
A CASE STUDY IN SPECIFYING THE DENOTATIONAL SEMANTICS OF C

N. S. PAPASPYROU
National Technical University of Athens
Department of Electrical and Computer Engineering
Division of Computer Science, Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou, Athens, Greece.
Tel. +30-1-7722486, Fax. +30-1-7722519.

1. Introduction

C is a well known and very popular general purpose programming language which rep-
resents, together with its descendants, a strong and indisputable status quo in the current
software industry. Its semantics is informally defined in the ISO/IEC 9899:1990 stan-
dard [1] using natural language. This causes a number of ambiguities and problems of
interpretation, clearly manifested in numerous discussions taking place in the newsgroup
comp.std.c. It is worthwhile noticing that members of the standardization committee
and other distinguished researchers participating in the discussions often give contradic-
tory answers when asked about the intended semantics of surprisingly small programs,
and that their answers are usually based on different possible interpretations of the stan-
dard. With all this in mind, the necessity for a formal description of the semantics of
C becomes apparent. Such a description would serve as a precise standard for compiler
implementation and would provide a basis for reasoning about properties of C programs.

The semantics of many popular programming languages have been formally specified
in literature using various formalisms. However, in most cases these specifications are
incomplete, inaccurate or both, in varying degrees. By incomplete we mean that they do
not specify the semantics of the whole language but that of a subset, often leaving out the
most complicated features. By inaccurate we mean that the formal descriptions are not
entirely correct, either because of intended simplifications or by mistake.

Significant research has been conducted recently concerning semantic aspects of C.
In what seems to be the earliest formal approach, Sethi addresses mainly the semantics
of pre-ANSI C declarations, using the denotational approach and making several simpli-
fications, e.g. requiring left-to-right evaluation [2]. In a different paper, Sethi addresses
the semantics of C’s control structures using again a denotational framework [3]. In the
work of Gurevich and Higgins a formal semantics for C is given using the formalism of
evolving algebras [4]. Again, a number of simplifications are made, e.g. no interleaving
is possible in expression evaluation and side effects are assumed to take place at the same

1

time that they are generated. In the work of Cook and Subramanian an incomplete seman-
tics for C is developed in the theorem prover Nqthm [5]. Cook et al. have also developed
a denotational semantics for C based on temporal logic, which again makes a number
of simplifying assumptions, mainly concerning evaluation order [6]. An operational se-
mantics for C has been sketched, in terms of a random access machine, as a part of the
MATHS project in California State University. Finally, in the work of Norrish a complete
operational semantics for C is given using small-step reductions [7]. To the best of our
knowledge, this is the only approach that formalizes correctly C’s unspecified order of
evaluation and sequence points. No similar denotational approach is known to us.

This chapter summarizes the results of our research, aiming at the development of
an accurate and complete formal description for the semantics of the C programming
language [8]. For this purpose, we have chosen the denotational approach.1 As a remedy
for the most important drawback of classic denotational semantics, its lack of modularity,
we have used a number of monads which represent different aspects of computations.2 In
this way, the developed semantics was significantly improved in terms of modularity and
elegance and its development was greatly facilitated.

2. Overview of the semantics

Our denotational specification for the semantics of C can be best understood as part of
the abstract interpreter depicted in Fig. 1. The left part of the figure is a module dia-
gram of the interpreter, showing the chain of actions performed and the processed data.
Each action takes as input the result of previous actions. The initial piece of data is a
source program and the final result is a representation of this program’s meaning, i.e. a
description of the program’s behaviour when it is executed. The right part of the figure
presents parts of a small example that will be discussed gradually until the end of this
section. It should be noted that the example is simplified and does not correctly specify
the semantics of C.

The interpreter consists of three layers, each containing a series of actions. Syntactic
analysis aims at checking the syntactic validity of the source program and signalling syn-
tax errors. Syntactically correct programs are transformed to abstract parse trees, which
represent their structure in detail. Semantic analysis is used to define aspects of C that
cannot be defined by a context-free grammar. It aims at checking the semantic validity
of the program and signalling semantic errors, e.g. use of undeclared identifiers or type
mismatches. Finally, execution aims at describing the meaning of programs. Our research
mainly focuses on the last two layers, containing a total of three actions: static semantics,
typing semantics and dynamic semantics. A brief overview of these actions and their col-
laboration is given in this section. The following three sections present the basics of each
action in more detail.

Static semantics keeps track of identifiers that are defined in the source program. It
aims at detecting static semantic errors, such as the redefinition of an identifier in the
same scope, as well as associating identifiers with appropriate types or values. For each

1Introductions to denotational semantics, including useful bibliography, can be found in [9] and [10].
2Introductions to monads and their use in denotational semantics can be found in [11] and [12].

2

Figure 1: An abstract interpreter for C.

Lexical Analysis

Concrete Syntax

Abstract Syntax

Static Semantics

Typing Semantics

Dynamic Semantics

C Program

Meaning

Tokens

Parse Tree

Abstract
Parse Tree

Type
Environment

Typing
Derivation

S
em

an
ti

c
A

n
al

ys
is

S
yn

ta
ct

ic
 A

n
al

ys
is

E
xe

cu
ti

o
n

Source program:

int main () {
int x; /* change x */
return x++;

}

Abstract syntax:
Declaration

Specifier

int

Init-Declarator

Declarator Initializer

x None

Expression

Unary Assignment

Identifier ++ (postfix)

x

Static semantics:
e � fjint x;jg e�

� f “x” �� obj �int� noqual� g

Typing semantics:

e � x � normal �obj �int� noqual��

e � x � lvalue �obj �int� noqual��

e � x++ � exp �int�

Dynamic semantics:

��x++��exp �int� s �

let ha� s�i � ��x ��lvalue �obj �int�noqual�� s
v � s��a�

in hv� s��a �� v � ��i

syntactically well-formed program phrase P , its static semantic meaning is denoted by
fjP jg. Such meanings are typically types, type environments, i.e. associations of identi-
fiers to types, or functions handling these two. Considering the simple C program that is
used as an example in Fig. 1, let us isolate the declaration “int x;”. The static semantic
meaning of this declaration is a function that updates the type environment by declaring
an integer variable “x”. If e� is the empty type environment, containing no declarations,
then the result of fjint x;jg applied to e� is the updated environment e shown in Fig. 1,
which contains a declaration for “x”.

Typing semantics focuses on program phrases. It aims at the detection of type-
mismatch errors, such as assignment to a constant value, and at associating syntactically
well-formed phrases with appropriate phrase types. Such associations are given by means
of typing derivations, i.e. formal proofs that phrases are well-typed. Typing derivations
use inference rules to prove typing judgements, such as “e � P � �”, which states that
phrase P has type � in environment e. In the same example program of Fig. 1, let us now
consider the expression “x++”. Assuming that the static semantic analysis has resulted in
type environment e, it is possible to derive that “x++” is an expression that computes an
integer value, in other words “e � x++ � exp �int�”. A sketch of such a typing derivation
is shown in Fig. 1. The derivation makes use of two inference rules, stating in short that

3

variables are l-values and how l-values can be used as operands of postfix “++”. The
initial assumption means that “x” is declared to be a variable of type int in e, and is not
further analyzed here.

Finally, dynamic semantics aims primarily at defining the execution behaviour of
well-typed programs. For each well-typed program phrase P of type �, its dynamic se-
mantic meaning is denoted by ��P ���. Such a meaning is typically a function describing
some aspect of the execution of P . The typing derivation for P is important since it de-
termines the way in which the dynamic semantics will be calculated. Going back once
more to the same example, let us consider again the expression “x++”, together with its
typing derivation. Assuming a simple direct semantics for the dynamic meaning of ex-
pressions, the dynamic semantics for “x++” is given in Fig. 1. It is a function, taking
the initial program state s and returning the result of the expression’s evaluation and the
final program state. Notice that the typing derivation dictates the types that are used for
the dynamic semantics of phrases on both sides of the equation. For the sake of clarity, a
represents the address of the object designated by the l-value “x”, s� is the program state
after evaluating “x” and v is the value stored in a at the program state s�. The result of
the evaluation is v, and the final program state is the same as s�, with the value stored in
a incremented by one.

