
AN OBJECT�ORIENTED SIMULATION PROGRAM GENERATOR

Nikolaos S� Papaspyrou� Aris N� Tsois and Emmanuel S� Skordalakis

National Technical University of Athens� Department of Electrical and Computer Engineering�
Division of Computer Science� Polytechnioupoli� ����� Zografou� Athens� Greece�
Tel	 
�������

���� Fax	 
�������

���� E�mail	 fnickie�atsois�skordalag�softlab�ntua�gr

Abstract

This paper traces the evolution of simulation sup�
port tools and outlines ARGUS� a discrete event sim�
ulation program generator that targets mainly the
area of queueing systems� ARGUS supports three
levels of operation� depending on the user�s needs
and programming expertise� The system to be sim�
ulated can be speci�ed using an integrated graphi�
cal editor or a textual description language� Object�
oriented concepts such as encapsulation� inheritance
and polymorphism are employed in both the spec�
i�cation process and the generated simulation pro�
grams are written in C

� Throughout the paper�
the main characteristics of ARGUS are summarized
and its capabilities are brie�y presented�

Keywords
Discrete event simulation� object�oriented simula�
tion� simulation program generators� graphical edi�
tors� queueing systems�

� Introduction

During the last decades� simulation has become a
very popular method of analyzing and designing real
world systems� Digital computers have helped in
this� as the devices that automate the simulation pro�
cess� The development of the required programs is
not a trivial task and years of research have been
spent in order to simplify it�

Program generators have been suggested as a
means of developing simulation programs in an ef�
�cient and e�ortless way� In this paper� we describe
ARGUS� an object�oriented program generator for
discrete event simulation problems� ARGUS allows
the modeller to use a graphical or textual description
language for describing the simulation models and
produces e�cient C

 programs� The structure of
the paper is as follows� In section 
 we present a
categorization of existing simulation support tools�
Sections �� � and � describe the main characteristics
of ARGUS� Finally� in section � we conclude with
a discussion on the current status of ARGUS and
suggest directions for future work�

c� ���� IEE� WODES�� � Cagliari� Italy

Proc� of the Fourth Workshop on Discrete Event Systems

� Simulation support tools

Various tools have been developed as an aid in the
task of developing simulation programs� These tools
can be classi�ed in several categories with respect
to the underlying concepts� modelling capabilities�
ease of program development and consequently with
respect to the group of target users� They can be
principally classi�ed in three primary categories� rep�
resenting three di�erent approaches to simulation	
the programming approach� the automatic program�

ming approach and the non�programming approach�
Overall� simulation support tools have followed the
evolution that is shown in Fig���

General purpose programming languages �GP�
PLs� were the �rst tools to be used for the devel�
opment of simulation programs� Their main advan�
tages are the great modelling capabilities that they
o�er and the e�ciency of the produced simulation
programs� Unfortunately� in most cases their use
presents many disadvantages� the most important
being the need for experienced programmers� Fur�
thermore� the development of complex simulation
programs with GPPLs is time�consuming and prone
to programming errors� The drawbacks in using GP�
PLs for complex simulation programs have led to the
development of two new categories of tools� Both
categories attempt to extend GPPLs by introducing
characteristics useful to simulation developers�

The �rst approach� based on code reusability� en�
riches popular GPPLs with simulation�oriented li�
braries �SOLs�� Such libraries provide basic features
used frequently in simulation programs� such as lists�
events� random number generators and collection of
statistics� Characteristic examples of this category
are SIMTOOLS �Seila� ����� and LIBSIM �Crookes�
Balmer� Chew and Paul� ������ both for the Pas�
cal programming language� and also SIMEX �Univer�
sity of Minnesota� MN� ����� and C

SIM �Little
and McCue� ����� for C

� The second approach
involves the development of simulation program�
ming languages �SPLs�� These languages are gen�
erally based on popular GPPLs with extensions to
provide built�in basic simulation�oriented facilities�
Among them� the most popular are SIMULA �� �Ny�
gaard� ������ GPSS �Gordon� ������ SIMAN �Ped�



General
Purpose

Programming
Languages

Simulation
Oriented
Libraries

Simulation
Programming

Languages

Object-Oriented
Simulation

Programming
Languages

Object-Oriented
Programming

Languages

Simulation
Program

Generators

Object-Oriented
Simulation
Program

Generators

Non-Programming
Simulation
Packages

No-Language
Simulation
Packages

Automatic
programming

Non-programmingProgramming

Figure �	 Evolution of support tools for developing simulation programs�

gen� ������ SIMSCRIPT II�� �Kiviat� Villanueva�
Markowitz� ������ and SLAM II �Pritsker� ����� but
several others should be noted� such as INSIGHT
�SysTech Inc�� IN� ������ PCModel �White� �����
and SIMPLE � �Sierra Simulations � Software� NH�
������ The use of SOLs and SPLs substantially sim�
pli�es the programmer�s job� However� knowledge
of a programming language is still required and all
associated problems� although less intense� remain�

Apart from programming languages� various non�
programming simulation packages �NPSPs� have
been developed� aiming at simulation developers
with little or no programming experience� These
tools range from general�purpose simulation pack�
ages to tools specialized for the needs of particu�
lar �elds� In this category belong AutoMod II �Au�
toSimulations Inc�� UT� ������ ProModel �Produc�
tion Modeling Corporation� UT� ������ WITNESS
�AT�T ISTEL� OH� ������ SIMFACTORY II��
�CACI Products Company� CA� ����� and XCELL

�Conway and Maxwell� ������ Such simulation pack�
ages use description languages and require signi��
cantly less programming expertise and e�ort than
programming languages� However� their capabilities
are limited	 they sometimes prove to be either too
general� and therefore inadequate for the needs of a
speci�c �eld� or too specialized to be used in a situ�
ation somewhat di�erent from the anticipated�

The emergence of object�oriented programming
languages �OOPLs� has brought about a new ap�
proach towards simulation� Object�oriented pro�
gramming is particularly appropriate for the de�
velopment of large simulation programs �Thom���
Wegn�
� Eldr���� Objects provide a very natural way
of representing the components of a real system and

features such as encapsulation� inheritance and poly�
morphism can be extremely useful for the simulation
of complex systems� Encapsulation allows the pro�
grammer to think of objects as black boxes� with at�
tributes and behaviour of their own� Inheritance and
polymorphism can be used to de�ne a hierarchy of
objects� representing the components of the real sys�
tem� In this hierarchy� objects can be thought of as
specialized forms of other objects� and therefore can
share common attributes and behaviour� Further�
more� one must not overlook that �well designed� ob�
jects are almost directly reusable� whereas code writ�
ten in a procedural programming language seldom is�
Object�oriented simulation programming languages
�OOSPLs�� such as MODSIM II �CACI Products
Company� CA� ����� and Sim

 �Jade Simulations
International Corporation� Canada� ������ have been
developed recently� combining simulation�speci�c fa�
cilities with object�oriented concepts�

Program generators and the automatic program�

ming approach have also been suggested as a solu�
tion to the problem of writing error�free simulation
programs without much e�ort� The construction of
such tools is possible because of the similarities that
the majority of simulation programs present� Simu�
lation program generators �SPGs� generally receive
as input a description of the real system and gener�
ate a simulation program in a programming language
�general�purpose or simulation�oriented�� This pro�
gram can be later compiled and executed� or even
modi�ed if necessary�

Several SPGs have been developed during the
last twenty years� Some of them are mostly ori�
ented towards a particular �eld of applications� e�g�
SmartSim �Ulge���� QMG �Racz��� for manufactur�



Figure 
	 Screen snapshot while working with ARGUS�

ing systems� AGVS�SCG �Gong��� for automated
guided vehicle systems� AS�RS�SPG �Asha��� for
automated storage and retrieval systems� Others
are more general� e�g� CAPS�ECSL �Clem�
�� AU�
TOSIM �Paul���� SSIM�DRAFT�DRAW �Math���
and PASSIM �Shea���� Current research in the �eld
of SPGs is directed mainly towards two targets	 �nd�
ing a more natural way of describing the system to
be simulated and taking advantage of object�oriented
programming concepts�

The need for representing the real system in a
more natural and intelligible way arises from the fact
that SPGs are generally used by people with little
or no programming experience� Following the ten�
dency towards user�friendly� easy�to�learn and easy�
to�use software� it seems that the most suitable way
of achieving this is by means of graphical environ�
ments �Ozde���� Simulation support tools have been
recently developed that do not use a programming or
description language but are based on principles such
as graphical user interface� visual programming and
programming by demonstration� KidSim �Smit���
and Playground �Fent���� although hardly adequate
for real�world simulation problems� take advantage
of such methodologies to make simulation program�
ming easy enough to be practiced by children�

On the other hand� the advantages of using
object�oriented concepts in the development of sim�
ulation programs have already been explained� The

number of OOPLs� that are used in the development
of simulation software� provides de�nite proof� A
new category of object�oriented simulation program
generators �OOSPGs� is recently emerging� Smart�
Sim �Ulge���� SmarterSim �Ulge���� using Smalltalk�
��� and GASPE �Simo��� belong in this category�

� ARGUS

We have developed an experimental tool named AR�
GUS that combines the advantages of OOSPGs with
the convenience of a graphical user interface� AR�
GUS targets mostly the area of queueing systems�
Our intention was to make the process of develop�
ing a simulation program with ARGUS as easy as
editing� The description of the system to be sim�
ulated is given by means of a user�friendly graph�
ical editor� As an alternative or a complement to
the graphical editor� ARGUS uses a description lan�
guage named SCGL �Simulation Code Generation
Language�� Fig�
 is a snapshot taken from the com�
puter screen while working with ARGUS�

ARGUS exhibits object�oriented characteristics
both in the way that a system�s description is given
and in the simulation programs that it generates�
When describing a system� objects can be organized
in a hierarchy in which attributes and behaviour are
inherited� Both the graphical editor and the descrip�
tion language SCGL allow the user to de�ne inheri�



ARGUS
Integrated
environment

Graphical
description

Graphical
editor

Description
generator

Text
editor

SCGL
description

User

Simulation
program

generator

Simulation
program
in C++

Output
results

Input
data

C++ compiler
and linker

Executable
simulation
program

Header files
and library

Figure �	 Block diagram of ARGUS�

tance in a natural and e�ortless way� Furthermore�
simulation programs created by ARGUS are writ�
ten in C

 and make use of this language�s object�
oriented features to directly implement the hierarchy
of objects�

The block diagram of ARGUS is shown in Fig���
which illustrates the process of creating an exe�
cutable simulation program� ARGUS itself consists
of three parts	 �i� the integrated environment� com�
bining the graphical and text editors with the de�
scription generator� whose output is the system�s de�
scription in SCGL� �ii� the program generator� which
converts a description in SCGL into a simulation pro�
gram in C

� and �iii� the run�time environment
necessary for compiling the simulation program� A
C

 compiler and linker are necessary to create an
executable simulation program�

ARGUS supports three levels of operation� de�
pending on the user�s programming experience and
the demands of the real system to be simulated� The
trade�o� between user�friendliness and �exibility is
inevitable	 by favouring one of these properties� we
lose some of the other� A combination of all three
levels is possible� On the �rst level� the user describes
the system graphically by means of the graphical ed�
itor and no textual language is required at all� On
the second level� the object�oriented description lan�
guage SCGL is used in order to describe the real sys�
tem� This approach is not as simple as the graphical
description but it enables the user to describe more
complex systems� On the third level� the user can in�
clude C

 code in a real system�s SCGL description�
This code will be included in the simulation program�
Although the third level provides the highest �exi�
bility� it requires advanced programming abilities� a

knowledge of C

 and of ARGUS intrinsics�

� Queueing system models

The queueing system models that can be simulated
by ARGUS consist of two kinds of objects	 stations
and entities� A station acts as a server in the queue�
ing system� whereas an entity acts as a client� The
set of stations determines the system�s topology and
is static� while the set of entities represents its popu�
lation and is dynamic� When entities arrive at a sta�
tion� they are placed in the station�s queue� Eventu�
ally they are served� according to the station�s serv�
ing policy� and are sent to other stations�

The de�nition of stations is the most important
part in the system�s model� The station�s type de�
termines the serving mechanism for incoming enti�
ties� Prede�ned station types implement the most
frequent serving mechanisms� such as FIFO and pro�
cessor sharing� Stations can also serve as sources of
entities in the queueing system� The characteristics
of the station�s queue �e�g� its length� can also be
de�ned� as well as the number of entities that can
be served at the same time� The service and tran�

sit properties determine the way in which an entity
is served �typically it is only delayed for a random
time that follows a given distribution� and the en�
tity�s destination after it is served� A station may
also have user de�ned attributes�

ARGUS allows the modeller to de�ne new types
of stations or entities� Furthermore� it supports in�
heritance of station or entity characteristics� orga�
nizing them in hierarchies that have the structure
of DAGs� A station or entity inherits the charac�
teristics of its parents� however it has the option to



override them� The user can also specify the simula�
tion program�s output� that is� what statistics about
the real system are relevant and have to be collected�
ARGUS supports directly the collection of statistics
giving various important factors in simulation prob�
lems� such as response and waiting times� number of
entities in queues and utilization ratios�

� The three levels of operation

Level �� Using ARGUS�s graphical editor to de�
scribe a queueing system�s model is a fairly simple
task� requiring no more skills than using a word pro�
cessor or drawing application� The modeller can use
a set of tools for designing the system�s stations and
entities on the screen� using the mouse� Apart from
stations and entities� decorative objects can be in�
cluded in the system�s description� such as rectan�
gles� lines or descriptive text� In order to specify
some properties of stations or entities� the modeller
is presented with dialog boxes such as the one shown
in Fig�
� The set of transitions within the system�s
stations can be speci�ed by drawing directed lines
between the stations on the screen�

Although the process of describing a system
graphically is easy and relatively straightforward�
there are a few drawbacks� the most signi�cant be�
ing the trade�o� between user�friendliness on the one
side and �exibility and e�ciency on the other� Re�
search has shown that� when the size of the model
grows� experienced modellers tend to prefer textual
descriptions to graphical ones� Typical advantages
of the former are �exibility� e�ciency and organiza�
tion� We believe that the lack of these qualities to
some extent is indigenous in graphical environments�

Level �� ARGUS�s description language SCGL can
be used for specifying models of complex queueing
systems� As a description language� SCGL contains
no algorithmic part� We tried to keep the language
as simple as possible� There are no data types� ex�
cept for types of stations and entities� nor control
statements� Whenever a description of an algorithm
is necessary� C

 code can be directly embedded
in level � models� Nevertheless� the set of level two
models that can be described without any knowledge
of C

 is fairly large�

Consider the simple queueing system represent�
ing a small bank� which contains a station named
door� with a FIFO queue� Suppose that the door�s
service time follows a uniform random distribution
with values between � and � seconds� Suppose also
that the entities leaving the door are directed to sta�
tions desk�� desk� and desk� with probabilities ����
��� and ��
 respectively� The SCGL description of
the door is as simple as	

station door �

type � FIFO�

service � delay uniform��� �	�

transit � desk� with 
���

desk
 with 
���

desk��

��

Consider now two additional hypotheses� First�
the bank has two doors� Second� two types of enti�
ties arrive	 normal clients and special clients� The
latter always know which desk they want to go to�
The description of the same part of the model now
becomes	

typedef entity NormalClient�

typedef entity SpecialClient �

inherits � NormalClient�

attribute � � station � dest� �

�

typedef station Door �

type � FIFO�

service � delay uniform��� �	�

transit � case normalClient do

desk� with 
���

desk
 with 
���

desk�

case specialClient do

ENTITY�specialClient	��dest�

��

Door leftDoor� rightDoor�

In this description� a station type is de�ned for the
door and two instances are created� Furthermore�
two types of entities are de�ned� Special clients in�
herit all attributes and behaviour of normal clients�
with the addition of attribute dest which determines
their destination after they leave the door� The tran�
sit property of the doors distinguishes between the
two types of clients and makes use of attribute dest�

Level �� The lack of algorithmic part in SCGL is
compensated by the use of C

 code� which the
modeller can embed directly in critical parts of SCGL
descriptions� This code will be included in the ap�
propriate point of the simulation program� However�
the modellers need to understand how the generated
simulation program works and how their code will
interfere with automatically generated code� By us�
ing C

 code� modellers can de�ne new types of
behaviour for stations and entities� They can also
enforce the execution of procedures at speci�c points
during the simulation� e�g� whenever a particular en�
tity is created or served� Moreover� C

 code can be
used to collect speci�c statistical information about
the simulation that cannot be collected by means of
the prede�ned SCGL statistics collection mechanism�

The way in which C

 code is embedded in
SCGL descriptions �or even graphical descriptions�
presents an important advantage� It is not necessary



to alter the simulation program that ARGUS gener�
ates in order to implement something that ARGUS is
not prepared for� By placing the code in the model�s
description� modellers are free to edit the code or
the description any number of times and then use
ARGUS to generate a new simulation program�

� Conclusion

The use of program generators for simulation has
proved to be bene�cial� Program generators combine
the conciseness and facility of description languages
with the �exibility and e�ciency of programming
languages� ARGUS is a discrete event simulation
program generator that combines the advantages of
a graphical editor with object�oriented characteris�
tics� Models of real systems can be described by
means of a graphical or textual description language
and can contain embedded C

 code� Three levels
of operation are supported� aiming at all categories
of users� from modellers with no or little computer
experience to programming experts�

Our main goal was to create an easy�to�use sim�
ulation tool without sacri�cing its �exibility� Al�
though we have not yet reached our goal� we believe
that such a task is achievable and that ARGUS is a
step closer to its accomplishment� Future research
and work will focus mainly on three points	 extend�
ing the description language SCGL� improving the
graphical editor and investigating better ways of vi�
sualizing the object�oriented paradigm in simulation�

References

�Asha��� J� Ashayeri and L�F� Gelders� �Simulation
program generator for AS�RS systems��
in Proceedings of the ��th International

Conference on Automation in Warehous�

ing� pp� 
���

�� �����

�Clem�
� A�T� Clementson� Extended control and

simulation language� Cle� Com� Ltd��
Birmingham� England� ���
�

�Eldr��� D�L� Eldredge� J�D� McGregor and M�K�
Summers� �Applying the object�oriented
paradigm to discrete event simulations
using the C

 language�� Simulation�
vol� ��� pp� ������ �����

�Fent��� J� Fenton and K� Beck� �Playground	
an object�oriented simulation system with
agent rules for children of all ages�� in
Proceedings of OOPSLA ��	 ACM� pp�
�
������ �����

�Gong��� D�C� Gong and L�F� McGinnis� �An
AGVS simulation code generator for man�
ufacturing applications�� in Proceedings

of the �		� Winter Simulation Confer�

ence� pp� ������
� �����

�Math��� S�C� Mathewson� �Simulation modelling
support via network based concepts�� in
�		� Winter Simulation Conference Pro�

ceedings� pp� �������� �����

�Ozde��� M�B� Ozden� �Graphical programming of
simulation models in an object�oriented
environment�� Simulation� vol� ��� pp�
�������� �����

�Paul��� R�J� Paul and S�T� Chew� �Simulation
modelling using an interactive simulation
program generator�� Journal of the Op�

erational Research Society� vol� ��� no� ��
pp� ������
� �����

�Racz��� S� Raczynski� �Graphical description and
a program generator for queuing models��
Simulation� vol� ��� no� �� pp� ������
�
�����

�Shea��� D�C�S� Shearn� �PASSIM	 a Pascal dis�
crete event simulation program genera�
tor�� Simulation� vol� ��� no� �� pp� ������
�����

�Simo��� F� Simonot� R� LeDoeu�� S� Haddad and
V� Ramaromisa� �An object�oriented sys�
tem for the automatic generation of simu�
lation programs in power electronics�� in
CAD
CG ��	 Beijing� Proceedings of the

International Conference on Computer�

Aided Design and Computer Graphics� pp�
�������� �����

�Smit��� D�C� Smith� A� Cypher and J�C� Spohrer�
�KidSim	 programming agents without
a programming language�� Communica�

tions of the ACM� vol� ��� no� �� pp� ���
��� �����

�Thom��� T� Thomasma and J� Madsen� �Object
oriented programming languages for de�
veloping simulation�related software�� in
Proceedings of the �		� Winter Simula�

tion Conference� pp� ��
����� �����

�Ulge��� O�M� Ulgen� T� Thomasma and Y� Mao�
�Object oriented toolkits for simulation
program generators�� in �	�	 Winter

Simulation Conference Proceedings� pp�
�������� �����

�Ulge��� O�M� Ulgen and T� Thomasma� �Smart�
Sim	 an object oriented simulation pro�
gram for manufacturing systems�� Inter�

national Journal of Production Research�
vol� 
�� no� �� pp� ���������� �����

�Wegn�
� P� Wegner� �Dimensions of object�
oriented modeling�� Computer� vol� 
��
pp� �
�
�� ���
�


