
DEVELOPING EMBEDDED APPLICATIONS
FOR A COMPONENT-BASED OPERATING SYSTEM

Nikolaos S. Papaspyrou, Ioannis P. Panagopoulos, Stergios Stergiou, George Papakonstantinou
Department of Electrical and Computer Engineering

National Technical University of Athens
Polytechnioupoli, 15780 Zografou, Athens, Greece

Tel: +30 1 772 2486; fax: +30 1 772 2519
e-mail: nickie@softlab.ntua.gr, {ioannis, stergiou, papakon}@cslab.ece.ntua.gr

ABSTRACT

Continuing advances in system software and hardware components
have allowed the building of embedded systems for an increasing
variety of applications. However, from the programmer’s point of
view, building such systems efficiently presents a number of chal-
lenges. The customization of an operating system to support an em-
bedded application has been proposed as a way to reduce the sofware
cost. Recent research moves in the direction of designing an oper-
ating system in such a way that it can be tailored to the needs of
specific applications with small programming effort. In this paper
we exemplify this approach using a custom-made operating system
called EMPIX, decomposed into very small components. Given an
embedded application, the components that are necessary to support
the application are automatically combined. This process is con-
trolled by a meta-interface language, which allows the programmer
to inform EMPIX of the application’s requirements and to direct the
components of EMPIX to obtain better performance.

1 INTRODUCTION

The wide deployment of computers has brought forth a huge inter-
est in embedded systems lately. Embedded systems can be found
in almost any facet of our lives, e.g. in house appliances, cars, var-
ious electrical devices and tools [1, 2]. Programming such systems
with minimal cost is bound to be one of the most crucial problems
in this area in the years to follow. The selection of an appropriate
Operating System (OS) plays an important role in the minimization
of the software cost. A general purpose OS may not be efficient for a
specific application; on the other hand, an OS designed so that it can
be automatically tailored to satisfy the requirements of a specific ap-
plication is a better solution. Many approaches have been proposed
towards this direction [3, 4, 5]. In this paper, the approach that we
follow is based on:

1. The decomposition of the OS into very small components.
2. The automatic combination of only those components of the

OS that are necessary for a specific application. Thus, the ap-
plication is encapsulated into the OS that is generated from the
necessary components.

3. The development of a meta-interface language, which allows
the application programmer to inform the OS of the applica-
tion’s requirements and to direct its components to behave in
such a way as to obtain better performance. In this way, the
process of creating a minimal application dependent OS based
on EMPIX can be automated.

Although there are commercial ventures doing component-based
OSs, there is a long way to go until we reach a level of certitude
that the selected components shall meet the requirements of an ap-
plication and work satisfactorily and efficiently [6, 7].

We have exemplified the above approach using a custom-made
OS called EMPIX [8], which has been developed for the family
of Intel x86 and Pentium processors. EMPIX is a clone of XINU
[9] but differs from this in many aspects as discussed in Section 3.
Based on a BIOS virtual machine, EMPIX has limited operational
capabilities and is appropriate for small-scale soft real-time applica-
tions. On the other hand, it can easily be ported to different com-
puter architectures. Like XINU, it supports semaphores, messages
and dynamic memory management. EMPIX has been used mainly
for educational purposes.

The decomposition into small components has been done using
separate object files for almost each function and for the critical vari-
ables of the OS. The automatic combination of these components is
accomplished using: (1) a special meta-interface language, allowing
the user to direct the generation of the tailor-made OS, and (2) the
linker, which automatically selects the necessary object files. The
first step is necessary when selection of code must be done inside
some modules, e.g. inside the table where the interrupt vectors are
stored.

In the re-development of the OS, we apply a top-down method-
ology, i.e. the size of the components gradually becomes smaller
during the development phase. At this level we believe that we have
not yet reached the least possible size for the components. In the
near future, the proposed system will be used in real-life medical
applications requiring multi-tasking operations such as data acqui-
sition, display and automatic diagnosis of the ECG test, at rest or
during exercise [10, 11, 12, 13, 14, 15, 16].

2 MOTIVATION

EMPIX [8] is an OS which has been used for many years in the
National Technical University of Athens for educational purposes in
the “Operating Systems” course. Most of the programming exer-
cises based on EMPIX involved the implementation of new device
drivers, the addition of new shell commands and system calls or the
modification of existing ones. Based on this experience, we have
concluded that most of these changes to the sources of EMPIX can
be described in a formal way, since the procedure for their imple-
mentation was mechanical, to some extent.

