
Formal specification of the user interface
by using parametric context-free grammars∗

Nikolaos S. Papaspyrou

National Technical University of Athens
Department of Electrical and Computer Engineering

Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou, Athens, Greece

nickie@softlab.ntua.gr

SUMMARY
Despite the significant progress and the emergence of pro-
ficient tools that have been witnessed recently, the devel-
opment of user interfaces remains a hard task in the soft-
ware development process. The use of formal methods for
the specification of user interfaces has been proposed as an
aid in this task and various formal models have been con-
sidered. Grammars were one of the earliest models that
were proposed. Several drawbacks hinder the application
of ordinary context-free grammars in practice and have led
to the adoption of more complex variations. A relatively
simple family of grammars, termed “parametric context-
free grammars”, is proposed in this paper for the formal
specification of the user interface, in comparison to ordi-
nary context-free grammars. The proposed grammars can
describe interface languages with context-sensitive fea-
tures, which are typical in user interfaces. Their main
advantages lie in their simplicity and ability to produce
shorter and more understandable specifications.

KEYWORDS: Formal methods, user interface specifi-
cation, interface language, parametric context-free gram-
mars.

INTRODUCTION
As software grows in size, the complexity of the software
development process grows disproportionally. Contempo-
rary software is orders of magnitude larger and more com-
plex than what it was quite recently and the task of design-
ing and implementing it seems now more and more unfea-
sible without the aid of carefully planned and rigid collab-
orative techniques. The use of formal methods improves
software development, especially when used in conjunc-
tion with other informal and empirical techniques, by re-
ducing errors and misinterpretations in requirements and
design.

Although the complexity of the interaction between hu-
mans and computers has not increased significantly from

∗This paper is based on work supported by the National Technical
University of Athens, under the Programme for the Support of Basic Re-
search “Archimedes”. Project title “SynSemAL: Syntax and Semantics
of Artificial Languages”.

the human’s point of view, the development of the user
interface grows in complexity, required time and effort at
almost the same rate as the software system hiding be-
hind it. Many formal specification methods have been
proposed to formally express the structure, properties and
behaviour of user interfaces and interactive systems. In-
troductions to the current state of the art can be found in
a number of books [3, 5, 8, 10] and conference proceed-
ings [1, 6, 7, 17]. The models that have been used fall
largely into three categories: grammars, finite automata
and nets. In general, formal methods present the advan-
tage of specifying the user interface precisely and without
ambiguity. In this way, they provide a means of ensuring
that the implementation of a user interface meets its spec-
ification. Furthermore, formal methods offer possibilities
for rapid prototyping and automating parts of the imple-
mentation of the user interface.

Grammars were one of the earliest proposed models for
human-computer interaction. They have traditionally
been used for modelling command-oriented languages,
however grammars of various types have been suggested
by many successful modelling formalisms, including:

• Action language [15, 16], which uses BNF to rep-
resent the task-action mapping. Similar approaches
using more powerful grammars have been proposed
recently [18, 12].

• Task-action grammar (TAG), which enhances rules
written in a form similar to BNF with semantic fea-
tures that can be used to group rules, with respect to
their meaning for the user [11, 13].

• Extended tag-action grammar (ETAG), which is an
extension of TAG using many levels of abstraction to
specify the “user’s virtual machine” [19, 20].

• Attribute grammars [14] and graph grammars [4].

The use of ordinary context-free grammars presents three
main disadvantages when applied to the formal specifica-
tion of user interfaces. First, a context-free grammar can
only describe the static component of the interaction, i.e.
the syntax of the interface language, but not the dynamic
part, i.e. its semantics. Second, it is not capable of describ-

ing context-sensitive features which are typical of user in-
terfaces. And third, the size and complexity of grammars
grows very fast in realistic examples and results in speci-
fications that are difficult to comprehend and manipulate.
To overcome these disadvantages, most of the aforemen-
tioned formalisms have significantly extended the formal
model of grammars by introducing new features, and thus
significantly increased its complexity. It seems that re-
search in this field has faced a tradeoff between the com-
plexity of the formal model on the one hand and that of the
developed specifications on the other, and has resolved it
in favour of the former.

In this paper, we attempt to reverse this approach and pro-
pose a relatively simple formalism that we call parametric
context-free grammars, for the specification of the static
component of user interfaces. Such grammars are only a
simple and intuitive extension of context-free grammars;
however, they are more expressive and capable of describ-
ing context-sensitive features of interface languages. They
are especially useful in the specification of languages with
families of similar features [9]. In the rest of the paper, we
first define parametric context-free grammars and then in-
troduce their use for the specification of user interfaces.
As an example, we discuss in some detail the user inter-
face of the Notepad application.

