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In this paper we propose the use of a new kind of grammars, which we call para-
metric context-free grammars (PCFG) for the formal definition of programming
languages. It combines the simplicity of ordinary context-free grammars with
expressive power and context sensitivity that is encountered in significantly more
complex formal models. As an example, we consider a small programming language
and present a simple and elegant formal definition of its syntax and semantics. The
language is based on the principles of Reynolds’ Idealized Algol and combines a
number of orthogonal features, introduced one at a time. Compared to related
literature, our approach differs in providing: (i) a rigid mathematical model for
the definition of syntax, emphasizing orthogonality; and (ii) a methodology for
systematically augmenting the semantic definition of programming languages, by
adding orthogonal features in a modular and elegant way.

1 Parametric context-free grammars and PBNF

A natural extension of context-free grammars is obtained by introducing pa-
rameters denoting arbitrary strings in nonterminal symbols. A parametric
contezt-free grammar (PCFG) is defined as a tuple:

G=(T,NT,a,I,R,s)

where T is a set of terminal symbols, NT is a set of nonterminal symbols,
a: NT — N is a function returning the number of parameters that each
nonterminal symbol expects, I is a set of identifiers used as names for formal
parameters, R is a set of production rules and s € NT is the initial nonter-
minal symbol, which must satisfy a(s) = 0. The sets T, NT and I must be
distinct and all sets must be finite. Each rule » € R has the form:

nt(ig,...,0p) t=
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where nt € NT is a nonterminal symbol, p = a(nt) is the number of param-
eters that nt expects, identifiers i;, € I are distinct and a € S({i1,...,ip})
where:®

S(P) = [j S™(P), with S°(P)=0 and

SH(P) = (T U P U {nt(ai,...,ap) | nt € NT Ap=a(nt) A
AVi:1<i<p. a; €S*(P)}H*

We should note here that S(P) is the set of strings consisting of: (i) ter-
minal symbols; (ii) formal parameters, i.e. identifiers drawn from the finite
set P C I; and (iii) nonterminal symbols followed by the correct number of
actual parameters, which are also elements of S(P).

The one-step production relation = for the parametric context-free gram-
mar G is defined on elements of S((), that is, strings containing no free formal
parameters. This restriction resolves a number of ambiguities that would re-
sult from the possible use of the same identifier as a formal parameter in more
than one production rules. The production relation is defined as:

Vpe N.Vnt € NT :a(nt) =p. Vx,¥,51,..., 87 € S(0).

xnt(Bu,.. ., Bp) ¥ = xy¢ Ml Fiy,...,ip, €. o€ S{ir,...,ip})-
O{[il P—)Bl,...,ipf—)ﬁp]:’}/ AN (nt(il,...,ip) :::Oé)ER

where afi; — B1,...,1, — Bp] is the result of the textual substitution of all
formal parameters i1,...,7, € I by the actual values f31,...,8, € S(0) in
string a. Textual substitution is formally defined in Fig. 1.

The reflexive and transitive closure of = is denoted by =* and the lan-
guage L(G) generated by G is defined by:

LG)={aeT* | s()>*a}CT*

It is easy to show that PCFGs are more expressible than CFGs. First,
notice that every CFG can be trivially transformed to an equivalent PCFG,
in which all nonterminal symbols expect no parameters. In addition, consider
the simple PCFG with T' = {z}, NT = {s,p}, I = {i}, a(s) =0, a(p) = 1, and
three production rules: s() ::= p(z), p(¢) ::= 7 and p(7) := p(i 7). It is not hard

®Throughout this paper, we use the notation a3 for the concatenation of strings a and
B3, € for the empty string, L1 Lo for the concatenation of languages L; and Lo defined as
LiLy ={aB | a € Li AB € Lo}, L™ for the concatenation of L with itself n times, defined
as L"*1 = L Ly, with L9 = {€}, and L* for the Kleene star of L defined as L* = [J2 , L™.
Moreover, we use small Greek letters (a, 3, Xx,%) to denote strings.
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VpE N.Vit,...,ip €EI1.YB1,...,Bp € S(0). VLt € T.

t[ilHﬁl,...,ip}—),Bp]:t
Vp,kEN:1<k<p. Vii,...,ip €L.YB,...,0p € S(0).
ig[i1 = B1, ..., ip — Bp] = Br

Vp,g € N.Viy,...,ip €I.VB1,...,Bp € S(0). Vnt € NT : a(nt) = gq.
Vai,...,oaq € S({il,...,ip}).

nt(ai,...,aq)ir = Bi,...,ip — Bp] =
nt(al[il Hﬁl,...,ip }—),Bp},...,aq[il H,Bl,...,ip P—)BPD
Vpe N.Viy,...,ip € I.Vﬁl,...,ﬁp € S(@) Vai,as € S({il,...,ip}).
(a1 )iz = B1,- o ip = Bp] =
aifis = B1,...,ip = Bp] azlir = B1,...,ip — Bp]

Figure 1. Definition of textual substitution.

to prove that the language generated by this PCFG is L = {z2" | n € N}, i.e.
the language of strings over 7" with length equal to a power of 2. However, it
is known that this language is not context-free and therefore CFG C PCFG.

Following the line of BNF and its variations for CFGs, it is convenient
to define a formalism for the representation of PCFGs, which we call Para-
metric Backus-Naur Form (PBNF). This formalism is based on BNF, with
the additional feature that parameters of nonterminal symbols are written
inside curly braces (“{” and “}”), in order to distinguish them from group-
ing parentheses. The braces are omitted altogether if a nonterminal symbol
expects no parameters. All other symbols and notational conventions from
BNF retain their ordinary meaning in PBNF, i.e. nonterminal symbols are
enclosed in angular brackets (“<” and “>") in order to be distinguished from

terminal symbols, and a number of rules nt ::= ay,...,nt := a,,, with the
same nonterminal symbol on the left-hand side can be combined in a rule of
the form nt := a;y | ... | am, with the symbol “|” separating the alternative

productions.

2 Applications in the definition of programming languages

Parametric context-free grammars are useful in the formal definition of lan-
guages with families of similar features. In fact, a production rule for a para-
metric nonterminal symbol can often replace a family of similar production
rules in an ordinary context-free grammar. The unification of similar features
facilitates the definition of the language’s type system and dynamic semantics.
In the following sections, we build an experimental language by starting from
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a simple core and gradually introducing new features that are orthogonal to
each other. The resulting language follows the principles of Idealized Algol. *

The methodology that is used for the definition of the language divides
the definition of semantics in three distinct consecutive phases: static, typing
and dynamic semantics. 23 Denotational semantics is used for the dynamic
part. For each new feature introduced in the language, the following steps are
required:

e The abstract syntax of the new orthogonal feature is introduced as a
parametric production rule.

e The production rules for the basic syntax domains are extended by adding
instances of the new feature, whenever appropriate.

e The static semantics of the language is appropriately revised, if necessary,
by extending existing domains and introducing new ones.

e One or more general typing rules for the new feature are introduced.

e The dynamic semantic domains are revised, following the changes in the
static semantics.

e For each new typing rule, one general semantic equation is specified.

It should be noted that the revisions in the language’s semantics (static or
dynamic), that are required for the introduction of a new feature, do not affect
the semantics of the language so far. This is implied by the orthogonality of
the features and is realized by the use of appropriate monads in the definition
of the semantics. #° In a naive definition, a monad is a triple (M, unit,, =),
where M is a domain constructor, unity : A — M(A) and - %, - : M(A) x
(A — M(B)) — M(B) are polymorphic functions for arbitrary domains A
and B, satisfying three monad laws. Monads are used in the semantics of
programming languages to represent computations. If D is a domain of values,
then M(D) is the domain of computations returning results in D and unit, v
is usually the simplest computation returning the value v in D. If m is a
computation returning a value v in D, then the computation denoted by
m *, f is the combined computation of m followed by computation f v.

3 Core language

We begin by defining a simple core language with two basic types: integer and
boolean. Expressions in this language are either constants of the two types or
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applications of unary and binary operators on other expressions. Statements
in the language are trivial. However, since the notion of environment is crucial
in our perception of any programming language, the core language supports
values denoted by identifiers, without however supplying any mechanism for
binding identifiers to values. The abstract syntax is given by the following
two production rules, where <id> and <num>> represent the syntactic classes
of identifiers and integer constants respectively.

<expr> u= <id> | <num> | true | false | ! <expr>
| <expr>+ <expr> | ...
<stmt> ::= skip

The static semantics of the core language requires the definition of the
following static domains, representing data and phrase types as well as static
environments, which map identifiers to phrase types.?

7 : TypeDat = int | bool
6 : TypePhr = exp(r) | stmt
e : TypeEnv = Ide — TypePhr ¢ U

A number of static semantic functions are also required for extracting static
type information from syntactic elements. Function {<num>} : N, for ex-
ample, returns the value of an integer constant and function {<id>} : Ide
maps the syntactic class of identifiers to the corresponding semantic domain.

The following typing rules define the typing semantics of the core lan-
guage. The static environment is only used to obtain the denoted values of
identifiers and is not updated by any typing rule.

I ={<id>} eI=inlé
el <id> : 46 e F <num> : exp(int)

e - <expr> : exp(bool)
e F true : exp(bool) e F ! <expr> : exp(bool)

e F <expr>; : exp(int)
e F <expr>, : exp(int)
e b <expr>; + <expr>» : exp(int) e  skip : stmt

bIn the rest of this paper, Ide is the domain of identifiers, U is a domain with a single
ordinary element u, N is the flat domain of integer numbers and T is the flat domain of
truth values.
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Following the denotational approach, ¢ the semantics of a well-formed
phrase P of type 6 in environment e can be represented by a semantic function
of the form:

[er P :0] : [e]— G(9])

where [e] is the domain of dynamic environments corresponding to the static
environment e, [6] is the domain of dynamic semantic values corresponding
to phrase type € and G is an appropriate monad, representing computations
in the core language. The dynamic semantic domains for data and phrase
types are defined next, together with the domain of dynamic environments,
which is a dependent function domain.

%gfri;g])]] = [ p i [e] = I:Ide— [e{I}]
. ~ (G0 , ifel=inlg
FN I N (T

Four representative dynamic semantic equations, corresponding to some
of the language’s typing rules, are given below.

[eFT:60] = Ap:fe]- pI
[e F <num> : exp(int)] = MAp:[e]. unit {<num>}
[e F <expr>; + <expr>y : exp(int)] = Ap:[e].
[e F <expr>; : exp(int)] p * (Ang: N.
[e F <expr>; : exp(int)] p * (Ang: N. unit (ny + n2)))
[e F skip : stmt] = MAp:[e]. unit u

Furthermore, the auxiliary function bind, defined below, is used in the fol-
lowing sections in order to bind identifiers to denoted values.

bind : I:Ide — 6:TypePhr — G([0]) — [e] — G([e{I — 6}])
bind = XI:lde. \6: TypePhr. Az :G([0]). Ap:[e].
unit A\I': Ide. (I=1I')—=z, pI')

4 Conditional

The use of the conditional construct applies very similarly to the basic syn-
tactic domains, statements and expressions. In other words, the conditional
is a feature orthogonal to the language’s core and should be treated uniformly
if an elegant language definition is sought. In order to add the conditional
construct, the abstract syntax of the language is extended as follows. The
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last parametric production rule defines the syntax of the new construct and
exhibits context-sensitive characteristics.

<expr> = ... | <cond>{<expr>}
<stmt> = ... | <cond>{<stmt>}

<cond>{a} := if <expr>thenaelsea

One more general typing rule is required for the conditional construct.
The rule corresponds to the last production rule and is given below.

e - <expr> : exp(bool) et a;:0 el ay:0
e F if<expr>thena; elseasy : 0

The dynamic semantic equation that corresponds to the new typing rule
is given below.

[e F if <expr>thenajelseas : 0] = Xp:[e].
[e - <expr> : exp(bool)] p * (Ab:T.
b—oJebkar:0]p, [er ax:0]p)

5 Sequential execution

The next thing to introduce is sequential execution, which can also be treated
as an orthogonal feature. The new version of the language allows a statement
to be executed before another statement or an expression, and the result is a
statement or an expression respectively. The following modifications must be
made in the definition of the language.

