
Denotational Semantics of Evaluation Order
in Expressions with Side Effects

Nikolaos S. Papaspyrou
(nickie@softlab.ntua.gr)

National Technical University of Athens
Department of Electrical and Computer Engineering

Division of Computer Science, Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou, Athens, Greece.

Tel. +30-1-7722486, Fax. +30-1-7722519

Abstract

The presence of side effects in even a very simple lan-
guage of expressions gives rise to a number of semantic
questions. The issue of evaluation order becomes a cru-
cial one and, unless a strict order is enforced, the language
becomes non-deterministic. In this paper we study the
semantics of such a language under a variety of possible
evaluation strategies, from simpler to more complex, con-
cluding with unspecified evaluation order, unspecified or-
der of side effects and the mechanism of sequence points
that is particular to the ANSI C programming language.
In doing so, we adopt the denotational semantics approach
and use monads to improve modularity and to reduce the
number of changes required for each transition. The result
is a better understanding of different evaluation strategies,
possibly leading to non-determinism in the presence of
side effects, and a unified way of specifying their seman-
tics. Furthermore, a significant step is achieved towards a
correct denotational semantics for ANSI C.

1 Introduction

Expressions play a very important role in the vast major-
ity of programming languages. In many languages expres-
sions are pure, i.e. their evaluation depends on but may not
alter the program state. For such “ideal” languages several
theories exist that can be used to prove properties of pro-
grams, starting from Hoare’s work on axiomatic semantics
in the late ’60s. Since then, many theoretical treatments of
formal semantics have preferred to study languages with
pure and deterministic expressions, because their seman-
tics is relatively simple and elegant. By introducing side
effects in expressions, the semantics becomes significantly
more complex. At the same time, several issues arise, re-
lated to the evaluation order, i.e. the order in which the
subparts of an expression are evaluated. If the evaluation
order is not strictly defined, the presence of side effects in
expressions is a source of non-deterministic behaviour.

The formal semantics of pure expressions can most of
the times be easily specified in operational [Henn90], de-
notational [Stoy77] or axiomatic form [Dijk76]. The in-
troduction of side-effects implies serious complications in

the axiomatic semantics but only small ones in the other
two forms. Non-determinism caused by unspecified eval-
uation order can usually be expressed more easily in op-
erational semantics than in denotational semantics. How-
ever, both approaches are possible and in this paper the
denotational approach is used.

One of the most important drawbacks of classic deno-
tational semantics is its lack of modularity. Small changes
in a language’s definition often imply a complete rewrite
of its formal semantics. The use of category theory and
monads [Mogg90] has been proposed as a remedy and
has become quite popular in the denotational semantics
community. Monad notation is used in this paper and it
is demonstrated that, as a result, the semantics is signifi-
cantly improved in terms of modularity and elegance.

This paper aims at investigating various evaluation
strategies for expressions that may generate side effects
and providing a unified way of describing their formal se-
mantics. For this reason, a simple strict and impure ex-
pression language is studied under various different eval-
uation strategies, starting from simple left-to-right evalua-
tion and moving on to more complex ones. The language
is slightly extended in the process to allow constructs spe-
cific to the studied strategies.

The last evaluation strategy that is considered deserves
special mention; execution interleaving is allowed and
both the order of expression evaluation and the order in
which side effects take place are unspecified. The intro-
duction of sequence points and a few additional restric-
tions makes the example language a subset of the core of
the ANSI C programming language. The proposed se-
mantics that develops naturally is sufficient to model this
subset correctly and is on its own a significant result. It
should be mentioned that the present research was moti-
vated by problems encountered in a bigger project, aiming
at a complete denotational semantics for ANSI C.

The structure of this paper is as follows. Section 2 de-
fines the example language and briefly discusses semantic
issues related to evaluation order. In Section 3 a denota-
tional semantics is gradually built for four different eval-
uation strategies. Section 4 shows how our work relates
to the literature and Section 5 concludes with some final
remarks and directions for future work.

1



2 Evaluation order

Consider a simple strict expression language with side ef-
fects, that will be called ELSE hereafter. The abstract syn-
tax of ELSE is given below. It will be slightly extended
in Sections 3.3 and 3.4.

