �

Theorem 3.6 (2nd Monad Law)

join� Æ�� �unit�� � id�� ���

Proof Let ������� � �� ���. Then

join� ��� �unit�� ��������
= � Definition of�� �

join� ��
���� ���
� unit� ������

= � Definition of join �

���� ��
���� ���
� unit� �������

= � Composition �
����� Æ �

���� ���
� unit�� ������

= � Lemma 3.7 �
�id�������� ������

= � Identity �
������� �

Theorem 3.7 (3rd Monad Law)

join� Æ�� �join�� � join� Æ join�� ���

Proof Let ������� � ��
� ���. Then

join� ��� �join�� ��������
= � Definition of�� �

join� ��
��

� ������ ���
� join� ������

= � Definition of join �

���� ��
��

� ������ ���
� join� �������

= � Composition �

����� Æ �
��

� ������ ���
� join�� ������
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= � Lemma 3.8 �
����� Æ �

�� ���
� � ������

= � Composition �
���� ��

�� ���
� �������

= � Definition of join �

join� ��
�� ���
� ������

= � Definition of join �
join� �join�� ��� �������� �

Having established that �� satisfies the three monad
laws, we can now conclude the definition of the resump-
tion monad transformer �.

Definition 3.12 The resumption monad transformer � is
defined by the mapping ���� � �� .

3.4 Isomorphism

Let � be a domain. In this section, we define the pair
of functions �� and �� that establish the isomorphism be-
tween domains �� ��� and � � ���� ����. Using
these functions, it is possible to define an operation in one
of these two domains and obtain the corresponding opera-
tion on the other domain by applying �� and �� appropri-
ately.

The definition of the embedding function � � is straight-
forward.

Definition 3.13 For all � � � we define a function ��� �
������� ���� � �������� by:

��� � 	
����� � � inl � inr Æ������ �

Definition 3.14 Let � � ������� ����. We define the
function �� � ������� ���� � �� ��� by:

�� � � ���� �����

On the other hand, the definition of the projection func-
tion �� is more complicated. It first requires the defini-
tion of an additional domain�� ���. Furthermore, it re-
quires the proof of Lemma 3.9, which states that elements
of �� ��� come in three distinct forms. This lemma is
crucial in the definition of �� and in the proofs of several
theorems that follow.

Definition 3.15 The domain�� ��� is the set

�� ��� � 
 ������� � �� � � �� � �����������

 �� � ������������������ �

with its elements ordered pointwise:

������� ��� ��� ������� �
�� � � �� ������������ ��

Definition 3.16 Let ��	�	�� � �� ���. For all � � �,
we define a function ��� � �� ��� � �������� by:

��� ��	�	�� � 	
����� ��	�	�� � inr ��

Lemma 3.9 Let ������� � �� ���. Then exactly one
of the following is true:

1. For all � � �, �� � 	.
2. There exists a  � � such that for all � � �, �� �

���  .
3. There exists a ��	�	�� � �� ��� such that for all

� � �, �� � ��� ��	�	��.

Definition 3.17 We define the function �� � �� ��� �
������� ���� by case analysis on its argument
������� based on Lemma 3.9:

1. If for all � � �, �� � 	, then

�� ������� � 	

2. If there exists a  � � such that for all � � �, �� �
���  , then

�� ������� � inl  

3. If there exists a ��	�	�� � �� ��� such that for
all � � �, �� � ��� ��	�	��, then

�� ������� � inr

��
���

������ ��

�

In order to ensure that the least upper bound in the
third case of the previous definition exists, we prove
Lemma 3.10 which states that ������ �� form an �-chain.

Lemma 3.10 Let ������� � �� ���. For all � � �,

������ �� � �������� ����

The following lemmata are necessary for proving the
central theorems of this section.

Lemma 3.11 For all  � �, for all � � �,

��� �inl  � � ���  

Lemma 3.12 For all � � ���� ����, for all � � �,

��� �inr �� � ��� �����	� ��	��

Lemma 3.13 For all � � ���� ����,�
���

����� Æ ���� � � �

Lemma 3.14 Let ��	�	�� � �� ���. For all 
 � �,�
���

����	��� �� � �	
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And now we can proceed to Theorem 3.8 and Theo-
rem 3.9, which conclude that the two functions �� and
�� define indeed an isomorphism between the domains
�� ��� and � � ���� ����.

Theorem 3.8 �� Æ �� � id������� ����

Proof Let � � ������� ���� � � � ���� ����.
By case analysis on �.

1. Case � � 	. Then both sides are equal to 	 accord-
ing to the definitions of �� and ��

2. Case � � inl  for some  � �. Then

�� ��� �inl  ��
= � Definition of �� �

�� ���� �inl  �����
= � Lemma 3.11 �

�� ����  ����
= � Definition of �� �

inl  

3. Case � � inr � for some � � ���� ����. Then

�� ��� �inr ���
= � Definition of �� �

�� ���� �inr ������
= � Lemma 3.12 �

�� ���� �����	� ��	������
= � Definition of �� �

inr

��
���

������ ������� ��

�

= � Composition, � is a functor �

inr

��
���

����� Æ ���� �

�

= � Lemma 3.13 �
inr � �

Theorem 3.9 �� Æ �� � id�� ���

Proof Let ������� � �� ���. By case analysis on
������� based on Lemma 3.9:

1. If for all � � �, �� � 	, then

�� ��� �	�����
= � Definition of �� �

�� 	
= � Definition of �� �

���� 	����
= � Definition of � �

�	����

2. If there exists a  � � such that for all � � �, �� �
���  , then

�� ��� ����  �����
= � Definition of �� �

�� �inl  �
= � Definition of �� �

���� �inl  �����
= � Lemma 3.11 �

����  ����

3. If there exists a ��	�	�� � �� ��� such that for all
� � �, �� � ��� ��	�	��, then

�� ��� ���� ��	�	�������
= � Definition of �� �

��

�
inr

��
���

������ ��

��

= � Definition of �� ��
���

�
inr

��
���

������ ��

���
���

= � Lemma 3.12 ��
����

�
����	�

� �
����

������� ���

��
	��

�
�
���

= � ����	� is continuous ��
����

� �
����

����	� �������� ����

�
	��

�
�
���

= � Composition ��
����

� �
����

�����	� Æ�������� ���

�
	��

�
�
���

= � � is functor ��
����

� �
����

����	 Æ ����� ���

�
	��

�
�
���

= � Lemma 3.1 ��
����

� �
����

����	���� ���

�
	��

�
�
���

= � Lemma 3.14 �
���� ��	�	������ �

3.5 Additional operations

In this section we define two functions, step and run ,
which convert a non interleaved computation of type
���� to an interleaved computation of type �������
and vice-versa. The names of these functions indicate
their behaviour. The first function converts a whole com-
putation to a single atomic step in an interleaved compu-
tation. The second function runs the whole sequence of
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atomic steps of an interleaved computation without allow-
ing other computations to intervene.

In the rest of this section, we assume that ��� �� �� is a
monad and that � is a domain.

Definition 3.18 step� � ���� � ������� is the con-
tinuous function defined by:

step� � �� Æ inr Æ���� Æ inl �

Definition 3.19 run� � ������� � ���� is the con-
tinuous function defined by:

run� � fix �� � � ��� �� Æ���� � Æ ���

The following theorem states a property of run and
step . The reverse composition does not yield identity,
since it forces an interleaved computation to be executed
in one atomic step (it will be used in Section 4 for defining
the semantics of ���).

Theorem 3.10 run� Æ step� � id����

Proof

run� Æ step�
= � Unfolding fix in the definition of run� �

� �� � �� Æ��run�� � Æ �� Æ step�
= � Definition of step� �

� �� � �� Æ��run�� � Æ �� Æ �� Æ inr Æ���� Æ inl �
= � Theorem 3.8 �

� �� � �� Æ��run�� � Æ id������� ���� Æ
inr Æ���� Æ inl �

= � Composition with identity �
� �� � �� Æ��run�� � Æ inr Æ���� Æ inl �

= � Definition of selection �
�� Æ��run�� Æ���� Æ inl �

= � � is a functor �
�� Æ��run� Æ �� Æ inl �

= � Unfolding fix in the definition of run� �
�� Æ��� ��� �� Æ��run�� � Æ �� Æ �� Æ inl �

= � Theorem 3.8 �
�� Æ��� ��� �� Æ��run�� �Æ id������� ����Æ inl �

= � Composition with identity �
�� Æ��� ��� �� Æ��run�� � Æ inl �

= � Definition of selection �
�� Æ�����

= � � is a monad, 2nd Monad Law �
id���� �

The following definition is useful in the rest of this sec-
tion, where we establish that ������� can be defined as
a multi-monad and a strong-monad. These two properties
of ������� will also be used in Section 4.

Definition 3.20 prom� � ������� � ����������
is the continuous function defined by:

prom� � � ��� ��� Æ inl � id���� ���� � Æ ��

Let us now assume that � is a multi-monad and that
�� is a non-deterministic option operator for computa-
tions represented by monad � . It is easy to extend this
behaviour to the monad ����.

Definition 3.21 Let � be a multi-monad. Let � be a do-
main. We define the binary operation ����� � ��������
������� � ������� by:

� ����� � � �� �inr �prom � �� prom ���

Monad ���� with ����� is a multi-monad.

Furthermore, we can introduce a way to create a new
interleaved computation of type ��������� given two
existing computations of types ������� and �������.
Here we prefer to use monads � and ���� in the func-
tional way. If one of the two computations does not re-
quire the execution of any atomic step, i.e. if one of the
two computations has already been completed, then the
other computation is executed and the two results are com-
bined. Otherwise, if both computations require at least
one atomic step, we choose non-deterministically which
computation will start executing.