3. Static semantics

The static semantics of C can be thought of as the symbol table in our abstract interpreter.
It calculates the environments containing type information for all identifiers defined in
the source program and, for this reason, it mainly deals with the program’s declarations.
At the same time static semantic errors are detected. Apart from the complicated syntax
of declarations that is characteristic of C, the static semantics is further perplexed by the
presence of incomplete types in C’s type system. Forward declarations of tags used in the
recursive definition of structures and unions are also sources of complexity.

The domains that we use in the static semantics of C are summarized in Fig. 2. Most
of them are defined as coalesced sums, by enumeration of their elements. The domain
ordering relation v is crucial in the treatment of incomplete types: x v y denotes that
y is a better approximation of a possibly incomplete element x. Notice the number of
different types that are dictated by C’s type system. Among them, data types provide the
basis for the type system, representing types that C programs can manipulate as first class
elements. Object types are associated with objects in memory and consist of qualified
versions of data types and array types. Denotable types are associated with identifiers in
type environments, while identifier types are used for the classification of these identifiers.
Member types are associated with identifiers defined as members of structures or unions.
Finally, phrase types are associated with program phrases by the typing semantics of x4.
Most domains for environments can be taken as functions from identifiers to types; their
full definition is omitted in this chapter.

The use of a simple error monad in the definition of the static semantics provides an
elegant way of generating and propagating errors. In brief, a monad is a tuple hM� unit� �i,
where M is a domain constructor, unit � A � M�A� and � � M�A� � �A � M�B�� �
M�B� are polymorphic functions for arbitrary domains A and B, satisfying three monad

4

Figure 2: Static semantic domains.

Auxiliary domains.

I � Ide (identifiers) � t � Tag (tags) � � � TagType (tag types) �

Domains for types.

� � Typedat � void j char j signed-char j unsigned-char (data types)
j short-int j unsigned-short-int
j int j unsigned-int j long-int j unsigned-long-int
j float j double j long-double j ptr ���
j enum ��� j struct �t� 	� j union �t� 	�

q � Qual � noqual j const j volatile j const-volatile (type qualifiers)

 � Typeobj � obj ��� q� j array �
� n� (object types)
f � Typefun � func ��� p� (function types)
� � Typeden �
 j f (denotable types)
m � Typemem �
 j bit�eld ��� q� n� (member types)
� � Typebit � int j signed-int j unsigned-int (bit-field types)
v � Typeval � � j f (value types)
� � Typeide � normal ��� j typedef ��� j enum-const �n� (identifier types)
 � Typephr (See Fig. 3) (phrase types)

Domains for environments.

e � Ent (types) � � � Enum (enumerations) � 	 �Memb (members) � p � Prot (function prototypes) �

laws. Given a domain D, the domain M�D� is a domain of computations resulting in
values of type D. Function unit converts values to (trivial) computations and the binary
operator � is used to extract the results of computations.3 Monad E can be defined by
taking E�D� � D �U where U is a singleton domain, whose element represents errors.

Using monad E to allow static errors, the static meaning of declarations can be defined
as a function of the domain:

I fjdeclaration jg � Ent� E�Ent	

that is, a function which takes as argument an initial type environment and returns an
updated type environment, which contains information about the declared identifiers. The
equations defining such functions are often very complex but can be somewhat simplified
by the use of several auxiliary operations, defined separately.

The meaning of recursively defined types requires special treatment. In a way similar
to the one suggested in [2], a monadic closure operator is used, defined as:

mclo z f � clo z ��x� x � f� �

�G

n��

��x� x � f�n z

on condition that f is continuous and z v z � f . This operator is applied to the initial
type environment and the static meaning of a list of declarations, in order to obtain a least
upper bound for recursively defined types.

3This description, although naı̈ve, is sufficient for the purpose of this chapter.

5

Figure 3: Some of the phrase types.

Phrase type Description

exp �v� Expression, whose result is a non-constant r-value of type v.
lvalue �m� Expression, whose result is an l-value of type m.
val �� � Expression, whose result is a constant r-value of type � .
arg �p� Actual arguments of a function with prototype p.
stmt �� � Statement in a function returning a result of type � .
decl Declaration.

Figure 4: Typing judgements.

Main typing relation.

e � phrase � The given phrase can be attributed phrase type in type environment e.

Predicates as judgements.

P Predicate P is true, where P can be any valid predicate over truth values T.
v �� z The static semantic valuation z � E�D	 produces the (non-error) value v � D.