E � Expr ��� n j I j I=E j E�+E� j -E j E�,E�

The language features a single data type (integer), con-
stants, variables, an assignment operator, a binary opera-
tor (integer addition), a unary operator (integer negation)
and a juxtaposition operator (comma). The informal se-
mantics of ELSE expressions is certainly familiar to most
readers. The value of I=E is the value of E and the value
of E�,E� is the value of E�.

Apart from the comma operator, which always eval-
uates its left operand before its right operand, evalua-
tion order of ELSE expressions is left unspecified, for
the time being, and various possibilities will be consid-
ered in the sequel. It should be clear, however, that this
renders the evaluation of ELSE expressions ambiguous,
since different evaluation strategies may lead to different
results. As an example, consider the simple expression
x=0, x+(x=1)1 whose evaluation may result in 1 or
2, depending on whether the (implicit) dereferencing of x
will take place before or after the assignment. It should
also be clear that different evaluation orders are only pos-
sible in the presence of operator +, since evaluation order
is specified for the comma operator and trivially defined
for all other constructs.

3 Semantics of ELSE

The denotational semantics of ELSE is given in an ab-
stract form, using monads to improve modularity and ele-
gance of notation. Comprehensive introductions to mon-
ads and their use in denotational semantics can be found
in [Mogg90, Wadl92, Lian95]. In brief, a monad is a tuple
hM� unitM� �Mi, where M is a domain constructor, unitM �
A � M�A� and � �M � � M�A� � �A � M�B�� � M�B�
are polymorphic functions for arbitrary domainsA andB,
satisfying three monad laws.2 By using different monads,
it is possible to derive different flavours of ELSE’s deno-
tational semantics without having to change the semantic
equations each time.

The flat domain of integer numbersN is used to denote
the values of ELSE’s only data type.3 Bottom element
represent abnormal values, mainly run-time errors since
non-termination is not possible in ELSE. Domains con-
structed by monad M denote computations, e.g. the do-
main M�N� denotes computations returning values from

1In all examples we adopt the same operator precedence and associa-
tivity as in C and use parentheses to group expressions. All these details
are hidden in the abstract syntax.

2This description, although naı̈ve, is sufficient for the purpose of this
paper. The notation used is similar to the one used in [Wadl92], with the
exception of the bind operator, which is denoted here as �.

3The choice of the mathematical space used for domains is not very
important for such a small language. Pointed cpo’s are a reasonable op-
tion. The domain notation used in this paper is the same as in [Moss90].

N. The definition of M depends on our notion of compu-
tation and it is evident that, in the case of ELSE, compu-
tations may read and modify values of variables, i.e. the
state. The result of unitM v is a computation returning v

and the result of m �M f is the combined computation of
m returning v, followed by computation f v. Evaluation
order is thus implicitly specified when using �M, since the
result of the first computation is needed before the second
computation can begin.

Before we can proceed to the semantics of ELSE, we
have to define the notion of state. Abstractly, the state
can be defined as a domain S together with the following
operations,

s� � S

get � Ide� S� N

put � Ide� N� S� S

where s� represents an empty state, i.e. a state where all
variables have undefined values, get I s reads the value of
I in state s, and put I n s modifies state s by making the
value of I equal to n. A simple implementation of state is
given below.4

S � Ide� N�U

s� � � I� inr u

get � � I� � s� � id�� � �s I�
put � � I� � n� � s� s�I �� inl n�

The semantic function �� � �� maps an expression E to its
denotation ��E ��. Denotations of expressions are compu-
tations, and since there is only one data type in ELSE, it
suffices to take M�N� as the domain of denotations. The
semantic equations for all ELSE constructs are given be-
low,

��n �� � unitM n

��I �� � state �M �� s� unitM �get I s��
��I=E �� � ��E �� �M ��n� update �put I n� �M

�� s� unitM n��
��E�+E� �� � ���E� �� �� ��E� ��� �M

�� hn�� n�i� unitM �n� � n���
��-E �� � ��E �� �M ��n� unitM �	n��
��E�,E� �� � ��E� �� �M ��n� ��E� ���

where, apart from the details of M’s implementation, we
have yet to define operator �� and functions update �
�S � S� � M�S� and state � M�S�. The last two, as in
[Lian95], are used as an interface between computations
and the state. The implementation of update depends on
monad M and the result of update f is a computation
that modifies the state by applying function f and returns
the previous state (before the modification). On the other
hand, state simply represents a computation returning the
present state and can be defined as follows.

state � update id

Operator � �� � � M�A� �M�B� � M�A � B� is very
important in this paper. It “combines” two independent
computations into a single one. If ma � M�A� and mb �

4U is the two-point domain f��ugwith� v u. It is used to express
values that are not important unless they are abnormal. Also, the function
update operator f �x �� y� is strict in all its arguments.

2



M�B� are two computations returning values va � A and
vb � B, then ma �� mb is the combined computation
returning the pair of values hva� vbi. The implementation
of �� generally depends on the implementation of M and,
as is evident from the semantic equations, specifies the
order in which expressions are evaluated. The following
sections discuss several implementations of �� reflecting
various possible evaluation strategies for ELSE. Monad
M is carefully defined each time to support the desired
evaluation order semantics.

3.1 Left-to-right evaluation

A very simple, common and natural evaluation order is
left-to-right.5 In the case of ELSE, left-to-right evaluation
specifies that the left operand of + is evaluated completely
before the right operand. This is reflected in the following
definition of operator ��.

m� �� m� �
m� �M �� v�� m� �M �� v�� unitM hv�� v�i��

Before we can have a complete semantics for ELSE, it
is necessary to define an appropriate monadM. In this sec-
tion, we choose a direct semantics approach, making use
of an additional monad P as a provision for the following
sections. Definitions ofM and update are straightforward.

M�T � � S� P�T � S�

unitM � � v� � s� unitP hv� si
m �M f � � s� m s �P �� hv�� s�i� f v� s��
update � � f� � s� unitP hs� f si

For the purpose of this section, the identity monad is a
reasonable choice for P, ending up with the conventional
direct semantics for ELSE.

P�T � � T

unitP � id

p �P f � f p

Left-to-right evaluation evidently produces unambigu-
ous results. As an example, let us consider again the ex-
pression x=0, x+(x=1), whose denotation is given be-
low. The result of its evaluation is the value 1 and the final
state is identical to the initial one, except that x has the
value 1.

��x=0, x+(x=1) �� � � s� h�� s�x �� ��i

3.2 Non-deterministic choice

We continue by considering evaluation strategies that al-
low for ambiguity in expression evaluation. In this case,
it is necessary to replace P by a monad supporting mul-
tiple results. An obvious choice is the powerdomain
monad, that is defined below using an appropriate pow-
erdomain constructor such as Plotkin’s convex powerdo-
main [Plot76]. Multiple results are constructed with the
polymorphic operator � 
P � � P�A�� P�A� � P�A�.

5Left-to-right evaluation is used by many programming languages,
such as Standard ML and Java.

P�T � � T
�

unitP � � v� fjv jg

p �P f � ext
�
f p

p� 
P p� � p� 

�
p�

In the above fj�jg � A� A
�
, ext

�
� �A� B

�
� � A

�
� B

�

and � 

�
� � A

�
� A

�
� A

� are standard operators of the
convex powerdomain.

A simple evaluation strategy that allows for ambiguous
results is the non-deterministic choice. According to this,
operands may be evaluated in any order but the evaluation
of each one is performed individually and no interleaving
is possible. In the case of ELSE, non-deterministic choice
specifies that the operands of + may be evaluated left-to-
right or right-to-left but, in any case, evaluation of one of
them will have been completed before evaluation of the
other starts.

In order to formally specify non-deterministic choice
in our semantic model, it suffices to redefine opera-
tor �� and include right-to-left evaluation as well. We
do this by introducing a new polymorphic operator � k
� � M�A� � M�A� � M�A�, which represents non-
deterministic choice in computations and whose imple-
mentation depends on monadM. Given two computations
m� � M�A� and m� � M�A�, the set of possible results for
computation m� k m� � M�A� is the union of the sets of
all possible results for both m� and m�.6

m� k m� � � s� m� s 
P m� s

m� �� m� �
m� �M �� v�� m� �M �� v�� unitM hv�� v�i�� k

m� �M �� v�� m� �M �� v�� unitM hv�� v�i��

It may be interesting to notice that, by defining m� k
m� � m�, non-deterministic choice degenerates into left-
to-right evaluation.

In this evaluation strategy, x=0, x+(x=1) may pro-
duce 1 or 2 and x=0, x+(x=1, x=2, 0) may pro-
duce 0 or 2, as shown below.

��x=0, x+(x=1) �� �
� s� fjh�� s�x �� ��i� h	� s�x �� ��ijg

��x=0, x+(x=1, x=2, 0) �� �
� s� fjh
� s�x �� 	�i� h	� s�x �� 	�ijg

3.3 Interleaving

The notion of execution interleaving is a well known one
in the theory of concurrency. An interleaved evaluation
of an expression consists of an arbitrary merging of the
atomic steps that constitute the evaluation of its subparts.
In the case of ELSE it is natural to consider side effects,
i.e. read and write accesses to the state, as the only kind of
atomic steps. Furthermore, it is often useful to disable in-
terleaving and evaluate an arbitrary expression in a single
atomic step. To achieve this, we introduce a new construct
in ELSE.

E � Expr ��� n j I j I=E j E�+E� j -E
j E�,E� j <E>

6Operator kwould be useful on its own in a hypothetical extension of
ELSE that would support non-determinism explicitly, e.g. in expressions
of the form E�?E�.

3



Expression <E> is equivalent to E with the only dif-
ference that the former is evaluated in a single atomic
step, and therefore no interleaving is permitted during its
evaluation. The semantics of the newly introduced con-
struct may be expressed using a new function exhaust �
M�A� � M�A�, that transforms a computation consisting
of several steps to an equivalent one consisting of a single
step.

��<E> �� � exhaust ��E ��

In the non-interleaving semantics of the previous sections,
expressions <E> and E are equivalent and it suffices to
take exhaust � id.

In order to formally specify interleaving in our seman-
tics, it is necessary to modify the domain of denotations.
We define monad M as follows, implementing thus a tree-
like branching semantics. We retain the powerdomain
monad P from the previous section.

M�T � � T � �S� P�M�T �� S��

unitM � inl

m �M f � �x �� g� � f� � r� inr �� s� r s �P
�� hm�� s�i� unitP hg m

�� s�i�� �� m
update � � f� inr �� s� unitP hinl s� f si�
exhaust � �x �� g� � inl� � r� inr �� s� r s �P

�� hm�� s�i� �� v�� unitP hinl v
�� s�i�

� r�� r� s� � �g m���� ��

In this semantics, the denotation of an expression is ei-
ther a computed value or a function mapping the current
state to a set of possible intermediate results, that may be
produced after a single atomic step is performed. Each
such result consists of the denotation of a partially com-
puted expression and a new state. Such denotations are
called resumptions and are frequently used in specifying
the semantics of concurrency [Moss90, dBak96]. The re-
sumption semantics that we use in this section is derived
from the direct semantics of section 3.1.

We should emphasize here that expressions whose
value is constant and does not depend on the state are con-
sidered as already computed and are denoted by elements
of the left summand of M�T �. In contrast to that, ex-
pressions whose computation requires one or more atomic
steps to be performed and whose value depends on the
state are denoted by elements of the right summand of
M�T �.

Operator k can be easily defined for the new seman-
tics.7 We notice again that by taking m� k m� � m�

interleaving degenerates into left-to-right evaluation.

m� k m� � inr �� s� let f � �� v� unitP hinl v� si�
� r� r s � in f m� 
P f m��

The definition of operator �� becomes more elegant by the
introduction of the following two functions.

7However, our resumption semantics forces us to introduce an atomic
step for the non-deterministic choice between two computed values.
This could be avoided by using the more complicated monad M�T � �
P�T � � �S� P�M�T � � S��.

analyze � M�A� � �A� B��B � B

analyze � �m� � hf� zi� � f� � r� z � m

apply � M�A� � �M�A� � M�B�� � M�B�
apply � �m� � f� � f � inl� � r� inr �� s� r s �P

�� hm�� s�i� unitP hf m�� s�i�� � m

Function analyze can be used to distinguish between a
computation that has been completed and one that requires
atomic steps to be performed. Function apply performs
the first atomic step of the computation specified by its
first argument, if this is possible, and applies its second
argument to the partial results. By using these two func-
tions, operator �� can be defined as follows.

m� �� m� � �x �� g� � hm��m�i�
analyzem� h� v�� m� �M �� v�� unitM hv�� v�i��
analyzem� h� v�� m� �M �� v�� unitM hv�� v�i��
apply m� ��m

�

�� g hm
�

��m�i� k
apply m� ��m

�

�� g hm��m
�

�i�ii� hm��m�i

When both computations of m� and m� require atomic
steps to be performed, operator �� must choose between
performing an atomic step from m� or m�.

Returning to our example x=0, x+(x=1), resump-
tion semantics produces 1 or 2 as possible results, ex-
actly as non-deterministic choice. However, expression
x=0, x+(x=1, x=2, 0) may now produce the re-
sult 1, in addition to the possible results 0 and 2 of non-
deterministic choice, in case the (implicit) dereferenc-
ing of x is interleaved between atomic steps x=1 and
x=2. The denotations of both examples in equational and
schematic form are shown in Figure 1. Their exhausted
versions are also shown, so that the results of their (unin-
terrupted) evaluation can be examined.

3.4 Sequence points

A language that does not fully specify evaluation order
and, at the same time, allows evaluation of expressions
to produce side effects is an inherently ambiguous lan-
guage.8 However, for a programming language to be use-
ful, ambiguities in program execution should be avoided
as much as possible. In this section we focus on the ANSI
C programming language which features the combination
of characteristics mentioned before. In order to disallow
undesired ambiguities, the C standard introduces restric-
tions imposed on expression evaluation. An attempt to
define the semantics of these restrictions is made in this
section.

The C standard is very careful not to overspecify, in
order to allow for reasonable optimizations in implemen-
tations of the language. Such optimizations may see fit
to postpone a side effect and, for instance, store a vari-
able’s value in a register instead of its appointed location
in memory.

At certain specified points in the execution se-
quence called sequence points, all side effects
of previous evaluations shall be complete and

8Several programming languages, such as ALGOL 60, Pascal,
C/C++ and Scheme, prefer not to impose a specific evaluation order on
implementors.

4



Expression: x=0, x+(x=1)

��x=0, x+(x=1)�� � inr �� s� fj
hinr �� s�� fj

hinr �� s��� fjhinl �s� x� ��� s���x �� ��ijg�� s�i�
hinr �� s��� fjhinl �s�� x� ��� s��ijg�� s��x �� ��i

jg�� s�x �� ��i
jg�

exhaust ��x=0, x+(x=1)�� � inr �� s� fj
hinl �� s�x �� ��i�
hinl 	� s�x �� ��i

jg�

s�

s�� s��

s�� x� �s� x� �

s

s�x �� ��

s��x �� ��s�

s���x �� �� s��

Expression: x=0, x+(x=1, x=2, 0)

��x=0, x+(x=1, x=2, 0)�� � inr �� s� fj
hinr �� s�� fj

hinr �� s��� fj
hinr �� s���� fjhinl �s� x�� s����x �� 	�ijg�� s���x �� ��i

jg�� s�i�
hinr �� s��� fj

hinr �� s���� fjhinl �s�� x�� s����x �� 	�ijg�� s��i�
hinr �� s���� fjhinl �s��� x�� s���ijg�� s���x �� 	�i

jg�� s��x �� ��i
jg�� s�x �� ��i

jg�

exhaust ��x=0, x+(x=1, x=2, 0) �� � inr �� s� fj
hinl �� s�x �� 	�i�
hinl �� s�x �� 	�i�
hinl 	� s�x �� 	�i

jg�

s�

s

s�� s��

s��� s��� s���

s� x s�� x s��� x

s�x �� ��

s��x �� ��s�

s����x �� ��

s�� s���x �� ��s���x �� ��

s����x �� �� s���

Figure 1: Two examples of interleaving semantics.

no side effects of subsequent evaluations shall
have taken place. [ANSI90, x5.1.2.3]

Sequence points are the standard’s guarantee that all side
effects will eventually take place properly and that opti-
mizations will not affect normal execution. Additional re-
strictions are imposed to disallow excessively ambiguous
expressions.

Between the previous and next sequence point
an object shall have its stored value modified
at most once by the evaluation of an expres-
sion. Furthermore, the prior value shall be ac-
cessed only to determine the value to be stored.
[ANSI90, x6.3]

The first restriction disallows expressions such as
(x=1)+(x=2). The second is careful enough to disal-
low x+(x=1) but not x=x+1. We should notice however
that these restrictions do not completely eliminate ambi-
guity in C expressions. Function calls are always sur-
rounded by sequence points and do not allow interleav-
ing in their execution. Therefore, an expression such as
f()+g() does not violate the sequence point restrictions
and is ambiguous when both f() and g() produce side
effects, since the order in which they will be called is not
specified by the standard.

In order to study the semantics of ANSI C’s mechanism
of sequence points, we modify our example language. We
first change the semantics of the comma operator, by en-
forcing a sequence point between the (left-to-right) evalu-
ation of the two operands. We also add a unary operator

#, which enforces two sequence points: one just before
and one just after the evaluation of its operand. Although
ELSE still does not feature functions, an expression of
the form <#E> is a reasonably equivalent to a call to a C
function with no arguments.

E � Expr ��� n j I j I=E j E�+E� j -E
j E�,E� j <E> j #E

The required changes in the semantics of ELSE are
given by the following equations, where seqpt � M�U�
represents a computation that enforces a sequence point.

��E�,E� �� � ��E� �� �M ��n� seqpt �M ��u� ��E� ����
��#E �� � seqpt �M ��u�� ��E �� �M

��n� seqpt �M ��u�� unitM n���

By taking seqpt � unitM u, the semantics of this section
degenerates into that of the previous section.

To distinguish between a side effect that has taken place
and one that has not, it is necessary to change the defini-
tion of state. By taking into account the additional restric-
tions imposed by the mechanism of sequence points, it is
possible to define S as a pair of two functions, the first
representing the memory and the second representing the
pending side effects. Knowing that at most one writing to
each memory location takes place between two successive
sequence points and that no reading takes place after the
writing, we may specify that all side effects actually take
place at the following sequence point by a call to function
commit � S� S. The new definition of S is given below.

5



S � �Ide� N�U� � �Ide� N�U�
s� � h� I� inr u� � I� inl ui
get � � I� � hsn� sxi�

��� � u� � id�� � �sn I� � �sx I�
put � � I� � n� � s�

��� � u� hsn� sx�I �� inl n�i � �sx I�
commit � � hsn� sxi�

let s�n � � I� � inl� � u� sn I � �sx I�
in hs�

n
� � I� inr ui

Implementations of get and put guarantee that no reading
or writing is permitted if a side effect for the same variable
is pending. Subsequently, we can define seqpt as follows.

seqpt � update commit �M �� s� unitM u�

By looking at the definition of seqpt, it is easy to see
that the proposed semantics satisfies the requirement that
all side effects shall be complete at sequence points. The
definition of put also satisfies the requirement that an ob-
ject shall have its value modified at most once between
successive sequence points. Finally, the requirement that
the prior value shall be accessed only to determine the new
value is indirectly satisfied by this semantics:

� A read access that determines the new value will cer-
tainly precede the write access in all possible eval-
uation orders. It is therefore always allowed by the
definition of get.

� A read access that does not determine the new value
is only allowed by the definition of get if it precedes
the write access in the evaluation order. But it can
be easily proved that there exists an evaluation or-
der in which this is not true and, for this particular
evaluation order, the definition of get produces an er-
ror. This error will propagate in the denotation of the
expression and, therefore, if we rule out expressions
containing errors as possible results, our semantics
satisfies the requirement.

Of course, it is possible to define a semantics satisfying
this last requirement directly, by defining S in such a way
as to keep track of performed read accesses.

As an example, we consider again the expression x=0,
x+(x=1). The semantics shown in Figure 2 is similar to
the one in Figure 1 with the exception of the extra commit

step.9 In the exhausted version, we can see that the result
2 has been replaced by an error, since read access s��� x
is performed on state s���x �� ��, without an intermediate
sequence point.

4 Related work

Research in the field of expression languages, side effects
and evaluation order spans a wide area of interest. Among
the earliest related publications we should mention the
work of Boehm [Boeh82] and Kowaltowski [Kowa77]
on the axiomatic semantics of expression languages with
side effects. Both avoid the pitfall of evaluation order by

9To reduce complexity in the figure, we keep the old notation instead
of the newly defined state operations get and put.

assuming left-to-right evaluation. The work of Filinski
[Fili96] focuses on the introduction of various kinds of ef-
fects in functional languages, using appropriate monads
for state and continuations, but does not address the is-
sue of evaluation order semantics. Evaluation order anal-
ysis in lazy functional languages is dealt with in the work
of Draghicescu and Purushothaman [Drag90] and Bloss
[Blos94]. Both do not define a semantics of execution for
different evaluation strategies and are primarily interested
in optimizations and the destructive update problem.

