AN OBJECT-ORIENTED SIMULATION PROGRAM GENERATOR

Nikolaos S. Papaspyrou, Aris N. Tsois and Emmanuel S. Skordalakis

National Technical University of Athens, Department of Electrical and Computer Engineering,
Division of Computer Science, Polytechnioupoli, 15780 Zografou, Athens, Greece.
Tel: +30-1-7722486, Fax: +30-1-7722519, E-mail: {nickie,atsois,skordala}@softlab.ntua.gr

Abstract

This paper traces the evolution of simulation sup-
port tools and outlines ARGUS, a discrete event sim-
ulation program generator that targets mainly the
area of queueing systems. ARGUS supports three
levels of operation, depending on the user’s needs
and programming expertise. The system to be sim-
ulated can be specified using an integrated graphi-
cal editor or a textual description language. Object-
oriented concepts such as encapsulation, inheritance
and polymorphism are employed in both the spec-
ification process and the generated simulation pro-
grams are written in C+4. Throughout the paper,
the main characteristics of ARGUS are summarized
and its capabilities are briefly presented.

Keywords

Discrete event simulation, object-oriented simula-
tion, simulation program generators, graphical edi-
tors, queueing systems.

1 Introduction

During the last decades, simulation has become a
very popular method of analyzing and designing real
world systems. Digital computers have helped in
this, as the devices that automate the simulation pro-
cess. The development of the required programs is
not a trivial task and years of research have been
spent in order to simplify it.

Program generators have been suggested as a
means of developing simulation programs in an ef-
ficient and effortless way. In this paper, we describe
ARGUS, an object-oriented program generator for
discrete event simulation problems. ARGUS allows
the modeller to use a graphical or textual description
language for describing the simulation models and
produces efficient C++ programs. The structure of
the paper is as follows. In section 2 we present a
categorization of existing simulation support tools.
Sections 3, 4 and 5 describe the main characteristics
of ARGUS. Finally, in section 6 we conclude with
a discussion on the current status of ARGUS and
suggest directions for future work.

© 1998 ITEE, WODES98 — Cagliari, Italy
Proc. of the Fourth Workshop on Discrete Event Systems

2 Simulation support tools

Various tools have been developed as an aid in the
task of developing simulation programs. These tools
can be classified in several categories with respect
to the underlying concepts, modelling capabilities,
ease of program development and consequently with
respect to the group of target users. They can be
principally classified in three primary categories, rep-
resenting three different approaches to simulation:
the programming approach, the automatic program-
ming approach and the non-programming approach.
Overall, simulation support tools have followed the
evolution that is shown in Fig.1.

General purpose programming languages (GP-
PLs) were the first tools to be used for the devel-
opment of simulation programs. Their main advan-
tages are the great modelling capabilities that they
offer and the efficiency of the produced simulation
programs. Unfortunately, in most cases their use
presents many disadvantages, the most important
being the need for experienced programmers. Fur-
thermore, the development of complex simulation
programs with GPPLs is time-consuming and prone
to programming errors. The drawbacks in using GP-
PLs for complex simulation programs have led to the
development of two new categories of tools. Both
categories attempt to extend GPPLs by introducing
characteristics useful to simulation developers.

The first approach, based on code reusability, en-
riches popular GPPLs with simulation-oriented li-
braries (SOLs). Such libraries provide basic features
used frequently in simulation programs, such as lists,
events, random number generators and collection of
statistics. Characteristic examples of this category
are SIMTOOLS (Seila, 1988) and LIBSIM (Crookes,
Balmer, Chew and Paul, 1986), both for the Pas-
cal programming language, and also SIMEX (Univer-
sity of Minnesota, MN, 1994) and C++SIM (Little
and McCue, 1994) for C++. The second approach
involves the development of simulation program-
ming languages (SPLs). These languages are gen-
erally based on popular GPPLs with extensions to
provide built-in basic simulation-oriented facilities.
Among them, the most popular are SIMULA 67 (Ny-
gaard, 1986), GPSS (Gordon, 1974), SIMAN (Ped-

General

Purpose
Programming
Languages
A / \
Simulation Simulation Object-Oriented
Oriented Programming Programming
Libraries Languages Languages

\/

Object-Oriented
Simulation
Programming
Languages

Programming

Non-Programming
Simulation
Packages
~ /
Simulation No-Language
Program Simulation
Generators Packages
AN
Object-Oriented
Simulation
Program
Generators
Automati.c Non-programming
programming

Figure 1: Evolution of support tools for developing simulation programs.

gen, 1987), SIMSCRIPT II.5 (Kiviat, Villanueva,
Markowitz, 1975), and SLAM IT (Pritsker, 1984) but
several others should be noted, such as INSIGHT
(SysTech Inc., IN, 1985), PCModel (White, 1988)
and SIMPLE_1 (Sierra Simulations & Software, NH,
1989). The use of SOLs and SPLs substantially sim-
plifies the programmer’s job. However, knowledge
of a programming language is still required and all
associated problems, although less intense, remain.

Apart from programming languages, various non-
programming simulation packages (NPSPs) have
been developed, aiming at simulation developers
with little or no programming experience. These
tools range from general-purpose simulation pack-
ages to tools specialized for the needs of particu-
lar fields. In this category belong AutoMod II (Au-
toSimulations Inc., UT, 1989), ProModel (Produc-
tion Modeling Corporation, UT, 1989), WITNESS
(AT&T ISTEL, OH, 1989), SIMFACTORY IL5
(CACI Products Company, CA, 1990) and XCELL+
(Conway and Maxwell, 1987). Such simulation pack-
ages use description languages and require signifi-
cantly less programming expertise and effort than
programming languages. However, their capabilities
are limited: they sometimes prove to be either too
general, and therefore inadequate for the needs of a
specific field, or too specialized to be used in a situ-
ation somewhat different from the anticipated.

The emergence of object-oriented programming
languages (OOPLs) has brought about a new ap-
proach towards simulation. Object-oriented pro-
gramming is particularly appropriate for the de-
velopment of large simulation programs [Thom90,
Wegn92, Eldr90]. Objects provide a very natural way
of representing the components of a real system and

features such as encapsulation, inheritance and poly-
morphism can be extremely useful for the simulation
of complex systems. Encapsulation allows the pro-
grammer to think of objects as black boxes, with at-
tributes and behaviour of their own. Inheritance and
polymorphism can be used to define a hierarchy of
objects, representing the components of the real sys-
tem. In this hierarchy, objects can be thought of as
specialized forms of other objects, and therefore can
share common attributes and behaviour. Further-
more, one must not overlook that (well designed) ob-
jects are almost directly reusable, whereas code writ-
ten in a procedural programming language seldom is.
Object-oriented simulation programming languages
(OOSPLs), such as MODSIM II (CACI Products
Company, CA, 1989) and Sim++ (Jade Simulations
International Corporation, Canada, 1989), have been
developed recently, combining simulation-specific fa-
cilities with object-oriented concepts.

Program generators and the automatic program-
ming approach have also been suggested as a solu-
tion to the problem of writing error-free simulation
programs without much effort. The construction of
such tools is possible because of the similarities that
the majority of simulation programs present. Simu-
lation program generators (SPGs) generally receive
as input a description of the real system and gener-
ate a simulation program in a programming language
(general-purpose or simulation-oriented). This pro-
gram can be later compiled and executed, or even
modified if necessary.

Several SPGs have been developed during the
last twenty years. Some of them are mostly ori-
ented towards a particular field of applications, e.g.
SmartSim [Ulge90], QMG [Racz90] for manufactur-

File Edit Generate View Model Options Window Help

[12]

=]

il

Stationl

Station properties...

Name :

Number of servers :

|S|alinn1

| [

0K | R

r Type

D infinite - Infinite Servers

0 source - Source of entities

® FCFS - First Come First Served
) LCFS - Last Come First Served
() FIRO - First In Random Out

O quantum - Round Robin policy

) PS - Processor Shearing policy

~ Queue
@ Infinite
) Finite

Cancel —

Length of queue :

[Queue overflow

N
 tone

O Transit

Quantum expression

O Code

SeT VIGE |

transit| [Preemption modifier
@ None

<-| | PR - Resume

O PRW - Repeat without resampling

QPRS- Repeat with resampling

Priorities

Initialization i

Service -

Transit

Collect

» [N IO 2

Figure 2: Screen snapshot while working with ARGUS.

ing systems, AGVS-SCG [Gong90] for automated
guided vehicle systems, AS/RS-SPG [Asha89] for
automated storage and retrieval systems. Others
are more general, e.g. CAPS/ECSL [Clem82], AU-
TOSIM [Paul87], SSIM/DRAFT/DRAW [Math90]
and PASSIM [Shea90]. Current research in the field
of SPGs is directed mainly towards two targets: find-
ing a more natural way of describing the system to
be simulated and taking advantage of object-oriented
programming concepts.