Judgements related to environments.

e � I � � Identifier I is associated with identifier type � in type environment e.
	 � I � m Identifier I is associated with member type m in member environment 	.

Judgements related to expressions.

e � E � � Expression E can be assigned to an object of data type � in type environment e.
e � E � NULL Expression E is a null pointer constant in type environment e.
e � T � � Type name T denotes type � in type environment e.

4. Typing semantics

The primary aim of typing semantics is the association of program phrases with phrase
types. Fig. 3 shows all the phrase types that we use. Typing rules are inference rules whose
premises and conclusion are typing judgements. Several forms of typing judgements
are necessary in order to simplify the typing rules. A summary of the most important
ones is given in Fig. 4. Approximately 200 typing rules are used in our approach, in
order to specify the typing semantics of C. 70% of those deal with expressions, 10% with
statements and the remaining 20% with declarations. In the rest of this section we will
present some non-trivial examples of typing rules and we will conclude with a discussion
on our typing semantics.

The following rules specify the typing semantics of four types of expressions, in ac-
cordance with the ANSI C standard. Rule E1 states that decimal constants with no suffix
are attributed type val �� �, where � is the first integer type that can represent their value.
According to E2, identifiers that have been defined as normal variables in an e are l-
values of the appropriate type. Similarly, rules E3 and E4 specify the typing semantics of
function calls and the indirection operator.

6

su
x(n) = � isDecimal(n)
� �� repType�n� � int� long-int� unsigned-long-int �	

e � n � val �� �
(E1)

e � I � normal �
�

e � I � lvalue �
�
(E2)

e � E � exp �ptr �func ��� p��� e � args � arg �p�

e � E(args) � exp �� �
(E3)

e � E � exp �ptr �
��

e � *E � lvalue �
�
(E4)

The following two rules specify in part the semantics of assignments. According to
E5, the expression on the left side of the simple assignment operator must be a modifiable
l-value, while the expression on the right side must be assignable to the corresponding
data type. Rule A1 states that an expression of arithmetic type � can be assigned to an
object of another arithmetic type � �.

e � E� � lvalue �m� isModi�able (m)
� �� datify m e � E� � �

e � E�=E� � exp �� �
(E5)

e � E � exp �� �
isArithmetic (�) isArithmetic (� �)

e � E � � �
(A1)

A small number of typing rules specifies conversions that take place implicitly in the
evaluation of expressions. Such conversions are called implicit coercions. For example,
rule C1 states that l-values are implicitly converted to the values stored in the designated
objects. Even more obviously, according to rule C2 constant values may be treated as
normal non-constant expressions.

e � E � lvalue �obj ��� q�� isComplete (�)

e � E � exp �� �
(C1)

e � E � val �� �

e � E � exp �� �
(C2)

The typing semantics of statements is specified in a similar way. Rule S1 deals with
compound statements. Notice that a compound statement defines a new scope, containing
its declarations, and therefore a new environment e� must be calculated, allowing for
recursively defined structures or unions. This new environment e� is used for the typing
of the compound statement’s body. Rules S2 and S3, specifying the semantics of while
and return statements respectively, are relatively easier. In S3, the type of the returned
expression must be assignable to the function’s returned type.

e� �� rec fjdeclaration-list jg �� e	
e� � declaration-list � decl e� � statement-list � stmt �� �

e � f declaration-list statement-list g � stmt �� �
(S1)

e � expr � exp �� �� isScalar(� �)
e � stmt � stmt �� �

e � while (expr) stmt � stmt �� �
(S2)

e � expr � �

e � return expr ; � stmt �� �
(S3)

The suggested typing semantics for C leads to two forms of ambiguity problems. The
first concerns the uniqueness of typing results: the main typing relation does not always
provide a unique phrase type for a given program phrase. (Implicit coercion rules such as
C1 and C2 are one source of such ambiguities.) This form of ambiguity is in fact useful. A
given program phrase can be attributed different phrase types, depending on its role in the
program, and a different dynamic semantic meaning may exist for each phrase type. The
second form concerns the uniqueness of typing derivations for a given typing judgement.

7

Figure 5: Dynamic semantic domains.

Auxiliary domains and environments.

