
A PROOF EDITOR FOR PROPOSITIONAL AND

PREDICATE CALCULUS

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Ful�llment of the Requirements for the Degree of

Master of Science

by

Nikolaos Papaspyrou

January ����

c� Nikolaos Papaspyrou ����

ALL RIGHTS RESERVED

ABSTRACT

In many universities� lower�level math courses on propositional and predicate calculus

usually avoid using formalism in de�nitions and proofs� at least in the beginning�

When formalization is later introduced� the students are left with the impression

that formalism is not essential or worth the e	ort� On the contrary� the Department

of Computer Science of Cornell University adopts formalism in these courses from

the very beginning� Students learn not to fear formalism and develop their reasoning

abilities by constructing rigorous proofs�

However� the construction of formal proofs is not always easy� When the magni�

tude of the problem increases� it is easy to forget or neglect something and it is equally

easy to loosen the formalism� either by carelessness or on purpose� A computer�based

proof editor that checks each step of a proof can help solve these problems�

The subject of this thesis is the design and implementation of a computer program

that facilitates the construction of formal proofs� The proof editor that has been

developed can be used to familiarize students with formalism and help them construct

rigorous and sound proofs� Special attention has been given to make this tool user�

friendly and easily extendable to calculi other than propositional or predicate�

The program has been developed for the Apple Macintosh� It is written in C

and is completely portable� except for the part implementing the user interface�

Biographical Sketch

Nikos Papaspyrou was born on January ��� ��
� in Athens� Greece� He attended

the
th High School of Athens and graduated in June ����� In September ���� he

was admitted to the Department of Electrical Engineering and Computer Science�

National Technical University of Athens �NTUA�� He graduated in July ���� with

a GPA of ���� out of ��� He joined the Graduate School at Cornell University in

August ���� and completed the requirements for the M�Sc� Degree in September

�����

While a student at the NTUA� Nikos Papaspyrou participated in three European

Community Contests for Young Scientists �Copenhagen ����� Zurich ���� and Sevilla

����� with three computer science projects which took second� �rst and �rst place in

the greek national contest respectively� He speaks three foreign languages �English�

French and �a little� German�� Since ����� he has played volleyball on the team

of Pangrati� Athens� which is currently in the third division in Greece�

iii

Acknowledgements

First and foremost� I would like to express my respect and thanks to Professor David

Gries� who supervised my thesis and was always accessible and willing to help with

the numerous problems that came up�

I would also like to thank Professor Thorsten von Eicken and Professor Steve

Vavasis for serving on my special committee�

My sincere thanks also go to my �rst advisor� Professor Sam Toueg� and the

support sta	 of the Department of Computer Science at Cornell University for their

outstanding help while I was a graduate student�

Finally� I would like to thank my friends in Ithaca for the good times that we

shared� Last but not least� my wholehearted thanks go to my family and friends in

Greece for their love� encouragement and support�

iv

Table of Contents

� Introduction �

� Speci�cations �

��� Introduction �
����� Facts� proofs and scopes �
����� Types and expressions �
����� Textual substitution ��
����� Interface ��

��� Prede�ned items ��
����� Types ��
����� Operators ��
����� Accessors ��
����� Predicates ��
����� Rules for operator properties �

����� Rules for transformation steps � � � � � � � � � � � � � � � � � � ��
����
 Proof techniques ��
����� Quanti�er properties �

��� The proof editor�s internal language ��
����� Using existing �les ��
����� De�nition of types ��
����� De�nition of constants ��
����� De�nition of operators ��
����� De�nition of functions ��
����� Expressions ��
����
 De�nition of axioms ��
����� De�nition of theorems ��
����� De�nition of rules ��

��� More detailed speci�cations ��
����� Subexpressions ��
����� Structure of expressions ��

v

����� Expression matching ��
����� The language for rules �

����� The interface ��

� User�s Manual ��

��� Introduction ��
��� Working with �les �

����� Creating a new module �

����� Editing existing modules ��
����� Working with text �les ��
����� Other File commands ��

��� Working with modules ��
����� Screen layout ��
����� Including existing modules ��
����� De�ning types ��
����� De�ning constants ��
����� De�ning operators ��
����� De�ning functions �

����
 De�ning axioms and theorems � � � � � � � � � � � � � � � � � � ��
����� De�ning rules ��
����� De�ning operator precedence � � � � � � � � � � � � � � � � � � ��
������ De�ning operator properties � � � � � � � � � � � � � � � � � � �
�

��� Working with proofs �
�
����� Starting a proof �
�
����� Using facts �
�
����� Completing proofs �
�
����� Applying operator�quanti�er properties � � � � � � � � � � � � �
�
����� Parentheses and substitutions � � � � � � � � � � � � � � � � � �
�
����� Applying user�de�ned rules � � � � � � � � � � � � � � � � � � �
�

��� Error messages �
�
��� Unimplemented features and known bugs � � � � � � � � � � � � � � � � ��

Bibliography ��

vi

List of Figures

��� Textual substitution� ��
��� Subexpressions and structure� ��
��� The main menu� ��

��� Creating a new module� ��
��� Screen layout� ��
��� De�ning types� ��
��� De�ning constants� ��
��� De�ning operators� ��
��� De�ning functions� �

��
 De�ning axioms and theorems� ��
��� De�ning rules�
�
��� De�ning operator precedence�
�
���� De�ning operator properties�
�
���� Operator equivalent form�

vii

Chapter �

Introduction

This thesis presents an equational proof editor� following the style used in the text

�A Logical Approach to Discrete Math� �GS���� Several tools have been developed

recently that can serve as formal proof editors� Among them� one should mention

the following�

� the Proxac editor for proof and program transformation �vdS��a� �vdS��b��

developed in California Institute of Technology� It tool is closest to a usable

editor for proofs in the style of �GS���� It has been implemented in Modula���

which is the main reason why it cannot be used �until now� there is no reliable

Modula�� compiler for the Apple Macintosh�� Other reasons are its ine�cient

user interface� the slightly di	erent format it uses for proofs and the fact that

it cannot be easily extended�

� the NUPRL proof development system �C����� developed in Cornell University�

It focuses on automatic proof development using natural deduction� However�

�

�

the proof format that it uses and the complexity of this system make it inap�

propriate for lower�level math courses�

� the MathPad mathematical report writer �BVW���� developed in Eindhoven

University of Technology� This tool is an editor� allowing the preparation of

documents of mathematical nature� Although it can be used for the construc�

tion of formal proofs in propositional and predicate calculus� it is more ori�

ented towards text rather than formulae manipulation and does not provide

any checking of validity�

Chapter �

Speci�cations

��� Introduction

This section describes the basics of the proof editor� We �rst de�ne some of the

terms that will be used frequently� The terms that are not de�ned have their usual

meaning �e�g� type� identi�er� constant� variable� operator� expression��

� Fact � an expression whose result belongs to the special type boolean� Not all

boolean expressions are facts� only the ones that are valid �true in all states��

� Axiom� a fact that is considered to be true with no evidence�

� Theorem� a fact that is considered to be true and its proof is given�

� Step� the result of the transformation of an expression to another expression�

The two expressions become related with a connective operator�

� Proof � a sequence of steps or other constructs of the proof editor that is con�

sidered to be the evidence that supports a theorem�

�

�

� Rule� a mechanism for deriving steps in a proof� An inference rule� as de�ned in

�GS���� is a syntactic mechanism for deriving �truths�� Inference rules consist of

a list of expressions� called premises� and an expression� called the conclusion�

Such rules assert that� if the premises are assumed to be truths� then the

conclusion is a truth also� Our proof editor has some prede�ned inference rules

�e�g� Leibniz�s rule� and provides a small programming language for creating

user�de�ned rules�

The following paragraphs present a brief overview of the proof editor�

����� Facts� proofs and scopes

There are two basic types of facts� axioms and theorems� The di	erence between

the two is that axioms become facts immediately after they are typed� whereas the�

orems become facts only when they are proved� Each fact can have two user�de�ned

identi�ers� a title and a number� e�g� �

Axiom �p� q � boolean�� title �Symmetry of ��� number �����

States� p � q � q � p

A proof is usually a list of steps� Each step consists of a connective operator and

a hint� The hint is an indication of the fact �or the prede�ned property� that is used

for performing the step� There are three types of proofs�

� to fact � Starting from the expression to be proved� it is transformed into a fact�

An example of such a proof is the following�

�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by transforming to a fact�

p � �p � q� � p

� h Golden rule ������� with q �� p � q i

p � q � p � p � q

� h Idempotency of � ������ i

p � q � p � q

� h Re�exivity of � ������ with p �� p � q i

The symbol ��� in the last line means that the proof has been completed�

Note that a hint must be given after ���� indicating to which fact the initial

expression has been transformed�

� from fact � Starting from a fact� the fact is transformed into the expression to

be proved� The same example� expressed as a proof of this type is�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by starting from a fact�

h Re�exivity of � ������ with p �� p � q i

p � q � p � q

� h Idempotency of � ������ i

p � q � p � p � q

�

� h Golden rule ������� with q �� p � q i

p � �p � q� � p

�

Note that now there is no need for a hint after the ��� symbol but before the

�rst expression� This hint indicates which fact we are transforming�

� by transformation� Starting from some part of the expression to be proved�

that part is transformed to the remaining part� The same example� expressed

as a proof of this type is�

Theorem �p� q � boolean�� title �Absorption�� number �����a�

Prove� p � �p � q� � p

Proof by transformation�

p � �p � q�

� h Golden rule ������� with q �� p � q i

p � p � q � p � p � q

� h Idempotency of � ������ i

p � p � q � p � q

� h Symmetry of � ������ with q �� p � q i

p

�

Note that there is no need for a hint after the ��� symbol� The connective

operator now becomes part of the expression that we are proving�

To fact proofs have the characteristic that� at each step� the whole proof depends

on proving the current expression� Because of this characteristic� such proofs allow

arbitrary dependencies that the user can specify by using rules� For instance� consider

the following proof�

Theorem �p� q � boolean�

Prove� p � q

Proof by mutual implication�

Prove� p � q

� � �

�

Prove� q � p

� � �

�

In this case� the proof of �p � q� depends on the two proofs �p � q� and �q � p��

These two proofs will be called auxiliary proofs�

We now de�ne the notion of scope� A scope is a part of a proof to a fact� containing

additional assumptions and auxiliary proofs� No auxiliary proof can span across

scopes� Scopes can be nested� that is� they can include other scopes� Assumptions

are facts that are considered valid without evidence� However� an assumption can

have no free variables� all variables in an assumption are considered �xed and cannot

be substituted by anything� Assumptions are only visible within the scope in which

they are de�ned� or scopes that are nested in this� They can only appear in the

�

beginning of a scope� before any auxiliary proofs� An example of a proof containing

two nested scopes is the following� Scopes are shown by indentation�

Theorem �p� q � boolean�� number �����

Prove� p � �q � p�

Assume� p �A��

Prove� q � p

Assume� q �A��

Prove� p

Proof by transforming to a fact�

p

� h Assumption A� i

����� Types and expressions

Types are generally sets of values� In our proof editor� though� types are just names�

The set of values that inhabit a type cannot be de�ned� Nevertheless� all types are

considered non�empty� All types are simple� our proof editor does not allow types to

be built from other types�

The simplest expressions consist of single variables or constants� Variables and

constants must be de�ned before they can be used� The de�nition of a variable or

constant assigns to it a name and a type �however� to simplify the type system� we

assign a user�de�ned default type to untyped variables��

There are three kinds of operators�

�

� pre�x operators� i�e� unary operators of the form � � T � Tr� A pre�x operator

can be applied to operand x by writing ��x��

� post�x operators� i�e� unary operators of the form � � T � Tr� A post�x

operator can be applied to operand x by writing �x���

� in�x operators� i�e� binary operators of the form � � T� 	 T� � Tr� An in�x

operator can be applied to operands x� y by writing �x � y��

The user can specify operator precedence and other properties� Parentheses can be

used in order to enforce the order of operations that the user wants� In case of

ambiguity in the application of operators� the proof editor must report an error �e�g�

�x�� y �� z� is ambiguous if it is not known that one of the two operators has greater

precedence than the other or that �� and �� are mutually associative��

Operators can be declared associative �see x������� This allows expressions of

the form �x � y � z�� Moreover� mutual associativity allows expressions of the form

�x �� y �� z�� In general� consider an expression of the form�

E� �� E� �� � � � �n�� En

where n
 � and operator precedence does not resolve the ambiguity� This expression

is not ambiguous if�

for all � � i � j � n�

if �i � �j � �i is associative�

if �i �� �j � �i and �j are mutually associative�

��

General functions can be de�ned� by giving the types of the operands and the

result type� A function can in general be of the form f � T� 	 T� 	 � � � 	 Tn �

Tr� where n
 �� and can be applied to its operands x�� x�� � � � � xn by writing

�f�x�� x�� � � � � xn��� Nevertheless� for our proof editor functions are just names�

Quanti�cations are expressions of the form �� x j R � E�� where � is an in�x

operator�� x is a list of dummy variables� R is an optional boolean expression �the

range� if it is omitted� it is considered to be the default true value� and E is an

expression �the body�� The scope of a dummy is the range and body�

����� Textual substitution

Textual substitution is the most important operation in our proof editor� The nota�

tion that we will use is �E �x�� x�� � � � � xn �� e�� e�� � � � � en��� where n
 �� E is the

expression in which the substitution will take place� x�� x�� � � � � xn are the distinct

variables� that will be simultaneously substituted and e�� e�� � � � � en are the expres�

sions that will replace them�

We �rst de�ne the predicate occurs�� x�� � e��� where x is a list of variables and

 e is a list of expressions� It is true if any of the variables in x occurs free in any of

the expressions in e �the occurrence of a variable in an expression is free if it is not

in the scope of any quanti�cation that has this variable as a dummy�� The formal

de�nition of textual substitution is given in Fig�����

�The in�x operator used in a quanti�cation must be associative and symmetric� It must also
have an identity�

�We allow only substitution of variables�

��

v � x �� e� �

��
�

ei � if variable v is same as xi

v � otherwise

c � x �� e� � c

��E� � x �� e� � ��E � x �� e��

�E�� � x �� e� � �E � x �� e���

�E� �� � � � �m�� Em� � x �� e� � �E� � x �� e�� �� � � � �m�� �Em � x �� e��

f�E�� E�� � � � � Em� � x �� e� � f�E� � x �� e�� E� � x �� e�� � � � � Em � x �� e��

�E� � x �� e� � �E � x �� e��

Provided not occurs�� y�� � x� e���

�� y j R � E� � x �� e� � �� y j R � x �� e� � E � x �� e��

Memorandum	

 x � the list of variables x�� x�� � � � � xn�

 e � the list of expressions e�� e�� � � � � en�

v � a variable�

c � a constant�

�� �i � operators�

f � a function�

 y � a list of dummy variables�

E�Ei� R � expressions�

Figure ���� Textual substitution�

��

����� Interface

Regardless of the appearance of the interface �windows� menus� etc�� some things are

bound to be needed� We will make an e	ort not to put any unnecessary restrictions

on the interface� What will certainly be needed is�

� The current expression� This is the whole expression that is being edited� When

a proof is being edited� the current expression is the last expression appearing

in the proof�

� The current subexpression� This is the subexpression of the current expression

that has been selected for transformation� If nothing has been selected� the

whole current expression is taken�

� The current fact� This is the fact that will be applied� The user can specify

the appropriate variable substitutions� if necessary�

� The current rule� This is the user�de�ned rule that will be applied�

��� Prede�ned items

The following paragraphs present the prede�ned items of the proof editor�

����� Types

There are four prede�ned types�

� boolean� the type of all facts�

��

� ANY� a wild card type� Useful in de�nitions of axioms and theorems that contain

equality and�or textual substitution� or for dummy variables in substitutions�

� VARIABLE� a type for variables of any type� Useful in de�nitions of axioms and

theorems that contain textual substitution�

� LIST� a type for lists of expressions� Useful in de�nitions of axioms and theo�

rems that contain textual substitution� as well as in quanti�ers�

The �rst is a normal type� whereas the other three are only used for special purposes�

����� Operators

An equality operator is prede�ned for every type T�

define operator � infix � T x T �� boolean

The precedence of all equality operators is the same� All equality operators have the

following properties �see also x�������

rule symmetric���

rule connective���

rule transitive��� �� ��

rule conjunctional���

rule prove���

rule leibniz��� ��

��

����� Accessors

The following accessors are prede�ned �see also x������� They can be used only when

de�ning rules �see also x�������

� TYPEOP�op�� the type of the operand of pre�x or post�x operator op �a type

name��

� TYPEOP	�op� and TYPEOP
�op�� the types of the two operands �left and right

respectively� of in�x operator op �a type name��

� TYPERES�op�� the result type of operator op �a type name��

� TYPEEXP�exp�� the type of expression exp �a type name��

� LIDENT�op�� the left identity of in�x operator op� if it exists �a constant��

� RIDENT�op�� the right identity of in�x operator op� if it exists �a constant��

� IDENTITY�op�� the identity of in�x operator op� if it exists �a constant��

� LZERO�op�� the left zero of in�x operator op� if it exists �a constant��

� RZERO�op�� the right zero of in�x operator op� if it exists �a constant��

� ZERO�op�� the zero of in�x operator op� if it exists �a constant��

� DUAL�op�� the operator that has been declared dual to operator op by a rule�

If operator op is symmetric� then it returns op�

� DEF�TRUE� the boolean constant that has been declared to be the default true

value�

��

� DEF�FALSE� the boolean constant that has been declared to be the default false

value�

� DEF�AND� the operator that has been declared to be the default conjunction

operator�

� DEF�OR� the operator that has been declared to be the default disjunction op�

erator�

� QUANTOPER�op�� the name that will be used when operator op is used in a

quanti�cation� If no quantifier rule has been given� it returns op�

� CURR�EXPR� the current expression�

� CURR�FACT� the current fact �if a hint is speci�ed by the user� after all substi�

tutions have been made��

� CURR�SUBEXP� the current subexpression expression�

����� Predicates

The following predicates are prede�ned� They can be used only in the de�nition of

rules �see also x����� and x�������

� IS�CONSTANT�exp�� expression exp is the name of a constant�

� IS�SYMMETRIC�op�� operator op has been declared symmetric�

� IS�ASSOCIATIVE�op�� operator op has been declared associative�

� IS�IDEMPOTENT�op�� operator op has been declared idempotent�

��

� HAS�LIDENT�op�� operator op has been declared to have a left identity�

� HAS�RIDENT�op�� operator op has been declared to have a right identity�

� HAS�IDENTITY�op�� operator op has been declared to have both a left and a

right identity and these are equal�

� HAS�LZERO�op�� operator op has been declared to have a left zero�

� HAS�RZERO�op�� operator op has been declared to have a right zero�

� HAS�ZERO�op�� operator op has been declared to have both a left and a right

zero and these are equal�

� IS�CONNECTIVE�op�� operator op has been declared connective�

� HAS�DUAL�op�� operator op has been declared dual to another operator� or op

is symmetric�

� IS�DUAL�op	� op
�� operators op	 and op
 have been declared dual�

� IS�MUTUAL�ASSOC�op	� op
�� operators op	 and op
 have been declared mu�

tually associative�

� IS�PROVE�FF�op�� operator op has been declared proveFF�

� IS�PROVE�TF�op�� operator op has been declared proveTF�

� IS�PROVE�op�� operator op has been declared prove�

� IS�RELATED�op	� op
�� operators op	 and op
 have been declared related�

�

� IS�CONJUNCTIONAL�op�� operator op has been declared conjunctional�

� IS�EQUIVALENT�op	� op
�� operators op	 and op
 have been declared equiv�

alent�

� ISDEF�TRUE� a default true value has been de�ned�

� ISDEF�FALSE� a default false value has been de�ned�

� ISDEF�AND� a default conjunction operator has been de�ned�

� ISDEF�OR� a default disjunction operator has been de�ned�

����� Rules for operator properties

Rules for operator properties are used internally by the editor� They are de�ned

with the statement rule� Some of these properties can be applied to the current

expression on the �y� that is without any intermediate steps and hints�� Some others

a	ect the behavior of operators and the way in which expressions are matched�

Operator properties that are used in transformations are�

� symmetric�op� speci�es that operator op is symmetric� This means that a

subexpression of the form �x op y� can be replaced on the �y by �y op x��

The following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op�

not HAS�DUAL�op�

�However� the user can specify that the intermediate steps should not be omitted� In that case�

a descriptive hint will be given and the equality operator will be used�

��

� associative�op� speci�es that operator op is associative� This means that

there is no ambiguity in expressions of the form �x op y op z� and no paren�

theses are needed� Such an expression has more than one outermost operator�

This property can be used to transform on the �y a subexpression of the form

��x op y� op z� to �x op �y op z�� and vice versa� The following condition

must be satis�ed�

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� idempotent�op� speci�es that operator op is idempotent� This means that a

subexpression of the form �x op x� can be replaced on the �y by �x� and vice

versa� The following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� dual�op	� op
� speci�es that operators op	 and op
 are dual� This means

that a subexpression of the form �x op	 y� can be replaced on the �y by

�y op
 x� and vice versa� The following conditions must be satis�ed�

not IS�SYMMETRIC�op	�

not IS�SYMMETRIC�op
�

� mutualAssoc�op	� op
� speci�es that operators op	 and op
 are mutually

associative� This means that there is no ambiguity in expressions of the form

�x op	 y op
 z� and no parentheses are needed� Such an expression has more

than one outermost operator� This property can be used to transform on the �y

��

a subexpression of the form ��x op	 y� op
 z� to �x op	 �y op
 z�� and

vice versa� The following condition must be satis�ed�

TYPEOP
�op	� � TYPEOP	�op
� � TYPERES�op	� � TYPERES�op
�

� leftIdent�op� c� speci�es that c is the left identity of operator op� This

means that a subexpression of the form �c op x� can be replaced on the �y

by �x� and vice versa� The following conditions must be satis�ed�

IS�CONSTANT�c�

TYPEEXP�c� � TYPEOP	�op� � TYPEOP
�op� � TYPERES�op�

� rightIdent�op� c� speci�es that c is the right identity of operator op� This

means that a subexpression of the form �x op c� can be replaced on the �y by

�x� and vice versa� The same conditions as for leftIdent must be satis�ed�

� identity�op� c� is the same as giving both�

leftIdent�op� c�

rightIdent�op� c�

� leftZero�op� c� speci�es that c is the left zero of operator op� This means

that a subexpression of the form �c op x� can be replaced on the �y by �c�

and vice versa� The same conditions as for leftIdent must be satis�ed�

� rightZero�op� c� speci�es that c is the right zero of operator op� This means

that a subexpression of the form �x op c� can be replaced on the �y by �c�

and vice versa� The same conditions as for leftIdent must be satis�ed�

��

� zero�op� c� is the same as giving both�

leftZero�op� c�

rightZero�op� c�

The following properties a	ect the behavior of operators�

� connective�op� speci�es that operator op is a connective operator� This means

that it can be used to connect expressions along the steps of a proof� The

following conditions must be satis�ed�

TYPEOP	�op� � TYPEOP
�op�

TYPERES�op� � boolean

� transitive�op	� op
� op�� speci�es that the sequence of steps�

exp	

op	

exp

op

exp�

is equivalent to a step�

exp	

op�

exp�

��

�omitting the hints�� The following conditions must be satis�ed�

IS�CONNECTIVE�op	�

IS�CONNECTIVE�op
�

IS�CONNECTIVE�op��

� proveFF�op� speci�es that if we have a sequence of steps equivalent to�

exp	

op

exp

and exp	 is a fact� then by ending the proof there exp
 becomes a fact� The

following conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean

� proveTF�op� speci�es that if we have a sequence of steps equivalent to�

exp	

op

exp

and exp
 is a fact� then by ending the proof there exp	 becomes a fact� The

following conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean

��

� prove�op� is the same as giving both proveFF and proveTF� The following

conditions must be satis�ed�

IS�CONNECTIVE�op�

TYPEOP	�op� � TYPEOP
�op� � boolean

� related�op	� op
� speci�es that if a sequence of steps equivalent to�

exp	

op	

exp

is a valid proof for the expression �exp	 op
 exp
�� Every operator is con�

sidered to be related to itself� therefore no rules of the form related�op� op�

need to be given� The following conditions must be satis�ed�

IS�CONNECTIVE�op	�

TYPEOP	�op	� � TYPEOP
�op	� � TYPEOP	�op
� � TYPEOP
�op
�

� conjunctional�op� speci�es that a subexpression of the form�

x	 op x
 op x� op

 xn�	 op xn

can be replaced on the �y by�

�x	 op x
� DEF�AND �x
 op x�� DEF�AND

 DEF�AND �xn�	 op xn�

and vice versa� Before this can be applied� though� a default conjunction oper�

ator must be de�ned� The following conditions must be satis�ed�

��

TYPEOP	�op� � TYPEOP
�op�

TYPERES�op� � boolean

� equivalent�op	� op
� speci�es that operators op	 and op
 are equivalent�

This means that a subexpression of the form �x op	 y� can be replaced on the

�y by �x op
 y� and vice versa�� The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP	�op
�

TYPEOP
�op	� � TYPEOP
�op
�

TYPERES�op	� � TYPERES�op
�

It should be noted that operator equivalence is not transitive� i�e� if it has

been de�ned that �equivalent�op	� op
�� and �equivalent�op
� op����

this does not mean that �equivalent�op
� op����

� quantifier�new�op� op� speci�es that when operator op is used in a quan�

ti�cation� the new operator new�op should be used instead� Note that new�op

is only a second name for op� However� it can be used only as a quanti�er� The

following conditions must be satis�ed�

IS�ASSOCIATIVE�op�

IS�SYMMETRIC�op�

HAS�IDENTITY�op�

Finally� the following rules can be used to specify the default true and false values

and the default conjunction and disjunction operators�

�Provided that the replacement does not create any syntactic or semantic errors�

��

� defTrue�c� de�nes the default true value to be c� The following conditions

must be satis�ed�

not ISDEF�TRUE

IS�CONSTANT�c�

TYPEEXP�c� � boolean

� defFalse�c� de�nes the default false value to be c� The following conditions

must be satis�ed�

not ISDEF�FALSE

IS�CONSTANT�c�

TYPEEXP�c� � boolean

� defAnd�op� de�nes the default conjunction operator to be op� The following

conditions must be satis�ed�

not ISDEF�AND

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op� � boolean

IS�ASSOCIATIVE�op�

� defOr�c� de�nes the default disjunction operator to be op� The following

conditions must be satis�ed�

not ISDEF�OR

TYPEOP	�op� � TYPEOP
�op� � TYPERES�op� � boolean

IS�ASSOCIATIVE�op�

��

����� Rules for transformation steps

The following rules are used internally by the editor in order to create transformation

steps�

� substitute�op	� op
� speci�es that if there is a fact of the form �x op	 y�

and the current expression is �x�� then a step can be made to �y�� using

operator op
 and the fact as a hint�

If IS�SYMMETRIC�op	�� then the step can be made even if the fact is of the

form �y op	 x��

If IS�DUAL�op	� op	�� and IS�DUAL�op
� op
�� and the fact is of the form

�y op	� x�� then the step can be made using operator op
� and the fact as a

hint�

The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP
�op	�

IS�CONNECTIVE�op
�

� leibniz�op	� op
� speci�es that if there is a fact of the form �x op	 y� and

the current expression contains �x� as a subexpression� then a step can be

made by replacing �x� by �y� in the current expression� using operator op

and the fact as a hint� This property is an extension of the previous property

�substitute��

If IS�SYMMETRIC�op	�� then the step can be made even if the fact is of the

form �y op	 x��

��

If IS�DUAL�op	� op	�� and IS�DUAL�op
� op
�� and the fact is of the form

�y op	� x�� then the step can be made using operator op
� and the fact as a

hint�

The following conditions must be satis�ed�

TYPEOP	�op	� � TYPEOP
�op	�

IS�CONNECTIVE�op
�

����	 Proof techniques

Three proof techniques are prede�ned�

� PROVE�FF� Starting with a fact� transform it to the expression that needs to be

proved� If the sequence of steps is equivalent to�

exp	

op

exp

and exp	 is a fact� then exp
 becomes a fact� The following condition has to

be satis�ed�

IS�PROVE�FF�op�

� PROVE�TF� Starting with the expression that needs to be proved� transform it

to a fact� If the sequence of steps is equivalent to�

exp	

�

op

exp

and exp
 is a fact� then exp	 becomes a fact� The following condition has to

be satis�ed�

IS�PROVE�TF�op�

� PROVE�TR� Starting with an expression� transform it to another expression� If

the sequence of steps is equivalent to�

exp	

op	

exp

and the expression that needs to be proved is of the form �exp	 op
 exp
��

then it is considered proved if the following condition is also satis�ed�

IS�RELATED�op	� op
�

����
 Quanti�er properties

The following quanti�er properties have been prede�ned� They can be applied on

the �y in the same way as operator properties de�ned by rules� The user can specify

whether the intermediate steps will be omitted� If intermediate steps are not omitted�

a descriptive hint will be given and the equality operator will be used�

� Missing range�

��

�op x �� E� � �op x � DEF�TRUE � E�

� Empty range�

�op x � DEF�FALSE � E� � IDENTITY�op�

� One�point rule� Provided not occurs��x�� �E���

�op x � x � E � F� � F�x��E�

� Distributivity �

�op x � R � P� op �op x � R � Q� � �op x � R � P op Q�

� Range split �

�op x � R DEF�OR S � P� op �op x � R DEF�AND S � P� �

�op x � R � P� op �op x � S � P�

� Range split � Provided �R DEF�AND S � DEF�FALSE� or IS�IDEMPOTENT�op��

�op x � R DEF�OR S � P� � �op x � R � P� op �op x � S � P�

��

� Interchange of dummies� Provided not occurs��y�� �R�� and

not occurs��x�� �Q���

�op x � R � �op y � Q � P�� � �op y � Q � �op x � R � P��

� Nesting � Provided not occurs��y�� �R���

�op x� y � R DEF�AND Q � P� � �op x � R � �op y � Q � P��

� Dummy renaming � Provided not occurs��y�� �R�P���

�op x � R � P� � �op y � R�x��y� � P�x��y��

� Dummy reordering �

�op x� y � R � P� � �op y� x � R � P�

��� The proof editor�s internal language

Although the syntax of this language may change� we think it is necessary to de�ne

its basic characteristics and semantics�� Each �le that is processed by the proof editor

is of the form�

��le� ��� � �statement� ��

The following paragraphs describe what statements are�

�This is the internal language� users need not write in it or read it�

��

����� Using existing �les

The include statement is used in order to include the contents of an existing �le in

the current �le� Its syntax is�

�statement� ��� �include� �string�

It should be noted that the included �le cannot be changed while editing the �le from

which it was included� For example� the proof of a theorem that was de�ned in the

included �le cannot be edited�

����� De�nition of types

Types are de�ned by statements of the form�

�statement� ��� �define� �type� �id�type� � ��� �id�type� ��

When used in some declarations� a type is de�ned as�

�type� ��� �id�type� j �ANY� j �VARIABLE� j �LIST�

����� De�nition of constants

Constants are de�ned by statements of the form�

�statement� ��� �define� �constant� �id�constant�

� ��� �id�constant� �� ��� �id�type�

����� De�nition of operators

Operators are de�ned by statements of the form�

��

�statement� ��� �define� �operator� �id�operator�

� �prefix� j �postfix� � ��� �id�type� ���� �id�type�

j �define� �operator� �id�operator� �infix� ���

�id�type� �x� �id�type� ���� �id�type�

The precedence of operators can be de�ned by statements of the form�

�statement� ��� �define� �precedence� �PREC� ��� �id�operator� ���

� � ��� j ��� � �PREC� ��� �id�operator� ��� ��

Several such statements for several operators create a partial order of precedence��

The de�nition �PREC�op	� � PREC�op
�� means that op
 binds stronger than op	�

whereas the de�nition �PREC�op	� � PREC�op
�� means that op	 has the same

precedence as op
�

����� De�nition of functions

Functions are de�ned by statements of the form�

�statement� ��� �define� �function� �id�function� ���

�id�type� � �x� �id�type� �� ���� �id�type�

����� Expressions

Expressions are the most basic part of the internal language� They are de�ned by

the following rules�

�expression� ��� �term� � ��� �seq�subst� ��� �

�A total order is imposed by the proof editor�s interface�

��

j �id�operator� �expression�

j �expression� �id�operator�

j �expression� �id�operator� �expression�

�term� ��� �id�constant�

j �id�variable�

j �id�function� ��� �expr�list� ���

j ��� �expression� ���

j ��� �id�operator� �dummy�decl� ���

� �expression� � ��� �expression� ���

�seq�subst� ��� �var�list� ���� �expr�list�

�var�list� ��� �id�variable� � ��� �id�variable� ��

�expr�list� ��� �expression� � ��� �expression� ��

�dummy�decl� ��� �part�dummy�decl� � ��� �part�dummy�decl� ��

�part�dummy�decl� ��� �var�list� ��� � �id�type� j �LIST� �

����	 De�nition of axioms

Axioms are de�ned by statements of the following form�

�statement� ��� �axiom� � ��� �type�decl� ��� � �fact�name�

� �fact�condition� �� �states� �f� �expression� �g�

where�

�type�decl� ��� �part�type�decl� � ��� �part�type�decl� ��

��

�part�type�decl� ��� �var�list� ��� �type�

�fact�name� ��� � �title� �string� � � �number� �string� �

�fact�condition� ��� �condition� � �not� �

�occurs� ��� �var�list� ��� �expr�list� ���

����
 De�nition of theorems

Theorems are de�ned by statements of the form�

�statement� ��� �theorem� � ��� �type�decl� ��� � �fact�name�

� �fact�condition� �� �proof�

�proof� ��� �prove� �f� �expression� �g� �proof�tail�

In order for a theorem to be considered a fact� the proof that follows it must be

completed and valid� These properties� though� cannot easily be speci�ed syntacti�

cally and are ignored for the time being� A proof is de�ned as follows�

�proof�tail� ��� �

j �fromFact� �hint� �f� �expression� �g� �seq�of�steps�

� �qed� �

j �toFact� �seq�of�steps�

� �qed� �hint� j �depends�clause� �

j �transform� �f� �expression� �g� �seq�of�steps�

� �qed� �

�seq�of�steps� ��� � �step� �f� �expression� �g� ��

��

�step� ��� �step� �id�operator� �hint�

�hint� ��� �hint� � �fact�hint� j �property�hint� �

�fact�hint� ��� � �substFact� � �string� � ��� �seq�subst� ��� �

�property�hint� ��� �insparen�

j �rmvparen�

j �perfsub�

j �symmetric� ��� �id�operator� ���

j �dual� ��� �id�operator� ��� �id�operator� ���

j �conjunctional� ��� �id�operator� ���

j �equivalent� ��� �id�operator� ��� �id�operator� ���

�depends�clause� ��� �depends� �proof�scope� �enddep�

�proof�scope� ��� � �assumption� �� � �proof� ��

�assumption� ��� �assume� �f� �expression� �g� �fact�name�

����� De�nition of rules

Rules are divided in four categories�

� Prede�ned rules for transforming the current subexpression on the �y�

� Prede�ned rules for transforming the current subexpression by using facts�

� Prede�ned rules for de�ning the default true and false values and also the

default conjunction and disjunction operators�

��

� User�de�ned rules�

Rules can be de�ned with statements of the form�

�statement� ��� �rule� �pred�oper�property�

j �rule� �pred�transf�rule�

j �rule� �pred�default�val�

j �rule� � �title� �string� � � �rule�statement� ��

�pred�oper�property� ��� �symmetric� ��� �id�operator� ���

j �associative� ��� �id�operator� ���

j �idempotent� ��� �id�operator� ���

j �dual� ��� �id�operator� ��� �id�operator� ���

j �mutualAssoc� ��� �id�operator� ���

�id�operator� ���

j �leftIdent� ��� �id�operator� ���

�id�constant� ���

j �rightIdent� ��� �id�operator� ���

�id�constant� ���

j �identity� ��� �id�operator� ���

�id�constant� ���

j �leftZero� ��� �id�operator� ���

�id�constant� ���

j �rightZero� ��� �id�operator� ���

�id�constant� ���

��

j �zero� ��� �id�operator� ��� �id�constant� ���

j �connective� ��� �id�operator� ���

j �transitive� ��� �id�operator� ���

�id�operator� ��� �id�operator� ���

j �proveFF� ��� �id�operator� ���

j �proveTF� ��� �id�operator� ���

j �prove� ��� �id�operator� ���

j �related� ��� �id�operator� ���

�id�operator� ���

j �conjunctional� ��� �id�operator� ���

j �equivalent� ��� �id�operator� ���

�id�operator� ���

j �quantifier� ��� �id�operator� ���

�id�operator� ���

�pred�transf�rule� ��� �substitute� ��� �id�operator� ���

�id�operator� ���

j �leibniz� ��� �id�operator� ���

�id�operator� ���

�pred�default�val� ��� �defTrue� ��� �id�constant� ���

j �defFalse� ��� �id�constant� ���

j �defAnd� ��� �id�operator� ���

j �defOr� ��� �id�operator� ���

�

�rule�statement� ��� �fail� �string�

j �scopeBegin� � �scope�statement� �� �scopeEnd�

j �if� �rule�condition� �then� � �rule�statement� ��

� �elseif� �rule�condition� �then�

� �rule�statement� �� ��

� �else� � �rule�statement� �� � �endif�

�scope�statement� ��� �assume� � �array� ��� �id�variable� ��� �

�f� �rule�expression� �g�

j �prove� � �array� ��� �id�variable� ��� �

�f� �rule�expression� �g�

�rule�condition� ��� �rule�cond�term� � �or� �rule�cond�term� ��

�rule�cond�term� ��� �rule�cond�factor� � �and� �rule�cond�factor� ��

�rule�cond�factor� ��� ��� �rule�condition� ���

j �not� �rule�cond�factor�

j �occurs� ��� �var�list� ��� �rule�expr�list� ���

j �rule�primary� �matches� �rule�primary�

j �MODE� �is�

� �PROVE FF� j �PROVE TF� j �PROVE TR� �

j �pred�predicate�

�rule�primary� ��� � ��� �rule�type�decl� ��� � �f� �rule�expression� �g�

j � ��� �id�variable� ��� �array� �of� � �id�type�

��

j �pred�access�type� � ��� �

�EXP� ��� �id�variable� ��� �in�x�oper� ���

�in�x�oper� ��� �id�operator� j �meta�in�x�oper�

�rule�expr�list� ��� �rule�expression� � ��� �rule�expression� ��

�rule�expression� ��� �rule�term� � ��� �rule�seq�subst� ��� �

j �id�operator� �rule�expression�

j �rule�expression� �id�operator�

j �rule�expression� �in�x�oper� �rule�expression�

�rule�term� ��� �id�constant�

j �id�variable�

j �id�function� ��� �rule�expr�list� ���

j ��� �rule�expression� ���

j ��� �id�operator� �rule�dummy�decl� ���

� �rule�expression� � ��� �rule�expression� ���

j �pred�access�term�

�rule�seq�subst� ��� �var�list� ���� �rule�expr�list�

�rule�dummy�decl� ��� �rule�part�dummy�decl�

� ��� �rule�part�dummy�decl� ��

�rule�part�dummy�decl� ��� �var�list� ���

� �id�type� j �LIST� j �pred�access�type� �

�rule�type�decl� ��� �part�rule�type�decl� � ��� �part�rule�type�decl� ��

��

�rule�part�type�decl� ��� �var�list� ��� � �type� j �pred�access�type� �

�pred�predicate� ��� �IS CONSTANT� ��� �expression� ���

j �IS SYMMETRIC� ��� �id�operator� ���

j �IS ASSOCIATIVE� ��� �id�operator� ���

j �IS IDEMPOTENT� ��� �id�operator� ���

j �HAS LIDENT� ��� �id�operator� ���

j �HAS RIDENT� ��� �id�operator� ���

j �HAS IDENTITY� ��� �id�operator� ���

j �HAS LZERO� ��� �id�operator� ���

j �HAS RZERO� ��� �id�operator� ���

j �HAS ZERO� ��� �id�operator� ���

j �IS CONNECTIVE� ��� �id�operator� ���

j �HAS DUAL� ��� �id�operator� ���

j �IS DUAL� ��� �id�operator� ��� �id�operator� ���

j �IS MUTUAL ASSOC� ��� �id�operator� ���

�id�operator� ���

j �IS PROVE FF� ��� �id�operator� ���

j �IS PROVE TF� ��� �id�operator� ���

j �IS PROVE� ��� �id�operator� ���

j �IS RELATED� ��� �id�operator� ��� �id�operator� ���

j �IS CONJUNCTIONAL� ��� �id�operator� ���

j �IS EQUIVALENT� ��� �id�operator� ���

��

�id�operator� ���

j �ISDEF TRUE�

j �ISDEF FALSE�

j �ISDEF AND�

j �ISDEF OR�

�pred�access�type� ��� �TYPEOP� ��� � �id�operator� � ���

j �TYPEOP	� ��� �id�operator� ���

j �TYPEOP
� ��� �id�operator� ���

j �TYPERES� ��� � �id�operator� � ���

j �TYPEEXP� ��� �expression� ���

�meta�in�x�oper� ��� �DUAL� ��� �id�operator� ���

j �CONJUNCT� ��� �id�operator� ���

j �QUANTOPER� ��� �id�operator� ���

j �DEF AND� j �DEF OR�

�pred�access�term� ��� �LIDENT� ��� �id�operator� ���

j �RIDENT� ��� �id�operator� ���

j �IDENTITY� ��� �id�operator� ���

j �LZERO� ��� �id�operator� ���

j �RZERO� ��� �id�operator� ���

j �ZERO� ��� �id�operator� ���

j �DEF TRUE�

j �DEF FALSE�

��

j �CURR EXPR�

j �CURR FACT�

j �CURR SUBEXP�

A small programming language allows the users to de�ne their own rules� The

semantics of this language is described in x������ We tried to make this language as

simple as possible� so many features that may be needed have been left out� User�

de�ned rules can be used in order to relax the style of proofs� Some features of our

editor� such as scopes and auxiliary proofs� cannot be used but from user�de�ned

rules�

��� More detailed speci�cations

In this section we give some more formal de�nitions of terms used in the previous

sections and describe the user interface in more detail�

����� Subexpressions

We now de�ne the notion of a subexpression� Let S�E� be the set of subexpressions

of E� A formal de�nition of S�E� is given in Fig�����

����� Structure of expressions

We now de�ne the notion of an expression�s structure� We have to de�ne two auxiliary

notions� outermost operator and primary subexpression� Let O�E� be the tuple�

�A tuple is an ordered set that can contain multiple occurrences of the same element� A tuple
containing the elements x�� x�� � � � � xn in this order is written as hx�� x�� � � � � xn i� The empty tuple
is written as hi� If x is an element and t is a tuple� x � t is the tuple that results from prepending x

to t�

��

E S�E�

v f v g

c f c g

�E f �E g
 S�E�

E� fE� g
 S�E�

E� �� E� �� � � � �n�� En
S
��i�j�n fEi �i � � � �j�� Ej g

Sn
i	� S�Ei�

f�E�� E�� � � � � En� f f�E�� E�� � � � � En� g
 S�E��
 S�E��
 � � �
 S�En�

�E� f �E� g
 S�E�

�� y j R � E� f �� y j R � E� g
 S�R�
 S�E�

E � x �� e� fE � x �� e� g
 S�E�

S
ei�
e

S�Ei�

E O�E� P�E�

v h variable i h v i

c h constant i h c i

�E h pre�x ��� i hE i

E� h post�x ��� i hE i

E� �� E� �� � � � �n�� En h in�x ����� in�x ����� � � � � in�x ��n��� i hE�� E�� � � � � En i

f�E�� E�� � � � � Em� h function�f � i hE�� E�� � � � � En i

�E� h parenthesis i hE i

�� y j R � E� h quanti�er ���� y i hR�E i

E � x �� e� h substitution� x i h e i

Memorandum	

v � a variable�

c � a constant�

� � an operator�

f � a function�

 x� y � lists of dummy variables�

E�Ei� R � expressions�

 e � a list of expressions�

Figure ���� Subexpressions and structure�

��

of all outermost operators of expression E� Let P�E� be the tuple of all primary

subexpressions of E� A de�nition of these two notions is given in Fig�����

����� Expression matching

Expression matching is a very important operation of our proof editor� It is used

internally in the transformation procedure and also in user�de�ned rules� However�

we do not give a completely formal de�nition for expression matching� since this

would be rather tedious�

Variables are generally divided in two categories�

� Free variables� variables that are declared before an expression� surrounded by

brackets� e�g�

�p� q � boolean� p �� �p �� q� �� q

Such variables can be replaced by other expressions�

� Fixed variables� variables that are considered to be �xed and cannot be sub�

stituted by other expressions�

When a free variable becomes bound to an expression� every occurrence of this

variable in the initial expression is substituted by this expression� A binding is a

tuple of pairs of the form ��v� e��� where v is a free variable and e is an expression�

If B is a binding and E is an expression� we de�ne E fBg to be the result of the

substitution in E of all variables that are bound in B� in the order they appear in

B� A recursive de�nition of E fBg is given below�

��

E fhig � E

E f�v� e� � Bg � E �v �� e� fBg

When matching two expressions� the aim is to �nd a binding of the free variables

that makes the expressions identical� With respect to binding B� variable v can be

free� bound or �xed�

Bindings can be merged� The result B�!B� of merging two bindings B� and B�

is a binding that has the property that for all expressions E�

E fB�!B�g � E fB�g fB�g

Note that the order of the two arguments in B�!B� cannot be reversed�

We now describe the matching algorithm� We de�ne match�E��B��E��B�� to

return a tuple of three elements h f�B�
�� B

�
� i� The �rst element is a boolean� Its value

is true� if and only if there are bindings B�
� and B�

� such that�

E� fB
�
�!B�g � E� fB

�
�!B�g

If f is true� the second and third elements of the result contain the two bindings

respectively� If f is false� they both contain the empty tuple�

We start with a general rule about matching�

if match�E��B��E��B�� � h f�B�
�� B

�
� i

then match�E��B��E��B�� � h f�B�
�� B

�
� i�

Therefore� we do not need to handle symmetrical cases�

��

We now de�ne the the matching for parenthesized expressions� variables and

constants� In the following� the letter c denotes constants and the letter v denotes

variables�

match��E���B��E��B�� � match�E��B��E��B��

If v is free in B��

match�v�B��E��B�� � h true� �v� E�� � B�� B� i

If v is bound in B��

match�v�B��E��B�� � match�v fB�g�B��E��B��

If v� and v� are �xed in B� and B� respectively� and v� � v��

match�v��B�� v��B�� � h true� B�� B� i

Matching of expressions containing operators� function applications and textual sub�

stitution is de�ned as�

match��E��B�� �E��B�� � match�E��B��E��B��

match�E���B��E���B�� � match�E��B��E��B��

To calculate� match�E�
� �E

�
� �B��E

�
� �E

�
� �B��

h f�B�
�� B

�
� i � match�E�

� �B��E
�
� �B��

if f � false then

return h false� hi� hi i

h f�B��
� � B

��
� i � match�E�

� �B
�
�!B��E

�
� �B

�
�!B��

if f � false then

return h false� hi� hi i

��

return h true� B��
�!B

�
�� B

��
�!B

�
� i

To calculate� match�f�E�
� � E

�
� � � � � � E

n
� ��B�� f�E

�
� � E

�
� � � � � � E

n
� ��B��

B��
� � hi � B��

� � hi

for i � � to n do

h f�B�
�� B

�
� i � match�Ei

��B��E
i
��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�

B��
� � B�

�!B
��
� � B��

� � B�
�!B

��
�

end do

return h true� B��
� � B

��
� i

To calculate� match�E� � x �� e���B��E� � x �� e���B��

h f�B�
�� B

�
� i � match�E��B��E��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�

B��
� � hi � B��

� � hi

for i � � to j e� j do

h f�B�
�� B

�
� i � match�ei��B�� e

i
��B��

if f � false then

return h false� hi� hi i

B� � B�
�!B� � B� � B�

�!B�

�

B��
� � B�

�!B
��
� � B��

� � B�
�!B

��
�

end do

return h true� B��
� � B

��
� i

Finally� matching quanti�ers is de�ned as�

To calculate� match��� x� j R� � E���B�� �� x� j R� � E���B��

Bd � matchDummy� x�� x��

h f�B�
�� B

�
� i � match�R��Bd!B��R��Bd!B��

if f � false then

return h false� hi� hi i

h f�B��
� � B

��
� i � match�E��B

�
�!Bd!B��E��B

�
�!Bd!B��

if f � false then

return h false� hi� hi i

return h true� B��
�!B

�
�� B

��
�!B

�
� i

where matchDummy� x�� x�� is a binding of dummy variables� such that the lists x�

and x� become identical� Its de�nition is left out�

����� The language for rules

The simple programming language for user�de�ned rules supports six statements�

so far� It will probably be extended in the future� It supports also a new type

constructor� array of� and a new expression constructor� EXP�a� op�� These will

be described together with the if statement�

A brief description of the semantics of rule statements is given below� The syntax

of these statements is de�ned in x������ where the grammar is given� It is not repeated