PARAMETRIC CONTEXT-FREE GRAMMARS AND
PBNF
A natural extension of context-free grammars is obtained
by introducing parameters denoting arbitrary strings in
nonterminal symbols. A parametric context-free gram-
mar (PCFG) is defined as a tuple of the form:

G = 〈T,NT, a, I, R, s〉
where T is a set of terminal symbols, NT is a set of non-
terminal symbols, a : NT → N is a function returning the
number of parameters that each nonterminal symbol ex-
pects, I is a set of identifiers used as names for formal pa-
rameters, R is a set of production rules and s ∈ NT is the
initial nonterminal symbol, which must satisfy a(s) = 0.
The sets T , NT and I must be distinct and all sets must
be finite. Each rule r ∈ R has the form:1

nt(i1, . . . , ip) ::= α

where nt ∈ NT is a nonterminal symbol, p = a(nt) is the
number of parameters that nt expects, identifiers ik ∈ I
are distinct and α ∈ S({i1, . . . , ip}) where:

S(P) =
∞⋃

n=0

Sn(P), with S0(P) = ∅ and

1Throughout this paper, we use the notation αβ for the concatenation
of strings α and β, ε for the empty string, L1 L2 for the concatenation of
languages L1 and L2 defined as L1 L2 = {αβ | α ∈ L1 ∧ β ∈ L2},
Ln for the concatenation of L with itself n times, defined as Ln+1 =
LLn with L0 = {ε}, and L∗ for the Kleene star of L defined as L∗ =�∞

n=0 L
n. We use small Greek letters (α, β, χ, ψ) to denote strings.

Sn+1(P) = (T ∪ P ∪ {nt(α1, . . . , αp)
| nt ∈ NT ∧ p = a(nt) ∧

∀ i : 1 ≤ i ≤ p. αi ∈ Sn(P)})∗

We should note here that S(P) is the set of strings consist-
ing of: (i) terminal symbols; (ii) formal parameters, i.e.
identifiers drawn from the finite set P ⊆ I; and (iii) non-
terminal symbols followed by the correct number of actual
parameters, which are also elements of S(P).

The one-step production relation ⇒ for the parametric
context-free grammar G is defined on elements of S(∅),
that is, strings containing no free formal parameters. This
restriction resolves a number of ambiguities that would
result from the possible use of the same identifier as a for-
mal parameter in more than one production rules. The
production relation is defined as:

∀ p ∈ N. ∀nt ∈ NT : a(nt) = p.
∀χ, ψ, β1, . . . , βp, γ ∈ S(∅).
χ nt(β1, . . . , βp)ψ ⇒ χγ ψ iff
∃ i1, . . . , ip ∈ I. ∃α ∈ S({i1, . . . , ip}).
α[i1 �→ β1, . . . , ip �→ βp] = γ and
(nt(i1, . . . , ip) ::= α) ∈ R

where α[i1 �→ β1, . . . , ip �→ βp] is the result of the textual
substitution of all formal parameters i1, . . . , ip ∈ I by
the actual values β1, . . . , βp ∈ S(∅) in string α. Textual
substitution is formally defined in Figure 1.

The reflexive and transitive closure of ⇒, which is de-
noted by ⇒∗, represents productions in zero or more
steps. The language L(G) generated by the context-free
grammarG is defined by:

L(G) = {α ∈ T ∗ | s() ⇒∗ α} ⊆ T ∗

It is easy to show that PCFGs are more expressible than
CFGs. First, notice that every CFG can be trivially trans-
formed to an equivalent PCFG. In addition, consider the
PCFG with T = {x}, NT = {s, p}, I = {i}, a(s) = 0,
a(p) = 1, and three production rules: s() ::= p(x),
p(i) ::= i and p(i) ::= p(i i). It is not hard to prove that
this PCFG generates L = {x2n | n ∈ N}, i.e. the lan-
guage of strings over T with length equal to a power of 2.
We know L is not context-free, therefore CFG ⊂ PCFG.

In the spirit of the Backus-Naur Form (BNF) and its vari-
ations for CFGs, it is convenient to define a formalism for
the representation of PCFGs, which we call Parametric
Backus-Naur Form (PBNF). This formalism is based on
EBNF, with the additional feature that parameters of non-
terminal symbols are written inside curly braces (“{” and
“}”), in order to distinguish them from grouping paren-
theses. The braces are omitted altogether if a nonterminal
symbol expects no parameters.

USER INTERFACE SPECIFICATION
Parametric context-free grammars can be used for the for-
mal specification of user interfaces. Let us first define a

∀ p ∈ �. ∀ i1, . . . , ip ∈ I. ∀ β1, . . . , βp ∈ S(∅). ∀ t ∈ T.
t[i1 �→ β1, . . . , ip �→ βp] = t

∀ p, k ∈ � : 1 ≤ k ≤ p. ∀ i1, . . . , ip ∈ I. ∀ β1, . . . , βp ∈ S(∅).
ik[i1 �→ β1, . . . , ip �→ βp] = βk

∀ p, q ∈ �. ∀ i1, . . . , ip ∈ I. ∀ β1, . . . , βp ∈ S(∅). ∀nt ∈ NT : a(nt) = q. ∀α1, . . . , αq ∈ S({i1, . . . , ip}).
nt(α1, . . . , αq)[i1 �→ β1, . . . , ip �→ βp] = nt(α1[i1 �→ β1, . . . , ip �→ βp], . . . , αq[i1 �→ β1, . . . , ip �→ βp])

∀ p ∈ �. ∀ i1, . . . , ip ∈ I. ∀ β1, . . . , βp ∈ S(∅). ∀α1, α2 ∈ S({i1, . . . , ip}).
(α1 α2)[i1 �→ β1, . . . , ip �→ βp] = α1[i1 �→ β1, . . . , ip �→ βp] α2[i1 �→ β1, . . . , ip �→ βp]

Figure 1: Definition of textual substitution.

simple model of human-computer interaction, which nev-
ertheless is expressive enough to cover the typical per-
sonal computer software application. There are two agents
that participate in the model: the user and the computer,
or more precisely the software that is running on the com-
puter. The two agents communicate by means of gener-
ating events, i.e. atomic units of communication that are
perceived by both.2 Two types of events are distinguished:
input events, generated by the user and addressed to the
computer, and output events are generated by the com-
puter and addressed to the user. Both types of events can
be viewed at various levels of abstraction. At a relatively
low level, examples of input events in a typical graphi-
cal user interface are the pressing of a key or the move-
ment of the mouse, whereas an example of output event
is the drawing of a rectangle on the screen. At a much
higher level, a more abstract input event is the selection
of command “Statistics” from a menu and a more abstract
output event is the displaying of a window containing the
requested statistical results.

The discrete nature of events should not be considered as
a severe limitation of the model. Continuous operations,
such as mouse movement or drag-and-drop, can be mod-
elled by sequences of successive events. This technique
is widely used in common practice and has been also fol-
lowed in the implementation of popular windowing sys-
tems, like X-Windows or Microsoft Windows.

Syntactically, the interface language is defined as the set
of all legal sequences of events communicated between
the user and the computer during a complete operation of
the software. A similar concept for the interface language
is defined in the Fusion Method [2] under the term “life
cycle model”. The adjective “legal” in the previous defini-
tion explicitly excludes sequences of events that cannot be
obtained; e.g. in most software applications it is not possi-
ble that the output event of printing the current document
precedes the input event of requesting such a printout.

In the study of artificial languages, researchers typically
distinguish the notions of syntax and semantics. Syntax is

2A simple multi-agent model could be defined by replacing events
with messages, exchanged between agents. The use of parametric
context-free grammars and the results of this paper apply to the multi-
agent model as well.

the static part of the language and specifies the set of legal
phrases. On the other hand, semantics is the dynamic part
of the language and specifies the meaning of legal phrases.
In the case of user interfaces the separation of these two
notions is not so easy. In order to accurately specify the
interface language, detailed knowledge of the software ap-
plication’s execution behaviour is often required. In this
paper, we are only interested in the formal specification
of the static part, that is, the syntax of the interface lan-
guage. The complete specification of interactive systems
is generally a very hard task and beyond the aims of our
approach. In the attempt to disconnect the syntax of the
interface language from its semantics, one is often forced
to make simplifications that introduce deviations from the
actual syntax. Such deviations are inevitable and should
not be considered harmful.3 In fact, the resulting formal
specification corresponds to a superset of the interface lan-
guage and is a valuable tool in the study and development
of the user interface.

Since the interface language consists of strings of events,
the parametric context-free grammar used for its specifi-
cation should have events as terminal symbols. The non-
terminal symbols and all other characteristics of the gram-
mar should be appropriately chosen by software analysts.
Production rules define how the strings of the language are
formed and therefore determine the static part of the user
interface. The PBNF notation can be used for represent-
ing the grammar and a reasonable option is to prefix all
output events by “#”, in order to easily distinguish them
from input events.

Depending on the needs of the software application, the
PBNF notation may be extended by additional operators if
necessary, in a way similar to proposed extensions for or-
dinary context-free grammars. For example, operator “‖”
allowing the arbitrary interleaving of strings of terminal
symbols would be useful in an application featuring mul-
tiple independent human-computer interactions occurring
in parallel.

3As a direct analogue from the study of programming languages, the
use of a grammar alone seldom leads to an accurate specification of a
language’s syntax. Additional semantic restrictions need to be imposed
for this purpose, e.g. type checking, and these restrictions cannot gener-
ally be included in the formal specification of the syntax.

Figure 2: Snapshot from the Notepad application.

EditFile Search Help

New

Open...

Save

Save as...

Print...

Exit

Cut

Copy

Paste

Find...

Find next

Topics...

Figure 3: Menu structure for the Notepad application.

EXAMPLE: THE NOTEPAD APPLICATION
In order to illustrate the use of PCFG for the formal spec-
ification of user interfaces, we take as an example a sim-
ple text editor inspired from the Notepad application that
comes with Microsoft Windows. Similar applications ex-
ist in all contemporary windowing operating systems. A
snapshot from the Notepad application is shown in Fig-
ure 2. Its user interface is relatively simple. User input is
given through direct typing or through the menu in the up-
per part of the window, and the computer’s output prompts
are mostly shown in modal dialog boxes. The structure of
the command menu is shown in Figure 3.

In this section, we are primarily interested in demonstrat-
ing the use of the proposed specification method and, for
this reason, we have chosen a high-level re-engineering
approach. We attempt a formal specification of Notepad’s
user interface at a rather high level of abstraction and fo-
cus our attention to the interaction that is related to docu-
ment management, e.g. creating a new file, saving it, etc.
The complete grammar in PBNF is shown in Figure 4.
We take as input events all commands that can be issued
from the menu, e.g. new and open, user responses to dia-
log boxes, e.g. select-printer and cancel, and the special
event type which represents direct typing from the key-
board into the current document. As output events we
take the dialog boxes that are presented to the user, e.g.
#open-dialog. Output events denote the opening of dia-

log boxes; their closing is not shown here.

The interface language is complicated for two reasons.
First, it is important whether the current document has
been changed since the last time it was saved. If there
are no recent changes, commands such as new or exit can
be executed immediately and the save command must be
unavailable. Otherwise users must be given the option to
save their changes before the current document is closed.
Second, it is important whether the current document has
been associated with a file: the save command requires
that a file name has already been given. The current doc-
ument may be “saved” or “not-saved” with respect to the
first parameter, and “titled” or “untitled” with respect to
the second. Thus, there are four possible states, resulting
from the combination of these two parameters and mod-
elled by four nonterminal symbols with no parameters.

With all this in mind, it is useful to distinguish the input
commands in two categories: those that produce changes
in the current document and those that do not. It is there-
fore reasonable to introduce two nonterminal symbols in
the grammar for this grouping. Finally, one nonterminal
symbol is introduced for each dialog box and models the
exchange of events from the moment it opens until the
moment it closes. Dialog boxes that may affect the state
of the current document in more than one way, depend-
ing on user input, are associated with parametric non-
terminal symbols. For example, the dialog box used for
opening an existing document allows the user to respond
with select-file-name or cancel, and this choice affects the
current document’s state. This dialog is associated with
<open-dialog>{α, β}, with parameter α representing the
resulting state if the user selects a file name and parame-
ter β the resulting state if the user chooses to cancel the
dialog.4

In the example that was illustrated in this section, it seems
that the PBNF grammar serves as a representation for a
state transition system, which could also be represented
by a regular (type 3) grammar. Indeed, in the case of the
Notepad application it is possible to produce a state transi-
tion diagram equivalent to the suggested PBNF grammar.
Such a diagram is shown in Figure 5, using a lot of no-
tational conventions in order to keep its size manageable.
It should be noted however that the regular grammar cor-
responding to this diagram contains one production rule
for each arrow, after the notational conventions are taken
out. An equivalent BNF grammar would certainly consist
of less production rules, but still would not be as concise
as the PBNF grammar given in Figure 4. As a last remark,
the parametric nonterminal symbols that were used in the
PBNF specification correspond directly to recurring pat-
terns in the state transition diagram, as shown in Figure 5.

4It is interesting to notice the resemblance between parameters used
in this way and the continuation passing style that is often encountered
in the theory and practice of programming languages.

<untitled-saved> ::= <change><untitled-not-saved> | <do-not-change><untitled-saved> | new <untitled-saved>
| open <open-dialog>{<titled-saved>,<untitled-saved>} | save-as <save-as-dialog>{<titled-saved>,<untitled-saved>} | exit

<untitled-not-saved> ::= (<change> | <do-not-change>) <untitled-not-saved>
| new <not-saved-dialog>{<untitled-saved>,<untitled-not-saved>}
| open <open-dialog>{<not-saved-dialog>{<titled-saved>,<untitled-not-saved>}, <untitled-not-saved>}
| save-as <save-as-dialog>{<titled-saved>,<untitled-not-saved>} | exit <not-saved-dialog>{ε,<untitled-not-saved>}

<titled-saved> ::= <change> <titled-not-saved> | <do-not-change><titled-saved> | new <untitled-saved>
| open <open-dialog>{<titled-saved>,<titled-saved>} | save-as <save-as-dialog>{<titled-saved>,<titled-saved>} | exit

<titled-not-saved> ::= (<change> | <do-not-change>) <titled-not-saved>
| new <not-saved-dialog>{<untitled-saved>,<titled-not-saved>}
| open <open-dialog>{<not-saved-dialog>{<titled-saved>,<titled-not-saved>}, <titled-not-saved>} | save <titled-saved>
| save-as <save-as-dialog>{<titled-saved>,<titled-not-saved>} | exit <not-saved-dialog>{ε,<titled-not-saved>}

<change> ::= cut | paste | type
<do-not-change> ::= search-first <search-dialog> | search-next | copy | help <help-dialog> | print <print-dialog>

<open-dialog>{α, β} ::= #open-dialog (select-file-name α | cancel β)
<save-as-dialog>{α, β} ::= #save-as-dialog (select-file-name α | cancel β)
<not-saved-dialog>{α, β} ::= #not-saved-dialog (yes α | no α | cancel β)
<search-dialog> ::= #search-dialog (search-text | cancel)
<help-dialog> ::= #help-dialog close-help
<print-dialog> ::= #print-dialog (select-printer | cancel)

Figure 4: Specifications for the user interface of the Notepad application.

US

TS

TN UN

SAD OD

exit

sa
ve

as

NCH

open

ca
nc

el cancel

se
le

ct
-f

ile
na

m
e

se
le

ct
-f

ile
na

m
e

OD
open

cancel

sa
ve

as

ca
nc

el

SAD

se
le

ct
-f

ile
na

m
e

ex
it

NCH

new

ne
w

CH

CH

select-filename
#open-dlg

#open-dlg

#saveas-dlg

#saveas-dlg

CH/NCH

OD

op
en

ca
nc

el

#open-dlg

NSD #nosave-dlg

se
le

ct
-f

ile
na

m
e ca

nc
el

yes/no

NSD

cancel

exit

yes/no

#nosave-dlg

ne
w

ca
nc

el

NSD

#nosave-dlg

yes/no

SAD

#saveas-dlg

se
lec

t-f
ile

na
m

e

saveas

cancel

ne
wca
nc

el

NSD

#nosave-dlg

CH/NCH

yes/no

SAD

#saveas-dlg
saveas

cancel

select-filenam
e

OD

op
en

ca
nc

el

#open-dlg

NSD

#nosave-dlg

se
le

ct
-f

ile
na

m
e

ca
nc

el

NSD

cancel

exit

yes/no

#nosave-dlg

save

yes/no

OD

#open-dlg

ca
nc

el

select-filename
α

β

<open-dialog>{α, β}

SAD

#saveas-dlg

ca
nc

el

select-filename
α

β

<save-as-dialog>{α, β}

NSD

#nosave-dlg

ca
nc

el

yes/no
α

β

<not-saved-dialog>{α, β}

Figure 5: State transition diagram and recurring patterns for the Notepad application.

CONCLUDING REMARKS
In this paper we have proposed the use of a new kind of
grammars, which we call parametric context-free gram-
mars (PCFG), for the formal specification of user inter-
faces. This family of grammars is adequate for describing
the static component of the user interface for a large cate-
gory of software applications. It combines the simplicity
of ordinary context-free grammars with expressive power
and context sensitivity that is encountered in significantly
more complex formal models.

The drawbacks and limitations of the suggested approach,
both from a theoretical and a practical point of view, have
yet to be determined through future experimentation with
large-scale software systems. However, it seems that this
approach deserves the effort to be applied to the software
development process and this should be the main direc-
tion for future research. Although only the syntax of a
software system’s interface language can be specified by
parametric context-free grammars, an interesting direction
for future research would be towards the formal specifica-
tion of the language’s semantics, based on its syntactic
structure. Techniques and formalisms widely used in the
study of programming languages, such as operational or
denotational semantics, can be used for this purpose. The
ambitious aim of this attempt would be a complete formal
specification of a software system, which would be based
on its interface language.

BIBLIOGRAPHY
1. F. Bodart and J. Vanderdonckt, editors. Proceedings

of the Eurographics workshop on design, specifica-
tion and verification of interactive systems, Namur,
1996. Springer Verlag.

2. D. Coleman et al. Object-oriented development: the
Fusion method. Prentice Hall, Englewood Cliffs, NJ,
1994.

3. A. Dix. Formal methods in interactive systems. Aca-
demic Press, 1991.

4. M. Goedicke and B.E. Sucrow. Towards a for-
mal specification method for graphical user interfaces
with modularized graph grammars. In Proceedings of
the 8th International Workshop on Software Specifi-
cation and Design, pages 56–65, 1996.

5. M. Harrison and H. Thimbleby. Formal methods in
human-computer interaction. Cambridge University
Press, 1990.

6. M. Harrison and J. Torres, editors. Proceedings of
the Eurographics workshop on design, specification
and verification of interactive systems. Springer Ver-
lag, 1997.

7. P. Palanque and R. Bastide, editors. Proceedings
of the Eurographics workshop on design, specifica-
tion and verification of interactive systems, Toulouse,
1995. Springer Verlag.

8. P. Palanque and F. Paternò. Formal methods in
human-computer interaction. Formal approaches
to Computing and Information Technology Series.
Springer Verlag, London, UK, 1998.

9. N.S. Papaspyrou and V.C. Vescoukis. Facilitating the
definition of programming languages by using para-
metric context-free grammars. In Proceedings of the
7th Hellenic Conference on Informatics, volume II,
pages 91–98, Ioannina, Greece, August 1999.

10. F. Paternò. Interactive systems: design, specification
and verification. Focus on Computer Graphics Series.
Springer Verlag, Heidelberg, Germany, 1995.

11. S.J. Payne. Task-action grammar. In B. Shackel, edi-
tor, Proceedings of Interact’84, pages 139–144, 1984.

12. S.J. Payne and T.R.G. Green. The user’s perception
of the interaction language: a two-level model. In
Proceedings of CHI’83, pages 202–206, 1983.

13. S.J. Payne and T.R.G. Green. Task-action gram-
mars: a model of the mental representation of task
languages. Human-Computer Interaction, 2:93–133,
1986.

14. Hua Qingui. An approach to user interface specifi-
cation with attribute grammars. Journal of Computer
Science and Technology, 12(1):65–75, 1997.

15. P. Reisner. Formal grammar and human factors design
of an interactive graphics system. IEEE Transactions
on Software Engineering, 7:229–240, 1981.

16. P. Reisner. Formal grammar as a tool for analyz-
ing ease of use: some fundamental concepts. In J.C.
Thomas and M.L. Schneider, editors, Human Factors
in Computer Systems, pages 53–78. Ablex Publishing
Co., Norwood, NJ, 1984.

17. C. Roast and J. Siddiqui, editors. Proceedings of the
workshop on formal aspects of the human-computer
interaction. Springer Verlag, 1997.

18. B. Shneiderman. Multiparty grammars and related
features for defining interactive systems. IEEE Trans-
actions on Systems, Man and Cybernetics, SMC-
12(2):93–113, 1982.

19. M.J. Tauber. On mental models and the user interface.
In G.C. van der Veer, T.R.G. Green, J.M. Hoc, and
D.M. Murray, editors, Working with computers, the-
ory versus outcome, pages 89–119. Academic Press,
London, UK, 1988.

20. M.J. Tauber. ETAG: extended tag-action grammar:
a language for the description of the user’s task lan-
guage. In D. Diaper, D. Gilmore, G. Cockton, and
B. Shackel, editors, Proceedings of Interact’90, pages
163–168, 1990.