The need for representing the real system in a
more natural and intelligible way arises from the fact
that SPGs are generally used by people with little
or no programming experience. Following the ten-
dency towards user-friendly, easy-to-learn and easy-
to-use software, it seems that the most suitable way
of achieving this is by means of graphical environ-
ments [Ozde91]. Simulation support tools have been
recently developed that do not use a programming or
description language but are based on principles such
as graphical user interface, visual programming and
programming by demonstration. KidSim [Smit94]
and Playground [Fent89], although hardly adequate
for real-world simulation problems, take advantage
of such methodologies to make simulation program-
ming easy enough to be practiced by children.

On the other hand, the advantages of using
object-oriented concepts in the development of sim-
ulation programs have already been explained. The

number of OOPLs, that are used in the development
of simulation software, provides definite proof. A
new category of object-oriented simulation program
generators (OOSPGs) is recently emerging. Smart-
Sim [Ulge90], SmarterSim [Ulge89], using Smalltalk-
80, and GASPE [Simo89] belong in this category.

3 ARGUS

We have developed an experimental tool named AR-
GUS that combines the advantages of OOSPGs with
the convenience of a graphical user interface. AR-
GUS targets mostly the area of queueing systems.
Our intention was to make the process of develop-
ing a simulation program with ARGUS as easy as
editing. The description of the system to be sim-
ulated is given by means of a user-friendly graph-
ical editor. As an alternative or a complement to
the graphical editor, ARGUS uses a description lan-
guage named SCGL (Simulation Code Generation
Language). Fig.2 is a snapshot taken from the com-
puter screen while working with ARGUS.

ARGUS exhibits object-oriented characteristics
both in the way that a system’s description is given
and in the simulation programs that it generates.
When describing a system, objects can be organized
in a hierarchy in which attributes and behaviour are
inherited. Both the graphical editor and the descrip-
tion language SCGL allow the user to define inheri-

ARGUS
Integrated
environment

Graphical Graphical
editor description
|
!
m_, Description
generator
Text SCGL Header files
editor description and library
|
{
Simulation Sl ;
program program C++ co‘mpller
generator in C++ and linker
Executable
nput simulation Output
data results
program

Figure 3: Block diagram of ARGUS.

tance in a natural and effortless way. Furthermore,
simulation programs created by ARGUS are writ-
ten in C++ and make use of this language’s object-
oriented features to directly implement the hierarchy
of objects.

The block diagram of ARGUS is shown in Fig.3,
which illustrates the process of creating an exe-
cutable simulation program. ARGUS itself consists
of three parts: (i) the integrated environment, com-
bining the graphical and text editors with the de-
scription generator, whose output is the system’s de-
scription in SCGL; (ii) the program generator, which
converts a description in SCGL into a simulation pro-
gram in C++; and (iii) the run-time environment
necessary for compiling the simulation program. A
C++ compiler and linker are necessary to create an
executable simulation program.

ARGUS supports three levels of operation, de-
pending on the user’s programming experience and
the demands of the real system to be simulated. The
trade-off between user-friendliness and flexibility is
inevitable: by favouring one of these properties, we
lose some of the other. A combination of all three
levels is possible. On the first level, the user describes
the system graphically by means of the graphical ed-
itor and no textual language is required at all. On
the second level, the object-oriented description lan-
guage SCGL is used in order to describe the real sys-
tem. This approach is not as simple as the graphical
description but it enables the user to describe more
complex systems. On the third level, the user can in-
clude C++ code in a real system’s SCGL description.
This code will be included in the simulation program.
Although the third level provides the highest flexi-
bility, it requires advanced programming abilities, a

knowledge of C++ and of ARGUS intrinsics.

4 Queueing system models

The queueing system models that can be simulated
by ARGUS consist of two kinds of objects: stations
and entities. A station acts as a server in the queue-
ing system, whereas an entity acts as a client. The
set of stations determines the system’s topology and
is static, while the set of entities represents its popu-
lation and is dynamic. When entities arrive at a sta-
tion, they are placed in the station’s queue. Eventu-
ally they are served, according to the station’s serv-
ing policy, and are sent to other stations.

The definition of stations is the most important
part in the system’s model. The station’s type de-
termines the serving mechanism for incoming enti-
ties. Predefined station types implement the most
frequent serving mechanisms, such as FIFO and pro-
cessor sharing. Stations can also serve as sources of
entities in the queueing system. The characteristics
of the station’s queue (e.g. its length) can also be
defined, as well as the number of entities that can
be served at the same time. The service and tran-
sit properties determine the way in which an entity
is served (typically it is only delayed for a random
time that follows a given distribution) and the en-
tity’s destination after it is served. A station may
also have user defined attributes.

