
J. Functional Programming 10 (3): 227–244, May 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

227

A study of evaluation order semantics
in expressions with side effects

NIKOLAOS S. PAPASPYROU

Department of Electrical and Computer Engineering, Division of Computer Science,

Software Engineering Laboratory, National Technical University of Athens,

Polytechnioupoli, 15780 Zografou, Athens, Greece

(e-mail: nickie@softlab.ntua.gr)

DRAGAN MAĆOŠ

debis Systemhaus GEI, debis Haus am Potsdamer Platz,

Eichhornstrasse 3, 10875 Berlin, Germany

(e-mail: dmacos@debis.com)

Abstract

The presence of side effects in even a very simple language of expressions gives rise to a

number of semantic questions. The issue of evaluation order becomes a crucial one and,

unless a specific order is enforced, the language becomes non-deterministic. In this paper we

study the denotational semantics of such a language under a variety of possible evaluation

strategies, from simpler to more complex, concluding with unspecified evaluation order,

unspecified order of side effects and the mechanism of sequence points that is particular

to the ANSI C programming language. In doing so, we adopt a dialect of Haskell as a

metalanguage, instead of mathematical notation, and use monads and monad transformers

to improve modularity. In this way, only small modifications are required for each transition.

The result is a better understanding of different evaluation strategies and a unified way of

specifying their semantics. Furthermore, a significant step is achieved towards a complete and

accurate semantics for ANSI C.

Capsule Review

This work demonstrates a neat application of monad transformers: the study of evaluation-

order semantics in a programming language with side effects. The key insight is to abstract

away the specification of the evaluation-order mechanism in the denotational semantics of an

imperative language, in such a way that it can be instantiated easily with different strategies.

This results in a highly-modular, easy-to-understand, semantics. If you start with a monadic

denotational semantics, the most natural way to realize the abstraction is the use of monad

transformers (and one might speculate that a similar approach using continuation semantics

would result in the use of continuation transformers). This work is not just an exercise: the

authors show that it can be a helpful tool in the understanding of at least one important

language: ANSI C.

228 N. S. Papaspyrou and D. Maćoš

1 Introduction

Expressions play a very important role in the vast majority of programming lan-

guages. In many languages expressions are pure, i.e. their evaluation depends upon,

but may not alter, the program state. For such ‘ideal’ languages several theories exist

that can be used to prove the properties of programs, starting from Hoare’s work

on axiomatic semantics in the late 1960s. Since then, many theoretical treatments

of formal semantics have preferred to study languages with pure and deterministic

expressions, because their semantics is relatively simple and elegant. By introducing

side effects in expressions, the semantics becomes significantly more complex. At the

same time, several issues arise, related to the evaluation order, i.e. the order in which

the subparts of an expression are evaluated. If the evaluation order is not strictly

defined, the presence of side effects in expressions is a source of non-deterministic

behaviour, since different evaluation strategies may lead to different results.

This paper aims at investigating various evaluation strategies for expressions that

may generate side effects, and providing a unified way of describing their formal

semantics. For this reason, a simple eager and impure expression language is studied

under various different strategies, starting from simple left-to-right evaluation and

moving on to more complex ones. The language is slightly extended in the process

to allow constructs specific to the studied strategies.

The last evaluation strategy that is considered deserves special mention; execution

interleaving is allowed, and both the order of expression evaluation and the order

in which side effects take place are unspecified. The introduction of sequence points

and a few additional restrictions makes the example language a subset of the

core of the ANSI C programming language. The proposed semantics that develops

naturally is sufficient to model this subset accurately and on its own a significant

result. It should be mentioned that the present research was motivated by problems

encountered in a bigger project, aiming at a complete denotational semantics for

ANSI C (Papaspyrou, 1998).

The formal semantics of pure expressions can usually be easily specified in

operational, denotational or axiomatic form. The introduction of side-effects implies

serious complications in the axiomatic semantics, but only small ones in the other

two forms. Non-determinism caused by unspecified evaluation order can usually

be expressed more easily in operational semantics than in denotational semantics.

However, both approaches are possible, and in this paper the denotational approach

is used.

One of the most important drawbacks of classic denotational semantics is its

lack of modularity. Small changes in a language’s definition often imply a complete

rewrite of its formal semantics. The use of category theory, monads and monad

transformers has been proposed as a remedy, and has become quite popular both

in the denotational semantics and the functional programming community. Com-

prehensive introductions can be found in the work of Moggi (1990), Wadler (1992)

and Liang, Hudak and Jones (1995). Monads and monad transformers are used in

this paper, and it is demonstrated that, as a result, the semantics is significantly

improved in terms of modularity and elegance.

Evaluation order semantics 229

Instead of using mathematical notation, a functional programming language is

used for the definition of the denotational semantics. This language is the dialect of

Haskell (Peyton Jones and Hughes, 1999) implemented by Mark Jones’ Hugs 1.3c,1

supporting multiple parameter type classes2 (Peyton Jones et al., 1997). For simplicity,

this dialect of Haskell is referred to in the following sections of this paper as Haskell.3

It has been chosen over ordinary Haskell, since the latter’s higher-order type classes

are not adequate to formulate monads and monad transformers in a direct and

elegant way.4 Moreover, by using a programming language instead of mathematical

notation, we allow our denotational semantics to be directly implementable, in the

form of an interpreter for the languages under study, and thus to be easily tested

and evaluated.

The structure of this paper is as follows. Section 2 defines the example language

and briefly discusses semantic issues related to evaluation order. Section 3 contains

the necessary background definitions of monads, states and monad transformers. In

section 4 a denotational semantics is gradually built for several different evaluation

strategies. Section 5 shows how our work relates to the literature, and section 6

concludes with some final remarks.

2 The example language ELSE

Consider a simple eager expression language with side effects, that will be called

ELSE hereafter. The abstract syntax of ELSE is given below. It will be slightly

extended in sections 4.4 and 4.5.

E : Expr ::= n | I | I =E | E1+E2 | −E | E1,E2

The language features a single data type (integer), constants, variables, an assignment

operator, a binary operator (integer addition), a unary operator (integer negation)

and a juxtaposition operator (comma). More complex language constructs are not

included in ELSE, since they are of no help in our study of evaluation order and side

effects. The informal semantics of ELSE expressions is certainly familiar to most

readers. The value of I =E is the value of E and the value of E1,E2 is the value of

E2. Furthermore, evaluation of I =E generates a side-effect by assigning the value

of E to variable I . For simplicity, ELSE supports a single global scope of integer

variables, whose values are initially undefined. Variables need not be declared.

The same operator precedence and associativity as in ANSI C is adopted for ELSE.

Parentheses are used to group expressions. All these details are hidden in the abstract

syntax. Apart from the comma operator, which always evaluates its left operand

1 Hugs 1.3c can be obtained from ftp://ftp.cs.nott.ac.uk/haskell/hugs/hugs13/.
2 Multiple parameter type classes have also been implemented in the GHC 3.02 (and later) Haskell

compiler, as well as in Hugs 1.4 and the native mode of Hugs 98.
3 A large number of Haskell extensions, including multiple parameter type classes, are currently being

considered favourably for the evolving standard of Haskell 2. See http://haskell.org/ for details.
This fact justifies the simplified name for the dialect that is used here.

4 As an alternative, the language Gofer (Jones, 1994) could be used with minor changes in the source
code that is given in the present paper. Gofer is also based on a subset of Haskell extended with
constructor classes (Jones, 1995).

230 N. S. Papaspyrou and D. Maćoš

before its right operand, evaluation order of ELSE expressions is left unspecified,

for the time being, and various possibilities will be considered in the sequel. In

fact, different evaluation orders are only possible in the presence of operator +,

since this is the only binary operator in ELSE with unspecified evaluation order. It

should be clear, however, that this lack of specification renders the evaluation of

ELSE expressions ambiguous, as different evaluation strategies may lead to different

results. As an example, consider the simple expression x = 0, x + (x = 1) whose

evaluation may result in 1 or 2, depending on whether the (implicit) dereferencing

of x in the left operand of + will take place before or after the assignment in the

right operand.

The following code implements the abstract syntax of ELSE in Haskell. Types Ide

and N represent identifiers and integer values, whereas type Expr represents ELSE

expressions.

type Ide = String
type N = Int

data Expr = E_int N | E_ide Ide | E_assign (Ide, Expr) | E_plus (Expr, Expr)
| E_neg Expr | E_comma (Expr, Expr)

Also, the following code implements two examples. The first corresponds to the sim-

ple expression x = 0, x+ (x = 1) that was discussed before. The second corresponds

to the slightly more complex expression x = 0, x+ (x = 1, x = 2, 0), whose result can

be 0, 1 or 2 under different evaluation strategies. Again, what determines the final

result is the order in which the (implicit) dereferencing of x will take place.

ex1 = E_comma (E_assign ("x", E_int 0),
E_plus (E_ide "x", E_assign ("x", E_int 1)))

ex2 = E_comma (E_assign ("x", E_int 0),
E_plus (E_ide "x",

E_comma (E_assign ("x", E_int 1),
E_comma (E_assign ("x", E_int 2),

E_int 0))))

3 Monads, states and monad transformers

The semantics of ELSE is defined in an abstract form using monads to improve

modularity and elegance of notation. In brief, a monad is a triple of the form

(M, return, >>=). M is a type constructor of kind ∗ → ∗, return :: a -> M a

and (>>=) :: M a -> (a -> M b) -> M b are polymorphic functions for arbi-

trary types a and b, satisfying three monad laws.5 Function >>= is used as an infix

binary operator.

Types constructed by monad M denote computations, e.g. the type M a denotes

computations returning values of type a. The definition of M reflects our notion

of computation and it is evident that in the case of ELSE computations may read

and modify values of variables, i.e. the state. The result of return v is simply

5 This description, although näıve, is sufficient for the purpose of this paper. Although proofs are
omitted, all monads and monad transformers defined here satisfy the required properties (subject to
some termination conditions) as shown in the first author’s thesis (Papaspyrou, 1998).

Evaluation order semantics 231

a computation returning the value v and the result of m >>= f is the combined

computation of m, returning v, followed by computation f v. Evaluation order is

thus implicitly specified when using >>=, since the result of the first computation

is needed before the second computation can begin. By using different monads, it

is possible to derive different flavours of the semantics of ELSE without having to

change the semantic equations each time.

The following code contains the definition of the standard Haskell class Monad,

based on the previous description. The first line defines >>= as an infix left associative

operator of very low precedence.

infixl 1 >>=

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

It is also useful to distinguish two subclasses of monads with additional features.

