
FACILITATING THE DEFINITION OF PROGRAMMING

LANGUAGES BY USING PARAMETRIC CONTEXT�FREE

GRAMMARS

NIKOLAOS S� PAPASPYROU AND VASSILIOS C� VESCOUKIS

National Technical University of Athens

Department of Electrical and Computer Engineering

Software Engineering Laboratory

Polytechnioupoli� ����� Zografou� Athens� Greece

Tel�	
����������� Fax� 	
�����������

E�mail� nickie�softlab�ntua�gr� bxb�cs�ntua�gr

In this paper we propose the use of a new kind of grammars� which we call para�
metric context�free grammars �PCFG� for the formal de�nition of programming
languages� It combines the simplicity of ordinary context�free grammars with
expressive power and context sensitivity that is encountered in signi�cantly more
complex formal models� As an example� we consider a small programming language
and present a simple and elegant formal de�nition of its syntax and semantics� The
language is based on the principles of Reynolds� Idealized Algol and combines a
number of orthogonal features� introduced one at a time� Compared to related
literature� our approach di	ers in providing
 �i� a rigid mathematical model for
the de�nition of syntax� emphasizing orthogonality� and �ii� a methodology for
systematically augmenting the semantic de�nition of programming languages� by
adding orthogonal features in a modular and elegant way�

� Parametric context�free grammars and PBNF

A natural extension of context�free grammars is obtained by introducing pa�
rameters denoting arbitrary strings in nonterminal symbols� A parametric
context�free grammar �PCFG� is de�ned as a tuple�

G � hT�NT� a� I� R� si

where T is a set of terminal symbols	 NT is a set of nonterminal symbols	
a � NT � N is a function returning the number of parameters that each
nonterminal symbol expects	 I is a set of identi�ers used as names for formal
parameters	 R is a set of production rules and s � NT is the initial nonter�
minal symbol	 which must satisfy a�s� �
� The sets T 	 NT and I must be
distinct and all sets must be �nite� Each rule r � R has the form�

nt�i�� � � � � ip� ��� �

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

where nt � NT is a nonterminal symbol	 p � a�nt� is the number of param�
eters that nt expects	 identi�ers ik � I are distinct and � � S�fi�� � � � � ipg�
where�a

S�P � �

��
n��

Sn�P �� with S��P � � � and

Sn���P � � �T � P � fnt���� � � � � �p� j nt � NT � p � a�nt� �
� � i � � � i � p� �i � Sn�P �g��

We should note here that S�P � is the set of strings consisting of� �i� ter�
minal symbols� �ii� formal parameters	 i�e� identi�ers drawn from the �nite
set P 	 I � and �iii� nonterminal symbols followed by the correct number of
actual parameters	 which are also elements of S�P ��

The one�step production relation
 for the parametric context�free gram�
mar G is de�ned on elements of S���	 that is	 strings containing no free formal
parameters� This restriction resolves a number of ambiguities that would re�
sult from the possible use of the same identi�er as a formal parameter in more
than one production rules� The production relation is de�ned as�

� p � N � �nt � NT � a�nt� � p� ��� �� ��� � � � � �p� � � S����
� nt���� � � � � �p��
 �� � i � i�� � � � � ip � I� �� � S�fi�� � � � � ipg��

��i� �� ��� � � � � ip �� �p� � � � �nt�i�� � � � � ip� ��� �� � R

where ��i� �� ��� � � � � ip �� �p� is the result of the textual substitution of all
formal parameters i�� � � � � ip � I by the actual values ��� � � � � �p � S��� in
string �� Textual substitution is formally de�ned in Fig� ��

The re�exive and transitive closure of
 is denoted by
� and the lan�
guage L�G� generated by G is de�ned by�

L�G� � f� � T � j s��
� �g 	 T �

It is easy to show that PCFGs are more expressible than CFGs� First	
notice that every CFG can be trivially transformed to an equivalent PCFG	
in which all nonterminal symbols expect no parameters� In addition	 consider
the simple PCFG with T � fxg	 NT � fs� pg	 I � fig	 a�s� �
	 a�p� � �	 and
three production rules� s�� ��� p�x�	 p�i� ��� i and p�i� ��� p�i i�� It is not hard

aThroughout this paper� we use the notation �� for the concatenation of strings � and
�� � for the empty string� L� L� for the concatenation of languages L� and L� de�ned as
L� L� � f�� j � � L��� � L�g� Ln for the concatenation of L with itself n times� de�ned
as Ln�� � LLn with L� � f�g� and L� for the Kleene star of L de�ned as L� �

S
�

n�� L
n�

Moreover� we use small Greek letters ��� �� ���� to denote strings�

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

� p � N � � i�� � � � � ip � I� ���� � � � � �p � S���� � t � T�

ti� �� ��� � � � � ip �� �p� � t

� p� k � N
 � � k � p� � i�� � � � � ip � I� ���� � � � � �p � S����
iki� �� ��� � � � � ip �� �p� � �k

� p� q � N � � i�� � � � � ip � I� ���� � � � � �p � S���� �nt � NT
 a�nt� � q�

���� � � � � �q � S�fi�� � � � � ipg��
nt���� � � � � �q�i� �� ��� � � � � ip �� �p� �

nt���i� �� ��� � � � � ip �� �p�� � � � � �q i� �� ��� � � � � ip �� �p��

� p � N � � i�� � � � � ip � I� ���� � � � � �p � S���� ���� �� � S�fi�� � � � � ipg��
��� ���i� �� ��� � � � � ip �� �p� �

��i� �� ��� � � � � ip �� �p���i� �� ��� � � � � ip �� �p�

Figure �� De�nition of textual substitution�

to prove that the language generated by this PCFG is L � fx�
n

j n � Ng	 i�e�
the language of strings over T with length equal to a power of �� However	 it
is known that this language is not context�free and therefore CFG PCFG�

Following the line of BNF and its variations for CFGs	 it is convenient
to de�ne a formalism for the representation of PCFGs	 which we call Para�
metric Backus�Naur Form �PBNF�� This formalism is based on BNF	 with
the additional feature that parameters of nonterminal symbols are written
inside curly braces ��f� and �g��	 in order to distinguish them from group�
ing parentheses� The braces are omitted altogether if a nonterminal symbol
expects no parameters� All other symbols and notational conventions from
BNF retain their ordinary meaning in PBNF	 i�e� nonterminal symbols are
enclosed in angular brackets ��	� and �
�� in order to be distinguished from
terminal symbols	 and a number of rules nt ��� ��� � � � � nt ��� �m	 with the
same nonterminal symbol on the left�hand side can be combined in a rule of
the form nt ��� �� j � � � j �m	 with the symbol �j� separating the alternative
productions�

� Applications in the de�nition of programming languages

Parametric context�free grammars are useful in the formal de�nition of lan�
guages with families of similar features� In fact	 a production rule for a para�
metric nonterminal symbol can often replace a family of similar production
rules in an ordinary context�free grammar� The uni�cation of similar features
facilitates the de�nition of the language�s type system and dynamic semantics�
In the following sections	 we build an experimental language by starting from

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

a simple core and gradually introducing new features that are orthogonal to
each other� The resulting language follows the principles of Idealized Algol� �

The methodology that is used for the de�nition of the language divides
the de�nition of semantics in three distinct consecutive phases� static	 typing
and dynamic semantics� ��� Denotational semantics is used for the dynamic
part� For each new feature introduced in the language	 the following steps are
required�

� The abstract syntax of the new orthogonal feature is introduced as a
parametric production rule�

� The production rules for the basic syntax domains are extended by adding
instances of the new feature	 whenever appropriate�

� The static semantics of the language is appropriately revised	 if necessary	
by extending existing domains and introducing new ones�

� One or more general typing rules for the new feature are introduced�

� The dynamic semantic domains are revised	 following the changes in the
static semantics�

� For each new typing rule	 one general semantic equation is speci�ed�

It should be noted that the revisions in the language�s semantics �static or
dynamic�	 that are required for the introduction of a new feature	 do not aect
the semantics of the language so far� This is implied by the orthogonality of
the features and is realized by the use of appropriate monads in the de�nition
of the semantics� ��� In a na��ve de�nition	 a monad is a triple hM�unitM� �Mi	
where M is a domain constructor	 unitM � A � M�A� and � �M � � M�A� �
�A � M�B�� � M�B� are polymorphic functions for arbitrary domains A
and B	 satisfying three monad laws� Monads are used in the semantics of
programming languages to represent computations� IfD is a domain of values	
then M�D� is the domain of computations returning results in D and unitM v
is usually the simplest computation returning the value v in D� If m is a
computation returning a value v in D	 then the computation denoted by
m �M f is the combined computation of m followed by computation f v�

� Core language

We begin by de�ning a simple core language with two basic types� integer and
boolean� Expressions in this language are either constants of the two types or

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

applications of unary and binary operators on other expressions� Statements
in the language are trivial� However	 since the notion of environment is crucial
in our perception of any programming language	 the core language supports
values denoted by identi�ers	 without however supplying any mechanism for
binding identi�ers to values� The abstract syntax is given by the following
two production rules	 where 	id
 and 	num
 represent the syntactic classes
of identi�ers and integer constants respectively�

	expr
 ��� 	id
 j 	num
 j true j false j �	expr

j 	expr
		expr
 j � � �

	stmt
 ��� skip

The static semantics of the core language requires the de�nition of the
following static domains	 representing data and phrase types as well as static
environments	 which map identi�ers to phrase types�b

� � TypeDat � int j bool
� � TypePhr � exp��� j stmt
e � TypeEnv � Ide � TypePhr �U

A number of static semantic functions are also required for extracting static
type information from syntactic elements� Function fj	num
jg � N 	 for ex�
ample	 returns the value of an integer constant and function fj	id
jg � Ide
maps the syntactic class of identi�ers to the corresponding semantic domain�

The following typing rules de�ne the typing semantics of the core lan�
guage� The static environment is only used to obtain the denoted values of
identi�ers and is not updated by any typing rule�

I � fj	id
jg e I � inl �
e � 	id
 � � e � 	num
 � exp�int �

e � true � exp�bool �
e � 	expr
 � exp�bool �
e � �	expr
 � exp�bool �

e � 	expr
� � exp�int �
e � 	expr
� � exp�int �

e � 	expr
� � 	expr
� � exp�int� e � skip � stmt

bIn the rest of this paper� Ide is the domain of identi�ers� U is a domain with a single
ordinary element u� N is the �at domain of integer numbers and T is the �at domain of
truth values�

pbnf�pl� submitted to World Scienti�c on October ��� ����

Following the denotational approach	 	 the semantics of a well�formed
phrase P of type � in environment e can be represented by a semantic function
of the form�

��e � P � � �� � ��e ��� G���� ���

where ��e �� is the domain of dynamic environments corresponding to the static
environment e	 ��� �� is the domain of dynamic semantic values corresponding
to phrase type � and G is an appropriate monad	 representing computations
in the core language� The dynamic semantic domains for data and phrase
types are de�ned next	 together with the domain of dynamic environments	
which is a dependent function domain�

��exp����� � ��� ��
��stmt �� � U

�� int �� � N
��bool �� � T

 � ��e �� � I � Ide � ��efIg ��

��efIg �� �

�
G���� ��� � if e I � inl �
U � otherwise

Four representative dynamic semantic equations	 corresponding to some
of the language�s typing rules	 are given below�

��e � I � � �� � � � ��e ��� I

��e � 	num
 � exp�int��� � � � ��e ��� unit fj	num
jg
��e � 	expr
� � 	expr
� � exp�int ��� � � � ��e ���

��e � 	expr
� � exp�int ��� � ��n� � N �

��e � 	expr
� � exp�int ��� � ��n� � N � unit �n� � n����
��e � skip � stmt �� � � � ��e ��� unit u