Definition 3.22 Let � be a multi-monad. Let � and
� be domains. We define the binary operation ������ �
�������� ������� � ��������� by:

������ � fix �� � � ��� ��
�� 	� � ����� �� 	� unit���� �	�� 	���� �
�

�� 	� � ����� �� 	� unit���� �	�� 	���� �
� 

�� �inr �
� �� ���� unit� �� ���� ���� ��

� �� �� �� unit� �� ��� �������

� ��� �� � ��� ���

Monad ���� with ������ is a strong monad.

4 Semantics of concurrency

Consider the simple imperative language whose abstract
syntax is given below.

� ��� skip � � := � � � ; �
� if � then � else � � while � do �

It features an empty statement, assignment, sequential
composition of statements, a structure for conditional and
one more for while loops. The symbol � � �	
 rep-
resents a variable. The language of expressions ! is not
important for the purpose of this paper and has therefore
been omitted.

We define the denotational semantics of this language,
assuming that the values of expressions are elements of
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the semantic domain�. The program state, mapping vari-
ables to their current values, is an element of the domain
� � �	
� �.

As a provision for what will follow, we define a monad
transformer � implementing the direct semantics ap-
proach. If � is a monad, we define the monad ����
as:

������� � �� ��� � ��
unit���� 	 � � " unit� �	� "�

 ����� � � � " 
 " �� �� �	� "�� � 	 "��

State computations created by the direct semantics monad
transformer are functions (elements of �������) that
take the initial program state (an element of �) and return
a stateless computation that yields the computed value (an
element of �) and the final program state (an element of
�). The implementations of unit ���� and ����� carry out
the propagation of the program state.

We also define an operation for the assignment of values
to variables.

store� � �	
� � � �������
store� � 	 � � " unit� �u� "
� �� 	��

By taking the identity monad �� as the argument of �,
we obtain the monad 	 that models our simple notion of
computation (ordinary direct semantics).

	 � �����

The meaning of a statement " is a computation ��" �� of
type 	���. Non-termination is represented by the bot-
tom element. We also assume that the meaning ��! �� of an
expression is a computation of type 	���.

��skip �� � unit u
��� := � �� � ��! �� � �store ��
���� ; �� �� � ���� �� � ��# ���� ���
�� if � then �� else �� �� � ��! �� � �� $

	
 $ ��� ���� �� �� ���� ���
��while � do � �� � fix �� � ��! �� � �� $

	
 $ ��� ��� �� � ��# �� �� unit u��

Let us now introduce non-determinism and concurrency
in our language, by extending it with three new constructs.

� ��� . . . � � + � � � � � � ���

Operator + executes exactly one of the statements that are
given as its operands. The selection is non-deterministic.
On the other hand, operator � executes both statements
that are given as its operands in an interleaved way. Fi-
nally, the construct ��� executes the statement " in a sin-
gle atomic step, with no interleaving permitted during its
execution.

Before we proceed with the semantics of our extended
language, we have to modify the definition of 	. By giv-
ing the powerdomain monad � as the argument of �, we
obtain a multi-monad that can support non-determinism.

	 � ����

The option operator �� is defined as:


� �� 
� � � " �
� "� �
�
�
� "�

where �
�

is the union operation on powerdomains.
In the semantics of the extended language, we use the

monad��	� to model interleaved computations. Accord-
ing to Definition 3.21, ��	� is a multi-monad equiped
with a non-deterministic option operator ����� . Also, ac-
cording to Definition 3.22, ��	� is a strong monad and
operator ������ can be used to model the interleaving of
computations. Furthermore, the store operation can eas-
ily be lifted to the new domain of computations.

store� � �	
� � � ����������
store� � 	 � step �store� � 	�

The equations defining the meaning of existing lan-
guage constructs do not require any changes, except for
the implicit change that the meanings of statements and
expressions are now elements of the semantic domains
��	���� and ��	���� respectively. On the other hand,
the semantics of the additional constructs can be easily
expressed in terms of ��	� operations.

���� + �� �� � ���� �� ����� ���� ��
���� � �� �� � ���� �� ������ ���� �� � �� % unit u�
����� �� � step �run ��� ���

In the companion technical report [Papa01], a seman-
tics of an imperative concurrent programming language
based on the resumption monad transformer is presented
with more details and a few examples.

5 Conclusion

This paper defines a general theoretical framework for
formalizing the semantics of interleaved computation in
concurrent programming languages. The atomic steps in
an interleaved computation may themselves be arbitrary
computations represented by a given monad � . Further-
more, it is argued that the use of monads enhances the
modularity and elegance of the semantics and facilitates
the introduction of additional features in a principled way.

Apart from its application in the semantics of concur-
rency, the resumption monad transformer can be used in
the semantics of deterministic languages with unspeci-
fied evaluation order, such as Algol and C. The present
research was motivated by problems encountered in the
formalization of ANSI C [Papa98]. A Haskell implemen-
tation of the resumption monad transformer, based on the
isomorphism between ������� and ������������,
has been used in [Papa00] to define the denotational se-
mantics of an expression language with side effects under
a variety of possible evaluation strategies.
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