Class MultiMonad represents monads with a binary operation +|+ (multiplication)

upon their elements, as shown below, and class StrongMonad represents monads

with a binary operation +:+ (tensorial strength). Although intuitively these two

operations are used in order to express disjunction and conjunction respectively, with

+|+ indicating an option between two alternative computations and +:+ indicating

a combination of two simultaneous computations, their exact behaviour depends on

a monad’s definition.

class Monad m => MultiMonad m where
(+|+) :: m a -> m a -> m a

class Monad m => StrongMonad m where
(+:+) :: m a -> m b -> m (a, b)

The notion of state is a very important one in the study of the impure language

ELSE. A state is an element of a type which supports two main operations, load

and store, for retrieving and updating the contents of a variable in memory. A

distinguished element of this type is the initial state, typically a state with all

variables uninitialized. The class State is the common denominator of all possible

state types, according to this description.

class State s where
initial :: s
load :: Ide -> s -> N
store :: Ide -> N -> s -> s

A class of monads that are aware of the state is also useful. Class StateMonad

supports two operations as an interface between computations and the state, in

the style used by Liang, Hudak and Jones (1995). Function setState updates the

state by applying its argument and returns a computation of the old state. Function

getState simply returns a computation of the current state and can be implemented

in terms of setState, as shown below. Parameter s represents the type of the state.

class Monad m => StateMonad s m where
setState :: (s -> s) -> m s
getState :: m s
getState = setState id

232 N. S. Papaspyrou and D. Maćoš

Monad transformers are mappings between monads.6 They are implemented in

Haskell as higher-order type constructors of kind (∗ → ∗) → ∗ → ∗. The intuition

behind them is that, if T is a monad transformer and M is a monad, then T M is also

a monad and its properties are defined in terms of the properties of M. No special

class of monad transformers needs be defined for the purpose of this paper.

4 Semantics of ELSE

The semantics of ELSE is defined as a function sem :: Expr -> M N, mapping

expressions to integer computations. Monad M needs to be appropriately defined,

in order to specify the characteristics of computations. Obviously, M must be an

instance of class StateMonad for some appropriate state type S, to support state

operations. Less obviously, it must be an instance of class StrongMonad, which is

the mechanism by which evaluation order can be abstracted out of the semantics.

In particular, operation +:+ of M is used in the semantics of the binary operator +,

which is the only construct of ELSE where evaluation order is an issue.

The semantic equations for all ELSE constructs are given below.7

sem :: Expr -> M N
sem (E_int n) =

return n
sem (E_ide i) =

getState >>= \(s :: S) -> return (load i s)
sem (E_assign (i, e)) =

sem e >>= \n -> setState (store i n) >>= \(s :: S) -> return n
sem (E_plus (e1, e2)) =

sem e1 +:+ sem e2 >>= \(n1, n2) -> return (n1 + n2)
sem (E_neg e) =

sem e >>= \n -> return (-n)
sem (E_comma (e1, e2)) =

sem e1 >>= \n -> sem e2

The implementations of M and S determine the intended semantics of ELSE, as

far as evaluation order and side effects are concerned. The following sections discuss

several implementations reflecting various possible evaluation strategies.

4.1 Left-to-right evaluation

A very simple, common and natural evaluation order is left-to-right.8 In the case

of ELSE, left-to-right evaluation specifies that the left operand of + is evaluated

completely before the right operand. A simple state type S can be defined as follows.

The same state type will be used until Section 4.5.9

6 Other definitions impose additional operations and restrictions on monad transformers, e.g. in the
work of Espinosa (1995) and Liang (1998). Since these are not required for the purpose of this paper,
the definition is simplified.

7 Notice that the type of s in the second and third equations must be explicitly specified, since Haskell’s
type system can only infer that the type of s is an instance of class State, but not the exact type.

8 Left-to-right evaluation is used by many programming languages, such as Standard ML and Java.
9 The definition of function update can be found in the appendix.

Evaluation order semantics 233

newtype S = S (Ide -> N)

instance State S where
initial = S (\i -> error ("Variable " ++ i ++ " has not been initialized"))
load i (S s) = s i
store i n (S s) = S (update i n s)

Before we define monad M, it is useful to define a monad transformer implementing

the direct semantics approach, as a provision for the following sections. For every

state type s given as a parameter, a monad transformer D s can be defined as

follows. Parameter m specifies the monad representing the stateless computations.

newtype D s m a = D (s -> m (a, s))

instance Monad m => Monad (D s m) where
return v = D (\s -> return (v, s))
D r >>= f = D (\s -> r s >>= \(v’, s’) -> let D r’ = f v’ in r’ s’)

Monads constructed using D are aware of the state and therefore monad D s m is

an instance of StateMonad for state type s. The following code implements this

property:

instance Monad m => StateMonad s (D s m) where
setState f = D (\s -> return (s, f s))

For the purpose of this section, the identity monad Id is a reasonable choice for

stateless computations, ending up with the conventional direct semantics monad M.

newtype Id a = Id a

instance Monad Id where
return x = Id x
Id x >>= f = f x

type M a = D S Id a

To complete the semantics, we need to define M as an instance of StrongMonad.

According to the left-to-right evaluation strategy, the following property can be

specified for the direct semantics monad transformer. Order of evaluation is enforced

by means of operator >>=.

instance Monad m => StrongMonad (D s m) where
d1 +:+ d2 = d1 >>= \v1 -> d2 >>= \v2 -> return (v1, v2)

Left-to-right evaluation produces unambiguous results. To illustrate our semantics,

let us consider the two examples of section 2. Expression x = 0, x+(x = 1) evaluates

to 1 and expression x = 0, x + (x = 1, x = 2, 0) evaluates to 0. In both cases, the

final state is identical to the initial one, except for the value of x which becomes 1

and 2, respectively. The following output is produced by the Haskell environment

when evaluating the two examples.10

? sem ex1
(1,state)
? sem ex2
(0,state)

10 As shown in the appendix, method show for the printing of computations starts evaluating from the
initial state. The same method for states only prints the string ‘state’ instead of a state’s contents.