The semantics of many popular programming lan-
guages has been formally specified in literature, at least
partially. Unspecified evaluation order is modeled mostly
using permutation oracles or appropriate transition sys-
tems. Often the issue is excluded from the formal descrip-
tion and a convenient assumption is made. To the best of
our knowledge, techniques as the one used in this paper
have not been used for this purpose in relation with “real-
world” programming languages.

Significant research has been conducted recently con-
cerning semantic aspects of the C programming language,
mainly because of the language’s popularity and its wide
applications. In what seems to be the earliest formal ap-
proach, Sethi addresses the semantics of pre-ANSI C, us-
ing the denotational approach and assuming left-to-right
evaluation of expressions [Seth80]. In the work of Gure-
vich and Huggins [Gure93] a formal semantics for C is
given in the form of evolving algebra. The semantics of
evaluation order is based on the assumptions that no in-
terleaving is possible in expression evaluation (i.e. non-
deterministic choice as described in Section 3.2 is used)
and that side effects take place as they are generated.
Both assumptions do not agree with the ANSI standard.
A higher-level axiomatic semantics is proposed by Black
and Windley [Blac96], which removes side effects from
expressions and treats them as separate statements. In the
work of Cook and Subramanian [Cook94b] a semantics
for C is developed in the theorem prover Nqthm. It em-
ploys an oracle for determining evaluation order and order
of side-effects, but this is not really used since the authors
consider a subset of C with pure expressions. Cook et al.
have also developed a denotational semantics for C based
on temporal logic [Cook94a]. Although left-to-right eval-
uation is assumed in this work, the authors suggest how
this can be remedied. However, it is not clear whether the
suggestion allows for interleaving and there is no treat-
ment of sequence points. To the best of our knowledge,
the only semantics of ANSI C that correctly models un-
specified order of evaluation, side effects and sequence
points is defined in the work of Norrish [Norr97] in the
form of operational semantics with small-step reductions.
No similar denotational approach is known to us.

5 Conclusion and future work

This paper was mainly concerned with exploring the se-
mantics of evaluation order in strict expression languages
with side effects. The semantics of the example language
ELSE was developed under various different evaluation
strategies in a unified way, based on monad notation which

6



Expression: x=0, x+(x=1)

��x=0, x+(x=1)�� � inr �� s� fj
hinr �� s�� fj

hinr �� s��� fj
hinr �� s���� fjhinl �s�� x� ��� s����x �� ��ijg�� s��i�
hinr �� s���� fjhinl �s��� x� ��� s���ijg�� s���x �� ��i

jg�� commit s�i
jg�� s�x �� ��i

jg�

exhaust ��x=0, x+(x=1)�� � inr �� s� fj
hinl �� s�x �� ��i�
h�� s�x �� ��i

jg�

s

s��

s�

s���

s�� x� �

s���

s��� x� �

s�x �� ��

commit s�

s���

s�� s���x �� ��

s����x �� ��

Figure 2: Interleaving semantics with sequence points.

improves the modularity and elegance of the result. The fi-
nal version of ELSE is a significant subset of the language
of C expressions and its semantics has been successfully
modelled, including unspecified evaluation order, order of
side effects and the mechanism of sequence points. This
is a valuable result that opens the road towards a complete
denotational description of ANSI C. Although ELSE is
not capable of non-termination, the semantics is powerful
enough to model it. Variable aliasing can be included by
separating environment and state and the direct semantics
in the definition of monad M can be easily replaced by
continuations, which will be needed in a complete formal
treatment of C. It is also easy to extend operator �� to for
any number of operands.

Future work will have to proceed on several fronts. On
the one hand it would be interesting to relate the denota-
tional semantics described in this paper to operational se-
mantics for the same languages, by equations of the form
O � abs D, and study the issue of full abstraction in the
style of [dBak96]. This will be rather complicated, pri-
marily because of monad notation, but we believe that it
is possible although we still lack a firm proof. On the other
hand, the replacement of domains with functor categories
in the foundations of our model should be considered. In
this way, a possible worlds semantics of evaluation order
will be feasible, which can subsequently be used as a basis
for the abstract treatment of local variables. Finally, this
work is part of an ongoing bigger project, aiming at the
development of a denotational semantics for the complete
ANSI C language, in which the resumption semantics of
Section 3.4 will have a prominent role.