Furthermore	 the auxiliary function bind 	 de�ned below	 is used in the fol�
lowing sections in order to bind identi�ers to denoted values�

bind � I � Ide � � � TypePhr � G���� ��� � ��e ��� G���efI �� �g ���
bind � � I � Ide� � � � TypePhr� � x � G���� ���� � � ��e ���

unit �� I � � Ide � �I � I �� � x � I ��

� Conditional

The use of the conditional construct applies very similarly to the basic syn�
tactic domains	 statements and expressions� In other words	 the conditional
is a feature orthogonal to the language�s core and should be treated uniformly
if an elegant language de�nition is sought� In order to add the conditional
construct	 the abstract syntax of the language is extended as follows� The

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

last parametric production rule de�nes the syntax of the new construct and
exhibits context�sensitive characteristics�

	expr
 ��� � � � j 	cond
f	expr
g
	stmt
 ��� � � � j 	cond
f	stmt
g

	cond
f�g ��� if	expr
 then� else�

One more general typing rule is required for the conditional construct�
The rule corresponds to the last production rule and is given below�

e � 	expr
 � exp�bool � e � �� � � e � �� � �

e � if	expr
 then�� else�� � �

The dynamic semantic equation that corresponds to the new typing rule
is given below�

��e � if	expr
 then�� else�� � � �� � � � ��e ���
��e � 	expr
 � exp�bool ��� � �� b � T �

b� ��e � �� � � �� � ��e � �� � � �� �

 Sequential execution

The next thing to introduce is sequential execution	 which can also be treated
as an orthogonal feature� The new version of the language allows a statement
to be executed before another statement or an expression	 and the result is a
statement or an expression respectively� The following modi�cations must be
made in the de�nition of the language�

Abstract syntax�

	expr
 ��� � � � j 	seq
f	expr
g
	stmt
 ��� � � � j 	seq
f	stmt
g

	seq
f�g ��� 	stmt
 ��

Typing rule�

e � 	stmt
 � stmt e � � � �

e � 	stmt
 �� � �

Dynamic semantic equation�

��e � 	stmt
 �� � � �� � � � ��e ���
��e � 	stmt
 � stmt �� � ��u � U � ��e � � � � �� �

pbnf�pl� submitted to World Scienti�c on October ��� ����

� Variables

The introduction of local variables is the next revision of the language that we
attempt� We allow variables to be local to both expressions and statements	
and thus they can also be considered as orthogonal to the rest of the language	
so far� A parametric production rule is again used to emphasize orthogonal�
ity� In order to use variables	 two additional language constructs must be
introduced� dereference and assignment� Also	 a new syntactic domain must
be de�ned	 to represent the names of data types�

	expr
 ��� � � � j 	var
f	expr
g j deref	expr

	stmt
 ��� � � � j 	var
f	stmt
g j 	expr
 ��	expr

	var
f�g ��� new	id
 �	data
 in�

	data
 ��� int j bool

With the introduction of variables	 a new phrase type var��� is required
for variables of data type � � The static semantic domain TypePhr is ex�
tended appropriately�

TypePhr � � � � j var���

In the typing rules that de�ne the typing of the newly introduced feature	
the static environment is used in variable de�nitions	 mapping a new variable
identi�er of data type � to the phrase type var���� The static semantic
function fj	data
jg � TypeDat must be de�ned	 to map the new syntactic
domain to the static semantic domain of data types� The other typing rules
are straightfoward�

I � fj	id
jg � � fj	data
jg efI �� var���g � � � �

e � new	id
 �	data
 in� � �

e � 	expr
 � var���
e � deref	expr
 � exp���

e � 	expr
� � var��� e � 	expr
� � exp���
e � 	expr
� ��	expr
� � stmt

A signi�cant revision must be made in the dynamic semantics of the
language	 at this point� In particular	 the computation monad Gmust support
a store	 typically a map from objects in the store to dynamic data values of
the appropriate type� The dynamic semantic domain Obj is introduced for
representing objects in the store	 and the following auxiliary functions are

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

required for allocating	 storing and retrieving objects�

newObj � TypeDat � G�Obj �
getValue � � � TypeDat � Obj � G���� ���
putValue � � � TypeDat � Obj � ��� ��� G�U �

The implementations of an appropriate monad G	 domain Obj and auxiliary
functions are not included in this paper	 since they are not of primary impor�
tance� The dynamic semantic domain for the new phrase type is given below�
in the dynamic semantics	 variables are denoted by objects in the store�

��var����� � Obj

Finally	 the additional dynamic semantic equations are given below� The three
auxiliary functions	 as well as bind 	 are used in these equations�

��e � new	id
 �	data
 in� � � �� � � � ��e ���
newObj � � �� a � Obj �
bind I var��� �unit a� � �� � � ��efI �� var���g ���
��efI �� var���g � � � � �� ���

��e � deref	expr
 � exp����� � � � ��e ���
��e � 	expr
 � var����� � �� a � Obj � getValue � a�

��e � 	expr
� ��	expr
� � stmt �� � � � ��e ���
��e � 	expr
� � var����� � �� a � Obj �
��e � 	expr
� � exp����� � �� v � ��� ��� putValue � a v��

 Lambda abstraction

In principal	 lambda abstraction allows the de�nition of functions and proce�
dures taking a single parameter of a given type� In our approach	 evaluation
of parameters will be lazy	 that is	 parameters will not be evaluated when
a function or procedure is called but whenever their value is needed� Eager
evaluation is more restrictive in what can be passed as a parameter� The
intended orthogonality implies that all well�formed phrases of the language
may participate in lambda abstractions�c

The abstract syntax of the language is again extended to incorporate
lambda abstractions and applications� The syntactic class of phrases that can

cIn our language� valid phrase types correspond grossly to expressions �including variable
references� and statements� so lambda abstractions can be regarded as unnamed functions
or procedures� However� if the types of the language themselves were considered a phrase
type� a third kind of lambda abstraction would be natural� In this way� it would be possible
to introduce parametric types and parametric polymorphism in the language�

pbnf�pl� submitted to World Scienti�c on October ��� ���� �

be passed as arguments is represented by the nonterminal symbol	arg
	 that
is	 parameters may be expressions or statements� In addition	 the nonterminal
symbol 	type
 must be introduced for representing the syntactic class of
parameter types which	 in our approach	 covers the whole category of phrase
types�

	expr
 ��� � � � j 	abs
f	expr
g
	stmt
 ��� � � � j 	abs
f	stmt
g

	abs
f�g ��� lambda	id
 �	type
 �� j �	arg

	arg
 ��� 	expr
 j 	stmt

	type
 ��� 	data
 exp j stmt j 	data
var j 	type
 ��	type

In the static semantics of the language	 a new phrase type must be added	
namely the type func���� ��� of higher�order functions	 taking a parameter of
type �� and returning a result of type ���

TypePhr � � � � j func���� ���

Also	 a new static semantic function fj	type
jg � TypePhr must be de�ned	
for mapping the syntactic class of parameter types to the static domain of
phrase types�

The new typing rules are straightforward� The static environment is again
used for storing the type of the parameter�

I � fj	id
jg �� � fj	type
jg efI �� ��g � � � ��
e � lambda	id
 �	type
 �� � func���� ���

e � � � func���� ��� e � 	arg
 � ��
e � �	arg
 � ��

In the revision of the dynamic semantic domains	 we are faced with the
problem of choosing a dynamic domain for the phrase type of functions� Since
we have adopted lazy evaluation	 a reasonable option is the domain of func�
tions from computations of the parameter to computations of the result� In
this way	 the parameters are computed every time they are needed �call by
name��

�� func���� ����� � G����� ���� G����� ���

Having this settled	 it is relatively easy to write the dynamic semantic equa�
tions for the new constructs�

pbnf�pl� submitted to World Scienti�c on October ��� ���� ��

��e � lambda	id
 �	type
 �� � func���� ����� � � � ��e ���
unit ��x � G����� ����

bind I �� x � �� � � ��efI �� ��g ���
��efI �� ��g � � � �� ��

���
��e � �	arg
 � �� �� � � � ��e ���

��e � � � func���� ����� � �� f � G����� ���� G����� ����
f���e � 	arg
 � �� �� ��

� Recursion

Recursion is the last feature that we will consider in this paper� In the ap�
proach that we use	 the new feature is not orthogonal to lambda abstraction	
since it depends on it� However	 it is orthogonal to all other features of the
language that have been considered so far� Two illustrative examples will be
very helpful in understanding the way in which we introduce recursion in the
language� First	 consider the factorial function �assuming a range of integer
and boolean operators��

rec �lambda f � int exp �� int exp� lambda n � int exp�

if n�� then � else n 	 f �n��

The parameter of the recursion�s body provides a way to refer to the result
of the recursion� Consider also the following encoding of a simple while state�
ment	 calculating the sum of numbers between � and �

� The example is
less intuitive and	 this time	 the parameter and the result of the recursion are
statements	 instead of functions�

new s � int in

new i � int in

s �� �� i �� ��

rec �lambda c � stmt�

if deref i �� ��� then

s �� deref s deref i� i �� deref i �� c

else skip

In order to introduce recursion	 we extend the abstract syntax of the
language as follows�d

dReturning to the footnote of the previous section� the combination of recursion with the
parametric types would produce recursively de�ned types� which are present in most popular
programming languages�

pbnf�pl� submitted to World Scienti�c on October ��� ���� ��

	expr
 ��� � � � j 	req
f	expr
g
	stmt
 ��� � � � j 	req
f	stmt
g

	req
f�g ��� rec�

The typing rule for the new construct is given below�

e � � � func��� ��
e � rec� � �

Finally	 the dynamic semantic equation uses the least �xed point operator
on domain G���� ����e

��e � rec� � � �� � � � ��e ��� fix ���e � � � func��� ���� �

� Conclusion

As demonstrated in this paper	 programming languages composed of a num�
ber of orthogonal features can be given simple and elegant formal de�nitions�
Apart from the language features that have been considered in the previ�
ous sections	 it is also possible to treat others in a similar way	 including
as records	 elements of object�oriented programming and polymorphic types�
The proposed methodology uses the new formalism of parametric context�free
grammars to enhance the modularity and elegance of programming language
de�nitions�

On the one hand	 the use of PCFGs in the de�nition of syntax emphasizes
the presence of orthogonal features	 which interact with the basic syntactic
domains of the language in a uniform way	 and reduces the complexity of the
de�nition� On the other hand	 the presence of parametric production rules
facilitates the de�nition of semantics by reducing the number of typing rules
and of semantic equations that is required�

References

�� J� C� Reynolds� The essence of Algol� In J� W� de Bakker and J� C� van
Vliet	 editors	 Proceedings of the International Symposium on Algorithmic
Languages	 pages �������	 Amsterdam	 The Netherlands	 ����� North�
Holland�

�� N� S� Papaspyrou� A Formal Semantics for the C Programming Lan�
guage� PhD thesis	 National Technical University of Athens	 Software
Engineering Laboratory	 February �����

eThe least �xed point operator fix
 �a � a� � a has the property fix f � f �fix f��

pbnf�pl� submitted to World Scienti�c on October ��� ���� ��

�� N� S� Papaspyrou� A methodology for the de�nition of programming lan�
guages� In N� Mastorakis	 editor	 Software and Hardware Engineering for
the ��st Century� Proceedings of the 	rd Multiconference on Circuits� Sys�
tems� Communications and Computers
CSCC����	 pages ������ World
Scienti�c Publishing	 July �����

�� E� Moggi� An abstract view of programming languages� Technical Report
ECS�LFCS��
����	 University of Edinburgh	 Laboratory for Foundations
of Computer Science	 ���
�

�� P� Wadler� The essence of functional programming� In Proceedings of
the ��th Annual Symposium on Principles of Programming Languages

POPL����	 January �����

�� R� D� Tennent� Semantics of Programming Languages� Prentice Hall	
Englewood Clis	 NJ	 �����

pbnf�pl� submitted to World Scienti�c on October ��� ���� ��

