
Ž .Computer Standards & Interfaces 23 2001 169–185
www.elsevier.comrlocatercsi

Denotational semantics of ANSI C

Nikolaos S. Papaspyrou)

Department of Electrical and Computer Engineering, Software Engineering Laboratory, National Technical UniÕersity of Athens,
Polytechnioupoli, 15780 Zografou, Athens, Greece

Received 20 September 2000; received in revised form 28 December 2000; accepted 5 January 2001

Abstract

The semantics of C is described in the ANSIrISO standard using natural language. This paper contains a brief summary,
more descriptive than technical, of our research in specifying a complete and accurate formal semantics for ANSI C. We
follow the denotational approach and divide the specification in three distinct phases: static, typing and dynamic semantics.
Moreover, we have developed a direct implementation of the semantics, using the programming language Haskell. We argue
that our formal specification results in a better understanding of the semantics of ANSI C and comment on its readability,
precision, abstraction and applications.q2001 Elsevier Science B.V. All rights reserved.

Keywords: ANSI C programming language; ISOrIEC 9899:1999 standard; Formal definition; Denotational semantics; Monads

1. Introduction

C is a well-known and very popular general pur-
pose programming language which represents, to-
gether with its descendants, a strong and indisputable
status quo in the current software industry. It is a
medium-level language, mainly characterized by its
economy of expression, its large set of operators and
data types, and its concern for source code portabil-
ity. The general feeling towards C can probably be
best summarized in a statement made by its inventor,
Dennis Ritchie:AC is quirky, flawed and an enor-

w xmous successB 32 . In 1990, ISOrIEC 9899:1990
was adopted as the first standard for the ANSI C

w xprogramming language 14 . It was later amended by
a few complementary documents. A long review
process completed in 1999, resulting in the revised
standard ISOrIEC 9899:1999, nicknamedAC9XB,

) Tel.: q30-1-772-2486; fax:q30-1-772-2519.
Ž .E-mail address: nickie@softlab.ntua.gr N.S. Papaspyrou .

which is currently considered as the official language
w xdocumentation 15 . The standard is nowadays ac-

cepted as a common basis by the developers and the
users of C implementations and other tools.

Every person who uses a programming language
to develop programs must understand its semantics
at some level of abstraction. Programmers usually
understand the semantics by means of examples,
intuition and descriptions in natural language. Such
semantic descriptions are informal and typically
based on a set of assumptions about the reader’s
knowledge, understanding and an agreed upon com-
mon interpretation of terms. Informal semantic de-
scriptions are inherently ambiguous, as is always the
case with natural languages. In the best case, a
programmer’s intuition fills the missing points in the
description and leads to the correct understanding of
a language’s semantics. In the worst case, the de-
scription is fatally ambiguous or even misleading
and the programmer is prone to misinterpretations,
which often lead to programming errors.

0920-5489r01r$ - see front matterq2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0920-5489 01 00059-9

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185170

The semantics of ANSI C is informally defined
w xin the standard 15 using natural language. This

causes a number of ambiguities and problems of
interpretation, clearly manifested in numerous dis-
cussions which often take place in the news-group

It is worth noticing that members
of the standardization committee and other distin-
guished researchers participating in the discussions
often give contradictory answers when asked about
the intended semantics of surprisingly small pro-
grams, and that their answers are usually based on
different possible interpretations of the standard. With
all this in mind, the necessity for a formal descrip-
tion of the semantics of C becomes apparent. Such a
description would serve as a rigid mathematical
model for the language, without restricting the tech-
niques used in implementations. Moreover, it would
provide a basis for reasoning about properties of C
programs and would be a valuable tool for the
analysis, evaluation and possible redesign of the
language.

The semantics of many popular programming lan-
guages have been formally specified in literature
using various formalisms. However, in most cases
the specifications are incomplete, inaccurate or both,
to some extent. Byincomplete we mean that they do
not specify the semantics of the whole language but
that of a subset, often leaving out the most compli-
cated features. Byinaccurate we mean that the
formal descriptions are not entirely correct, either
because of intended simplifications or by mistake.
Few real programming languages, i.e. high-level lan-
guages that are widely used in industry for software
development, have been given formal semantics as
part of their definition. Among them one should

w x w xmention Scheme 1,12,13 and Standard ML 22,41 .
Other languages that have been at least partly for-

w x w xmalized include: Ada 25,30 ; Algol 60 2,10 ; Cqq
w x w x w x39,40 ; Cobol 37 ; Modula-2 9,24 ; PLr1
w x w x w x21,31,42 ; Pascal 3,11,36 ; Prolog 5 ; and Smalltalk

w x80 4,43 .
Significant research has been conducted recently

concerning the semantics of C. In what seems to be
w xthe earliest formal approach, Sethi 33,34 addresses

mainly the semantics of pre-ANSI C declarations
and control structures, using the denotational ap-
proach and making several simplifications. In the

w xwork of Gurevich and Huggins 8 , a formal seman-

tics for C is given as an evolving algebra. Again, a
number of simplifications are made, e.g. no inter-
leaving is possible in expression evaluation and side
effects are assumed to take place at the same time
that they are generated. In the work of Cook and

w xSubramanian 7 , an incomplete semantics for C is
developed in the theorem prover Nqthm. Cook et al.
w x6 have also developed a denotational semantics for
C based on temporal logic, which again makes a
number of simplifying assumptions mainly concern-
ing evaluation order. Finally, in the work of Norrish
w x27 , a complete operational semantics for C is given
using small-step reductions. To the best of our
knowledge, this is the only approach that formalizes
correctly C’s unspecified order of evaluation and
sequence points. No similar denotational approach is
known to us.

In the present paper, we summarize the results of
w xour research 28 , aiming at the development of a

complete and accurate formal description for the
semantics of ANSI C. For this purpose, we have

w xchosen the denotational approach 26,35 and employ
w xmonads and monad transformers 20,23,38 in order

to improve the modularity and elegance of the devel-
oped semantics. Our formalization is based on the
1990 version of the standard and all references to
paragraphs and pages are with respect to that version
w x14 .

The rest of the paper is structured as follows. In
Section 2, we identify a few common misunderstand-
ings concerning the semantics of C. We discuss their
causes, consequences and to what extent they can be
attributed to faults and weeknesses in the language’s

Žstandard. Section 3 contains a more descriptive than
.technical summary of our approach, dividing the

specification of C’s formal semantics in three dis-
Ž .tinct phases static, typing and dynamic semantics

and illustrating their collaboration. In Section 4, we
present an evaluation of our semantics and comment
on its possible applications. Finally, in Section 5, we
summarize the contribution of our research and show
directions for future work.

2. Misinterpretations in the semantics of C

C is probably the most widely spread program-
ming language in today’s software industry. We

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 171

believe, however, that there is a large number of
programmers who are confident of their understand-
ing of C, but whose understanding is unfortunately
subjective and incorrect, i.e. they do not understand
the language in the way that is intended in the
standard. To support this opinion, we present four
simple program segments that are sources of com-
mon misinterpretations among C programmers. In
the first three cases, taken respectively from the
areas of static, typing and dynamic semantics as
distinguished in our research, all doubts vanish when
one reads the standard carefully.

2.1. Case 1

Consider the two small program segments shown
in Fig. 1. The two segments differ only in the

presence of identifier in line 3. This identi-

fier is never used within function and therefore,
one might assume that the two segments are equiva-

lent. A question that may seem easy at first is:What
are the members of the structure pointed by ?

Possible candidates are obviously and , de-
pending on which of the declarations for structure
is in effect at line 4. But which one is it? The correct
answer is that the two programs are not equivalent
and the only member of the structure is in the

Ž .case of segment A , and in the case of segment
Ž .B . The rationale behind this answer can be found in
Section 6.5.2.3 of the standard. In brief, line 3 of

Ž .segment B defines a new incomplete structure type
and overrides the definition of in the enclosing

Ž .scope, whereas line 3 of segment A does not have
the same effect.

2.2. Case 2

Next, consider the following program segment,
which is intended to increase the contents of a
variable representing the number of counted men or
women, depending on the value of a boolean flag.

The question now is:Is this program segment
legal?

The answer depends on whether a conditional
expression can be anl-value or not, anl-value being
roughly an expression designating an object whose
value can be accessed and modified. A footnote in
Section 6.3.15 of the standard states that it cannot,
thus invalidating the above segment. However, popu-

Ž .lar C compilers e.g. GNU C support conditional
l-values as an extension to the standard and by
default allow such constructs.

2.3. Case 3

As a third example, consider one of the most
infamous C expressions:

together with the question:Is this expression legal
and, if yes, what are the contents of Õariable after
its execution?

Before attempting an answer, one should be fa-
miliar with some key notions regarding the seman-
tics of C. According to the standard, evaluation order
in C is unspecified and so is the order in which side
effects take place. Moreover, the standard defines the
notion of sequence points, which are points in the
execution sequence whenAall previous side effects
shall be complete and no side effects of subsequent
evaluations shall have taken placeB. Sequence points
occur as the result of specific C constructs, among
which one should mention: complete evaluation of
an expression in a statement, function call, operators

Ž ., , and comma .
The correct answer to the previous question is that

this expression leads to undefined behaviour since it
violates the restriction in Section 6.3 of the standard,
according to whichAbetween the previous and next
sequence point an object shall have its stored value
modified at most once by the evaluation of an ex-
pressionB. The purpose of this restriction is exactly
to rule out expressions with ambiguous results, like
the one presented above.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185172

Fig. 1. Example of misinterpretation in static semantics.

Although these three exact program segments will
not occur very often in practice, it is very probable
that any given C programmer will eventually run
into a similar case. One might argue that, since the
informal standard dictates the correct answers, the
real reason behind misinterpretations is the program-
mers’ incompetence. It is true that not many C
programmers have ever read the standard, and this
fact is totally in agreement with the current require-
ments of the software industry. But, before we de-
clare the standard innocent, let us consider one inter-
esting fourth case.

2.4. Case 4

Consider the following simple C program. It pre-
sents a situation that will eventually arise in practice,
although probably not in this exact form. In this
case, however, the standard itself is not so clear and
many possible interpretations exist.

In this program, function assigns the value of
its parameter to the global variable . The last stored

value in is also the result of the program. There
are two calls to , having and as parameters, but
unspecified evaluation order prevents us from know-
ing which one will be the last to execute.

In the light of all this, a natural question is:Is this
program legal and, if yes, what is the Õalue returned
by ?

Similar programs and questions are often dis-

cussed in , invariably leading to the
expression of numerous contradictory opinions and
no conclusions reached. Although a technical discus-
sion will be avoided here, two sound answers corre-
sponding to different possible interpretations of the
standard are the following.

v The program is legal and its result may be 1 or
2, but it is unspecified which one.

v The program is not legal because is modified
twice between successive sequence points.

The reason behind the two different answers is
that the standard does not clearly specify whether

sequence points occurring in the body of should

AcountB as sequence points in the body of . If
they should, the first answer is correct, otherwise the
second. The approach taken by our dynamic seman-
tics corresponds to the first answer, which allows C
programs to be non-deterministic.

As a conclusion, we believe that programmers’
incompetence, although a significant problem on its
own right, is not solely responsible for misunder-
standings. Responsibility lies in the standard as well.
C is inherently complicated and it is reasonable that
an informal standard may fail to define it precisely

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 173

and beyond misinterpretation. Informal texts are
valuable as introductions to the language and for
educational purposes. However, we believe that the
definition of the language must be more formal, in
order to preclude ambiguities. After all, C is very
often used to program applications of a very delicate
nature, where software failure may have disastrous
results. In this context, misunderstandings about the
programming language cannot be allowed.

3. A formal semantics for C

Our denotational description of the semantics of C
can be best understood as part of anabstract inter-
preter, illustrated in Fig. 2. The left part of the figure
is a module diagram of the interpreter, showing the
chain of steps that are required, whereas the right
part shows the chain of data that is processed. Each

Fig. 2. An abstract interpreter for ANSI C.

step takes as input the results of previous steps. The
initial piece of data is asource program, written in
C, and the final result is a representation of this
program’s meaning, i.e. a description of the pro-
gram’s behaviour when it is executed.

The interpreter consists of three layers, each con-
taining a series of steps.Syntactic analysis aims at
checking the syntactic validity of the source pro-
gram. Syntactically correct programs are transformed
to abstract parse trees, which represent their structure
in detail. Semantic analysis aims at checking the
semantic validity of the program. Finally,execution
aims at describing the meaning of programs. Our
research focuses on the last two layers, containing a
total of three steps:static semantics, typing seman-
tics and dynamic semantics. An overview of these
steps and their collaboration is given in the rest of
this section. The notion of computation and the use
of monads for representing computations are dis-
cussed first, since they are common to all three steps.

3.1. Computations and monads

The notion of computation is very significant in
the semantics of programming languages. Following
the denotational approach, in which the meanings of
programs and program phrases are elements of math-
ematical spaces calleddomains, computations are
represented by elements of appropriate such spaces.

Ž .If D is a domain of values, thenM D can be taken
to denote a domain of computations that return val-
ues from D. In this sense,M can be thought of as a
domain constructor that specifies the characteristics
of computations, e.g. whether they are deterministic,
whether they require access to the program state, or
whether they can cause run-time errors.

This is the principal concept behind the use of
monads in denotational semantics. For a proper in-
troduction to monads and their relation with compu-

w xtations, the reader is referred to Refs. 23,38 . The
following brief description, although naive, is suffi-
cient for the purpose of this paper. A monad is a

² :triple M, unit ,) , where:M M

v M is a domain constructor,
v Ž .unit : A™M A is a polymorphic functionM

for inserting values in computations, and

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185174

v Ž . Ž Ž .. Ž .) : M A = A™M B ™M B is a poly-M

morphic binary operator forextracting values
from computations,

for arbitrary domainsA and B. Furthermore, three
Ž .monad laws omitted in this paper must be satisfied

by the definition of every monadM.
Ž .The value of unit y :M A is a trivial computa-M

tion that immediately returns the resulty : A. The
behaviour of) is more complex. Assume thatM

Ž .m:M A is a computation that returns the resulty : A.
Ž . Ž .Also assume thatf : A™M B . Then,m) f :M BM

Ž .is the combined computation ofm followed by f y .
The subscripts in unit and) may be omitted ifM M

the corresponding monad can be easily deduced from
the context.

Many different types of computations are implicit
in the semantics of C programs and a number of
monads is required to represent them. Fig. 3 shows a
brief description of these monads and their intercon-
nection. The powerdomain monad and the resump-
tion monad transformer model non-deterministic and
interleaved computations, respectively. Both are re-
quired as a consequence of the unspecified evalua-
tion order and the presence of side effects in C
expressions. The other monads shown in the figure

represent various aspects of computations that are
related to the execution of C programs.

3.2. Static semantics

The static semantics of C can be thought of as the
symbol table in our abstract interpreter. It calculates
the environments containing type information for all
identifiers defined in the source program and, for this
reason, it mainly deals with the program’s declara-
tions. At the same time static semantic errors are
detected, such as the redefinition of an identifier in
the same scope. Apart from the complicated syntax
of declarations that is characteristic of C, the static
semantics is further complicated by the presence of
incomplete types. Forward declarations of tags used
in the recursive definition of structures and unions
are also sources of complexity.

For each syntactically well-formed program phrase

P, its static semantic meaning is denoted byP .
Such meanings are typically types, type environ-
ments, i.e. associations of identifiers to types, or
functions involving these two.

The domains that we use in the static semantics of
C are summarized in Fig. 4. Most of them are
defined by simple enumeration of their elements.

Fig. 3. Monads used in the semantics of ANSI C.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 175

Fig. 4. Static semantic domains.

The domain ordering relation8 is crucial in the
treatment of incomplete types:x8y denotes thaty
is a better approximation of a possibly incomplete
element x. Notice the number of different types that
are dictated by C’s type system. Among them,data
types provide the basis for the type system, repre-
senting types that C programs can manipulate as first
class elements.Object types are associated with ob-
jects in memory and consist of qualified versions of
data types and array types.Denotable types are
associated with identifiers in type environments,
while identifier types are used for the classification
of these identifiers.Member types are associated
with identifiers defined as members of structures or
unions. Finally, phrase types are associated with
program phrases by the typing semantics of Section

3.3. Most domains for environments can be taken as
functions from identifiers to types; their full defini-
tion is omitted in this paper.

Computations related to this phase are static com-
putations, usually performed at compile time. Monad
E, implemented as a simple error monad, represents
computations of this kind. The complete static se-
mantics of ANSI C is too long to be included in this
paper. It consists of 17 domains, 1 monad, 33 seman-
tic functions, 93 semantic equations and more than
100 auxiliary functions and operators on the basic
static domains. We proceed with two short and
illustrative excerpts.