Abstract syntax:

<expr> u=... | <seq>{<expr>}
<stmt> u=... | <seq>{<stmt>}

<seq>{a} == <stmt>;a
Typing rule:

el <stmt>:stmt el a:0
ek <stmt>;a : 0

Dynamic semantic equation:

[eF <stmt>;a: 0] = Ap:[e].
[e b <stmt> : stmt] p * (Au:U. e a: 0] p)
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6 Variables

The introduction of local variables is the next revision of the language that we
attempt. We allow variables to be local to both expressions and statements,
and thus they can also be considered as orthogonal to the rest of the language,
so far. A parametric production rule is again used to emphasize orthogonal-
ity. In order to use variables, two additional language constructs must be
introduced: dereference and assignment. Also, a new syntactic domain must
be defined, to represent the names of data types.

<expr> u=... | <var>{<expr>} | deref <expr>
<stmt>  n=... | <var>{<stmt>} | <expr>:= <expr>

<var>{a} = new <id>: <data> in«
<data> u=int | bool

With the introduction of variables, a new phrase type var(r) is required
for variables of data type 7. The static semantic domain TypePhr is ex-
tended appropriately.

TypePhr = ... | var(r)

In the typing rules that define the typing of the newly introduced feature,
the static environment is used in variable definitions, mapping a new variable
identifier of data type 7 to the phrase type var(r). The static semantic
function {<data>]} : TypeDat must be defined, to map the new syntactic
domain to the static semantic domain of data types. The other typing rules
are straightfoward.

I = {<id>} 7 = {<data>]} e{l—var(n)}Fa:6
e F new <id>:<data>ina : 6

e b <expr> : var(r)
e F deref <expr> : exp(r)

e F <expr>; : var(t) el <expr>y : exp(r)
e F <expr>p:=<expr>jy : Stmt

A significant revision must be made in the dynamic semantics of the
language, at this point. In particular, the computation monad G must support
a store, typically a map from objects in the store to dynamic data values of
the appropriate type. The dynamic semantic domain Obj is introduced for
representing objects in the store, and the following auxiliary functions are
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required for allocating, storing and retrieving objects.

newObj : TypeDat — G(Obj)
getValue : t: TypeDat — Obj — G([7])
putValue : 7: TypeDat — Obj — [7] — G(U)

The implementations of an appropriate monad G, domain Obj and auxiliary
functions are not included in this paper, since they are not of primary impor-
tance. The dynamic semantic domain for the new phrase type is given below:
in the dynamic semantics, variables are denoted by objects in the store.

[var(r)] = Obj

Finally, the additional dynamic semantic equations are given below. The three
auxiliary functions, as well as bind, are used in these equations.

[e F new<id>:<data>ina : 0] = Ap:[e].
newObj 7 = (Aa: Obj.
bind I var(r) (unit a) p *= (Ap' : [e{I — var(7)}].
[e{I— var(r)} F a: 8] p'))
[e F deref<expr> : exp(m)] = Ap:[e].
[e b <expr> : var(t)] p * (Aa: Obj. getValue T a)
[e b <expr>;:=<expr>s : sStmt] = Ap:[e].
[e F <expr>; : var(r)] p * (Aa: Obj.
[e b <expr>s : exp(T)] p * (A\v:[7]. putValue T a v))

7 Lambda abstraction

In principal, lambda abstraction allows the definition of functions and proce-
dures taking a single parameter of a given type. In our approach, evaluation
of parameters will be lazy, that is, parameters will not be evaluated when
a function or procedure is called but whenever their value is needed. Eager
evaluation is more restrictive in what can be passed as a parameter. The
intended orthogonality implies that all well-formed phrases of the language
may participate in lambda abstractions.¢

The abstract syntax of the language is again extended to incorporate
lambda abstractions and applications. The syntactic class of phrases that can

°In our language, valid phrase types correspond grossly to expressions (including variable
references) and statements, so lambda abstractions can be regarded as unnamed functions
or procedures. However, if the types of the language themselves were considered a phrase
type, a third kind of lambda abstraction would be natural. In this way, it would be possible
to introduce parametric types and parametric polymorphism in the language.
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be passed as arguments is represented by the nonterminal symbol <arg>, that
is, parameters may be expressions or statements. In addition, the nonterminal
symbol <type> must be introduced for representing the syntactic class of
parameter types which, in our approach, covers the whole category of phrase

types.