Nowadays, embedded applications gain day by day a greater part
of the market. In our laboratory we have built embedded systems us-
ing EMPIX as the underlying OS. The reason why we prefer EMPIX
is that it is a very light-weight, easy-to-learn OS and we are familiar
with its source code. However, the task of customizing the system
according to the needs of a given application is a tedious task. In
order to automate this process, we have designed the meta-interface
language described in this paper.

Despite an initial overhead, the proposed approach presents
many advantages. The fast and automatic generation of application-
dependent OS quickly outweighs our effort for defining the meta-

1

Memory ManagementProcess Management

Hardware

High Level I/O

File System

Shell

User Applications

System Calls

Low Level I/O

Figure 1: The architecture of EMPIX.

interface language, implementing the meta-interface processor and
redesigning EMPIX according to the new requirements. The result-
ing OS are free of useless system calls, unnecessary interrupt han-
dlers, device drivers and daemon processes that slow down the over-
all performance and utilize memory that might be valuable for small
scale embedded applications.

3 THE EMPIX OPERATING SYSTEM

EMPIX [8] is a multitasking and multiuser OS, initially imple-
mented for educational purposes. Although it is a small OS, it is
powerful enough to form the basis for the development of small scale
embedded applications. Its architecture is depicted in Figure 1.

As shown in Figure 1, EMPIX has a layered structure. It has
been designed in such a way that each level uses only services pro-
vided by lower levels. The lowest level is responsible for memory
and process management and the low-level part of the I/O drivers.
In the second level, there is the high-level part of the I/O drivers.
The file system resides on top of the I/O drivers. The higher layer
consists of the shell and the primitive calls mechanism. User ap-
plications are located on top of all OS layers. Applications use the
facilities of EMPIX through system calls. Alternatively, EMPIX can
be used through the shell.

EMPIX combines ideas and source code from other OS, such
as XINU [9], MINIX [17], MS-DOS and UNIX. More specifically
EMPIX has used: (1) the philosophy of UNIX, (2) structures and
routines from XINU, (3) part of the source code of diskette and
screen drivers from MINIX, and (4) the MS-DOS filing system.

Although EMPIX is based on all the previous systems, there are
some aspects with respect to which EMPIX compares favourably.
It is more powerful that XINU (multiuser, process hierarchy, load-
ing of static processes from the disk, file compatibility with MS-
DOS, dynamic memory allocation, more advanced message passing
mechanism). It is smaller and simpler than MINIX, easier to use
and with more facilities in process management. Furthermore, it
supports multitasking and multiple users, in contrast to MS-DOS.

EMPIX is a standalone OS. It does not need MS-DOS to boot or
run. In the current phase of development, there are no tools avail-
able for the development of applications in the EMPIX environment.
However, EMPIX is file compatible with MS-DOS and thus devel-
opers can use off-line all tools existing in the MS-DOS environment
(e.g. text editors, C compilers, x86 assemblers, linkers, libraries) to
create EMPIX executable binary files, provided that they link it with
EMPIX’s standard library. Then, the binary file can be moved to the
EMPIX environment and executed.

4 THE META-INTERFACE LANGUAGE

In the proposed system, the process of developing embedded appli-
cations is depicted in Figure 2. The code of the embedded applica-
tion consists of three parts:

• The meta-interface, written using a special meta-interface lan-
guage. It contains: (i) information about the requirements
of the application; (ii) directions to improve the performance
of the standard EMPIX components that will be used; and

Customized
EMPIX

Source

Linker Application
Embedded

Meta-Interface OS Extension Application Code

Application Source Code

Compiler

Processor
Meta-Interface

Component
EMPIX

Library

Source
EMPIX

Skeleton

OS Source Code

Figure 2: Development process for embedded applications.

〈interface〉 ::= 〈directive〉 “;” [〈interface〉]

〈directive〉 ::= “define” 〈class〉 〈id〉 [“(” 〈formals〉 “)”]
“with” (〈def 〉)∗

[“global” 〈globals〉] “end”
| “use” 〈class〉 〈id〉 [“(” 〈actuals〉 “)”]
| “if” 〈cond〉 “then” 〈interface〉 [〈else〉] “end”

〈class〉 ::= “command” | “device” | “interrupt”
| “module” | “shell” | “syscall”

〈def 〉 ::= 〈id〉 “=” 〈constant-expression〉 “;”

〈formals〉 ::= 〈id〉 (“,” 〈formals〉)∗

〈globals〉 ::= (〈external-decl〉)∗

〈actuals〉 ::= 〈constant-expr〉 (“,” 〈constant-expr〉)∗

〈cond〉 ::= “using” 〈class〉 〈id〉 | “true” | “false”
| “(” 〈cond〉 “)” | 〈cond〉 “and” 〈cond〉
| 〈cond〉 “or” 〈cond〉 | “not” 〈cond〉

〈else〉 ::= “else” 〈interface〉

Figure 3: The grammar of the meta-interface language.

(iii) definitions of additional components that will be encap-
sulated in the OS. The meta-interface can appear in the appli-
cation code in several different places, each of which must be
surrounded by the special brackets @{ and }@, to be separated
from the rest of the application.

• The OS extension, containing the implementation of the addi-
tional components defined in the meta-interface, if there are
any. This part can be written in C, assembly language, or a
combination of both. Since it interracts directly with the OS
kernel, some knowledge of the EMPIX internals is assumed.

• The application code, implementing the embedded applica-
tion using the standard EMPIX components and the additional
components defined in the meta-interface. This part is typi-
cally written in C.

The meta-interface is extracted and processed by a special tool of our
system, which tailors the EMPIX source code to satisfy the require-
ments of the application. The customized EMPIX code is compiled
together with the rest of the application source code and linked with
the necessary components from the standard library of EMPIX.

The grammar of the meta-interface language is presented in Fig-
ure 3. It supports a fixed set of meta-classes which abstract the
functionality of various OS components. A meta-object of some
meta-class provides a specific implementation of this functionality,
and several meta-objects may belong to the same class thus imple-

2

menting different functionalities. The most important part of the
language is the directives define and use. The former defines a new
meta-object of a given meta-class, which is encapsulated in the OS
and can be used by the embedded application. The latter informs
that the embedded application will use a named meta-object, which
can either be one of the standard EMPIX meta-objects or one of the
additional ones defined using define. Meta-objects may have a num-
ber of formal parameters in their definition. These parameters take
their actual values when the meta-objects are used.

4.1 Predefined Meta-classes and Meta-objects
EMPIX supports six predefined meta-classes representing different
aspects of the OS. The application programmers cannot define new
meta-classes; however, they may define new meta-objects that im-
plement any of these meta-classes, in any way that suits their needs.

• The meta-class syscall represents EMPIX system calls, i.e.
system-specific functions that provide the basic interface be-
tween the OS and the application. System calls are usually
installed by other EMPIX components.

• The most generic meta-class is module. Modules are used pri-
marily to implement OS components and extensions. EMPIX
supports many predefined modules. One such module is the
memory, which provides the basic system calls for dynamic
memory allocation and deallocation. The scheduler is respon-
sible for the management of processes which share the com-
puter’s CPU time. The semaphores and messages implement
two methods for process communication between processes. fs
implements the upper level of EMPIX’s file system, whereas
floppy and hdisk implement the lower level for file systems re-
siding on floppy and hard disks. Most of these modules accept
parameters which alter their behaviour and/or performance.

• The meta-class device abstracts the common functionality of
EMPIX I/O devices. A number of predefined objects support
the basic I/O devices of the PC. The console implements the
computer’s keyboard and monitor. There are other devices for
two serial ports (tty0, tty1), two floppy disk drives (floppy0,
floppy1) and two hard disk drives (hd0, hd1). A number of
devices is also reserved for open files by the fs module. Some
of the predefined devices install device-specific system calls.

• The meta-class interrupt represents a routine that is used as
an interrupt handler. The only predefined interrupt handler in
the standard library of EMPIX is clock, which implements the
computer’s real-time clock. Many of the predefined modules
rely on this handler to perform their functionality.

• The meta-class shell abstracts the functionality of the shell, i.e.
EMPIX’s user interface. The predefined shell sh implements
an extensible UNIX-like command-line user interface.

• The meta-class command is used in order to extend sh with
new commands. Some basic predefined commands are sup-
ported, e.g. cmd exec and cmd exit, but modules may install
additional commands, e.g. the fs module installs commands for
file management such as cmd ls and cmd cd.

4.2 Some Simple Examples
Let us assume that an embedded application requires the use of
semaphores, as implemented by the standard module provided by
EMPIX. The meta-interface part of this application could be:

@{
use module semaphores (int, 10);

}@

The actual parameters passed to the semaphores meta-object spec-
ify that there will be 10 semaphores available to the application and
that each semaphore will have a value of type int.