234 N. S. Papaspyrou and D. Maćoš

4.2 Non-deterministic choice

We continue by considering evaluation strategies that allow for ambiguity in expres-

sion evaluation. In this case, it is necessary to replace the identity monad Id for

stateless computations by a monad supporting multiple results. Class MultiMonad is

the mechanism by which this can be abstracted out of the semantics. In particular,

operation +|+ is a generic ‘union’ operation for computation results. The standard

list monad,11 denoted in Haskell by [], is an obvious choice as a replacement for

Id. It can be defined as an instance of MultiMonad by taking operator +|+ as a

synonym for list concatenation.

instance MultiMonad [] where
(+|+) = (++)

Before we can use the direct semantics monad transformer to introduce states in

computations with multiple results, it is necessary to define an additional property of

D. If m is an instance of MultiMonad, then D s m is also an instance of MultiMonad.

The two alternative computations start at the same initial state and their results are

combined by using the union operator.

instance MultiMonad m => MultiMonad (D s m) where
D r1 +|+ D r2 = D (\s -> r1 s +|+ r2 s)

With the list monad as the basis, we can easily modify the definition of M to allow

for multiple results, as shown below.

type M a = D S [] a

A simple evaluation strategy which allows for ambiguous results is the non-

deterministic choice. According to this, operands may be evaluated in any order, but

the evaluation of each one is performed individually, and no interleaving is possible.

In the case of ELSE, non-deterministic choice specifies that the operands of + may

be evaluated left-to-right or right-to-left but, in any case, the evaluation of one of

them will be complete before the evaluation of the other starts.

To implement non-deterministic choice, it suffices to redefine how monad M is an

instance of class StrongMonad. Again, a general property of the direct semantics

monad transformer is given, on condition that the stateless monad supports multiple

results. This time, two alternative computations are possible. The first operand

of +|+ represents left-to-right evaluation, while the second represents right-to-left

evaluation.

instance MultiMonad m => StrongMonad (D s m) where
d1 +:+ d2 =

(d1 >>= \v1 -> d2 >>= \v2 -> return (v1, v2)) +|+
(d2 >>= \v2 -> d1 >>= \v1 -> return (v1, v2))

In this evaluation strategy, expression x = 0, x+ (x = 1) may produce 1 or 2 and

expression x = 0, x+ (x = 1, x = 2, 0) may produce 0 or 2, as shown below.

? sem ex1
[(1,state),(2,state)]
? sem ex2
[(0,state),(2,state)]

11 The list monad is predefined in Haskell as shown in the appendix.

Evaluation order semantics 235

4.3 Interleaving

The notion of execution interleaving is a well known one in the theory of concurrency.

An interleaved evaluation of an expression consists of an arbitrary merging of the

atomic steps that constitute the evaluation of its subparts. In the case of ELSE it is

natural to consider side effects, i.e. read and write accesses to the state, as the only

kind of atomic steps.

To implement interleaving in our semantics, it is necessary to modify the compu-

tation monad M. We define a resumption monad transformer R which implements a

tree-like branching semantics. Resumptions are constructs which split a computation

in a single atomic step (to be executed first) and a resumed part, which corresponds

to the rest of the computation. This technique is frequently used in specifying the

semantics of concurrency (Mosses, 1990; de Bakker and de Vink, 1996), however

the approach that we use here makes no assumption of what the atomic steps are.

data R m a = Computed a | Resume (m (R m a))

instance Monad m => Monad (R m) where
return = Computed
Computed v >>= f = f v
Resume m >>= f = Resume (m >>= \r -> return (r >>= f))

Parameter m is a monad representing the resumptionless computations, i.e. the

atomic steps. A computation of type R m a is either a computed value of type a or

a computation of type m (R m a), which produces a resumption.12

Before we can proceed with the definition of M, a few operations and properties

of R must be defined. Functions runR and stepR convert between computations

of type R m a and m a in both directions. The first fully evaluates a resumption

by performing all atomic steps. The second produces a computation with just one

atomic step.

runR :: Monad m => R m a -> m a
runR (Computed v) = return v
runR (Resume m) = m >>= runR

stepR :: Monad m => m a -> R m a
stepR m = Resume (m >>= (return . Computed))

Using stepR it is possible to introduce state operations in resumption monads,

provided that they are supported by the corresponding resumptionless monads.

Each state operation corresponds to one atomic step in the interleaved computation.

instance StateMonad s m => StateMonad s (R m) where
setState = stepR . setState

A new version of monad M which allows interleaved computations can be defined

by applying the monad transformer R to the direct semantics monad that has been

used in the previous section. We retain the list monad for the implementation of

12 The resumption monad transformer is usually defined in literature as R ma = m(a+ R ma), e.g. in the
work of Espinosa (1995). The approach taken here corresponds to R ma = a + m(R ma) and allows
constant computations requiring no atomic steps.

236 N. S. Papaspyrou and D. Maćoš

s1

s11 s12

s

s1 x + 1
(0+1=1)

s12 x + 1
(1+1=2)

s[x 7→ 0]

s1[x 7→ 1]s1

s11[x 7→ 1] s12

s1

s

s11 s12

s111 s121 s122

s1 x + 0
(0+0=0)

s12 x + 0
(1+0=1)

s122 x + 0
(2+0=2)

s[x 7→ 0]

s1[x 7→ 1]s1

s111[x 7→ 2]

s12 s12[x 7→ 2]s11[x 7→ 1]

s121[x 7→ 2] s122

s1

s11 s12

s

s1 x + 0
(0+0=0)

s12 x + 0
(2+0=2)

s[x 7→ 0]

s1[x 7→ 2]s1

s11[x 7→ 2] s12

(a) Example ex1 (b) Example ex2 (c) Example ex3

x = 0, x+ (x = 1) x = 0, x+ (x = 1, x = 2, 0) x = 0, x+ 〈x = 1, x = 2, 0〉
Fig. 1. Three examples of interleaving semantics.

multiple results.

type M a = R (D S []) a

Again, it is necessary to redefine how monad M is an instance of class StrongMonad,

and one more property of R is specified for this purpose. On condition that the

resumptionless monad m supports multiple results, the resumption monad R m allows

interleaving, as defined below. If any of the operands of +:+ requires no atomic

steps, we only need to evaluate the other operand. If both computations require

atomic steps, operator +:+ must choose between performing an atomic step from

the first operand or from the second.

instance MultiMonad m => StrongMonad (R m) where
Computed v1 +:+ r2 = r2 >>= \v2 -> return (v1, v2)
r1 +:+ Computed v2 = r1 >>= \v1 -> return (v1, v2)
r1@(Resume m1) +:+ r2@(Resume m2) = Resume(

(m1 >>= \r1’ -> return (r1’ +:+ r2)) +|+
(m2 >>= \r2’ -> return (r1 +:+ r2’)))

Returning to our examples, the resumption semantics of x = 0, x + (x = 1)

produces 1 or 2, exactly as in the non-deterministic choice. However, expression

x = 0, x+ (x = 1, x = 2, 0) may now produce the result 1, in addition to the possible

results 0 and 2 of non-deterministic choice, if the (implicit) dereferencing of x is

interleaved between atomic steps x = 1 and x = 2. All possible evaluation paths for

both examples are shown in schematic form in figures 1(a) and (b), with emphasis

on state transitions rather than on evaluated results.

? sem ex1
[(1,state),(2,state)]
? sem ex2
[(0,state),(1,state),(2,state)]

Evaluation order semantics 237

4.4 Evaluation in One Atomic Step

It is often useful to disable interleaving and evaluate an arbitrary expression in a

single atomic step. To this end, we introduce a new construct in ELSE. The revised

abstract syntax is shown below.

E : Expr ::= n | I | I =E | E1+E2 | −E | E1,E2 | 〈E 〉
Expression 〈E 〉 is equivalent to E with the only difference that the former is

evaluated in a single atomic step, and therefore no interleaving is permitted during

its evaluation.

The required changes in the syntax and semantics of ELSE are shown in the

following Haskell code. The semantics of the newly introduced construct may be

expressed using stepR and runR. A computation consisting of several steps is

converted to an equivalent one consisting of a single step.

data Expr = E_int N | E_ide Ide | E_assign (Ide, Expr) | E_plus (Expr, Expr)
| E_neg Expr | E_comma (Expr, Expr) | E_unit Expr

sem (E_unit e) = stepR (runR (sem e))

The following example, corresponding to expression x = 0, x + 〈x = 1, x = 2, 0〉,
illustrates the use of our new construct. It is similar to x = 0, x + (x = 1, x = 2, 0)

with the only difference that the right operand of + is evaluated in a single atomic

step.

ex3 = E_comma (E_assign ("x", E_int 0),
E_plus (E_ide "x",

E_unit (E_comma (E_assign ("x", E_int 1),
E_comma (E_assign ("x", E_int 2),
E_int 0)))))

As shown below, evaluation of this expression cannot produce the result 1, since the

(implicit) dereferencing of x cannot take place in between assignments x = 1 and

x = 2. The schematic evaluation of this expression is shown in figure 1 (c).

? sem ex3
[(0,state),(2,state)]

4.5 Sequence points

A language that does not fully specify evaluation order and, at the same time,

allows evaluation of expressions to produce side effects is an inherently ambiguous

language.13 However, for a programming language to be useful, ambiguities in

program execution should be avoided as much as possible. In this section, we

focus on the ANSI C programming language which features the combination of

characteristics mentioned before. To disallow undesired ambiguities, the C standard

introduces restrictions imposed on expression evaluation. An attempt to define the

semantics of these restrictions is made in this section.

13 Several programming languages, such as ALGOL 60, Pascal, C/C++ and Scheme, prefer not to impose
a specific evaluation order on language implementors.

238 N. S. Papaspyrou and D. Maćoš

The C standard is very careful in its attempt not to overspecify the semantics of the

language, to allow reasonable optimizations in implementations. Such optimizations

may see fit to postpone a side effect and, for instance, store a variable’s value in a

register instead of its appointed location in memory.

At certain specified points in the execution sequence called sequence points, all

side effects of previous evaluations shall be complete and no side effects of

subsequent evaluations shall have taken place. (ANSI, 1990, §5.1.2.3)

Sequence points are the standard’s guarantee that all side effects will eventually take

place properly and that optimizations will not affect normal execution. According

to the ANSI C standard, sequence points are located:

• after the evaluation of a full expression,

• before a function call but after the evaluation of actual parameters, and

• after the evaluation of the left operand of operators &&, ||, , (comma) and

?: (conditional).