<expr> u=... | <abs>{<expr>}
<stmt> u=...| <abs>{<stmt>}

<abs>{a} :=lambda <id>: <type>.a | a <arg>

<arg> n= <expr> | <stmt>
<type> u= <data>exp | stmt | <data>var | <type>-> <type>

In the static semantics of the language, a new phrase type must be added,
namely the type func(fy,02) of higher-order functions, taking a parameter of
type 0; and returning a result of type 6s.

TypePhr = ... | func(6,,90-)

Also, a new static semantic function {<type>[} : TypePhr must be defined,
for mapping the syntactic class of parameter types to the static domain of
phrase types.

The new typing rules are straightforward. The static environment is again
used for storing the type of the parameter.

I = {<id>} 61 = {<type>} e{I—6}F a: 6
e F lambda <id>: <type>.a : func(6y,6s)

e a: func(f,0:) et <arg>: 6
ek a<arg> : 6,

In the revision of the dynamic semantic domains, we are faced with the
problem of choosing a dynamic domain for the phrase type of functions. Since
we have adopted lazy evaluation, a reasonable option is the domain of func-
tions from computations of the parameter to computations of the result. In
this way, the parameters are computed every time they are needed (call by
name).

[func(6.,6:)] = G([6:]) — G([6:])

Having this settled, it is relatively easy to write the dynamic semantic equa-
tions for the new constructs.
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[e F lambda <id>: <type>.a : func(61,62)] = Xp:[e].
unit (Az : G([61]).
bind I 6, zp x (Ap':[e{l— 0:}].
[e{I — 6:} F a : 65] p))
[e F a<arg>:0:] = Ap:[e].
le b a: func(6:,62)] p * (Af:G([6:]) — G([62])-
f([e b <arg> : 6:] p))

8 Recursion

Recursion is the last feature that we will consider in this paper. In the ap-
proach that we use, the new feature is not orthogonal to lambda abstraction,
since it depends on it. However, it is orthogonal to all other features of the
language that have been considered so far. Two illustrative examples will be
very helpful in understanding the way in which we introduce recursion in the
language. First, consider the factorial function (assuming a range of integer
and boolean operators).

rec (lambda f : int exp -> int exp. lambda n : int exp.
if n=0 then 1 else n * £ (n-1))

The parameter of the recursion’s body provides a way to refer to the result
of the recursion. Consider also the following encoding of a simple while state-
ment, calculating the sum of numbers between 1 and 100. The example is
less intuitive and, this time, the parameter and the result of the recursion are
statements, instead of functions.

new s : int in
new i : int in
s :=0; 1 :=1;
rec (lambda c : stmt.
if deref i <= 100 then
s := deref s + deref i; i := deref i + 1; c
else skip)

In order to introduce recursion, we extend the abstract syntax of the
language as follows.?

dReturning to the footnote of the previous section, the combination of recursion with the
parametric types would produce recursively defined types, which are present in most popular
programming languages.
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<expr> u=... | <req>{<expr>}
<stmt> u=... | <req>{<stmt>}

<req>{a} n=reca
The typing rule for the new construct is given below:

e - a: func(d,0)
et reca : 0

Finally, the dynamic semantic equation uses the least fixed point operator
on domain G([8]).¢

[e Freca: 0] = Xp:[e]. fix (Je - a: func(,6)] p)

9 Conclusion

As demonstrated in this paper, programming languages composed of a num-
ber of orthogonal features can be given simple and elegant formal definitions.
Apart from the language features that have been considered in the previ-
ous sections, it is also possible to treat others in a similar way, including
as records, elements of object-oriented programming and polymorphic types.
The proposed methodology uses the new formalism of parametric context-free
grammars to enhance the modularity and elegance of programming language
definitions.

On the one hand, the use of PCFGs in the definition of syntax emphasizes
the presence of orthogonal features, which interact with the basic syntactic
domains of the language in a uniform way, and reduces the complexity of the
definition. On the other hand, the presence of parametric production rules
facilitates the definition of semantics by reducing the number of typing rules
and of semantic equations that is required.
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