ARGUS allows the modeller to define new types
of stations or entities. Furthermore, it supports in-
heritance of station or entity characteristics, orga-
nizing them in hierarchies that have the structure
of DAGs. A station or entity inherits the charac-
teristics of its parents; however it has the option to

override them. The user can also specify the simula-
tion program’s output, that is, what statistics about
the real system are relevant and have to be collected.
ARGUS supports directly the collection of statistics
giving various important factors in simulation prob-
lems, such as response and waiting times, number of
entities in queues and utilization ratios.

5 The three levels of operation

Level 1: Using ARGUS’s graphical editor to de-
scribe a queueing system’s model is a fairly simple
task, requiring no more skills than using a word pro-
cessor or drawing application. The modeller can use
a set of tools for designing the system’s stations and
entities on the screen, using the mouse. Apart from
stations and entities, decorative objects can be in-
cluded in the system’s description, such as rectan-
gles, lines or descriptive text. In order to specify
some properties of stations or entities, the modeller
is presented with dialog boxes such as the one shown
in Fig.2. The set of transitions within the system’s
stations can be specified by drawing directed lines
between the stations on the screen.

Although the process of describing a system
graphically is easy and relatively straightforward,
there are a few drawbacks, the most significant be-
ing the trade-off between user-friendliness on the one
side and flexibility and efficiency on the other. Re-
search has shown that, when the size of the model
grows, experienced modellers tend to prefer textual
descriptions to graphical ones. Typical advantages
of the former are flexibility, efficiency and organiza-
tion. We believe that the lack of these qualities to
some extent is indigenous in graphical environments.

Level 2: ARGUS’s description language SCGL can
be used for specifying models of complex queueing
systems. As a description language, SCGL contains
no algorithmic part. We tried to keep the language
as simple as possible. There are no data types, ex-
cept for types of stations and entities, nor control
statements. Whenever a description of an algorithm
is necessary, C++ code can be directly embedded
in level 3 models. Nevertheless, the set of level two
models that can be described without any knowledge
of C++ is fairly large.

Consider the simple queueing system represent-
ing a small bank, which contains a station named
door, with a FIFO queue. Suppose that the door’s
service time follows a uniform random distribution
with values between 1 and 3 seconds. Suppose also
that the entities leaving the door are directed to sta-
tions deskl!, desk?2 and desk3 with probabilities 0.5,
0.3 and 0.2 respectively. The SCGL description of
the door is as simple as:

station door {
type : FIFO;

service : delay uniform(1, 3);

: deskl with 0.5,
desk2 with 0.3,
desk3;

transit

Consider now two additional hypotheses. First,
the bank has two doors. Second, two types of enti-
ties arrive: normal clients and special clients. The
latter always know which desk they want to go to.
The description of the same part of the model now
becomes:

typedef entity NormalClient;
typedef entity SpecialClient {

inherits : NormalClient;
attribute : { station * dest; }
}
typedef station Door {
type : FIFO;
service : delay uniform(1, 3);
transit : case normalClient do

deskl with 0.5,
desk2 with 0.3,
desk3
case specialClient do
ENTITY(specialClient)->dest;
3

Door leftDoor, rightDoor;

In this description, a station type is defined for the
door and two instances are created. Furthermore,
two types of entities are defined. Special clients in-
herit all attributes and behaviour of normal clients,
with the addition of attribute dest which determines
their destination after they leave the door. The tran-
sit property of the doors distinguishes between the
two types of clients and makes use of attribute dest.

Level 3: The lack of algorithmic part in SCGL is
compensated by the use of C++ code, which the
modeller can embed directly in critical parts of SCGL
descriptions. This code will be included in the ap-
propriate point of the simulation program. However,
the modellers need to understand how the generated
simulation program works and how their code will
interfere with automatically generated code. By us-
ing C++ code, modellers can define new types of
behaviour for stations and entities. They can also
enforce the execution of procedures at specific points
during the simulation, e.g. whenever a particular en-
tity is created or served. Moreover, C++ code can be
used to collect specific statistical information about
the simulation that cannot be collected by means of
the predefined SCGL statistics collection mechanism.