Additional restrictions are imposed to disallow excessively ambiguous expressions.

Between the previous and next sequence point an object shall have its stored

value modified at most once by the evaluation of an expression. Furthermore,

the prior value shall be accessed only to determine the value to be stored. (ANSI,

1990, §6.3)

The first restriction disallows expressions such as (x = 1) + (x = 2). The second is

careful enough to disallow x+ (x = 1) but not x = x+ 1. However, we should notice

that these restrictions do not completely eliminate ambiguity in C expressions. Func-

tion calls are always surrounded by sequence points and do not allow interleaving

in their execution. Therefore, an expression such as f() + g() does not violate the

sequence point restrictions and is ambiguous when both f() and g() produce side

effects involving the same global variables, since the order in which they will be

called is not specified by the standard.

To study the semantics of ANSI C’s mechanism of sequence points, we modify

our example language. We first change the semantics of the comma operator, by

enforcing a sequence point between the (left-to-right) evaluation of the two operands.

We also add a unary operator #, which enforces two sequence points: one just before

and one just after the evaluation of its operand. Although ELSE still does not feature

functions, an expression of the form 〈#E〉 is reasonably equivalent to a call to a C

function with no arguments. The revised abstract syntax is given below.

E : Expr ::= n | I | I =E | E1+E2 | −E | E1,E2 | 〈E 〉 | #E

The required changes in the syntax and semantics of ELSE are given in the

following Haskell code. Function seqpt :: M () represents a computation that

enforces a sequence point and returns no interesting result. The semantics degenerates

into that of the previous section if we take seqpt = return ().

data Expr = E_int N | E_ide Ide | E_assign (Ide, Expr) | E_plus (Expr, Expr)
| E_neg Expr | E_comma (Expr, Expr) | E_unit Expr | E_call Expr

Evaluation order semantics 239

sem (E_comma (e1, e2)) =
sem e1 >>= \n ->
seqpt >>= \u ->
sem e2

sem (E_call e) =
seqpt >>= \u1 ->
sem e >>= \n ->
seqpt >>= \u2 ->
return n

To distinguish between a side effect that has taken place and one that has not,

it is necessary to change the definition of state. It is possible to define S as a pair

of two functions, the first representing the memory and the second representing the

pending side effects. Based on the restrictions that at most one writing to a memory

location takes place between two successive sequence points and that no reading

takes place after the writing, we may assume in our semantics that all side effects

take place at the following sequence point by a call to commit :: S -> S. The new

definition of S is given below.

newtype S = S (Ide -> N, Ide -> Maybe N)

instance State S where
initial = S (\i -> error ("Variable " ++ i ++ " has not been initialized"),

\i -> Nothing)
load i (S (sn, sx)) =

case sx i of
Nothing -> sn i
_ -> error ("Store-load conflict for variable " ++ i)

store i n (S (sn, sx)) =
case sx i of

Nothing -> S (sn, update i (Just n) sx)
_ -> error ("Store-store conflict for variable " ++ i)

The Maybe monad, defined in Haskell’s Standard Prelude and repeated in the

appendix, is used in the second element of the pair and the element Nothing indicates

that there are no side effects pending for a given variable. The implementations of

load and store guarantee that no reading or writing is permitted if a side effect

for the same variable is pending. Subsequently, we can define functions commit and

seqpt as follows:

commit :: S -> S
commit (S (sn, sx)) = S (\i -> case sx i of

Nothing -> sn i
Just v -> v,

\i -> Nothing)

seqpt :: M ()
seqpt = setState commit >>= \s -> return ()

By looking at the definition of seqpt, it is easy to see that the proposed semantics

satisfies the requirement that all side effects shall be complete at sequence points. The

definition of store also satisfies the requirement that an object shall have its value

modified at most once between successive sequence points. Finally, the requirement

that the prior value shall be accessed only to determine the new value is indirectly

satisfied by this semantics:

240 N. S. Papaspyrou and D. Maćoš

s

s11

s1

s111 s112

s11 x + 1
(0+1=1)

s112 x + 1
(err+1=err)

s[x 7→ 0]

commit s1

s112

s11 s11[x 7→ 1]

s111[x 7→ 1]

s

s11

s1

s112s111

commit s11 x + 1
(0+1=1)

commit s112 x + 1
(1+1=2)

s[x 7→ 0]

commit s1

commit (commit s112)s111[x 7→ 1]

commit (commit s11) s11[x 7→ 1]

(a) Example ex1 (b) Example ex4

x = 0, x+ (x = 1) x = 0, 〈#x〉+ (x = 1)

Fig. 2. Two examples of interleaving semantics with sequence points.

• A read access that determines the new value will certainly precede the write

access in all possible evaluation orders. It is therefore always allowed by the

definition of load.

• A read access that does not determine the new value is only allowed by

the definition of load if it precedes the write access in the evaluation order.

However, it can be easily proved that there exists an evaluation order in which

this is not true and, for this particular evaluation order, the definition of load

produces an error. This error will propagate in the semantics of expressions.

Therefore, if we rule out expressions containing errors as possible results, our

semantics satisfies the requirement.

Of course, it is possible to define a semantics satisfying this last requirement directly,

by defining S in such a way as to keep track of performed read accesses.