Addr � Obj�O�set� Obj� Fun� O�set� BitOfs� ��e ��Ent � ��p ��Prot � Cod� Lab�

Domains for types.

��void ��dat � U� �� int ��dat � N� ��ptr �
� ��dat � Addr	U� ��ptr �f � ��dat � Fun	U

��obj ��� q� ��obj � Addr� ��array �
�n� ��obj � N� ��
 ��obj

��func ��� p� ��fun � ��p ��Prot � G���� ��dat	

��
 ��mem � ��
 ��obj � ��bit�eld ��� q� n� ��mem � Addr�BitOfs

For example, there are two different derivations concluding with the fact that the sum of
two integer constants is an integer expression: the first adds the constants and coerces the
constant sum using C3, while the second coerces the summands separately using C3 and
adds the resulting expressions. It is required that all different possible derivations for a
given typing judgement result in the same dynamic semantics for the program phrase.

5. Dynamic semantics

The dynamic semantics of C specify the execution behaviour of well-typed programs. As
a useful side-effect, run-time errors and other sources of undefined behaviour are detected.
The most important source of complexity in an accurate definition of C’s dynamic seman-
tics is the unspecified evaluation order, combined with the fact that expressions generate
side effects. In order to disallow undesired ambiguities, the ANSI C standard has in-
troduced restrictions imposed on expression evaluation with the mechanism of sequence
points. Additional restrictions are imposed on the access of objects between consecutive
sequence points; however, according to our interpretation of the standard this mechanism
does not always prevent non-determinism.4 The dynamic semantics is further perplexed
by pointer arithmetic, complex control statements like for and switch, and the pres-
ence of goto in combination with block scopes containing variable declarations.

For each static type, a dynamic semantic domain is defined for representing the dy-
namic meaning of values of this type. The definitions of some dynamic semantic domains
are shown in Fig. 5. Among other things, the domain of integer numbers N is used to
represent values of type int, pointers to objects are represented by the objects’ address or
a special null value, and addresses of objects are offsets in the biggest (possibly aggre-
gate) objects containing them, in order to correctly model pointer arithmetic. The domain
for type environments ��e ��Ent contains the dynamic meanings of all identifiers defined in
e, while that for function prototypes contains the values of all parameters. Domain Cod
contains the code of all defined functions and Lab� contains the meanings of labeled
statements in a function returning a result of type � and is used in the semantics of jumps.

A number of monads is used in order to represent various aspects of the computations
that are related to the execution of C programs. Brief descriptions of these monads are

4This issue has been discussed a lot in comp.std.c. Several opinions have been expressed but no conclu-
sion has been reached.

8

Figure 6: Monads used in the dynamic semantics.

Auxiliary monads and monad transformers.

P�D	 Powerdomain monad, allowing for non-determinism in values of domain D.
R�M	�T 	 Resumption monad transformer, allowing interleaving in computations of type M�T 	.

Defined as a solution of the equation R�M	�T 	 � T 	M�R�M	�T 		.

Monads for computations.

V�T 	 Computation of a constant value of type T , not accessing the memory (value monad).
C�T 	 Computation of a non-constant value of type T , possibly accessing the memory (contin-

uation monad). Defined as C�T 	 � �T � C	 � C, where C � S � P�A	 is the
domain of non-deterministic continuations, S is the domain of program states and A the
domain of final program answers.

G�T 	 Computation of a non-constant valye of type T in the evaluation of an expression, possibly
accessing the memory and allowing for interleaving. Defined as G�T 	 � R�C	�T 	.

K� �T 	 Computation of a non-constant value of type T in the execution of a statement, possibly
accessing the memory or terminating the function by returning a result of type � .

shown in Fig. 6. The powerdomain monad, based on the convex powerdomain, is used
to model non-determinism. The resumption monad transformer is used to model the
interleaving in the evaluation of expressions, that is required by C’s unspecified order
of evaluation.5

The definition of dynamic semantics for program phrases is similar to that of static
semantics. An important difference, however, is that the typing derivations provide useful
information about the semantic meanings of both the defined phrase and its components.
Thus, typing derivations control the definition of dynamic semantics, instead of abstract
syntax, and there is one dynamic equation for each typing rule. In the rest of this section
we will illustrate the definition of dynamic semantics by presenting some small examples.