The way in which C++ code is embedded in
SCGL descriptions (or even graphical descriptions)
presents an important advantage. It is not necessary

to alter the simulation program that ARGUS gener-
ates in order to implement something that ARGUS is
not prepared for. By placing the code in the model’s
description, modellers are free to edit the code or
the description any number of times and then use
ARGUS to generate a new simulation program.

6 Conclusion

The use of program generators for simulation has
proved to be beneficial. Program generators combine
the conciseness and facility of description languages
with the flexibility and efficiency of programming
languages. ARGUS is a discrete event simulation
program generator that combines the advantages of
a graphical editor with object-oriented characteris-
tics. Models of real systems can be described by
means of a graphical or textual description language
and can contain embedded C++ code. Three levels
of operation are supported, aiming at all categories
of users, from modellers with no or little computer
experience to programming experts.

Our main goal was to create an easy-to-use sim-
ulation tool without sacrificing its flexibility. Al-
though we have not yet reached our goal, we believe
that such a task is achievable and that ARGUS is a
step closer to its accomplishment. Future research
and work will focus mainly on three points: extend-
ing the description language SCGL, improving the
graphical editor and investigating better ways of vi-
sualizing the object-oriented paradigm in simulation.

References

[Asha89] J. Ashayeriand L.F. Gelders, “Simulation
program generator for AS/RS systems”,
in Proceedings of the 10th International
Conference on Automation in Warehous-

ing, pp. 209-220, 1989.

[Clem82] A.T. Clementson, FEztended control and
simulation language, Cle. Com. Ltd.,

Birmingham, England, 1982.

[Eldr90] D.L. Eldredge, J.D. McGregor and M.K.
Summers, “Applying the object-oriented
paradigm to discrete event simulations
using the C++ language”, Simulation,

vol. 54, pp. 83-91, 1990.

[Fent89] J. Fenton and K. Beck, “Playground:
an object-oriented simulation system with
agent rules for children of all ages”, in
Proceedings of OOPSLA 89 ACM, pp.

123-137, 1989.

[Gong90] D.C. Gong and L.F. McGinnis, “An
AGYVS simulation code generator for man-
ufacturing applications”, in Proceedings

[Math90]

[07zde9]]

[Paul87]

[Racz90]

[Shea90]

[Simo89)

[Smit94]

[Thom90)]

[Ulge89]

[Ulge90]

[Wegn92]

of the 1990 Winter Simulation Confer-
ence, pp. 676-682, 1990.

S.C. Mathewson, “Simulation modelling
support via network based concepts”, in
1990 Winter Simulation Conference Pro-
ceedings, pp. 459-467, 1990.

M.B. Ozden, “Graphical programming of
simulation models in an object-oriented
environment”, Simulation, vol. 56, pp.
104-116, 1991.

R.J. Paul and S.T. Chew, “Simulation
modelling using an interactive simulation
program generator”, Journal of the Op-
erational Research Society, vol. 38, no. 8,

pp. 735-752, 1987.

S. Raczynski, “Graphical description and
a program generator for queuing models”,
Stmulation, vol. 55, no. 3, pp. 147-152,
1990.

D.C.S. Shearn, “PASSIM: a Pascal dis-
crete event simulation program genera-
tor”, Simulation, vol. 55, no. 1, pp. 31-38,
1990.

F. Simonot, R. LeDoeuff, S. Haddad and
V. Ramaromisa, “An object-oriented sys-
tem for the automatic generation of simu-
lation programs in power electronics”, in
CADECG ’89 Beijing, Proceedings of the
International Conference on Computer-
Aided Design and Computer Graphics, pp.
807-811, 1989.

D.C. Smith, A. Cypher and J.C. Spohrer,
“KidSim: programming agents without
a programming language”, Communica-
tions of the ACM, vol. 37, no. 7, pp. 55—
67, 1994.

T. Thomasma and J. Madsen, “Object
oriented programming languages for de-
veloping simulation-related software”, in
Proceedings of the 1990 Winter Simula-
tion Conference, pp. 482—485, 1990.

O.M. Ulgen, T. Thomasma and Y. Mao,
“Object oriented toolkits for simulation
program generators”, in 1989 Winter

Simulation Conference Proceedings, pp.
593-600, 1989.

O.M. Ulgen and T. Thomasma, “Smart-
Sim: an object oriented simulation pro-
gram for manufacturing systems”, Inter-

national Journal of Production Research,
vol. 28, no. 9, pp. 1713-1730, 1990.

P. Wegner, “Dimensions of object-
oriented modeling”, Computer, vol. 25,
pp. 12-20, 1992.

