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ABSTRACT

In many universities� lower�level math courses on propositional and predicate calculus

usually avoid using formalism in de�nitions and proofs� at least in the beginning�

When formalization is later introduced� the students are left with the impression

that formalism is not essential or worth the e	ort� On the contrary� the Department

of Computer Science of Cornell University adopts formalism in these courses from

the very beginning� Students learn not to fear formalism and develop their reasoning

abilities by constructing rigorous proofs�

However� the construction of formal proofs is not always easy� When the magni�

tude of the problem increases� it is easy to forget or neglect something and it is equally

easy to loosen the formalism� either by carelessness or on purpose� A computer�based

proof editor that checks each step of a proof can help solve these problems�

The subject of this thesis is the design and implementation of a computer program

that facilitates the construction of formal proofs� The proof editor that has been

developed can be used to familiarize students with formalism and help them construct

rigorous and sound proofs� Special attention has been given to make this tool user�

friendly and easily extendable to calculi other than propositional or predicate�

The program has been developed for the Apple Macintosh� It is written in C



and is completely portable� except for the part implementing the user interface�
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Chapter �

Introduction

This thesis presents an equational proof editor� following the style used in the text

�A Logical Approach to Discrete Math� �GS���� Several tools have been developed

recently that can serve as formal proof editors� Among them� one should mention

the following�

� the Proxac editor for proof and program transformation �vdS��a� �vdS��b��

developed in California Institute of Technology� It tool is closest to a usable

editor for proofs in the style of �GS���� It has been implemented in Modula���

which is the main reason why it cannot be used �until now� there is no reliable

Modula�� compiler for the Apple Macintosh�� Other reasons are its ine�cient

user interface� the slightly di	erent format it uses for proofs and the fact that

it cannot be easily extended�

� the NUPRL proof development system �C����� developed in Cornell University�

It focuses on automatic proof development using natural deduction� However�

�



�

the proof format that it uses and the complexity of this system make it inap�

propriate for lower�level math courses�

� the MathPad mathematical report writer �BVW���� developed in Eindhoven

University of Technology� This tool is an editor� allowing the preparation of

documents of mathematical nature� Although it can be used for the construc�

tion of formal proofs in propositional and predicate calculus� it is more ori�

ented towards text rather than formulae manipulation and does not provide

any checking of validity�



Chapter �

Speci�cations

��� Introduction

This section describes the basics of the proof editor� We �rst de�ne some of the

terms that will be used frequently� The terms that are not de�ned have their usual

meaning �e�g� type� identi�er� constant� variable� operator� expression��

� Fact � an expression whose result belongs to the special type boolean� Not all

boolean expressions are facts� only the ones that are valid �true in all states��

� Axiom� a fact that is considered to be true with no evidence�

� Theorem� a fact that is considered to be true and its proof is given�

� Step� the result of the transformation of an expression to another expression�

The two expressions become related with a connective operator�

� Proof � a sequence of steps or other constructs of the proof editor that is con�

sidered to be the evidence that supports a theorem�

�



�

� Rule� a mechanism for deriving steps in a proof� An inference rule� as de�ned in

�GS���� is a syntactic mechanism for deriving �truths�� Inference rules consist of

a list of expressions� called premises� and an expression� called the conclusion�

Such rules assert that� if the premises are assumed to be truths� then the

conclusion is a truth also� Our proof editor has some prede�ned inference rules

�e�g� Leibniz�s rule� and provides a small programming language for creating

user�de�ned rules�

The following paragraphs present a brief overview of the proof editor�

����� Facts� proofs and scopes

There are two basic types of facts� axioms and theorems� The di	erence between

the two is that axioms become facts immediately after they are typed� whereas the�

orems become facts only when they are proved� Each fact can have two user�de�ned

identi�ers� a title and a number� e�g� �

Axiom �p� q � boolean�� title �Symmetry of ��� number �����

States� p � q � q � p

A proof is usually a list of steps� Each step consists of a connective operator and

a hint� The hint is an indication of the fact �or the prede�ned property� that is used

for performing the step� There are three types of proofs�

� to fact � Starting from the expression to be proved� it is transformed into a fact�

An example of such a proof is the following�



�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by transforming to a fact�

p � �p � q� � p

� h Golden rule ������� with q �� p � q i

p � q � p � p � q

� h Idempotency of � ������ i

p � q � p � q

� h Re�exivity of � ������ with p �� p � q i

The symbol ��� in the last line means that the proof has been completed�

Note that a hint must be given after ���� indicating to which fact the initial

expression has been transformed�

� from fact � Starting from a fact� the fact is transformed into the expression to

be proved� The same example� expressed as a proof of this type is�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by starting from a fact�

h Re�exivity of � ������ with p �� p � q i

p � q � p � q

� h Idempotency of � ������ i

p � q � p � p � q



�

� h Golden rule ������� with q �� p � q i

p � �p � q� � p

�

Note that now there is no need for a hint after the ��� symbol but before the

�rst expression� This hint indicates which fact we are transforming�

� by transformation� Starting from some part of the expression to be proved�

that part is transformed to the remaining part� The same example� expressed

as a proof of this type is�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by transformation�

p � �p � q�

� h Golden rule ������� with q �� p � q i

p � p � q � p � p � q

� h Idempotency of � ������ i

p � p � q � p � q

� h Symmetry of � ������ with q �� p � q i

p

�

Note that there is no need for a hint after the ��� symbol� The connective

operator now becomes part of the expression that we are proving�






To fact proofs have the characteristic that� at each step� the whole proof depends

on proving the current expression� Because of this characteristic� such proofs allow

arbitrary dependencies that the user can specify by using rules� For instance� consider

the following proof�

Theorem �p� q � boolean�

Prove� p � q

Proof by mutual implication�

Prove� p � q

� � �

�

Prove� q � p

� � �

�

In this case� the proof of �p � q� depends on the two proofs �p � q� and �q � p��

These two proofs will be called auxiliary proofs�

We now de�ne the notion of scope� A scope is a part of a proof to a fact� containing

additional assumptions and auxiliary proofs� No auxiliary proof can span across

scopes� Scopes can be nested� that is� they can include other scopes� Assumptions

are facts that are considered valid without evidence� However� an assumption can

have no free variables� all variables in an assumption are considered �xed and cannot

be substituted by anything� Assumptions are only visible within the scope in which

they are de�ned� or scopes that are nested in this� They can only appear in the



�

beginning of a scope� before any auxiliary proofs� An example of a proof containing

two nested scopes is the following� Scopes are shown by indentation�

Theorem �p� q � boolean�� number �����

Prove� p � �q � p�

Assume� p �A��

Prove� q � p

Assume� q �A��

Prove� p

Proof by transforming to a fact�

p

� h Assumption A� i

����� Types and expressions

Types are generally sets of values� In our proof editor� though� types are just names�

The set of values that inhabit a type cannot be de�ned� Nevertheless� all types are

considered non�empty� All types are simple� our proof editor does not allow types to

be built from other types�

The simplest expressions consist of single variables or constants� Variables and

constants must be de�ned before they can be used� The de�nition of a variable or

constant assigns to it a name and a type �however� to simplify the type system� we

assign a user�de�ned default type to untyped variables��

There are three kinds of operators�



�

� pre�x operators� i�e� unary operators of the form � � T � Tr� A pre�x operator

can be applied to operand x by writing ��x��

� post�x operators� i�e� unary operators of the form � � T � Tr� A post�x

operator can be applied to operand x by writing �x���

� in�x operators� i�e� binary operators of the form � � T� 	 T� � Tr� An in�x

operator can be applied to operands x� y by writing �x � y��

The user can specify operator precedence and other properties� Parentheses can be

used in order to enforce the order of operations that the user wants� In case of

ambiguity in the application of operators� the proof editor must report an error �e�g�

�x�� y �� z� is ambiguous if it is not known that one of the two operators has greater

precedence than the other or that �� and �� are mutually associative��

Operators can be declared associative �see x������� This allows expressions of

the form �x � y � z�� Moreover� mutual associativity allows expressions of the form

�x �� y �� z�� In general� consider an expression of the form�

E� �� E� �� � � � �n�� En

where n 
 � and operator precedence does not resolve the ambiguity� This expression

is not ambiguous if�

for all � � i � j � n�

if �i � �j � �i is associative�

if �i �� �j � �i and �j are mutually associative�



��

General functions can be de�ned� by giving the types of the operands and the

result type� A function can in general be of the form f � T� 	 T� 	 � � � 	 Tn �

Tr� where n 
 �� and can be applied to its operands x�� x�� � � � � xn by writing

�f�x�� x�� � � � � xn��� Nevertheless� for our proof editor functions are just names�

Quanti�cations are expressions of the form ��  x j R � E�� where � is an in�x

operator��  x is a list of dummy variables� R is an optional boolean expression �the

range� if it is omitted� it is considered to be the default true value� and E is an

expression �the body�� The scope of a dummy is the range and body�

����� Textual substitution

Textual substitution is the most important operation in our proof editor� The nota�

tion that we will use is �E �x�� x�� � � � � xn �� e�� e�� � � � � en��� where n 
 �� E is the

expression in which the substitution will take place� x�� x�� � � � � xn are the distinct

variables� that will be simultaneously substituted and e�� e�� � � � � en are the expres�

sions that will replace them�

We �rst de�ne the predicate occurs�� x�� � e��� where  x is a list of variables and

 e is a list of expressions� It is true if any of the variables in  x occurs free in any of

the expressions in  e �the occurrence of a variable in an expression is free if it is not

in the scope of any quanti�cation that has this variable as a dummy�� The formal

de�nition of textual substitution is given in Fig�����

�The in�x operator used in a quanti�cation must be associative and symmetric� It must also
have an identity�

�We allow only substitution of variables�
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v � x ��  e� �

��
�

ei � if variable v is same as xi

v � otherwise

c � x ��  e� � c

��E� � x ��  e� � ��E � x ��  e��

�E�� � x ��  e� � �E � x ��  e���

�E� �� � � � �m�� Em� � x ��  e� � �E� � x ��  e�� �� � � � �m�� �Em � x ��  e��

f�E�� E�� � � � � Em� � x ��  e� � f�E� � x ��  e�� E� � x ��  e�� � � � � Em � x ��  e��

�E� � x ��  e� � �E � x ��  e��

Provided not occurs�� y�� � x�  e���

��  y j R � E� � x ��  e� � ��  y j R � x ��  e� � E � x ��  e��

Memorandum	

 x � the list of variables x�� x�� � � � � xn�

 e � the list of expressions e�� e�� � � � � en�

v � a variable�

c � a constant�

�� �i � operators�

f � a function�

 y � a list of dummy variables�

E�Ei� R � expressions�

Figure ���� Textual substitution�
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����� Interface

Regardless of the appearance of the interface �windows� menus� etc�� some things are

bound to be needed� We will make an e	ort not to put any unnecessary restrictions

on the interface� What will certainly be needed is�

� The current expression� This is the whole expression that is being edited� When

a proof is being edited� the current expression is the last expression appearing

in the proof�

� The current subexpression� This is the subexpression of the current expression

that has been selected for transformation� If nothing has been selected� the

whole current expression is taken�

� The current fact� This is the fact that will be applied� The user can specify

the appropriate variable substitutions� if necessary�

� The current rule� This is the user�de�ned rule that will be applied�

��� Prede�ned items

The following paragraphs present the prede�ned items of the proof editor�

����� Types

There are four prede�ned types�

� boolean� the type of all facts�
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� ANY� a wild card type� Useful in de�nitions of axioms and theorems that contain

equality and�or textual substitution� or for dummy variables in substitutions�

� VARIABLE� a type for variables of any type� Useful in de�nitions of axioms and

theorems that contain textual substitution�

� LIST� a type for lists of expressions� Useful in de�nitions of axioms and theo�

rems that contain textual substitution� as well as in quanti�ers�

The �rst is a normal type� whereas the other three are only used for special purposes�

����� Operators

An equality operator is prede�ned for every type T�

define operator � infix � T x T �� boolean

The precedence of all equality operators is the same� All equality operators have the

following properties �see also x�������

rule symmetric���

rule connective���

rule transitive��� �� ��

rule conjunctional���

rule prove���

rule leibniz��� ��
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����� Accessors

The following accessors are prede�ned �see also x������� They can be used only when

de�ning rules �see also x�������

� TYPEOP�op�� the type of the operand of pre�x or post�x operator op �a type

name��

� TYPEOP	�op� and TYPEOP
�op�� the types of the two operands �left and right

respectively� of in�x operator op �a type name��

� TYPERES�op�� the result type of operator op �a type name��

� TYPEEXP�exp�� the type of expression exp �a type name��

� LIDENT�op�� the left identity of in�x operator op� if it exists �a constant��

� RIDENT�op�� the right identity of in�x operator op� if it exists �a constant��

� IDENTITY�op�� the identity of in�x operator op� if it exists �a constant��

� LZERO�op�� the left zero of in�x operator op� if it exists �a constant��

� RZERO�op�� the right zero of in�x operator op� if it exists �a constant��

� ZERO�op�� the zero of in�x operator op� if it exists �a constant��

� DUAL�op�� the operator that has been declared dual to operator op by a rule�

If operator op is symmetric� then it returns op�

� DEF�TRUE� the boolean constant that has been declared to be the default true

value�
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� DEF�FALSE� the boolean constant that has been declared to be the default false

value�

� DEF�AND� the operator that has been declared to be the default conjunction

operator�

� DEF�OR� the operator that has been declared to be the default disjunction op�

erator�

� QUANTOPER�op�� the name that will be used when operator op is used in a

quanti�cation� If no quantifier rule has been given� it returns op�

� CURR�EXPR� the current expression�

� CURR�FACT� the current fact �if a hint is speci�ed by the user� after all substi�

tutions have been made��

� CURR�SUBEXP� the current subexpression expression�

����� Predicates

The following predicates are prede�ned� They can be used only in the de�nition of

rules �see also x����� and x�������

� IS�CONSTANT�exp�� expression exp is the name of a constant�

� IS�SYMMETRIC�op�� operator op has been declared symmetric�

� IS�ASSOCIATIVE�op�� operator op has been declared associative�

� IS�IDEMPOTENT�op�� operator op has been declared idempotent�
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� HAS�LIDENT�op�� operator op has been declared to have a left identity�

� HAS�RIDENT�op�� operator op has been declared to have a right identity�

� HAS�IDENTITY�op�� operator op has been declared to have both a left and a

right identity and these are equal�

� HAS�LZERO�op�� operator op has been declared to have a left zero�

� HAS�RZERO�op�� operator op has been declared to have a right zero�

� HAS�ZERO�op�� operator op has been declared to have both a left and a right

zero and these are equal�

� IS�CONNECTIVE�op�� operator op has been declared connective�

� HAS�DUAL�op�� operator op has been declared dual to another operator� or op

is symmetric�

� IS�DUAL�op	� op
�� operators op	 and op
 have been declared dual�

� IS�MUTUAL�ASSOC�op	� op
�� operators op	 and op
 have been declared mu�

tually associative�

� IS�PROVE�FF�op�� operator op has been declared proveFF�

� IS�PROVE�TF�op�� operator op has been declared proveTF�

� IS�PROVE�op�� operator op has been declared prove�

� IS�RELATED�op	� op
�� operators op	 and op
 have been declared related�
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� IS�CONJUNCTIONAL�op�� operator op has been declared conjunctional�

� IS�EQUIVALENT�op	� op
�� operators op	 and op
 have been declared equiv�

alent�

� ISDEF�TRUE� a default true value has been de�ned�

� ISDEF�FALSE� a default false value has been de�ned�

� ISDEF�AND� a default conjunction operator has been de�ned�

� ISDEF�OR� a default disjunction operator has been de�ned�

����� Rules for operator properties

Rules for operator properties are used internally by the editor� They are de�ned

with the statement rule� Some of these properties can be applied to the current

expression on the �y� that is without any intermediate steps and hints�� Some others

a	ect the behavior of operators and the way in which expressions are matched�

Operator properties that are used in transformations are�

� symmetric�op� speci�es that operator op is symmetric� This means that a

subexpression of the form �x op y� can be replaced on the �y by �y op x��

The following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op�

not HAS�DUAL�op�

�However� the user can specify that the intermediate steps should not be omitted� In that case�

a descriptive hint will be given and the equality operator will be used�
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� associative�op� speci�es that operator op is associative� This means that

there is no ambiguity in expressions of the form �x op y op z� and no paren�

theses are needed� Such an expression has more than one outermost operator�

This property can be used to transform on the �y a subexpression of the form

��x op y� op z� to �x op �y op z�� and vice versa� The following condition

must be satis�ed�

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� idempotent�op� speci�es that operator op is idempotent� This means that a

subexpression of the form �x op x� can be replaced on the �y by �x� and vice

versa� The following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� dual�op	� op
� speci�es that operators op	 and op
 are dual� This means

that a subexpression of the form �x op	 y� can be replaced on the �y by

�y op
 x� and vice versa� The following conditions must be satis�ed�

not IS�SYMMETRIC�op	�

not IS�SYMMETRIC�op
�

� mutualAssoc�op	� op
� speci�es that operators op	 and op
 are mutually

associative� This means that there is no ambiguity in expressions of the form

�x op	 y op
 z� and no parentheses are needed� Such an expression has more

than one outermost operator� This property can be used to transform on the �y
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a subexpression of the form ��x op	 y� op
 z� to �x op	 �y op
 z�� and

vice versa� The following condition must be satis�ed�

TYPEOP
�op	� � TYPEOP	�op
� � TYPERES�op	� � TYPERES�op
�

� leftIdent�op� c� speci�es that c is the left identity of operator op� This

means that a subexpression of the form �c op x� can be replaced on the �y

by �x� and vice versa� The following conditions must be satis�ed�

IS�CONSTANT�c�

TYPEEXP�c� � TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� rightIdent�op� c� speci�es that c is the right identity of operator op� This

means that a subexpression of the form �x op c� can be replaced on the �y by

�x� and vice versa� The same conditions as for leftIdent must be satis�ed�

� identity�op� c� is the same as giving both�

leftIdent�op� c�

rightIdent�op� c�

� leftZero�op� c� speci�es that c is the left zero of operator op� This means

that a subexpression of the form �c op x� can be replaced on the �y by �c�

and vice versa� The same conditions as for leftIdent must be satis�ed�

� rightZero�op� c� speci�es that c is the right zero of operator op� This means

that a subexpression of the form �x op c� can be replaced on the �y by �c�

and vice versa� The same conditions as for leftIdent must be satis�ed�
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� zero�op� c� is the same as giving both�

leftZero�op� c�

rightZero�op� c�

The following properties a	ect the behavior of operators�

� connective�op� speci�es that operator op is a connective operator� This means

that it can be used to connect expressions along the steps of a proof� The

following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op�

TYPERES�op� � boolean

� transitive�op	� op
� op�� speci�es that the sequence of steps�

exp	

op	

exp


op


exp�

is equivalent to a step�

exp	

op�

exp�
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�omitting the hints�� The following conditions must be satis�ed�

IS�CONNECTIVE�op	�

IS�CONNECTIVE�op
�

IS�CONNECTIVE�op��

� proveFF�op� speci�es that if we have a sequence of steps equivalent to�

exp	

op

exp


and exp	 is a fact� then by ending the proof there exp
 becomes a fact� The

following conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean

� proveTF�op� speci�es that if we have a sequence of steps equivalent to�

exp	

op

exp


and exp
 is a fact� then by ending the proof there exp	 becomes a fact� The

following conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean
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� prove�op� is the same as giving both proveFF and proveTF� The following

conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean

� related�op	� op
� speci�es that if a sequence of steps equivalent to�

exp	

op	

exp


is a valid proof for the expression �exp	 op
 exp
�� Every operator is con�

sidered to be related to itself� therefore no rules of the form related�op� op�

need to be given� The following conditions must be satis�ed�

IS�CONNECTIVE�op	�

TYPEOP	�op	� � TYPEOP
�op	� � TYPEOP	�op
� � TYPEOP
�op
�

� conjunctional�op� speci�es that a subexpression of the form�

x	 op x
 op x� op 


 xn�	 op xn

can be replaced on the �y by�

�x	 op x
� DEF�AND �x
 op x�� DEF�AND 


 DEF�AND �xn�	 op xn�

and vice versa� Before this can be applied� though� a default conjunction oper�

ator must be de�ned� The following conditions must be satis�ed�
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TYPEOP	�op� � TYPEOP
�op�

TYPERES�op� � boolean

� equivalent�op	� op
� speci�es that operators op	 and op
 are equivalent�

This means that a subexpression of the form �x op	 y� can be replaced on the

�y by �x op
 y� and vice versa�� The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP	�op
�

TYPEOP
�op	� � TYPEOP
�op
�

TYPERES�op	� � TYPERES�op
�

It should be noted that operator equivalence is not transitive� i�e� if it has

been de�ned that �equivalent�op	� op
�� and �equivalent�op
� op����

this does not mean that �equivalent�op
� op����

� quantifier�new�op� op� speci�es that when operator op is used in a quan�

ti�cation� the new operator new�op should be used instead� Note that new�op

is only a second name for op� However� it can be used only as a quanti�er� The

following conditions must be satis�ed�

IS�ASSOCIATIVE�op�

IS�SYMMETRIC�op�

HAS�IDENTITY�op�

Finally� the following rules can be used to specify the default true and false values

and the default conjunction and disjunction operators�

�Provided that the replacement does not create any syntactic or semantic errors�
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� defTrue�c� de�nes the default true value to be c� The following conditions

must be satis�ed�

not ISDEF�TRUE

IS�CONSTANT�c�

TYPEEXP�c� � boolean

� defFalse�c� de�nes the default false value to be c� The following conditions

must be satis�ed�

not ISDEF�FALSE

IS�CONSTANT�c�

TYPEEXP�c� � boolean

� defAnd�op� de�nes the default conjunction operator to be op� The following

conditions must be satis�ed�

not ISDEF�AND

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op� � boolean

IS�ASSOCIATIVE�op�

� defOr�c� de�nes the default disjunction operator to be op� The following

conditions must be satis�ed�

not ISDEF�OR

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op� � boolean

IS�ASSOCIATIVE�op�
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����� Rules for transformation steps

The following rules are used internally by the editor in order to create transformation

steps�

� substitute�op	� op
� speci�es that if there is a fact of the form �x op	 y�

and the current expression is �x�� then a step can be made to �y�� using

operator op
 and the fact as a hint�

If IS�SYMMETRIC�op	�� then the step can be made even if the fact is of the

form �y op	 x��

If IS�DUAL�op	� op	�� and IS�DUAL�op
� op
�� and the fact is of the form

�y op	� x�� then the step can be made using operator op
� and the fact as a

hint�

The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP
�op	�

IS�CONNECTIVE�op
�

� leibniz�op	� op
� speci�es that if there is a fact of the form �x op	 y� and

the current expression contains �x� as a subexpression� then a step can be

made by replacing �x� by �y� in the current expression� using operator op


and the fact as a hint� This property is an extension of the previous property

�substitute��

If IS�SYMMETRIC�op	�� then the step can be made even if the fact is of the

form �y op	 x��
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If IS�DUAL�op	� op	�� and IS�DUAL�op
� op
�� and the fact is of the form

�y op	� x�� then the step can be made using operator op
� and the fact as a

hint�

The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP
�op	�

IS�CONNECTIVE�op
�

����	 Proof techniques

Three proof techniques are prede�ned�

� PROVE�FF� Starting with a fact� transform it to the expression that needs to be

proved� If the sequence of steps is equivalent to�

exp	

op

exp


and exp	 is a fact� then exp
 becomes a fact� The following condition has to

be satis�ed�

IS�PROVE�FF�op�

� PROVE�TF� Starting with the expression that needs to be proved� transform it

to a fact� If the sequence of steps is equivalent to�

exp	



�


op

exp


and exp
 is a fact� then exp	 becomes a fact� The following condition has to

be satis�ed�

IS�PROVE�TF�op�

� PROVE�TR� Starting with an expression� transform it to another expression� If

the sequence of steps is equivalent to�

exp	

op	

exp


and the expression that needs to be proved is of the form �exp	 op
 exp
��

then it is considered proved if the following condition is also satis�ed�

IS�RELATED�op	� op
�

����
 Quanti�er properties

The following quanti�er properties have been prede�ned� They can be applied on

the �y in the same way as operator properties de�ned by rules� The user can specify

whether the intermediate steps will be omitted� If intermediate steps are not omitted�

a descriptive hint will be given and the equality operator will be used�

� Missing range�
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�op x �� E� � �op x � DEF�TRUE � E�

� Empty range�

�op x � DEF�FALSE � E� � IDENTITY�op�

� One�point rule� Provided not occurs��x�� �E���

�op x � x � E � F� � F�x��E�

� Distributivity �

�op x � R � P� op �op x � R � Q� � �op x � R � P op Q�

� Range split �

�op x � R DEF�OR S � P� op �op x � R DEF�AND S � P� �

�op x � R � P� op �op x � S � P�

� Range split � Provided �R DEF�AND S � DEF�FALSE� or IS�IDEMPOTENT�op��

�op x � R DEF�OR S � P� � �op x � R � P� op �op x � S � P�
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� Interchange of dummies� Provided not occurs��y�� �R�� and

not occurs��x�� �Q���

�op x � R � �op y � Q � P�� � �op y � Q � �op x � R � P��

� Nesting � Provided not occurs��y�� �R���

�op x� y � R DEF�AND Q � P� � �op x � R � �op y � Q � P��

� Dummy renaming � Provided not occurs��y�� �R�P���

�op x � R � P� � �op y � R�x��y� � P�x��y��

� Dummy reordering �

�op x� y � R � P� � �op y� x � R � P�

��� The proof editor�s internal language

Although the syntax of this language may change� we think it is necessary to de�ne

its basic characteristics and semantics�� Each �le that is processed by the proof editor

is of the form�

��le� ��� � �statement� ��

The following paragraphs describe what statements are�

�This is the internal language� users need not write in it or read it�
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����� Using existing �les

The include statement is used in order to include the contents of an existing �le in

the current �le� Its syntax is�

�statement� ��� �include� �string�

It should be noted that the included �le cannot be changed while editing the �le from

which it was included� For example� the proof of a theorem that was de�ned in the

included �le cannot be edited�

����� De�nition of types

Types are de�ned by statements of the form�

�statement� ��� �define� �type� �id�type� � ��� �id�type� ��

When used in some declarations� a type is de�ned as�

�type� ��� �id�type� j �ANY� j �VARIABLE� j �LIST�

����� De�nition of constants

Constants are de�ned by statements of the form�

�statement� ��� �define� �constant� �id�constant�

� ��� �id�constant� �� ��� �id�type�

����� De�nition of operators

Operators are de�ned by statements of the form�
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�statement� ��� �define� �operator� �id�operator�

� �prefix� j �postfix� � ��� �id�type� ���� �id�type�

j �define� �operator� �id�operator� �infix� ���

�id�type� �x� �id�type� ���� �id�type�

The precedence of operators can be de�ned by statements of the form�

�statement� ��� �define� �precedence� �PREC� ��� �id�operator� ���

� � ��� j ��� � �PREC� ��� �id�operator� ��� ��

Several such statements for several operators create a partial order of precedence��

The de�nition �PREC�op	� � PREC�op
�� means that op
 binds stronger than op	�

whereas the de�nition �PREC�op	� � PREC�op
�� means that op	 has the same

precedence as op
�

����� De�nition of functions

Functions are de�ned by statements of the form�

�statement� ��� �define� �function� �id�function� ���

�id�type� � �x� �id�type� �� ���� �id�type�

����� Expressions

Expressions are the most basic part of the internal language� They are de�ned by

the following rules�

�expression� ��� �term� � ��� �seq�subst� ��� �

�A total order is imposed by the proof editor�s interface�
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j �id�operator� �expression�

j �expression� �id�operator�

j �expression� �id�operator� �expression�

�term� ��� �id�constant�

j �id�variable�

j �id�function� ��� �expr�list� ���

j ��� �expression� ���

j ��� �id�operator� �dummy�decl� ���

� �expression� � ��� �expression� ���

�seq�subst� ��� �var�list� ���� �expr�list�

�var�list� ��� �id�variable� � ��� �id�variable� ��

�expr�list� ��� �expression� � ��� �expression� ��

�dummy�decl� ��� �part�dummy�decl� � ��� �part�dummy�decl� ��

�part�dummy�decl� ��� �var�list� ��� � �id�type� j �LIST� �

����	 De�nition of axioms

Axioms are de�ned by statements of the following form�

�statement� ��� �axiom� � ��� �type�decl� ��� � �fact�name�

� �fact�condition� �� �states� �f� �expression� �g�

where�

�type�decl� ��� �part�type�decl� � ��� �part�type�decl� ��
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�part�type�decl� ��� �var�list� ��� �type�

�fact�name� ��� � �title� �string� � � �number� �string� �

�fact�condition� ��� �condition� � �not� �

�occurs� ��� �var�list� ��� �expr�list� ���

����
 De�nition of theorems

Theorems are de�ned by statements of the form�

�statement� ��� �theorem� � ��� �type�decl� ��� � �fact�name�

� �fact�condition� �� �proof�

�proof� ��� �prove� �f� �expression� �g� �proof�tail�

In order for a theorem to be considered a fact� the proof that follows it must be

completed and valid� These properties� though� cannot easily be speci�ed syntacti�

cally and are ignored for the time being� A proof is de�ned as follows�

�proof�tail� ��� �

j �fromFact� �hint� �f� �expression� �g� �seq�of�steps�

� �qed� �

j �toFact� �seq�of�steps�

� �qed� �hint� j �depends�clause� �

j �transform� �f� �expression� �g� �seq�of�steps�

� �qed� �

�seq�of�steps� ��� � �step� �f� �expression� �g� ��
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�step� ��� �step� �id�operator� �hint�

�hint� ��� �hint� � �fact�hint� j �property�hint� �

�fact�hint� ��� � �substFact� � �string� � ��� �seq�subst� ��� �

�property�hint� ��� �insparen�

j �rmvparen�

j �perfsub�

j �symmetric� ��� �id�operator� ���

j �dual� ��� �id�operator� ��� �id�operator� ���

j �conjunctional� ��� �id�operator� ���

j �equivalent� ��� �id�operator� ��� �id�operator� ���

�depends�clause� ��� �depends� �proof�scope� �enddep�

�proof�scope� ��� � �assumption� �� � �proof� ��

�assumption� ��� �assume� �f� �expression� �g� �fact�name�

����� De�nition of rules

Rules are divided in four categories�

� Prede�ned rules for transforming the current subexpression on the �y�

� Prede�ned rules for transforming the current subexpression by using facts�

� Prede�ned rules for de�ning the default true and false values and also the

default conjunction and disjunction operators�
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� User�de�ned rules�

Rules can be de�ned with statements of the form�

�statement� ��� �rule� �pred�oper�property�

j �rule� �pred�transf�rule�

j �rule� �pred�default�val�

j �rule� � �title� �string� � � �rule�statement� ��

�pred�oper�property� ��� �symmetric� ��� �id�operator� ���

j �associative� ��� �id�operator� ���

j �idempotent� ��� �id�operator� ���

j �dual� ��� �id�operator� ��� �id�operator� ���

j �mutualAssoc� ��� �id�operator� ���

�id�operator� ���

j �leftIdent� ��� �id�operator� ���

�id�constant� ���

j �rightIdent� ��� �id�operator� ���

�id�constant� ���

j �identity� ��� �id�operator� ���

�id�constant� ���

j �leftZero� ��� �id�operator� ���

�id�constant� ���

j �rightZero� ��� �id�operator� ���

�id�constant� ���
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j �zero� ��� �id�operator� ��� �id�constant� ���

j �connective� ��� �id�operator� ���

j �transitive� ��� �id�operator� ���

�id�operator� ��� �id�operator� ���

j �proveFF� ��� �id�operator� ���

j �proveTF� ��� �id�operator� ���

j �prove� ��� �id�operator� ���

j �related� ��� �id�operator� ���

�id�operator� ���

j �conjunctional� ��� �id�operator� ���

j �equivalent� ��� �id�operator� ���

�id�operator� ���

j �quantifier� ��� �id�operator� ���

�id�operator� ���

�pred�transf�rule� ��� �substitute� ��� �id�operator� ���

�id�operator� ���

j �leibniz� ��� �id�operator� ���

�id�operator� ���

�pred�default�val� ��� �defTrue� ��� �id�constant� ���

j �defFalse� ��� �id�constant� ���

j �defAnd� ��� �id�operator� ���

j �defOr� ��� �id�operator� ���
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�rule�statement� ��� �fail� �string�

j �scopeBegin� � �scope�statement� �� �scopeEnd�

j �if� �rule�condition� �then� � �rule�statement� ��

� �elseif� �rule�condition� �then�

� �rule�statement� �� ��

� �else� � �rule�statement� �� � �endif�

�scope�statement� ��� �assume� � �array� ��� �id�variable� ��� �

�f� �rule�expression� �g�

j �prove� � �array� ��� �id�variable� ��� �

�f� �rule�expression� �g�

�rule�condition� ��� �rule�cond�term� � �or� �rule�cond�term� ��

�rule�cond�term� ��� �rule�cond�factor� � �and� �rule�cond�factor� ��

�rule�cond�factor� ��� ��� �rule�condition� ���

j �not� �rule�cond�factor�

j �occurs� ��� �var�list� ��� �rule�expr�list� ���

j �rule�primary� �matches� �rule�primary�

j �MODE� �is�

� �PROVE FF� j �PROVE TF� j �PROVE TR� �

j �pred�predicate�

�rule�primary� ��� � ��� �rule�type�decl� ��� � �f� �rule�expression� �g�

j � ��� �id�variable� ��� �array� �of� � �id�type�
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j �pred�access�type� � ��� �

�EXP� ��� �id�variable� ��� �in�x�oper� ���

�in�x�oper� ��� �id�operator� j �meta�in�x�oper�

�rule�expr�list� ��� �rule�expression� � ��� �rule�expression� ��

�rule�expression� ��� �rule�term� � ��� �rule�seq�subst� ��� �

j �id�operator� �rule�expression�

j �rule�expression� �id�operator�

j �rule�expression� �in�x�oper� �rule�expression�

�rule�term� ��� �id�constant�

j �id�variable�

j �id�function� ��� �rule�expr�list� ���

j ��� �rule�expression� ���

j ��� �id�operator� �rule�dummy�decl� ���

� �rule�expression� � ��� �rule�expression� ���

j �pred�access�term�

�rule�seq�subst� ��� �var�list� ���� �rule�expr�list�

�rule�dummy�decl� ��� �rule�part�dummy�decl�

� ��� �rule�part�dummy�decl� ��

�rule�part�dummy�decl� ��� �var�list� ���

� �id�type� j �LIST� j �pred�access�type� �

�rule�type�decl� ��� �part�rule�type�decl� � ��� �part�rule�type�decl� ��
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�rule�part�type�decl� ��� �var�list� ��� � �type� j �pred�access�type� �

�pred�predicate� ��� �IS CONSTANT� ��� �expression� ���

j �IS SYMMETRIC� ��� �id�operator� ���

j �IS ASSOCIATIVE� ��� �id�operator� ���

j �IS IDEMPOTENT� ��� �id�operator� ���

j �HAS LIDENT� ��� �id�operator� ���

j �HAS RIDENT� ��� �id�operator� ���

j �HAS IDENTITY� ��� �id�operator� ���

j �HAS LZERO� ��� �id�operator� ���

j �HAS RZERO� ��� �id�operator� ���

j �HAS ZERO� ��� �id�operator� ���

j �IS CONNECTIVE� ��� �id�operator� ���

j �HAS DUAL� ��� �id�operator� ���

j �IS DUAL� ��� �id�operator� ��� �id�operator� ���

j �IS MUTUAL ASSOC� ��� �id�operator� ���

�id�operator� ���

j �IS PROVE FF� ��� �id�operator� ���

j �IS PROVE TF� ��� �id�operator� ���

j �IS PROVE� ��� �id�operator� ���

j �IS RELATED� ��� �id�operator� ��� �id�operator� ���

j �IS CONJUNCTIONAL� ��� �id�operator� ���

j �IS EQUIVALENT� ��� �id�operator� ���
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�id�operator� ���

j �ISDEF TRUE�

j �ISDEF FALSE�

j �ISDEF AND�

j �ISDEF OR�

�pred�access�type� ��� �TYPEOP� ��� � �id�operator� � ���

j �TYPEOP	� ��� �id�operator� ���

j �TYPEOP
� ��� �id�operator� ���

j �TYPERES� ��� � �id�operator� � ���

j �TYPEEXP� ��� �expression� ���

�meta�in�x�oper� ��� �DUAL� ��� �id�operator� ���

j �CONJUNCT� ��� �id�operator� ���

j �QUANTOPER� ��� �id�operator� ���

j �DEF AND� j �DEF OR�

�pred�access�term� ��� �LIDENT� ��� �id�operator� ���

j �RIDENT� ��� �id�operator� ���

j �IDENTITY� ��� �id�operator� ���

j �LZERO� ��� �id�operator� ���

j �RZERO� ��� �id�operator� ���

j �ZERO� ��� �id�operator� ���

j �DEF TRUE�

j �DEF FALSE�
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j �CURR EXPR�

j �CURR FACT�

j �CURR SUBEXP�

A small programming language allows the users to de�ne their own rules� The

semantics of this language is described in x������ We tried to make this language as

simple as possible� so many features that may be needed have been left out� User�

de�ned rules can be used in order to relax the style of proofs� Some features of our

editor� such as scopes and auxiliary proofs� cannot be used but from user�de�ned

rules�

��� More detailed speci�cations

In this section we give some more formal de�nitions of terms used in the previous

sections and describe the user interface in more detail�

����� Subexpressions

We now de�ne the notion of a subexpression� Let S�E� be the set of subexpressions

of E� A formal de�nition of S�E� is given in Fig�����

����� Structure of expressions

We now de�ne the notion of an expression�s structure� We have to de�ne two auxiliary

notions� outermost operator and primary subexpression� Let O�E� be the tuple�

�A tuple is an ordered set that can contain multiple occurrences of the same element� A tuple
containing the elements x�� x�� � � � � xn in this order is written as hx�� x�� � � � � xn i� The empty tuple
is written as hi� If x is an element and t is a tuple� x � t is the tuple that results from prepending x

to t�
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E S�E�

v f v g

c f c g

�E f �E g 
 S�E�

E� fE� g 
 S�E�

E� �� E� �� � � � �n�� En
S
��i�j�n fEi �i � � � �j�� Ej g 


Sn
i	� S�Ei�

f�E�� E�� � � � � En� f f�E�� E�� � � � � En� g 
 S�E�� 
 S�E�� 
 � � � 
 S�En�

�E� f �E� g 
 S�E�

��  y j R � E� f ��  y j R � E� g 
 S�R� 
 S�E�

E � x ��  e� fE � x ��  e� g 
 S�E� 

S
ei�
e

S�Ei�

E O�E� P�E�

v h variable i h v i

c h constant i h c i

�E h pre�x ��� i hE i

E� h post�x ��� i hE i

E� �� E� �� � � � �n�� En h in�x ����� in�x ����� � � � � in�x ��n��� i hE�� E�� � � � � En i

f�E�� E�� � � � � Em� h function�f � i hE�� E�� � � � � En i

�E� h parenthesis i hE i

��  y j R � E� h quanti�er ����  y i hR�E i

E � x ��  e� h substitution�  x i h  e i

Memorandum	

v � a variable�

c � a constant�

� � an operator�

f � a function�

 x�  y � lists of dummy variables�

E�Ei� R � expressions�

 e � a list of expressions�

Figure ���� Subexpressions and structure�
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of all outermost operators of expression E� Let P�E� be the tuple of all primary

subexpressions of E� A de�nition of these two notions is given in Fig�����

����� Expression matching

Expression matching is a very important operation of our proof editor� It is used

internally in the transformation procedure and also in user�de�ned rules� However�

we do not give a completely formal de�nition for expression matching� since this

would be rather tedious�

Variables are generally divided in two categories�

� Free variables� variables that are declared before an expression� surrounded by

brackets� e�g�

�p� q � boolean� p �� �p �� q� �� q

Such variables can be replaced by other expressions�

� Fixed variables� variables that are considered to be �xed and cannot be sub�

stituted by other expressions�

When a free variable becomes bound to an expression� every occurrence of this

variable in the initial expression is substituted by this expression� A binding is a

tuple of pairs of the form ��v� e��� where v is a free variable and e is an expression�

If B is a binding and E is an expression� we de�ne E fBg to be the result of the

substitution in E of all variables that are bound in B� in the order they appear in

B� A recursive de�nition of E fBg is given below�



��

E fhig � E

E f�v� e� � Bg � E �v �� e� fBg

When matching two expressions� the aim is to �nd a binding of the free variables

that makes the expressions identical� With respect to binding B� variable v can be

free� bound or �xed�

Bindings can be merged� The result B�!B� of merging two bindings B� and B�

is a binding that has the property that for all expressions E�

E fB�!B�g � E fB�g fB�g

Note that the order of the two arguments in B�!B� cannot be reversed�

We now describe the matching algorithm� We de�ne match�E��B��E��B�� to

return a tuple of three elements h f�B�
�� B

�
� i� The �rst element is a boolean� Its value

is true� if and only if there are bindings B�
� and B�

� such that�

E� fB
�
�!B�g � E� fB

�
�!B�g

If f is true� the second and third elements of the result contain the two bindings

respectively� If f is false� they both contain the empty tuple�

We start with a general rule about matching�

if match�E��B��E��B�� � h f�B�
�� B

�
� i

then match�E��B��E��B�� � h f�B�
�� B

�
� i�

Therefore� we do not need to handle symmetrical cases�
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We now de�ne the the matching for parenthesized expressions� variables and

constants� In the following� the letter c denotes constants and the letter v denotes

variables�

match��E���B��E��B�� � match�E��B��E��B��

If v is free in B��

match�v�B��E��B�� � h true� �v� E�� � B�� B� i

If v is bound in B��

match�v�B��E��B�� � match�v fB�g�B��E��B��

If v� and v� are �xed in B� and B� respectively� and v� � v��

match�v��B�� v��B�� � h true� B�� B� i

Matching of expressions containing operators� function applications and textual sub�

stitution is de�ned as�

match��E��B�� �E��B�� � match�E��B��E��B��

match�E���B��E���B�� � match�E��B��E��B��

To calculate� match�E�
� �E

�
� �B��E

�
� �E

�
� �B��

h f�B�
�� B

�
� i � match�E�

� �B��E
�
� �B��

if f � false then

return h false� hi� hi i

h f�B��
� � B

��
� i � match�E�

� �B
�
�!B��E

�
� �B

�
�!B��

if f � false then

return h false� hi� hi i
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return h true� B��
�!B

�
�� B

��
�!B

�
� i

To calculate� match�f�E�
� � E

�
� � � � � � E

n
� ��B�� f�E

�
� � E

�
� � � � � � E

n
� ��B��

B��
� � hi � B��

� � hi

for i � � to n do

h f�B�
�� B

�
� i � match�Ei

��B��E
i
��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�

B��
� � B�

�!B
��
� � B��

� � B�
�!B

��
�

end do

return h true� B��
� � B

��
� i

To calculate� match�E� � x ��  e���B��E� � x ��  e���B��

h f�B�
�� B

�
� i � match�E��B��E��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�

B��
� � hi � B��

� � hi

for i � � to j  e� j do

h f�B�
�� B

�
� i � match�ei��B�� e

i
��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�
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B��
� � B�

�!B
��
� � B��

� � B�
�!B

��
�

end do

return h true� B��
� � B

��
� i

Finally� matching quanti�ers is de�ned as�

To calculate� match���  x� j R� � E���B�� ��  x� j R� � E���B��

Bd � matchDummy� x��  x��

h f�B�
�� B

�
� i � match�R��Bd!B��R��Bd!B��

if f � false then

return h false� hi� hi i

h f�B��
� � B

��
� i � match�E��B

�
�!Bd!B��E��B

�
�!Bd!B��

if f � false then

return h false� hi� hi i

return h true� B��
�!B

�
�� B

��
�!B

�
� i

where matchDummy� x��  x�� is a binding of dummy variables� such that the lists  x�

and  x� become identical� Its de�nition is left out�

����� The language for rules

The simple programming language for user�de�ned rules supports six statements�

so far� It will probably be extended in the future� It supports also a new type

constructor� array of� and a new expression constructor� EXP�a� op�� These will

be described together with the if statement�

A brief description of the semantics of rule statements is given below� The syntax

of these statements is de�ned in x������ where the grammar is given� It is not repeated
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here� We explain only what is not clear from the grammar� The if statement is the

most important and is presented �rst�

� if� What needs to be de�ned is the semantics of the conditions� There are four

primary conditions for the if statement� The �rst is a prede�ned predicate�

The other three are�


 MODE is PROVE�xxx� This condition is true if the proof technique that is

currently used is PROVE�xxx� If no proof technique has yet been declared

�the proof has just started�� then the condition is still true and the current

proof technique is set to PROOF�xxx�


 x matches y� This is the most important primary condition� it allows the

user to access the structure of an expression� The expressions x and y

can be either normal expressions� with free variables declared in brackets�

or the special expression constructor EXP�a� op�� with a possibly a free

variable declared in brackets and op an in�x operator�

In EXP�a� op�� a is an array of expressions� If the number of expressions

in a is n and the expressions are E�� E�� � � � � En� then the constructor

EXP�a� op� is equivalent to the expression�

E� op E� op � � � op En

Operator op has to be associative� If array a is free� when matching

EXP�a� op� expressions E�� E�� � � � � En are considered free� but also their

number is not determined� However� it must be n 
 ��
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When a condition of the form �x matches y� is given� the proof editor is

trying to match the two expressions x and y� possibly by assigning values

to free variables� If a matching is possible� the condition is true� otherwise

it is false�


 occurs�v�e�� The predicate that has been de�ned in x������ where v is

a variable list and e is an expression list� Arrays can also be used as

expression lists�

� beginScope and endScope� De�nes a new scope� If the current proof technique

is not PROVE�TF an error occurs� In this scope there can be the following scope

statements�


 assume� Make an assumption� Assumptions can be made only in the

beginning of a new scope� If this is not the case� an error occurs� If an

array is given� the statement is repeated for all elements of the array�


 prove� Start an auxiliary proof� If the current proof technique is not

PROVE�TF an error occurs� The current proof before the rule was applied

will depend on the new one� If an array is given� the statement is repeated

for all elements of the array�

� fail� Print a diagnostic message� explaining why this rule cannot be applied�

and stop�
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QED

Delete step

From fact

By transformation
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Show source

Quit

Save

Nesting
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Rename dummies

Interchange dummies
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Proof...
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Paste
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Cut
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Apply fact

File OptionsEdit Define Proof Transform Property

Figure ���� The main menu�

����� The interface

We now give more details about the user interface� We describe the functions that

the user interface should provide� In Fig����� we organize these functions into a menu�

the main menu of our application� Some of these functions are used more often than

others� so we will need more handy ways to access them� but this depends on the

capabilities of the programming environment�

We now describe these functions one by one�
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� File� Various �le operations�


 New � Open a new �le with a dummy name� Close the current one� if any

�ask for con�rmation� if it has not been saved��


 Open� Open an existing �le �ask the user for its name�� Close the current

one� if any �ask for con�rmation� if it has not been saved��


 Include� Include an existing �le �ask the user for its name� in the current

one� after all other included �les�


 Close� Close the current �le �ask for con�rmation� if it has not been saved��


 Save� Save the current �le� If no name has been given� same as Save as�


 Save as� Save the current �le �ask the user for its name��


 Import � Read a text �le that contains internal language statements�


 Export � Write the current �le as text�


 Print LaTeX � Print the current �le to a LaTEX document �ask the user for

its name��


 Show source� Show the source of the current �le as it will be saved on disk

�that is� show the internal language statements��


 Quit � Quit the application �ask for con�rmation� if the current �le has

not been saved��

� Edit� Editing commands�


 Open proof � Open the proof of the current theorem for editing�
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 Close proof � Close the current proof�


 Cut � Cut the selected text and place it in the clipboard�


 Copy � Copy the selected text in the clipboard�


 Paste� Insert the contents of the clipboard at the current editing point�


 Clear � Delete the selected text�


 Show clipboard � Show the contents of the clipboard�

� De�ne� Various de�nitions�


 Type� De�ne a new type�


 Constant � De�ne a new constant�


 Operator � De�ne a new operator�


 Function� De�ne a new function�


 Axiom� De�ne a new axiom�


 Theorem� De�ne a new theorem�


 Rule� De�ne a new rule�


 Precedence� De�ne operator precedence�


 Property � De�ne operator properties�

� Proof� Editing the current proof�


 To fact � Start a proof to a fact�


 From fact � Start a proof from the current fact� with its variables substi�

tuted as speci�ed by the user�
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 By transformation� Start a proof by transformation� starting from the

expression that is speci�ed by the user�


 Delete step� Delete the last step in the current proof�


 QED � Complete the current proof�

� Transform� Transforming the current expression�


 Apply � Apply the current fact to the current subexpression �if possible�

and create a transformation step�


 Substitute fact � Substitute the current subexpression� which should be an

instance of the current fact� by the default true value�


 Apply rule� Apply the current user�de�ned rule� if possible�


 Insert parentheses� Insert parentheses around the current subexpression�


 Remove parentheses� Remove all unnecessary parentheses in the current

subexpression�


 Perform substitution� Perform all possible substitutions in the current

subexpression�

� Property� Applying operator and quanti�er properties�


 Symmetry � Apply symmetry or duality of the outermost operator to the

current subexpression� if possible�


 Conjunctionality � Apply the conjunctionality of the outermost operator

to the current subexpression� if possible�
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 Equivalent form� Substitute the outermost operator of the current subex�

pression by any of its equivalent forms�


 Missing range� Apply the missing range quanti�er property to the current

subexpression� if possible�


 Empty range� Apply the empty range quanti�er property to the current

subexpression� if possible�


 One�point rule� Apply the one�point rule quanti�er property to the current

subexpression� if possible�


 Distributivity � Apply the distributivity quanti�er property to the current

subexpression� if possible�


 Range split � Apply the range split quanti�er property to the current subex�

pression� if possible�


 Interchange dummies� Interchange the dummies of the quanti�er that is

currently selected as the current subexpression�


 Nesting � Apply the nesting quanti�er property to the current subexpres�

sion� if possible�


 Rename dummies� Rename the dummies of the quanti�er that is currently

selected as the current subexpression�


 Reorder dummies� Reorder the dummies of the quanti�er that is currently

selected as the current subexpression�

� Options� Various options�



��


 Proof � Options about proofs �e�g� what hints should be displayed or in

what form��


 Directories� Options about the directories� where the system or user �les

are found�


 Load � Load options from a �le�


 Save� Save options to a �le�



Chapter �

User�s Manual

��� Introduction

The proof editor that will be presented was developed in the Department of Com�

puter Science� Cornell University� as an M�Sc� thesis by Nikos Papaspyrou and was

supervised by David Gries� This tool can be used to facilitate the development of

proof transformations� The current version of the proof editor is ��� alpha for Apple

Macintosh� This version is not complete� For more details about unimplemented

features and known bugs� refer to x����

For a general presentation of the proof editor and for understanding its basics�

the reader is directed to x��� and x���� The present document is a user�s manual

for the proof editor and assumes that the reader understands the principles of proof

transformations and the basic terminology of this tool as described in its speci�ca�

tions document� The user should also be familiar with the standard Macintosh user

interface and have some experience using typical Macintosh applications�

��
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��� Working with �les

A module is the fundamental document with which the proof editor works� Each

module is associated with a �le� from which it is loaded and to which it is saved�

Modules can include other modules� thus creating a module hierarchy� The proof

editor recognizes one module as the current one� the one being edited� All other

modules �that are contained in the current one� can be used but not altered in any

way� At most one �le can be edited at a time� the �le containing the current module�

Each module can contain de�nitions of types� constants� operators� functions�

axioms� theorems� properties and rules� All this information is represented in the

proof editor�s internal language� which is described in x���� The proof editor works

with two types of �les� proof editor �les and text �les� The former can only be edited

by the proof editor� The latter can also be edited by any text editor� however� the

user needs to understand the internal language before editing these �les�

����� Creating a new module

When the proof editor application is launched� the dialog box in Fig���� appears�

In this dialog box� the user can create a new empty module� by giving a module

name and clicking button OK � Alternatively� the user can click button Open and

then choose to open an existing �le �see x������� The same dialog box appears when

the user selects command File j New� If another module is being edited when this

happens� it will be closed� A warning message will appear if that module has not

been saved�

The user can quit the proof editor by selecting command File j Quit� Again� a
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Figure ���� Creating a new module�
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warning message will appear if the current module has not been saved�

����� Editing existing modules

By selecting command File j Open� the user can open an existing proof editor �le� If

another module is being edited at the time� it will be closed �the proof editor can

work with one current module at a time�� This command displays a standard dialog

box for opening �les� from which the user can select the �le that he or she wants to

open�

Command File j Save saves the current module� If this module was created by

using command File j New� this is the same as selecting File j Save as� Otherwise�

the module is saved in the �le with which it has been associated� Command File j

Save as �rst asks the user for the name of the �le in which the current module is to

be saved� A standard dialog box for saving �les appears�

Finally� by selecting command File j Close� the user can close the current module�

If this has not been saved� a warning message will appear and the user will be

prompted to save it�

����� Working with text �les

The proof editor lets the user work with text �les� These �les can be edited with

any text editor and later be imported again� so that they can be used with the proof

editor� Although this is not necessary and is against the philosophy of the proof

editor� some people prefer working with text �les� Furthermore� the proof editor

does not allow all kinds of changes in a module �e�g� facts cannot be deleted once

they have been de�ned�� and sometimes the only way to change a module is by
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editing its internal language representation� The user must be very careful when

editing these �les as text and comply with the internal language�s syntax� described

in x����

Command File j Import works the same as File j Open� only it opens text �les� A

standard dialog box appears when this command is selected� Command File j Export

is equivalent to command File j Save as for text �les�

����� Other File commands

The remaining two commands in the File menu are�

� File j Print LaTeX� Print the current module as a LaTEX �le� It has not been

implemented in this version of the proof editor�

� File j Show source� Display the representation of the current module in the

proof editor�s internal language�

��� Working with modules

This section describes how the user can edit a module�s contents by de�ning new

types� constants� operators� functions� axioms� theorems� properties and rules� For a

description of editing proofs� see the next section�

����� Screen layout

When a module is being edited� the screen looks as in Fig����� It is separated into

four windows�
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Figure ���� Screen layout�
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� The proof window � In this window� the biggest window on the screen� the

current proof is displayed �when a proof is being edited��

� The facts window � This window contains a list of all facts �axioms and the�

orems� de�ned in the current module and all modules that this one includes�

The facts are sorted by module and are given in the order in which they have

been de�ned� By clicking on a module�s name in the facts window� the user

can hide its facts� They can be shown again with a second click�

Each fact is displayed in two lines� The �rst line contains its title and number�

preceded by one to three letters characterizing the fact� The �rst letter is one

of the following�

A� the fact is an axiom�

T� the fact is a theorem�

a� the fact is an assumption�

In case the fact is a theorem� the second letter is one of the following�

P� the theorem has been proved�

U� the theorem has not been proved�

Finally� the third letter is an optional c� meaning that the fact can be applied

under some conditions�

� The rules window � This window contains a list of all user�de�ned rules de�ned

in the current module and all modules that this includes� The rules are sorted
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by module and are given in the order in which they have been de�ned� By

clicking on a module�s name in the rules window� the user can hide its rules�

They can be shown again with a second click� For each rule� only its name is

displayed�

� The input window � This window is used as a means of communication between

the proof editor and the user�

����� Including existing modules

By using command File j Include� the user can include other existing modules in

the current module� A standard dialog box appears� which enables the user to choose

the proof editor �le to be included�

����� De�ning types

New types can be de�ned using command Define j Type� The dialog box in Fig����

appears� The user must specify the names of one or more types to be de�ned�

separated by commas or spaces�

����� De�ning constants

New constants can be de�ned using command Define j Constant� The dialog box in

Fig���� appears� The user must specify the names of one or more constants to be

de�ned� separated by commas or spaces� and select their type from the popup menu

that appears�
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Figure ���� De�ning types�
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Figure ���� De�ning constants�
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Figure ���� De�ning operators�

����� De�ning operators

By using command Define j Operator� the user can de�ne a new operator� The dialog

box in Fig���� appears� The user must specify the name of the operator� its position

�i�e� pre�x� post�x or in�x�� the types of its arguments �pre�x and post�x operators

take one argument� while in�x operators take two arguments� and the result type�

If box Set precedence is checked� after de�ning an operator the user will be asked

to place it in the operator precedence table�
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Figure ���� De�ning functions�

����� De�ning functions

By using command Define j Function� the user can de�ne a new function� The

dialog box in Fig���� appears� The user must specify the name of the function� the

types of its arguments and the result type� Initially� a newly�de�ned function has no

arguments �which is not legal�� By clicking on button Add argument� a new argument

is added and the user must specify its type�
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����	 De�ning axioms and theorems

New axioms and theorems can be de�ned using the two commands Define j Axiom

and Define j Theorem respectively� These two will be described together� since the

process is exactly the same� A dialog box similar to the one in Fig���
 appears� The

user must specify the fact�s title and number �they can be left blank� but leaving

both blank is not a good idea� and the fact�s expression� Then� by clicking button

Find free variables� the fact�s expression is parsed and all free variables are placed

in a list� The user must then specify each free variable�s type from the type popup

menu�

����
 De�ning rules

The user can de�ne new rules using command Define j Rule� The dialog box in

Fig���� appears� where the user must specify the rule�s title and its text� The text

of the rule is its representation in the proof editor�s internal language� omitting the

initial rule and the title and ending with endrule� For more information about the

syntax and semantics of rules� read x����� and x������

����� De�ning operator precedence

When a new operator is de�ned� its precedence with respect to other operators is un�

de�ned� This means that the operator cannot be used in expressions containing other

operators� without explicit parentheses� In order to de�ne an operator�s precedence�

command Define j Precedence must be used� The dialog box in Fig���� appears�

This dialog box has two tables� The upper table is the precedence table� If
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Figure ��
� De�ning axioms and theorems�
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Figure ���� De�ning rules�
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Figure ���� De�ning operator precedence�
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an operator has been placed in this table� its precedence with respect to all other

operators has already been de�ned� This table consists of several rows� In each row�

one or more operators can be placed� If two operators are in the same row� they have

the same precedence� Operators in rows toward the top of the table bind stronger

than operators toward its bottom�

The lower table contains operators that have not yet been placed in the precedence

table� To place such an operator in the precedence table� select the operator� select

a row in the precedence table and click at one of the three placement buttons�

� In same row � place the operator in the row that has been selected�

� New row above� create a new row just above the one that has been selected

and place the operator there�

� New row below � create a new row just below the one that has been selected

and place the operator there�

�����
 De�ning operator properties

By using command Define j Property� the user can de�ne operator properties �in�

ternal language prede�ned rules� see x������� The dialog box in Fig����� appears� To

de�ne an operator property� the user must select the property�s name and specify its

arguments� Then� by clicking on button Add� the property is placed in the list of

properties to be de�ned �it can be removed by clicking on button Remove��
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Figure ����� De�ning operator properties�
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��� Working with proofs

In order to edit a theorem�s proof� the user selects the theorem from the facts win�

dow and clicks command Edit j Open proof� The proof window then displays the

theorem�s proof� If the proof is not completed� the user can edit it by using the com�

mands in menus Proof� Transform and Property� Otherwise the proof cannot be

changed� To close the proof that is currently being edited� the user clicks command

Edit j Close proof�

When editing a proof� the last expression appearing in the proof window is consid�

ered to be the current expression� This expression is used in the next transformation

step� The user can drag the mouse to select a part of this expression� the current

subexpression� If a subexpression is selected� only this subexpression will be used in

the next transformation step�

����� Starting a proof

There are three ways to start a proof� each corresponding to a prede�ned proof

technique �see x����
�� The three relevant commands are�

� Proof j To fact� Start a proof to a fact�

� Proof j From fact� Start a proof from a fact� The currently selected fact �in the

facts window� is used as the fact to start from� The user can type a substitution

of this fact�s free variables in the input window�

� Proof j By transformation� Start a proof by transformation� The user must

type the starting expression in the input window�
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����� Using facts

One way to add steps to a proof is by using proved facts� Such facts can be either

applied or substituted� The corresponding commands are Transform j Apply fact

and Transform j Substitute fact� The user has to select the fact to be used from

the facts window and optionally type a substitution of its free variables in the input

window�

When using Transform j Apply fact� the current subexpression is matched with

part of the current fact �after all user�speci�ed substitutions have taken place�� The

fact�s free variables are matched with terms in the current subexpression� If there

are still free variables after the matching� they are �xed� A transformation step is

created� according to what is described in x������

When using Transform j Substitute fact� if the current subexpression is the

default true value� it is replaced by the current fact �after all user�speci�ed substitu�

tions have taken place and remaining free variables are �xed�� Otherwise� the current

subexpression is matched with the current fact� If it is an instance of this� a trans�

formation step is created �with the equality operator� and the current expression is

substituted by the default true value�

It should be noted here that� although the matching of the current subexpression

with the current fact is always correct �that is� the transformation steps are always

valid�� it is not necessarily what the user expects� Free variables can usually be

matched in various ways� resulting in completely di	erent transformation steps� If

more than one way is possible� the proof editor will choose one of them� If the user

wanted something di	erent� they have to delete the step and try again by specifying
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the substitutions manually� To delete the last transformation step in the current

proof� the user can select command Proof j Delete step�

����� Completing proofs

A proof can be completed by selecting command Proof j QED� Completing a proof

is not always valid� the proof�s correctness is checked when the user selects this

command� as described in x����
� Completing a proof does not automatically close it�

It can be undone by selecting Proof j Delete step� However� after closing a complete

proof� the user cannot ever change it again �unless they change the module�s internal

representation��

����� Applying operator�quanti�er properties

Operator and quanti�er properties can be applied to the current subexpression by

using the commands of menu Property� When applying an operator property� the

current subexpression�s outermost operators �see x������ must be in�x operators�

When applying a quanti�er property� the current subexpression must be an instance

of one of the two sides of a quanti�er prede�ned property �see x������� For all these

properties� a transformation step with the equality operator is created�

The operator properties that can be applied are the following�

� Symmetry � If the outermost operator of the current subexpression is symmetric�

its two operands are reversed� Otherwise� if it has a dual� its two operands are

reversed and the operator is replaced by its dual�

� Conjunctionality � If the current subexpression is a chain of conjunctional opera�







Figure ����� Operator equivalent form�

tors� it is transformed into a conjunction of these operators� If it is a conjunction

of conjunctional operators� it is transformed into a chain�

� Equivalent form� The dialog box of Fig����� appears and the user must choose

one of the equivalent forms of the current subexpression�s outermost operator�

The quanti�er properties that can be applied are described in x������ These have

not been implemented in the current version of the proof editor� so they will not be

described in more detail now�
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����� Parentheses and substitutions

There are three more commands that create transformation steps� All of them create

transformation steps with the equality operator� These are�

� Transform j Insert parentheses� Insert parentheses around the current sub�

expression�

� Transform j Remove parentheses� Remove all unnecessary parentheses from

the current subexpression�

� Transform j Perform substitution� Perform all possible substitutions in the

current subexpression�

����� Applying user�de�ned rules

By using command Transform j Apply rule� the user can apply a user�de�ned rule�

The syntax and semantics of user�de�ned rules can be found in x����� and x�����

respectively� To apply a rule� the user needs only select it from the rules window� Its

application may depend on the current expression or subexpression� the current fact

and the contents of the input window�

��� Error messages

This section presents and explains brie�y the various error messages that the proof

editor will display when something goes wrong� For each error message� the line of

code that generated it is shown �for debugging purposes� and� if the error is related
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to text parsing� its context is given �e�g� �le name and line number�� Errors are

categorized as follows�

� Internal errors� Such errors should never happen� They mean that there is a

bug in the proof editor�

� Fatal errors� Errors that cause the proof editor application to stop�

� Common errors� Errors from which the proof editor can recover�

� Warning messages� Usually not important possible errors�

If an internal error happens� please send the author a report containing the error

message and a description of how it happened �as detailed as possible�� The same if

the system crashes� or if the proof editor does not behave as it should �make sure to

look at x���� though��

Here is a list of various common error messages� in alphabetical order�

Assertion failed

Internal error� An assertion failed� Please report this�

Cannot apply conjunctionality to this expression

Operator conjunctionality cannot be applied to the current subexpression�

Cannot apply symmetry�duality to this expression

Operator symmetry or duality cannot be applied to the current subexpression�

Cannot change existing proof mode

A proof mode has already been selected for the current proof and cannot be changed�

To change it� you have to delete all steps of the proof�
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Cannot open a dependent scope in this proof

A dependent scope can be opened only in a proof to a fact�

Cannot open file ��lename�

File ��lename� cannot be opened� for reading or writing� If for reading� it is possible

that the �le does not exist or cannot be found� If for writing� it is possible that the

�le already exists and cannot be overwritten�

Cannot read from file ��lename�

File ��lename� cannot be read� Perhaps there is a problem with the disk�

Cannot resolve operator precedence

Operator precedence between these operators has not been de�ned� The expression

containing them is ambiguous�

Cannot set precedence �check all precedences�

Operator precedence cannot be set� because it is already de�ned� Check all prece�

dences to �nd where the problem is�

Cannot write to file ��lename�

File ��lename� cannot be written� Perhaps there is a problem with the disk� or the

disk is full�

Constant cannot be �property�

This constant cannot be given this property� Possible reasons are type incompat�

ibility� or another constant has already been given the same property� Check the

conditions for this property in chapter ��
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Different array in EXP

A di	erent array is given in an EXP expression from what was previously declared in

parentheses�

Identifier has already been defined

This identi�er has already been de�ned for something else� Use unique identi�er

names�

Incomplete proof

This proof cannot be completed� For details on proof correctness� read x����
�

Invalid module� expected �module�

This �le does not contain a valid module� A text �le must start with module�

Misplaced identifier

A constant or variable identi�er is found in an expression in a place where an operator

is expected�

Misplaced operator

An operator is found in an expression in a place where a term is expected�

No current expression exists

No current expression exists in the current proof�

No default �value� has been defined

A default value is needed and has not been de�ned�

No proof is being edited

Some command that requires a proof to be edited was used without a current proof�
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Operator�s� cannot be �property�

This operator cannot be given this property� Possible reasons are type incompat�

ibility� or another operator has already been given the same property� Check the

conditions for this property in chapter ��

Operator has no �property�

This property is needed and has not been de�ned for this operator�

Operator precedence not totally ordered

The operator precedence is not totally ordered� This operator will not be placed in

the precedence table�

Operator precedence over itself is forbidden

You cannot de�ne that an operator has higher precedence than itself�

Out of memory

The proof editor application has run out of memory� Try increasing the memory from

Finder�s command File j Get Info�

Quantifier cannot be defined

This quanti�er cannot be de�ned� Check the conditions speci�ed in chapter ��

Rule cannot be applied�

This error message is the result of execution of a fail user�de�ned rule statement�

Select a fact first

You cannot apply a fact� because no fact is currently selected in the facts window�

Select a rule first

You cannot apply a rule� because no rule is currently selected in the rules window�
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Select a theorem first

You have selected Edit j Open proof without a theorem being selected in the facts

window�

Syntax error in rule condition

Check the user�de�ned rule text for a syntax error �see x�����

The current fact cannot be applied

The current fact cannot be applied to the current subexpression� because no matching

was found or the outermost operator is not a connective�

The current fact cannot be used �conditions not satisfied�

The current fact�s conditions are not satis�ed� so the fact cannot be used�

The current fact cannot be used �not proved�

The current fact is an unproved theorem� so it cannot be used�

The current fact cannot be used �out of range�

The current fact is out of the range of theorems that can be used�

The current subexpression is invalid

What is currently selected in the proof window is not a valid subexpression of the

current expression�

The current subexpression is not a fact

You have selected Transform j Substitute fact� but the current subexpression is

neither the default true value nor an instance of the current fact�

There is no equivalent form for this expression

There are no equivalent forms for the current subexpression�s outermost operator�
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This statement should never be executed

Internal error� A statement was executed that was not supposed to� Please report

this�

Too few arguments in call to function

A function call has fewer arguments than necessary�

Too few expressions in substitution

There are fewer expressions than variables in a substitution�

Too many arguments in call to function

A function call has more arguments than necessary�

Too many expressions in substitution

There are more expressions than variables in a substitution�

Type mismatch

A di	erent type was found from the one expected�

Undefined �object�

An object is used but not de�ned�

Unknown PED exception

Internal error� Something wrong with the exception handler� Please report this�

Unrecognized �object�

This object is not recognized� Perhaps a spelling mistake"

Unterminated comment

A comment has not been terminated� and the end of the �le has been reached�
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Unterminated string

A string has not been terminated� and the end of the �le has been reached�

��	 Unimplemented features and known bugs

Here is a list of features that have not been implemented in the current version of

the proof editor� although they are present in chapter ��

�� Quanti�er properties have not been implemented� Many things about quanti�

�ers have not been thoroughly tested� so it can be said that� in this version�

quanti�ers do not work�

�� User�de�ned rules containing EXP terms do not work�

�� Dependent proof scopes have been implemented� but the current interface does

not support them� They cannot be used in this version�

�� Facts that can be applied under conditions have been implemented but cannot

be created using the current interface� Fact conditions have not been thoroughly

tested�

�� There is no way to hide obvious hints �e�g� operator symmetry� conjunctionality�

etc��� This should be in the options menu� which has not been implemented�

For the same reason� all �les have to be in the same directory as the application

�le �unless full path names are used when including �les��

�� Operator idempotency� associativity� identities and zeroes cannot be applied on

the �y in transformation steps� The author thinks that this is not necessary
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�usually there is a fact doing the same thing and it is not desired to hide the

hints�� except for associativity�


� There is no default type for free variables and quanti�er dummies� All types

have to be speci�ed explicitly�

�� Command File j Print LaTeX has not been implemented�

�� It is not possible to restrict the range of facts to be used when proving a

theorem�

The following features are not present in chapter � but are considered to be useful

and are treated as �unimplemented features��

�� There is no way to write comments in a proof� especially when applying rules

�e�g� �Proof by contradiction��� etc���

�� It is not possible to see information about facts and rules� apart from command

File j Show source� There should be something easier there�

�� It is not possible to see information about other symbols� especially operators�

It would be useful to be able to see a list of all properties de�ned for a particular

operator�

�� Before selecting something in a window� the user has to click the window to

make it active� Therefore� for selecting something in a non�active window two

clicks are necessary� Besides� the selected lines in a non�active window are not

shown�
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�� There should be an option to print a proof separately �in a LaTEX �le� instead

of the whole �le�

Finally� here is a list of known bugs �some very annoying� of the current version�

�� It is possible to edit a proof of a theorem that is de�ned in an included �le� By

saving the �le� this proof is not saved�

�� Clicking button Cancel in the �rst New module dialog box and then quitting

the application causes a system crash�

�� The system may crash in low�memory situations �although a low�memory er�

ror handler has been implemented�� This may be because exceptions are not

handled properly �some �ag was wrong when compiling"��

�� Some fatal errors should not be fatal�
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