Using monadE, the static meaning of a declara-
tion can be defined as a function mapping the current
type environmente to the computation of an updated

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185176

type environment, which will also contain mappings
for the newly declared identifiers.

Ž .declaration : Ent™E Ent-

As an example of how this function can be used,
let us assume thate :Ent is the empty type environ-o

ment. Then, the effect of the simple declaration
on this environment is the static computa-

Ž .tion e :E Ent , which should result ino
� w wthe type environmentAxB¨normal obj int, no-

xx4qual . In this environment, the only declared identi-
Žfier is , which is a normal object i.e. a variable or

.function parameter of the unqualified type . If
the function is applied to an environ-
ment e that already contains a different definition for

, the obtained computation will result in a static
Ž .compile-time error.

Let us now consider the case of C declarators, the
abstract syntax of which is defined in the standard as
follows.

declarator::s I
< w xdeclarator constant-expression
< wxdeclarator
<) type-qualifier declarator
< Ž .declarator parameter-type-list

Informally, a declarator is what follows the type
specifier in a declaration. It can be a simple identi-

Žfier, an array declarator of a given or unspecified
. Ž .size , a pointer declarator optionally qualified or a

function declarator.
The static meaning of a declarator can be defined

as a function that takes as parameters the current
type environmente:Ent and the typef:Type thatden

is provided by the type specifier. The result of the
function is a pair, consisting of the declarator’s
identifier and the type that should be associated with
it. The following equations correspond to the first
four cases of declarators; function declarators are
more complicated and have been omitted from this
paper. Notice the use of the monadic operations unit
and) that insert and extract values to and from
static computations.

The case of a simple declarator is trivial. In the
two cases of array declarators, there are a few things
to be noticed:

v The typef of the array’s element must be an
Žobject typea arrays of functions are not al-

.lowed .
v If the size of the array is specified as a constant

expression of integer type, it is statically evalua-
Ž .ted by function and the resultn must be a

positive number. If it is not specified, the choice
of nsH produces an incomplete array type.

v The produced array type is passed as the second
parameter to the recursive call ofdeclarator ;
recursion will eventually end upon a simple
declarator.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 177

Fig. 5. Phrase types.

Finally, in the case of pointer declarators,f
X is

the type obtained by applying the qualifier to
w w x xobj ptr f , noqual , the result being a possibly quali-

fied pointer to an object or function of typef.

3.3. Typing semantics

Typing semantics focuses on program phrases,
aiming at the detection of type-mismatch errors, e.g.
dereferencing an expression that is not a pointer,
assigning to something that is not anl-value, etc. In
the absence of type errors, syntactically well-formed
phrases are associated with appropriate phrase types.
Such associations are given by means oftyping
deriÕations, i.e. formal proofs whose phrases are
well-typed. Typing derivations use inference rules to
prove typing judgements such as e&P:u , which
states that phraseP has typeu in environmente.

The primary aim of typing semantics is the asso-
ciation of program phrases with phrase types. Fig. 5
shows all the phrase types that we use. Typing rules

are inference rules whose premises and conclusion
are typing judgements. Several forms of typing
judgements are necessary in the typing rules for
ANSI C. A summary of the most important ones is
given in Fig. 6. Approximately 200 typing rules are
used in our approach. Seventy percent of those deal
with expressions, 10% with statements and the re-
maining 20% with declarations. Some non-trivial
examples of typing rules are presented next, fol-
lowed by a discussion of our typing semantics.

The following rules specify the typing semantics
of four types of expressions, in accordance with the

Ž .ANSI C standard. Rule E1 states that decimal
w xconstants with no suffix are attributed type valt ,

wwheret is the first type from the list int, long-int,
xunsigned-long-int that can represent their constant

Ž .value. According to Rule E2 , identifiers that have
been defined as normal variables ine are l-values of

Ž . Ž .the appropriate type. Similarly, Rules E3 and E4
specify the typing semantics of the pointer derefer-
ence operator and function calls, respectively.

œsuffix n s0 isDecimal nŽ . Ž .
w xt[firstToRepresentn , int, long-int, unsigned-long-intŽ .

E1Ž .w xe&n:val t

w xe& Ienormal a
E2Ž .w xe& I :lvalue a

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185178

w xe&E :exp ptr a
E3Ž .w xe& :lvalue a

w x w xe&E :exp ptr funct , p e&arguments:arg p
E4Ž .w xe&E arguments :exp tŽ .

The following two rules specify in part the seman-
Ž .tics of assignments. According to Rule E5 , the

expression on the left side of the simple assignment
operator must be a modifiablel-value, while the

expression on the right side must be assignable to the
Ž .corresponding data type. Rule A1 states that an

expression of arithmetic typet can be assigned to an
object of another arithmetic typet X.

w xe&E :lvalue m isModifiable m t[datify m e&E 4tŽ .1 2
E5Ž .w xe&E sE :exp t1 2

w x Xe&E :exp t isArithmetic t isArithmetic tŽ . Ž .
A1Ž .Xe&E4t

A small number of typing rules specify conver-
sions that take place implicitly in the evaluation of
expressions. Such conversions are called implicit

Ž .coercions. For example, Rule C1 states thatl-val-
ues may be implicitly converted to the values stored
in the designated objects. This rule can be applied

Fig. 6. Typing judgements.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 179

whenever it is the value of the object that is needed
Ž .and not the object itself. According to Rule C2 ,

function designators can be converted to function
pointers. Both kinds of conversions are explicitly
mentioned in the standard.