Let us consider the simple case of typing rule E4 in x4. The dynamic semantics for an
expression of the form “*E” under the typing given in E4 can be defined as follows:

I ��exp �v� �� � e � Ent� ��e ��Ent � Cod� G���v ��val 	

��*E ��lvalue ��� � � e� � �� � ��

��E ��exp �ptr ���� e � �
 �� de� case de of
inl a � unit a
otherwise � error	

The first line states that the dynamic semantic meaning for phrases of type exp �� � is a
function taking as arguments the static and dynamic environments and the code envi-
ronment and returning an interleaved computation with a result of type ��� ��dat . Notice
the dependent function type, denoted here as x � A � B�x�, which dictates a connec-
tion between the static and the dynamic environments. The equation that follows defines
��*E ��lvalue ��� in terms of ��E ��exp �ptr ����. If the pointer contains an object’s address, this
address is used in the resulting l-value. An error occurs if the pointer is null. Dynamic
semantic meanings for phrases of type lvalue �m� are functions of the form:

I �� lvalue �m� �� � e � Ent� ��e ��Ent � Cod� G���m ��mem	

5The resumption monad transformer is defined in detail in a paper that will be submitted for publication in
the near future. For an introduction to monad transformers, the reader is referred to [13].

9

In a similar way, the following equations define the dynamic semantics that corre-
spond to typing rules E3 and C1 of x4 respectively.

��E(args) ��exp �� � � � e� � �� � ��

��E ��exp �ptr �func ���p��� e � � �� ��args��arg �p� e � �
 �� hde� dpi�
seqpt
 �� u� case de of

inl df � let hf� bf i � ��df � in isCompatible�f� func ��� p�	� bf dp � error
otherwise � error		

��E ��exp �� � � � e� � �� � �� ��E ��lvalue �obj ���q�� e � �
 getValueobj ���q����

The first thing to notice is the use of operator � �� � � G�A��G�B� � G�A�B� for the in-
terleaving of two computations, in order to model the unspecified order in which the func-
tion’s designator and its arguments are evaluated. The second is the use of seqpt � G�U�
to introduce a sequence point just before the function is actually called. The function’s
dynamic meaning is looked up in the code environment. Furthermore, the function’s ac-
tual type must be compatible with the type of the designator that is used. In the second
equation, the important point is the use of getValuem��� � ��m ��mem � G���� ��dat � which
retrieves a stored value from memory.

The dynamic semantics of statements is defined in a similar way. We give here two
relatively simple examples, corresponding to the typing rules S2 and S3 of x4. Notice
that the dynamic meaning of statements uses also a label environment of type Lab� .
The calculation of this environment requires a least fixed point, to allow infinite loops
implemented by goto statements.

I ��stmt �� � �� � e � Ent� ��e ��Ent � Cod� Lab� � K� �U	

��while (expression) statement ��stmt �� � � � e� � �� � �� � �� �x �� g�
liftG�K ���expression ��exp �� �� e � �	
 �� d�
checkBoolean� ��d	 �

setBreakContinue hunit u� gi ���statement ��stmt �� � e � � �	
 �� u� g	 � unit u		

��return expression; ��stmt �� � � � e� � �� � �� � �� liftG�K �A��expression ��exp �� �� e � �	
 result

The first equation uses the least fixed point operator �x to model the semantics of the
while statement. The correct continuations that will be used in case of a break or
continue statement are passed to the body of the loop by using setBreakContinue.
The second equation defines the semantics of the return statement. The expression is
evaluated and converted as if by assignment to the function’s return type. Notice the use
of result � ��� ��dat � K� �U� which signals the termination of this function and specifies
the returned result.

6. Evaluation

A significant effort has been made to evaluate our approach in defining a denotational se-
mantics for the C programming language. In this task, the major issue was to assess how
complete and accurate the developed semantics is. Unfortunately, there is no systematic
way to evaluate our approach and be absolutely certain that the results are correct: there is
simply no way to compare a formal system of this complexity against an informal specifi-
cation. For this reason, we have resorted in testing an interpreter that directly implements
our semantics, by using some test suites for C implementations that were available.