References

[ANSI90] American National Standards Institute, New
York, NY, ANSI/ISO 9899-1990, Ameri-
can National Standard for Programming Lan-
guages: C, 1990, Revision and redesignation
of ANSI X3.159-1989.

[Blac96] P. E. Black and P. J. Windley, “Infer-
ence Rules for Programming Languages with
Side Effects in Expressions”, in Proceed-

ings of the 9th International Conference on
Theorem Proving in Higher Order Logics
(TPHOLs’96), pp. 51–60, Turku, Finland,
26–30 August 1996, Springer Verlag.

[Blos94] A. Bloss, “Path Analysis and the Opti-
mization of Nonstrict Functional Languages”,
ACM Transactions on Programming Lan-
guages and Systems, vol. 16, no. 3, pp. 328–
369, May 1994.

[Boeh82] H. J. Boehm, “A Logic for Expressions
with Side Effects”, in Proceedings of the
ACM Symposium on Principles of Program-
ming Languages, pp. 268–280, 1982.

[Cook94a] J. Cook, E. Cohen and T. Redmond, “A For-
mal Denotational Semantics for C”, Technical
Report 409D, Trusted Information Systems,
September 1994.

[Cook94b] J. Cook and S. Subramanian, “A Formal Se-
mantics for C in Nqthm”, Technical Report
517D, Trusted Information Systems, October
1994.

[dBak96] J. de Bakker and E. de Vink, Control Flow
Semantics, Foundations of Computing Series,
MIT Press, Cambridge, MA, 1996.

[Dijk76] E. W. Dijkstra, A Discipline of Programming,
Prentice Hall, Englewood Cliffs, NJ, 1976.

[Drag90] M. Draghicescu and S. Purushothaman, “A
Compositional Analysis of Evaluation-Order
and its Application”, in Conference Record of
the ACM Symposium on Lisp and Functional
Programming, pp. 242–250, Nice, France,
1990.

[Fili96] A. Filinski, Controlling Effects, Ph.D. thesis,
Carnegie Mellon University, School of Com-
puter Science, May 1996, Also as Technical
Report CMU-CS-96-119.

[Gure93] Y. Gurevich and J. K. Huggins, “The Se-
mantics of the C Programming Language”,

7



in E. Börger et al., editors, Selected Papers
from CSL’92 (Computer Science Logic), vol.
702 of Lecture Notes in Computer Science,
pp. 274–308, Springer Verlag, New York, NY,
1993.

[Henn90] M. Hennessy, The Semantics of Programming
Languages: An Elementary Introduction Us-
ing Structural Operational Semantics, John
Wiley and Sons, New York, NY, 1990.

[Kowa77] T. Kowaltowski, “Axiomatic Approach to
Side Effects and General Jumps”, Acta In-
formatica, vol. 7, pp. 357–360, 1977.

[Lian95] S. Liang, P. Hudak and M. Jones, “Monad
Transformers and Modular Interpreters”,
in Conference Record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’95), San
Francisco, CA, January 1995.

[Mogg90] E. Moggi, “An Abstract View of Program-
ming Languages”, Technical Report ECS-
LFCS-90-113, University of Edinburgh, Lab-
oratory for Foundations of Computer Science,
1990.

[Moss90] P. D. Mosses, “Denotational Semantics”, in
J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, vol. B, chapter 11, pp.
577–631, Elsevier Science Publishers B.V.,
1990.

[Norr97] M. Norrish, “An Abstract Dynamic Seman-
tics for C”, Technical Report TR-421, Uni-
versity of Cambridge, Computer Laboratory,
May 1997.

[Plot76] G. D. Plotkin, “A Powerdomain Construc-
tion”, SIAM Journal on Computing, vol. 5,
pp. 452–487, 1976.

[Seth80] R. Sethi, “A Case Study in Specifying the
Semantics of a Programming Language”, in
Proceedings of the 7th Annual ACM Sym-
posium on Principles of Programming Lan-
guages, pp. 117–130, January 1980.

[Stoy77] J. E. Stoy, Denotational Semantics: The
Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge,
MA, 1977.

[Wadl92] P. Wadler, “The Essence of Functional Pro-
gramming”, in Proceedings of the 19th An-
nual Symposium on Principles of Program-
ming Languages (POPL’92), January 1992.

8