w xe&E :lvalue obj t ,q isCompletetŽ .
C1Ž .w xe&E :exp t

w xe&E :exp f
C2Ž .w xe&E :exp ptr f

The typing semantics of statements is specified in
Ž .a similar way. Rule S1 deals with compound state-

ments. Notice that a compound statement defines a
new scope. This is achieved by using the semantic
operator≠: Ent™Ent. To this new scope the decla-
rations occurring in the block statement must be
added, allowing for recursively defined structures or
unions. This is achieved by the semantic function

Ž .rec declaration-list : Ent™E Ent . The resulting
environmenteX is used for the typing of the com-
pound statement’s body.

eX :srec declaration-list ≠ eŽ .
X X w xe &declaration-list :decl e &statement-list :stmt t

S1Ž .w x� 4e& declaration-list statement-list :stmt t

Ž . Ž .Rules S2 and S3 , specifying the semantics of

and statements respectively, are
Ž .relatively easier. In Rule S2 , the condition must be

Ž .of scalar type, i.e. arithmetic or pointer. In Rule S3 ,
the type of the returned expression must be assignable
to the function’s returned type.

w X x X w xe&expression:exp t isScalart e&statement :stmt tŽ .
S2Ž .w xe & expression statement :stmt tŽ .

e&expression4t
S3Ž .w xe& expression;:stmt t

The suggested typing semantics for C leads to two
forms of ambiguity problems. The first concerns the
uniqueness of typing results: it should be clear that
the main typing relation does not always provide a

Žunique phrase type for a given program phrase im-
Ž . Ž .plicit coercion rules such as Rules C1 and C2 are

.one source of such ambiguities . The second con-
cerns the uniqueness of typing derivations for a
given typing judgement. For example, there are two
different derivations concluding with the fact that the
sum of two integer constants is an integer expres-
sion: the first adds the constants and coerces the

Ž .constant sum to an possibly non-constant integer
expression, while the second coerces the summands
separately and adds the resulting expressions.

The first form of ambiguity is not only harmless
but in fact useful in our typing semantics. A given
program phrase can be attributed different phrase

types, depending on its role in the program, and a
different dynamic semantic meaning will be calcu-
lated for each phrase type. The second form, how-
ever, is potentially harmful. To obtain a sound se-
mantics for C, we require that all different possible
derivations for a given typing judgement will result
in the same dynamic semantics. This property is
satisfied by the developed dynamic semantics for C,
described in Section 3.4.

3.4. Dynamic semantics

The dynamic semantics of C specifies the execu-
tion behaviour of well-typed programs and program
phrases. At the same time, run-time errors and other
sources of undefined behaviour are detected. The
dynamic meaning of a well-typed program for which
the typing judgemente&P:u can be derived is
denoted byve&P:u b. Such a meaning is typically a
function describing some aspect of the execution of
P. The typing derivation forP is important since it
determines the way in which the dynamic semantics
will be calculated.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185180

The most important source of complexity in an
accurate definition of C’s dynamic semantics is the
unspecified evaluation order, combined with the fact
that expressions generate side effects. An investiga-
tion of related issues, isolating the causes and
proposing a general semantic framework, appears in

w xRef. 29 . In order to disallow undesired ambiguities,
the ANSI C standard has introduced restrictions im-
posed on expression evaluation with the mechanism
of sequence points. Additional restrictions are im-
posed on the access of objects between consecutive
sequence points; however, according to our interpre-
tation of the standard, this mechanism does not
always prevent non-determinism, as was discussed in
Section 2. The dynamic semantics is further compli-
cated by pointer arithmetic, complex control state-
ments like and , and the presence of

in combination with nested block scopes
containing variable declarations.

For each static type, a dynamic semantic domain
is defined, in order to represent the dynamic meaning
of values of this type. The definitions of some
dynamic semantic domains are shown in Fig. 7.
Among other things, the domain of integer numbers
N is used to represent values of type , pointers
to objects are represented by the objects’ address or
a special null value, and addresses of objects are

Ž .offsets in the biggest possibly aggregate object
containing them, in order to correctly model pointer
arithmetic. Elements of the dynamic domain for type

environmentsveb map all identifiers defined ineEnt

to their dynamic meanings. Similarly, elements of
the dynamic domain for function prototypesv pb pr o t

map a function’s parameters to their dynamic mean-
ings. DomainCod contains mappings of all func-
tions defined in a program to the dynamic meaning
of their bodies. Moreover,Lab contains mappingst

of labels present in the body of a function
returning a result of typet to the dynamic meanings
of the corresponding statements.

The notion of executioninterleaÕing is a well-
known one in the theory of concurrency. An inter-
leaved evaluation of an expression consists of an
arbitrary merging of theatomic steps that constitute
the evaluation of its subparts. In the case of C,
interleaving can naturally model the unspecified
evaluation order of expressions. Side effects, i.e.
read and write accesses to the state, and sequence
points are considered to be the atomic steps in the
evaluation of expressions. In our approach, the se-
mantics of interleaving are hidden in the expression
monadG. The interested reader is referred to our

w xrelated paper 29 .
The definition of dynamic semantics for program

phrases is similar to that of static semantics. An
important difference, however, is that the typing
derivations provide useful information about the types
associated with a well-typed program phrase, as well
as its components. Thus, typing derivations control
the definition of dynamic semantics, instead of ab-

Fig. 7. Dynamic semantic domains.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 181

stract syntax alone, and there is one dynamic seman-
tic equation for each typing rule. In the rest of this
section, we illustrate the definition of dynamic se-
mantics by presenting some small examples.