10

An earlier version of our semantics was first implemented using SML as the imple-
mentation language. Later, SML was abandoned and Haskell was used instead, mainly
because it has a richer type system, more flexible syntax, elegant support for monads
and also because lazy evaluation avoids a number of non-termination problems. The
current implementation consists of approximately 15,000 lines of Haskell code, which
are distributed roughly as follows: 3,000 lines for the static semantics, 3,000 lines for
the typing semantics, 5,000 lines for the dynamic semantics, 3,000 lines for parsing and
pretty-printing and 1,000 more lines of general code and code related to testing. As it was
expected, the implementation is very slow and this presents a serious handicap in our yet
unfinished evaluation process, significantly limiting the size of test programs.

Although the evaluation of our semantics is still under way and minor bugs are waiting
to be fixed, the results indicate that the developed semantics is complete and accurate
to a great extent, with respect to the ANSI C standard. The most important deviations
from the standard are that the developed semantics requires function prototypes to exist
for all called functions, something already favoured by the current standard, and that
storage specifiers other than typedef are currently ignored. Static variables may be
preprocessed out, but a solution integrated in the semantics is currently investigated. As
less important deviations, the developed semantics requires fully bracketed initializations
and forbids the declaration of identifiers, other than labels, in expressions or statements.

7. Conclusion and future work

In this chapter, we have presented a summary of our work in developing a formal seman-
tics for the ANSI C programming language, following the denotational approach. The
developed semantics is satisfactorily complete and accurate, with respect to the standard.
A significant contribution of our research, besides the developed semantics itself, is the
application of monads and monad transformers for the specification of a real program-
ming language. Furthermore, interesting results have been achieved in our attempt to
model the interleaving of computations and non-determinism using monads and monad
transformers, which may be useful in specifying the semantics of programming languages
supporting parallelism.

Our research in the near future will focus on the process of evaluating and improving
the developed semantics. Beyond that, we would like to study the practical applications
that a formal semantics for C may have in the software industry, especially in tools for
program transformation, debugging and understanding. The implementation of the devel-
oped semantics also gave rise to an interesting question: what are the characteristics of a
programming language that make it suitable for implementing denotational specifications,
especially using monadic notation? Finally, another direction for future research aims at
studying and specifying the semantics of C’s object-oriented descendants, C++ and Java.

References

[1] American National Standards Institute, New York, NY. ANSI/ISO 9899-1990, Amer-
ican National Standard for Programming Languages: C, 1990. Revision and redes-
ignation of ANSI X3.159-1989.

11

[2] R. Sethi. A case study in specifying the semantics of a programming language.
In Proceedings of the 7th Annual ACM Symposium on Principles of Programming
Languages, pages 117–130, January 1980.

[3] R. Sethi. Control flow aspects of semantics-directed compiling. ACM Transactions
on Programming Languages and Systems, 5(4):554–595, October 1983.

[4] Y. Gurevich and J. K. Huggins. The semantics of the C programming language.
In E. Börger et al., editors, Selected Papers from CSL’92 (Computer Science Logic),
volume 702 of Lecture Notes in Computer Science, pages 274–308. Springer Verlag,
New York, NY, 1993.

[5] J. Cook and S. Subramanian. A formal semantics for C in Nqthm. Technical Report
517D, Trusted Information Systems, October 1994.

[6] J. Cook, E. Cohen, and T. Redmond. A formal denotational semantics for C. Tech-
nical Report 409D, Trusted Information Systems, September 1994.

[7] M. Norrish. An abstract dynamic semantics for C. Technical Report TR-421, Uni-
versity of Cambridge, Computer Laboratory, May 1997.

[8] N. S. Papaspyrou. A Formal Semantics for the C Programming Language. PhD
thesis, National Technical University of Athens, Software Engineering Laboratory,
February 1998.

[9] R. D. Tennent. The denotational semantics of programming languages. Communi-
cations of the ACM, 19(8):437–453, August 1976.

[10] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 11, pages 577–631. Elsevier Science
Publishers B.V., 1990.

[11] E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, University of Edinburgh, Laboratory for Foundations of Computer
Science, 1990.

[12] P. Wadler. The essence of functional programming. In Proceedings of the 19th
Annual Symposium on Principles of Programming Languages (POPL’92), January
1992.

[13] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In
Conference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’95), San Francisco, CA, January 1995.

12