As a second example we consider a multi-process application re-
quiring message passing for exchanging information of type dou-
ble and access to a hard disk. Its meta-interface could be:

@{
use module scheduler (5, 20);
use module hdisk;
use module fs (2, 1024);
use module messages (double, 20);

}@

Four EMPIX modules are needed: the scheduler, the high-level part
of the file system, the low-level part of the file system supporting
the hard disk and the messages module. The scheduler will support
a maximum of 5 processes and the time quantum for each process
will be set to 20/50 sec. The file system will support a maximum of
2 files open at a time, with a buffer of 1024 bytes for I/O. Finally,
there will be a queue of up to 20 messages for each process and each
message will contain information of type double.

As a last simple example, let us assume that an embedded appli-
cations requires access to the computer’s parallel port, which is not
currently supported by EMPIX. A new device meta object must be
defined in the meta-interface part of the application.

@{
define device parallel (devno, iv, ov) with

num = devno; getc = pp_getc;
minor = 0; putc = pp_putc;
init = pp_init; ioctl = pp_ioctl;
open = pp_open; ivec = iv;
close = pp_close; ovec = ov;
read = pp_read; iint = pp_iint;
write = pp_write; oint = pp_oint;
seek = ioerr; oblk = NULL;

end;
use device parallel (PPORT, PP_IVEC, PP_OVEC);

}@

The first directive defines the new device and the second informs
that this device will be used, specifying some hardware-specific con-
stants as parameters. Furthermore, the device’s functionality must be
implemented. In the OS extension part, the programmer must define
the functions pp init, pp open, pp close, etc.

4.3 A Complete Example: Adding Events
As a more involved example, in this section we describe how to
implement an event list in EMPIX. A new module called events
is defined, together with a system call ev schedule for scheduling
new events. If the embedded application uses the EMPIX standard
shell, a new command called alarm is also defined. This command
schedules an event that rings a bell after a given number of seconds.

For the implementation of events, we use the computer’s real-
time clock. Assuming that no more than 10 jobs will be required in
the clock’s interrupt handler, the meta-interface begins with:

@{
use interrupt clock (10);

Next, we define the events module, introducing the maximum
number of events that can be scheduled simultaneously as a param-
eter max. We also specify the name of the module initialization
function: ev init. Moreover, we specify that when the module
is used, the global constant MAX EVENTS should be added to the
EMPIX programming environment and its value should be equal to
the value of the given parameter max.

define module events (max) with
init = ev_init;

global
const int MAX_EVENTS = max;

end;

After its definition, the new module can be used. Here we set the
maximum number of events to 10.

use module events (10);

3

The next thing to do is to define and use the system call
ev schedule for scheduling new events.

define syscall ev_schedule with
bytes = sizeof(unsigned long) +

sizeof(INTERRUPT (*) ());
func = ev_schedule_func;

end;
use syscall ev_schedule;

The name of the function implementing the system call is
ev schedule func. It takes two parameters. The first has type
unsigned long and specifies the time after which the event will
occur, in 50ths of a second. The second is a pointer to the function
that will be called when the event occurs.

Finally, we need to define and use the new shell command
alarm, provided that the standard EMPIX shell sh is used. The name
of the function implementing the new command is ev alarm cmd.

if using shell sh then
define command cmd_alarm with

name = "alarm";
run = ev_alarm_cmd;

end;
use command cmd_alarm;

end;
}@

This concludes the meta-interface for the event list. What re-
mains to be written is the C code for the event list’s implementation.
At least the following functions, that are mentioned in the meta-
interface, need to be defined:

int ev_init ();
SYSTEM ev_schedule_func (unsigned long time,

INTERRUPT (* f) ());
int ev_alarm_cmd (struct lex * head,

struct lex * lptr);

together with everything else that is needed for the implementation,
e.g. a data structure representing the event list, a function that will be
added as a job to the real-time clock interrupt handler and a function
that will ring the bell when an alarm event occurs.

5 A CASE STUDY: MEDICAL APPLICATIONS

EMPIX has been successfully used for small scale embedded sys-
tems, mainly for medical applications. The first attempt was to
build an embedded system for the acquisition and storing of long-
term electrocardiograms using a 12-lead digital electrocardiograph
[14, 12]. The digital output of the electrocardiograph is connected
to an RS-232 serial port. The embedded application consists of two
processes: one collecting samples and storing them temporarily in
a local buffer, and another copying the data from the local buffer
to permanent storage. As a hardware platform, we used Jumptec
DIMM-PC/386-B on a custom designed board providing two serial
ports and an interface for a text LCD display.