As a first example, we consider again the expression x = 0, x + (x = 1). The

semantics shown in figure 2(a) is similar to that in figure 1(a), with the exception of

the extra commit step. We notice, however, that the result 2 has been replaced by

an error in the evaluation of this expression, since read access s112 x is performed

on state s11[x 7→ 1] without an intermediate sequence point.

? sem ex1
[(1,state),(
Program error: Store-load conflict for variable x

A similar error results from the evaluation of x = 0, x + (x = 1, x = 2, 0) as well.

However, expression x = 0, x + 〈x = 1, x = 2, 0〉 still produces the results 0 and 2,

since the evaluation of the right operand of + does not leave pending side-effects,

because of the sequence points enforced by the two comma operators.

Two more examples are given below. The first is illustrated in figure 2(b) and

corresponds to the expression x = 0, 〈#x〉+ (x = 1). The second corresponds to the

expression x = 0, 〈#x〉+ (x = 1, x = 2, 0).

Evaluation order semantics 241

ex4 = E_comma (E_assign ("x", E_int 0),
E_plus (E_unit (E_call (E_ide "x")), E_assign ("x", E_int 1)))

ex5 = E_comma (E_assign ("x", E_int 0),
E_plus (E_unit (E_call (E_ide "x")),

E_comma (E_assign ("x", E_int 1),
E_comma (E_assign ("x", E_int 2),

E_int 0))))

They are variations of the first two examples ex1 and ex2, only in both cases the

left operand of + is protected as if it was wrapped by a function call. No errors

result from their evaluation. Notice, however, that in the second case the results 1

and 2 appear twice, because of the presence of additional commit steps.

? sem ex4
[(1,state),(2,state)]
? sem ex5
[(0,state),(1,state),(1,state),(2,state),(2,state)]

5 Related work

Research in the field of expression languages, side effects and evaluation order spans

a wide area of interest. Among the earliest related publications we should mention

the work of Boehm (1982) and Kowaltowski (1977) on the axiomatic semantics of

expression languages with side effects. Both avoid the pitfall of evaluation order

by assuming left-to-right evaluation. The work of Filinski (1996) focuses on the

introduction of various kinds of effects in functional languages, using appropriate

monads for state and continuations, but does not address the issue of evaluation

order semantics. Evaluation order analysis in lazy functional languages is dealt with

in the work of Draghicescu and Purushothaman (1990) and Bloss (1994). Both

do not define a semantics of execution for different evaluation strategies, and are

primarily interested in optimizations and the destructive update problem.

The semantics of many popular programming languages have been formally

specified in literature, at least partially. Unspecified evaluation order is modelled

mostly using permutation oracles or appropriate transition systems. Often, the issue

is excluded from the formal description and a convenient assumption is made. To

the best of our knowledge, techniques as the one used in this paper have not been

used for this purpose in relation with ‘real-world’ programming languages.

Significant research has been conducted recently concerning semantic aspects of

the C programming language, mainly because of the language’s popularity and

its wide applications. In what seems to be the earliest formal approach, Sethi

(1980) addresses the semantics of pre-ANSI C, using the denotational approach

and assuming left-to-right evaluation of expressions. In the work of Gurevich

and Huggins (1993) a formal semantics for C is given in the form of evolving

algebra. The semantics of evaluation order is based on the assumptions that no

interleaving is possible in expression evaluation (i.e. non-deterministic choice as

described in section 4.2 is used), and that side effects take place as they are generated.

Both assumptions do not agree with the ANSI standard. A higher level axiomatic

semantics is proposed by Black and Windley (1996), which removes side effects

242 N. S. Papaspyrou and D. Maćoš

from expressions and treats them as separate statements. In the work of Cook and

Subramanian (1994), a semantics for C is developed in the theorem prover Nqthm.

It employs an oracle for determining evaluation order and order of side-effects,

but this is not really used since the authors consider a subset of C with pure

expressions. Cook et al. (1994) have also developed a denotational semantics for C

based on temporal logic. Although left-to-right evaluation is assumed in this work,

the authors suggest how this can be remedied. However, it is not clear whether the

suggestion allows for interleaving and there is no treatment of sequence points. To

the best of our knowledge, the only semantics of ANSI C that correctly models

unspecified order of evaluation, side effects and sequence points is defined in the

work of Norrish (1997; 1998) in the form of operational semantics with small-step

reductions. No similar denotational approach is known to us.

6 Conclusion

The main contribution of this paper is an exploration of the denotational semantics

of evaluation order in eager expression languages with side effects. The semantics of

a simple example language is developed under various different evaluation strategies

in a unified way, based on monads and monad transformers which improve the

modularity and elegance of the result. By using a dialect of the functional program-

ming language Haskell as a metalanguage, instead of mathematical notation, the

developed semantics can be easily tested and evaluated. Taking into consideration

that the intended semantics of some of the studied evaluation strategies is quite

messy, it is also argued that the simplicity and conciseness of the result helps our

understanding of evaluation order in general.

Although the example language ELSE has been kept as primitive as possible, the

semantics of additional programming constructs (e.g. iteration, functions, variable

aliasing, exceptions) can be modelled easily, using the same modular framework. The

direct semantics monad transformer in the definition of M can be easily replaced by

a continuation monad transformer, which is needed in a complete formal treatment

of C. It is also easy to extend operator +:+ for any number of operands. The final

version of ELSE is a significant subset of the language of C expressions and its

semantics has been successfully modelled, including unspecified evaluation order,

order of side effects and the mechanism of sequence points. This is a valuable result

and a significant step towards a complete and accurate denotational description of

ANSI C.