Let us consider the simple case of typing Rule
Ž .E3 in Section 3.3. Well-typed phrases of types exp
w x w xy and lvalue m participate in this rule, so we
begin by describing what the dynamic meanings of
such phrases are.

w x Ž .-ve&E:exp y b : veb ™Cod™G vy bEnt Õal
w x Ž .-ve&E:lvalue m b : veb ™Cod™G vmbEnt m em

The first line states that the dynamic semantic
w xmeaning for an expressionE which has type expy

in environmente is a function taking as arguments
the dynamic environment and the code environment
and returning an interleaved expression computation
with a result of typevy b . In a similar way, theÕal

type of dynamic semantic meanings for expressions
w xof type lvalue m is defined in the second line.

We now proceed to define the dynamic semantics
Žfor an expression of the form pointer derefer-

. Ž .ence under the typing given in Rule E3 . The
w xequation that follows definesve& :lvalue a b in

w w xxterms ofve&E:exp ptra b.

Informally, it can be described as follows. First,
compute the valued of the pointer expression. Ife

the pointer contains an object’s addressd, this ad-
Ž .dress trivially converted to anl-value is the dy-

namic meaning of thel-value. An error occurs if the
pointer is null.

The following equations define the dynamic se-
Ž .mantics that correspond to typing Rules E4 and

Ž .C1 of Section 3.3, respectively.

In the first equation, there are two things to
Ž .notice. The first is the use of operatorj :G A =

Ž . Ž .G B ™G A=B which allows the interleaving of
the two expression computationsg and g , reflect-e p

ing the fact that the order in which the function’s
designator and the function’s arguments are evalu-
ated is unspecified. The second is the use of

Ž .seqpt:G U to introduce a sequence point just before

the function is actually called. Assuming the function
pointer is not null, the function’s dynamic meaning
is looked up in the code environment. Furthermore,
the function’s actual type is required to be compati-
ble with the type of the designator that is used. In the
second equation, function getValue :vmb ™m¨t m em
Ž .G vt b retrieves a stored value from memory us-dat

ing one atomic step.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185182

The dynamic semantics of statements and declara-
tions is defined in a similar way. For the whole
definition of the dynamic semantics of ANSI C, we
used 41 domains, 6 monads, 1 monad transformer,
45 semantic functions, more than 250 dynamic equa-
tions and more than 100 auxiliary functions and
operators on the basic dynamic domains.

4. Evaluation

A significant effort has been made to evaluate our
developed semantics for the C programming lan-
guage. In this task, the major issue was to assess
how complete and accurate the developed semantics
is, with respect to the standard. Unfortunately, there
is no systematic way to evaluate our approach and be
absolutely certain that the results are valid: there is
simply no way to compare a formal system of this
complexity against an informal specification. For this
reason, we have resorted in testing an interpreter that
directly implements our semantics, by using test
suites for C implementations that are publicly avail-
able. Moreover, the consistency of our formulae can
be mechanically validated to some extent by a direct
implementation in an appropriate strongly typed
higher-order functional programming language.

An earlier version of our semantics was imple-
mented in Standard ML. Subsequently, Haskell1 was
adopted as the implementation language, mainly be-
cause it has a richer type system, more flexible
syntax, elegant support for monads and also because
lazy evaluation avoids a number of non-termination
problems. The current implementation consists of
approximately 15,000 lines of Haskell code, roughly
distributed as follows: 3000 lines for the static se-
mantics, 3000 lines for the typing semantics, 5000
lines for the dynamic semantics, 3000 lines for pars-
ing and pretty-printing and 1000 more lines of gen-
eral code and code related to testing. As it was
expected, the implementation is very slow and this
presents a serious handicap in our yet unfinished
evaluation process.

1 The reader is referred to for
the definition and a complete reference to the Haskell program-
ming language.

Although the evaluation of our semantics is still
under way and minor bugs are waiting to be fixed,
both in the semantic description and the implementa-
tion, the results indicate that the developed semantics
is complete and accurate to a great extent, with
respect to the ANSI C standard. The most important
deviations are the following:

v The developed semantics requires function pro-
totypes to exist for all called functions. This is a
step towards a more strongly typed C, which
will probably be taken in a future revised stan-
dard.

v Storage specifiers other than are
currently ignored. Static variables may of course
be preprocessed out, but a solution integrated in
the semantics is currently investigated.

v Fully bracketed initializations are required when
initializing aggregate objects.

v Declarations of identifiers, other than statement
labels, are forbidden in expressions or state-
ments. This is rather regarded as an improve-
ment than as an omission.

v Our work does not cover the features introduced
w xin the language by theAC9XB standard 15 .

However, we do not believe that adding the new
features will require excessive changes in the
semantics.

A formal semantics for a widely used program-
ming language such as ANSI C is expected to have
numerous applications. As a complement to the in-
formal standard, it improves our understanding of the
language by specifying a rigid mathematical model
but without restricting the techniques used in imple-
mentations. It is also a valuable tool for language
analysis, design and evaluation; semantic descrip-
tions can be tuned to suggest efficient implementa-
tions and often pinpoint weaknesses in language
definitions. Furthermore, a formal semantics pro-
vides a basis for reasoning about the correctness of
programs, based on formal specifications. It can also
be used as input to compiler generators, for the
automatic construction of provably correct compil-
ers. Many experimental systems based on seman-
tics-driven compilation have been developed. A quite
recent approach, based on the use of monads, is

w xdescribed in Refs. 17–19 .

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 183

5. Conclusion

Standards for programming languages pursue pre-
cision and abstraction, two properties that unfortu-
nately are often in conflict. Precision is required to
guarantee that the compliance of an implementation
to a given standard can be certified without room for
doubt. Abstraction is required so that no excessive
restrictions are imposed upon implementations, since
unnecessary restrictions often compromise effi-
ciency. The development of precise and abstract
standards for programming languages is an important
application area for formal description techniques
w x16 . The formalism of denotational semantics can be
used to provide precise and sufficiently abstract lan-
guage definitions. Combined with the use of monads,
it also satisfies two additional desired properties:
modularity and readability.

In this paper, we have presented a summary of
our work in developing a formal semantics for the
ANSI C programming language, following the deno-
tational approach. The developed semantics is satis-
factorily complete and accurate, with respect to the
standard, and is a demonstration that a programming
language as useful in practice and as inherently
complicated as C can nonetheless be given a formal
semantics. Furthermore, although it is based on a
rigid and rather complex theoretical background, the
essence of the developed semantics can be captured
without assuming a detailed knowledge of the the-
ory, as soon as the reader becomes familiar with the
formalism. A further significant contribution of our
research is the application of monads and monad
transformers for the specification of a real program-
ming language. Interesting results have also been
achieved in our attempt to model the interleaving of
computations and non-determinism, which may be
useful in specifying the semantics of programming
languages supporting parallelism.

Our research in the near future will focus on the
process of evaluating and improving the developed
semantics. Given the current state of the art in formal
methods, the task of validating the semantics is
unfortunately very similar to software testing, both in
terms of methodology and of complexity. Beyond
that, we would like to study the practical applications
that a formal semantics for C may have in the
software industry, especially in tools for program

transformation, debugging and understanding. The
implementation of the developed semantics also gave
rise to an interesting question: what are the charac-
teristics of a programming language that make it
suitable for implementing denotational specifica-
tions, especially using monadic notation? Finally,
another direction for future research aims at studying
and specifying the semantics of C’s object-oriented
descendants, Cqq and Java.

References

w x1 H. Abelson et al., Revised 4 report on the algorithmic
Ž . Ž .language Scheme, Lisp Pointers 4 3 1991 1–55, July.

w x2 D. Bjørner, C.B. Jones, Algol 60,Formal Specification and
Software Development, Prentice-Hall, Englewood Cliffs, NJ,
1982, pp. 141–173, Chap. 6.

w x3 D. Bjørner, C.B. Jones, Pascal,Formal Specification and
Software Development, Prentice-Hall, Englewood Cliffs, NJ,
1982, pp. 175–251, Chap. 7.

w x4 B. Blakley, A Smalltalk Evolving Algebra and its Uses. PhD
thesis, University of Michigan, Ann Arbor, MI, 1992.

w x5 E. Borger, D. Rosenzweig, A mathematical definition of full¨
Ž . Ž .Prolog, Science of Computer Programming 24 3 1995

249–286, June.
w x6 J. Cook, E. Cohen, T. Redmond, A formal denotational

semantics for C. Technical Report 409D, Trusted Informa-
tion Systems, September 1994.

w x7 J. Cook, S. Subramanian, A formal semantics for C in
Nqthm. Technical Report 517D, Trusted Information Sys-
tems, October 1994.

w x8 Y. Gurevich, J.K. Huggins, The semantics of the C program-
Ž .ming language, in: E. Borger Ed. , Selected Papers from¨

Ž .CSL’92 Computer Science Logic , Lecture Notes in Com-
puter Science, vol. 702, Springer-Verlag, New York, NY,
1993, pp. 274–308.

w x9 Y. Gurevich, J. Morris et al., Algebraic operational semantics
and Modula-2, in: E. Borger, H. Kleine Buning, M.M.¨ ¨

Ž .Richter Eds. , Proceedings of the 1st Workshop on Com-
Ž .puter Science Logic CSL’87 , Lecture Notes in Computer

Science, vol. 329, Springer-Verlag, New York, NY, 1988,
pp. 81–101.

w x10 W. Henhapl, C.B. Jones, A formal definition of Algol 60 as
described in the 1975 modified report, in: D. Bjørner, C.B.

Ž .Jones Eds. , The Vienna Development Method: The Meta-
language, Lecture Notes in Computer Science, vol. 61,
Springer-Verlag, New York, NY, 1978, pp. 305–336.

w x11 C.A.R. Hoare, N. Wirth, An axiomatic definition of the
Ž .programming language Pascal, Acta Informatica 2 1973

335–355.
w x12 F. Honsell, A. Pravato, S. Ronchi della Rocca, Structured

operational semantics of the language Scheme. Technical

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185184

report, University of Torino, Department of Informatics,
1995.

w x13 IEEE Standard for the Scheme Programming Language, IEEE
Standard 1178–1990, Institute of Electrical and Electronics
Engineers, New York, NY, 1991.

w x14 International Organization for Standardization, New York,
NY. ISOrIEC 9899-1990, Programming Languages: C, 1990.
Technical Committee: JTC 1rSC 22rWG 14. Revision and
redesignation of ANSI X3.159-1989.

w x15 International Organization for Standardization, New York,
NY. ISOrIEC 9899-1999, Programming Languages: C, 1999.
Technical Committee: JTC 1rSC 22rWG 14.

w x16 H. Kilov, The formal way, Computer Standards and Inter-
Ž . Ž .faces 17 5–6 1995 409–412, Guest editorial to a Special

Issue on Formal Description Techniques.
w x17 S. Liang, A modular semantics for compiler generation.

Technical Report YALEUrDCSrTR-1067, Yale University,
Department of Computer Science, February 1995.

w x18 S. Liang, Modular Monadic Semantics and Compilation. PhD
thesis, Yale University, Department of Computer Science,
May 1998.

w x19 S. Liang, P. Hudak, Modular denotational semantics for
compiler construction, Proceedings of the 6th European Sym-
posium on Programming, 1996, pp. 219–234, April.

w x20 S. Liang, P. Hudak, M. Jones, Monad transformers and
modular interpreters, Conference Record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Program-

Ž .ming Languages POPL’95 , San Francisco, CA, January,
1995, pp. 333–343.

w x21 P. Lucas, K. Walk, On the formal description of PLr1,
Ž . Ž .Annual Review in Automatic Programming 6 3 1969

105–182.
w x22 R. Milner, M. Tofte, R. Harper, The Definition of Standard

ML, MIT Press, Cambridge, MA, 1990.
w x23 E. Moggi, An abstract view of programming languages.

Technical Report ECS-LFCS-90-113, University of Edin-
burgh, Laboratory for Foundations of Computer Science,
1990.

w x24 J. Morris, Algebraic Operational Semantics for Modula-2.
PhD thesis, University of Michigan, Ann Arbor, MI, 1988.

w x25 J. Morris, G. Pottinger, Ada-Ariel semantics. Technical re-
port, Odyssey Research Associates, July 1990.

w x26 P.D. Mosses, Denotational semantics, in: J. van Leeuwen
Ž .Ed. , Handbook of Theoretical Computer Science, vol. B,
Elsevier, Amsterdam, The Netherlands, 1990, pp. 577–631,
Chap. 11.

w x27 M. Norrish, C Formalized in HOL. PhD thesis, University of
Cambridge, Computer Laboratory, December 1998.

w x28 N.S. Papaspyrou, A Formal Semantics for the C Program-
ming Language. PhD thesis, National Technical University
of Athens, Software Engineering Laboratory, February 1998.

w x29 N.S. Papaspyrou, D. Macos, A study of evaluation order´ ˘

semantics in expressions with side effects, Journal of Func-
Ž . Ž .tional Programming 10 3 2000 227–244, May.

w x30 J.S. Pedersen, A formal semantics definition of sequential
Ž .Ada, in: D. Bjørner, O.N. Oest Eds. , Towards a Formal

Description of Ada, Lecture Notes in Computer Science, vol.
98, Springer-Verlag, New York, NY, 1980, pp. 213–308.

w x31 PLr1 Definition Group. Formal definition of PLr1–ULD
version III. Technical Report TR 25.095 bis 099, IBM
Laboratory Vienna, June 1969.

w x32 D.M. Ritchie, The development of the C language, ACM
Ž . Ž .SIGPLAN Notices 28 3 1993 201–208, March, Preprints

of the Second ACM SIGPLAN History of Programming
Ž .Language HOPL II .

w x33 R. Sethi, A case study in specifying the semantics of a
programming language, Proceedings of the 7th Annual ACM
Symposium on Principles of Programming Languages, 1980,
pp. 117–130, January.

w x34 R. Sethi, Control flow aspects of semantics-directed compil-
ing, ACM Transactions on Programming Languages and

Ž . Ž .Systems 5 4 1983 554–595, October.
w x35 J.E. Stoy, Denotational Semantics: The Scott–Strachey Ap-

proach to Programming Language Theory, MIT Press, Cam-
bridge, MA, 1977.

w x36 R.D. Tennent, A denotational definition of the programming
language Pascal. Technical report, Oxford University, Pro-
gramming Research Group, April 1978.

w x37 M. Vale, The evolving algebra semantics of COBOL, Part 1:
Programs and control. Technical Report CSE-TR-162-93,
University of Michigan, EECS Department, Ann Arbor, MI,
1993.

w x38 P. Wadler, The essence of functional programming, Proceed-
ings of the 19th Annual Symposium on Principles of Pro-

Ž .gramming Languages POPL’92 , 1992, pp. 1–14, January.
w x39 C. Wallace, The semantics of the Cqq programming lan-

guage. Technical Report CSE-TR-190-93, University of
Michigan, Department of Electrical Engineering and Com-
puter Science, December 1993.

w x40 C. Wallace, The semantics of the Cqq programming lan-
Ž .guage, in: E. Borger Ed. , Specification and Validation¨

Methods, Oxford Univ. Press, Oxford, England, 1995, pp.
131–164.

w x41 D.A. Watt, An action semantics of Standard ML, Proceed-
ings of the 3rd Workshop on the Mathematical Foundations
of Programming Language Semantics, Lecture Notes in
Computer Science, vol. 298, Springer-Verlag, New York,
NY, 1987, pp. 572–598.

w x42 P. Wegner, The Vienna definition language, Computing Sur-
Ž . Ž .veys 4 1 1972 5–63.

w x43 M. Wolczko, Semantics of Smalltalk-80, European Confer-
Ž .ence on Object-Oriented Programming ECOOP’87 , Lecture

Notes in Computer Science, vol. 276, Springer-Verlag, New
York, NY, 1987, pp. 108–120.

()N.S. PapaspyrourComputer Standards & Interfaces 23 2001 169–185 185

Dr. Nikolaos S. Papaspyrou was born in
Athens in 1971. He received a BSc in
Electrical and Computer Engineering
from the National Technical University

Ž . Ž .of Athens NTUA , Greece 1993 , an
MSc in Computer Science from Cornell

Ž .University, Ithaca, NY 1995 , and a
PhD in Computer Science from NTUA
Ž .1998 . His doctoral research focused on
the denotational semantics of program-
ming languages and its relation with the
software development process. Other re-
search interests include functional, logic

and intensional programming, compilers, man–machine interface,
educational software and learning environments. Dr. Papaspyrou
has worked as a primary researcher in several R&D projects and
as a short-term lecturer at the Department of Electronic Engineer-
ing and Computer Science of the Technical University of Crete.
He is currently a visiting postdoctoral researcher at Yale Univer-
sity, New Haven, CT.