Apart from storing the electrocardiogram, the software can also
extract and store the heart rate signal, using a QRS detection algo-
rithm [12] based on the length or energy transform. The develop-
ment of this application provided us with motivation to design the
meta-interface language described in this paper. In the near future,
we plan to develop several embedded medical applications. The first
one will be a system that acquires and stores an electrocardiogram
and calculates in real-time the Athens QRS score [10, 11]. This is
a much more complex application and we expect that the use of the
meta-interface language will facilitate the programmers’ task.

6 CONCLUSION

Embedded systems are currently “at the forefront of use and jus-
tification of computer products” [2] and the need for effortless and

costless development of efficient and reliable embedded applications
has become one of the first priorities in today’s computer industry.
In this paper we propose a powerful meta-interface for programming
embedded applications, based on customized versions of the EMPIX
operating system that can be automatically configured. The result-
ing applications use only the necessary components of EMPIX; they
are light-weight and efficient.

Future research will be directed towards possibilities of further
customization. At its current form, the meta-interface language does
not allow the application programmers to define meta-classes of
EMPIX components; there is a fixed number of predefined meta-
classes and the programmers can only define instances of meta-
objects. Using a full object-oriented language for the definition of
EMPIX components, allowing new meta-class definitions and in-
heritance, would only be a natural evolution of the current meta-
interface language. This would introduce an additional meta-level
to our system and would allow for a more detailed customization.

References

[1] W. Wolf, Computer as Components: Principles of Embedded
Computing Systems Design. Morgan Kaufmann, 2000.

[2] D. Milojicic, “Embedded systems”, IEEE Concurrency, vol. 8,
2000.

[3] “RT-Linux as an embedded operating system”.
http://www.rtlinux.org/.

[4] “Windows CE 3.0”. http://www.microsoft.com/.
[5] “RedHat eCos.” http://www.redhat.com/

embedded/technologies/ecos/.
[6] G. Kiczales, “Foil for the workshop on open implemen-

tation”. http://wwwparc.xerox.com/csl/groups/
sda/projects/oi/workshop-94/foil/, 1994.

[7] S. Shumilov, “Flexible metalevel architectures: A re-
view”. http://www.informatik.uni-bonn.de/
˜shumilov/research/mop/mop.html.

[8] G. Papakonstantinou, C. Delarokas, and P. Tsanakas, The EM-
PIX Operating System. Symmetria, 1990. In Greek.

[9] D. Comer, Operating System Design: The XINU Approach,
vol. 1, PC Edition. Prentice Hall, 1988.

[10] A. P. Michaelides et al., “Signifance of ST segment depression
in exercise-induced supraventricular extrasystoles”, American
Heart Journal, vol. 117, pp. 1034–1041, 1989.

[11] A.P. Michaelides et al., “Exercise-induced QRS prolongation
in patients with coronary artery disease: A marker of myocar-
dial ischemia”, American Heart Journal, vol. 126, pp. 1320–
1325, 1993.

[12] A. Alexandridi et al., “An integrated system for the diagnosis
of cardiac pathology through the analysis of heartbeat interval
variability”, in Advances in Physics, Electronics and Signal
Processing Applications, pp. 24–29, World Scientific, 2000.

[13] A. P. Michaelides, et al., “Improved detection of coronary
artery disease by exercise electrocardiography with the use
of right precordial leads”, New England Journal of Medicine,
vol. 340, pp. 340–345, 1999.

[14] F. Gritzali, G. Fragakis, and G. Papakonstantinou, “Detection
of P and T waves in an ECG”, Computers and Biomedical Re-
search, vol. 22, pp. 83–91, 1989.

[15] A. Thanos, G. Economakos, G. Papakonstantinou, P. Tsanakas,
and L. Nikolaidis, “An open system for ECG telemedicine and
telecare”, in Proc. Computers in Cardiology, 1998.

[16] A. Koulouris, G. Papakonstantinou, and P. Tsanakas, “A
decentralized multichannel length transformation for real-
time ECG monitoring”, Computers and Biomedical Research,
vol. 33, pp. 227–244, 2000.

[17] A. Tanenbaum and A. Woodhull, Operating Systems, Design
and Implementation. Prentice Hall, 1999.

4