A Additional code

Additional code that is necessary for executing the developed semantics in the

Haskell environment is given in this appendix. Also, for the sake of completeness,

some definitions from Haskell’s standard prelude are repeated here.

Identity function (repeated)

id :: a -> a
id x = x

Evaluation order semantics 243

Update function

update :: Eq a => a -> b -> (a -> b) -> a -> b
update i n f j = if i == j then n else f i

List monad (repeated)

instance Monad [] where
return v = [v]
[] >>= f = []
(v:vs) >>= f = f v ++ (vs >>= f)

Maybe monad (repeated)

data Maybe a = Just a | Nothing

instance Monad Maybe where
return = Just
Just x >>= k = k x
Nothing >>= k = Nothing

Printing states and computations

instance Show S where
showsPrec d s = ("state" ++)

instance Show a => Show (Id a) where
showsPrec d (Id x) = showsPrec d x

instance (State s, Show (m (a, s))) => Show (D s m a) where
showsPrec d (D r) = showsPrec d (r initial)

instance (Monad m, Show a, Show (m a)) => Show (R m a) where
showsPrec d (Computed v) = showsPrec d v
showsPrec d (Resume m) = showsPrec d (m >>= runR)

References

ANSI (1990) ANSI/ISO 9899-1990, American national standard for programming languages:

C. American National Standards Institute, New York, NY. Revision and redesignation of

ANSI X3.159-1989.

Black, P. E. and Windley, P. J. (1996) Inference rules for programming languages with side

effects in expressions. Proc. 9th International Conference on Theorem Proving in Higher

Order Logics (TPHOLs’96), pp. 51–60. Turku, Finland. Springer-Verlag.

Bloss, A. (1994) Path analysis and the optimization of nonstrict functional languages. ACM

Trans. Programming Lang. and Syst., 16(3), 328–369.

Boehm, H. J. (1982) A logic for expressions with side effects. Proc. ACM Symposium on

Principles of Programming Languages, pp. 268–280.

Cook, J. and Subramanian, S. (1994) A formal semantics for C in Nqthm. Technical Report

517D, Trusted Information Systems.

Cook, J., Cohen, E. and Redmond, T. (1994) A formal denotational semantics for C. Technical

Report 409D, Trusted Information Systems.

de Bakker, J. and de Vink, E. (1996) Control Flow Semantics. Foundations of Computing

Series. MIT Press.

244 N. S. Papaspyrou and D. Maćoš

Draghicescu, M. and Purushothaman, S. (1990) A compositional analysis of evaluation-order

and its application. Conference Record of the ACM Symposium on Lisp and Functional

Programming, pp. 242–250.

Espinosa, D. A. (1995) Semantic Lego. PhD thesis, Columbia University, Department of

Computer Science.

Filinski, A. (1996) Controlling effects. PhD thesis, Carnegie Mellon University, School of

Computer Science. (Also as Technical Report CMU-CS-96-119.)

Gurevich, Y. and Huggins, J. K. (1993) The semantics of the C programming language. In:

Börger, E. et al. (eds.), Selected papers from CSL’92: Lecture Notes in Computer Science,

702, pp. 274–308. Springer-Verlag.

Jones, M. P. (1994) The implementation of the Gofer functional programming system. Re-

search Report YALEU/DCS/RR-1030, Yale University, Department of Computer Science.

Jones, M. P. (1995) A system of constructor classes: Overloading and implicit higher-order

polymorphism. J. Functional Programming, 5(1), 1–37.

Kowaltowski, T. (1977) Axiomatic approach to side effects and general jumps. Acta informatica,

7, 357–360.

Liang, S. (1998) Modular monadic semantics and compilation. PhD thesis, Yale University,

Department of Computer Science.

Liang, S., Hudak, P. and Jones, M. (1995) Monad transformers and modular interpreters.

Conference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’95).

Moggi, E. (1990) An abstract view of programming languages. Technical Report ECS-LFCS-

90-113, University of Edinburgh, Laboratory for Foundations of Computer Science.

Mosses, P. D. (1990) Denotational semantics. In: van Leeuwen, J. (ed.), Handbook of

Theoretical Computer Science, vol. B, pp. 577–631. Elsevier.

Norrish, M. (1997) An abstract dynamic semantics for C. Technical Report TR-421, University

of Cambridge, Computer Laboratory.

Norrish, M. (1998)) C formalized in HOL. PhD thesis, University of Cambridge, Computer

Laboratory.

Papaspyrou, N. S. (1998) A formal semantics for the C programming language. PhD thesis,

National Technical University of Athens, Software Engineering Laboratory.

Peyton Jones, S. and Hughes, J. (eds.) (1999) Report on the programming language Haskell

98: A non-strict purely functional language. Available from http://haskell.org/.

Peyton Jones, S., Peyton Jones, M. and Meijer, E. (1997) Type classes: An exploration of

the design space. Haskell Workshop. Available from Haskell Workshop’s home page at

http://www.cse.ogi.edu/~jl/ACM/Haskell.html.

Sethi, R. (1980) A case study in specifying the semantics of a programming language. Proc.

7th Annual ACM Symposium on Principles of Programming Languages, pp. 117–130.

Wadler, P. (1992) The essence of functional programming. Proc. 19th Annual Symposium on

Principles of Programming Languages (POPL’92).