��

here� We explain only what is not clear from the grammar� The if statement is the

most important and is presented �rst�

� if� What needs to be de�ned is the semantics of the conditions� There are four

primary conditions for the if statement� The �rst is a prede�ned predicate�

The other three are�

 MODE is PROVE�xxx� This condition is true if the proof technique that is

currently used is PROVE�xxx� If no proof technique has yet been declared

�the proof has just started�� then the condition is still true and the current

proof technique is set to PROOF�xxx�

 x matches y� This is the most important primary condition� it allows the

user to access the structure of an expression� The expressions x and y

can be either normal expressions� with free variables declared in brackets�

or the special expression constructor EXP�a� op�� with a possibly a free

variable declared in brackets and op an in�x operator�

In EXP�a� op�� a is an array of expressions� If the number of expressions

in a is n and the expressions are E�� E�� � � � � En� then the constructor

EXP�a� op� is equivalent to the expression�

E� op E� op � � � op En

Operator op has to be associative� If array a is free� when matching

EXP�a� op� expressions E�� E�� � � � � En are considered free� but also their

number is not determined� However� it must be n
 ��

��

When a condition of the form �x matches y� is given� the proof editor is

trying to match the two expressions x and y� possibly by assigning values

to free variables� If a matching is possible� the condition is true� otherwise

it is false�

 occurs�v�e�� The predicate that has been de�ned in x������ where v is

a variable list and e is an expression list� Arrays can also be used as

expression lists�

� beginScope and endScope� De�nes a new scope� If the current proof technique

is not PROVE�TF an error occurs� In this scope there can be the following scope

statements�

 assume� Make an assumption� Assumptions can be made only in the

beginning of a new scope� If this is not the case� an error occurs� If an

array is given� the statement is repeated for all elements of the array�

 prove� Start an auxiliary proof� If the current proof technique is not

PROVE�TF an error occurs� The current proof before the rule was applied

will depend on the new one� If an array is given� the statement is repeated

for all elements of the array�

� fail� Print a diagnostic message� explaining why this rule cannot be applied�

and stop�

��

QED

Delete step

From fact

By transformation

New

Include...

Save as...

Close

Export...

Open...

Show source

Quit

Save

Nesting

Range split

Distributivity

One-point rule

Import...

Missing range

Equivalent form...

Conjunctionality

Symmetry

Print LaTeX...

Rename dummies

Interchange dummies

To fact

Proof...

Directories...

Load...

Save...

Empty range

Show clipboard

Clear

Paste

Copy

Cut

Close proof

Open proof

Reorder dummies

Type...

Constant...

Operator...

Function...

Axiom...

Rule...

Theorem...

Precedence...

Properties...

Substitute fact

Apply rule

Insert parentheses

Remove parentheses

Perform substitution

Apply fact

File OptionsEdit Define Proof Transform Property

Figure ���� The main menu�

����� The interface

We now give more details about the user interface� We describe the functions that

the user interface should provide� In Fig����� we organize these functions into a menu�

the main menu of our application� Some of these functions are used more often than

others� so we will need more handy ways to access them� but this depends on the

capabilities of the programming environment�

We now describe these functions one by one�

��

� File� Various �le operations�

 New � Open a new �le with a dummy name� Close the current one� if any

�ask for con�rmation� if it has not been saved��

 Open� Open an existing �le �ask the user for its name�� Close the current

one� if any �ask for con�rmation� if it has not been saved��

 Include� Include an existing �le �ask the user for its name� in the current

one� after all other included �les�

 Close� Close the current �le �ask for con�rmation� if it has not been saved��

 Save� Save the current �le� If no name has been given� same as Save as�

 Save as� Save the current �le �ask the user for its name��

 Import � Read a text �le that contains internal language statements�

 Export � Write the current �le as text�

 Print LaTeX � Print the current �le to a LaTEX document �ask the user for

its name��

 Show source� Show the source of the current �le as it will be saved on disk

�that is� show the internal language statements��

 Quit � Quit the application �ask for con�rmation� if the current �le has

not been saved��

� Edit� Editing commands�

 Open proof � Open the proof of the current theorem for editing�

��

 Close proof � Close the current proof�

 Cut � Cut the selected text and place it in the clipboard�

 Copy � Copy the selected text in the clipboard�

 Paste� Insert the contents of the clipboard at the current editing point�

 Clear � Delete the selected text�

 Show clipboard � Show the contents of the clipboard�

� De�ne� Various de�nitions�

 Type� De�ne a new type�

 Constant � De�ne a new constant�

 Operator � De�ne a new operator�

 Function� De�ne a new function�

 Axiom� De�ne a new axiom�

 Theorem� De�ne a new theorem�

 Rule� De�ne a new rule�

 Precedence� De�ne operator precedence�

 Property � De�ne operator properties�

� Proof� Editing the current proof�

 To fact � Start a proof to a fact�

 From fact � Start a proof from the current fact� with its variables substi�

tuted as speci�ed by the user�

��

 By transformation� Start a proof by transformation� starting from the

expression that is speci�ed by the user�

 Delete step� Delete the last step in the current proof�

 QED � Complete the current proof�

� Transform� Transforming the current expression�

 Apply � Apply the current fact to the current subexpression �if possible�

and create a transformation step�

 Substitute fact � Substitute the current subexpression� which should be an

instance of the current fact� by the default true value�

 Apply rule� Apply the current user�de�ned rule� if possible�

 Insert parentheses� Insert parentheses around the current subexpression�

 Remove parentheses� Remove all unnecessary parentheses in the current

subexpression�

 Perform substitution� Perform all possible substitutions in the current

subexpression�

� Property� Applying operator and quanti�er properties�

 Symmetry � Apply symmetry or duality of the outermost operator to the

current subexpression� if possible�

 Conjunctionality � Apply the conjunctionality of the outermost operator

to the current subexpression� if possible�

��

 Equivalent form� Substitute the outermost operator of the current subex�

pression by any of its equivalent forms�

 Missing range� Apply the missing range quanti�er property to the current

subexpression� if possible�

 Empty range� Apply the empty range quanti�er property to the current

subexpression� if possible�

 One�point rule� Apply the one�point rule quanti�er property to the current

subexpression� if possible�

 Distributivity � Apply the distributivity quanti�er property to the current

subexpression� if possible�

 Range split � Apply the range split quanti�er property to the current subex�

pression� if possible�

 Interchange dummies� Interchange the dummies of the quanti�er that is

currently selected as the current subexpression�

 Nesting � Apply the nesting quanti�er property to the current subexpres�

sion� if possible�

 Rename dummies� Rename the dummies of the quanti�er that is currently

selected as the current subexpression�

 Reorder dummies� Reorder the dummies of the quanti�er that is currently

selected as the current subexpression�

� Options� Various options�

��

 Proof � Options about proofs �e�g� what hints should be displayed or in

what form��

 Directories� Options about the directories� where the system or user �les

are found�

 Load � Load options from a �le�

 Save� Save options to a �le�

Chapter �

User�s Manual

��� Introduction

The proof editor that will be presented was developed in the Department of Com�

puter Science� Cornell University� as an M�Sc� thesis by Nikos Papaspyrou and was

supervised by David Gries� This tool can be used to facilitate the development of

proof transformations� The current version of the proof editor is ��� alpha for Apple

Macintosh� This version is not complete� For more details about unimplemented

features and known bugs� refer to x����

For a general presentation of the proof editor and for understanding its basics�

the reader is directed to x��� and x���� The present document is a user�s manual

for the proof editor and assumes that the reader understands the principles of proof

transformations and the basic terminology of this tool as described in its speci�ca�

tions document� The user should also be familiar with the standard Macintosh user

interface and have some experience using typical Macintosh applications�

��

�

��� Working with �les

A module is the fundamental document with which the proof editor works� Each

module is associated with a �le� from which it is loaded and to which it is saved�

Modules can include other modules� thus creating a module hierarchy� The proof

editor recognizes one module as the current one� the one being edited� All other

modules �that are contained in the current one� can be used but not altered in any

way� At most one �le can be edited at a time� the �le containing the current module�

Each module can contain de�nitions of types� constants� operators� functions�

axioms� theorems� properties and rules� All this information is represented in the

proof editor�s internal language� which is described in x���� The proof editor works

with two types of �les� proof editor �les and text �les� The former can only be edited

by the proof editor� The latter can also be edited by any text editor� however� the

user needs to understand the internal language before editing these �les�

����� Creating a new module

When the proof editor application is launched� the dialog box in Fig���� appears�

In this dialog box� the user can create a new empty module� by giving a module

name and clicking button OK � Alternatively� the user can click button Open and

then choose to open an existing �le �see x������� The same dialog box appears when

the user selects command File j New� If another module is being edited when this

happens� it will be closed� A warning message will appear if that module has not

been saved�

The user can quit the proof editor by selecting command File j Quit� Again� a

��

Figure ���� Creating a new module�

��

warning message will appear if the current module has not been saved�

����� Editing existing modules

By selecting command File j Open� the user can open an existing proof editor �le� If

another module is being edited at the time� it will be closed �the proof editor can

work with one current module at a time�� This command displays a standard dialog

box for opening �les� from which the user can select the �le that he or she wants to

open�

Command File j Save saves the current module� If this module was created by

using command File j New� this is the same as selecting File j Save as� Otherwise�

the module is saved in the �le with which it has been associated� Command File j

Save as �rst asks the user for the name of the �le in which the current module is to

be saved� A standard dialog box for saving �les appears�

Finally� by selecting command File j Close� the user can close the current module�

If this has not been saved� a warning message will appear and the user will be

prompted to save it�

����� Working with text �les

The proof editor lets the user work with text �les� These �les can be edited with

any text editor and later be imported again� so that they can be used with the proof

editor� Although this is not necessary and is against the philosophy of the proof

editor� some people prefer working with text �les� Furthermore� the proof editor

does not allow all kinds of changes in a module �e�g� facts cannot be deleted once

they have been de�ned�� and sometimes the only way to change a module is by

��

editing its internal language representation� The user must be very careful when

editing these �les as text and comply with the internal language�s syntax� described

in x����

Command File j Import works the same as File j Open� only it opens text �les� A

standard dialog box appears when this command is selected� Command File j Export

is equivalent to command File j Save as for text �les�

����� Other File commands

The remaining two commands in the File menu are�

� File j Print LaTeX� Print the current module as a LaTEX �le� It has not been

implemented in this version of the proof editor�

� File j Show source� Display the representation of the current module in the

proof editor�s internal language�

��� Working with modules

This section describes how the user can edit a module�s contents by de�ning new

types� constants� operators� functions� axioms� theorems� properties and rules� For a

description of editing proofs� see the next section�

����� Screen layout

When a module is being edited� the screen looks as in Fig����� It is separated into

four windows�

��

Figure ���� Screen layout�

��

� The proof window � In this window� the biggest window on the screen� the

current proof is displayed �when a proof is being edited��

� The facts window � This window contains a list of all facts �axioms and the�

orems� de�ned in the current module and all modules that this one includes�

The facts are sorted by module and are given in the order in which they have

been de�ned� By clicking on a module�s name in the facts window� the user

can hide its facts� They can be shown again with a second click�

Each fact is displayed in two lines� The �rst line contains its title and number�

preceded by one to three letters characterizing the fact� The �rst letter is one

of the following�

A� the fact is an axiom�

T� the fact is a theorem�

a� the fact is an assumption�

In case the fact is a theorem� the second letter is one of the following�

P� the theorem has been proved�

U� the theorem has not been proved�

Finally� the third letter is an optional c� meaning that the fact can be applied

under some conditions�

� The rules window � This window contains a list of all user�de�ned rules de�ned

in the current module and all modules that this includes� The rules are sorted

��

by module and are given in the order in which they have been de�ned� By

clicking on a module�s name in the rules window� the user can hide its rules�

They can be shown again with a second click� For each rule� only its name is

displayed�

� The input window � This window is used as a means of communication between

the proof editor and the user�

����� Including existing modules

By using command File j Include� the user can include other existing modules in

the current module� A standard dialog box appears� which enables the user to choose

the proof editor �le to be included�

����� De�ning types

New types can be de�ned using command Define j Type� The dialog box in Fig����

appears� The user must specify the names of one or more types to be de�ned�

separated by commas or spaces�

����� De�ning constants

New constants can be de�ned using command Define j Constant� The dialog box in

Fig���� appears� The user must specify the names of one or more constants to be

de�ned� separated by commas or spaces� and select their type from the popup menu

that appears�

��

Figure ���� De�ning types�

��

Figure ���� De�ning constants�

��

Figure ���� De�ning operators�

����� De�ning operators

By using command Define j Operator� the user can de�ne a new operator� The dialog

box in Fig���� appears� The user must specify the name of the operator� its position

�i�e� pre�x� post�x or in�x�� the types of its arguments �pre�x and post�x operators

take one argument� while in�x operators take two arguments� and the result type�

If box Set precedence is checked� after de�ning an operator the user will be asked

to place it in the operator precedence table�

�

Figure ���� De�ning functions�

����� De�ning functions

By using command Define j Function� the user can de�ne a new function� The

dialog box in Fig���� appears� The user must specify the name of the function� the

types of its arguments and the result type� Initially� a newly�de�ned function has no

arguments �which is not legal�� By clicking on button Add argument� a new argument

is added and the user must specify its type�

��

����	 De�ning axioms and theorems

New axioms and theorems can be de�ned using the two commands Define j Axiom

and Define j Theorem respectively� These two will be described together� since the

process is exactly the same� A dialog box similar to the one in Fig���
 appears� The

user must specify the fact�s title and number �they can be left blank� but leaving

both blank is not a good idea� and the fact�s expression� Then� by clicking button

Find free variables� the fact�s expression is parsed and all free variables are placed

in a list� The user must then specify each free variable�s type from the type popup

menu�

����
 De�ning rules

The user can de�ne new rules using command Define j Rule� The dialog box in

Fig���� appears� where the user must specify the rule�s title and its text� The text

of the rule is its representation in the proof editor�s internal language� omitting the

initial rule and the title and ending with endrule� For more information about the

syntax and semantics of rules� read x����� and x������

����� De�ning operator precedence

When a new operator is de�ned� its precedence with respect to other operators is un�

de�ned� This means that the operator cannot be used in expressions containing other

operators� without explicit parentheses� In order to de�ne an operator�s precedence�

command Define j Precedence must be used� The dialog box in Fig���� appears�

This dialog box has two tables� The upper table is the precedence table� If

��

Figure ��
� De�ning axioms and theorems�

�

Figure ���� De�ning rules�

�

Figure ���� De�ning operator precedence�

�

an operator has been placed in this table� its precedence with respect to all other

operators has already been de�ned� This table consists of several rows� In each row�

one or more operators can be placed� If two operators are in the same row� they have

the same precedence� Operators in rows toward the top of the table bind stronger

than operators toward its bottom�

The lower table contains operators that have not yet been placed in the precedence

table� To place such an operator in the precedence table� select the operator� select

a row in the precedence table and click at one of the three placement buttons�

� In same row � place the operator in the row that has been selected�

� New row above� create a new row just above the one that has been selected

and place the operator there�

� New row below � create a new row just below the one that has been selected

and place the operator there�

�����
 De�ning operator properties

By using command Define j Property� the user can de�ne operator properties �in�

ternal language prede�ned rules� see x������� The dialog box in Fig����� appears� To

de�ne an operator property� the user must select the property�s name and specify its

arguments� Then� by clicking on button Add� the property is placed in the list of

properties to be de�ned �it can be removed by clicking on button Remove��

�

Figure ����� De�ning operator properties�

�

��� Working with proofs

In order to edit a theorem�s proof� the user selects the theorem from the facts win�

dow and clicks command Edit j Open proof� The proof window then displays the

theorem�s proof� If the proof is not completed� the user can edit it by using the com�

mands in menus Proof� Transform and Property� Otherwise the proof cannot be

changed� To close the proof that is currently being edited� the user clicks command

Edit j Close proof�

When editing a proof� the last expression appearing in the proof window is consid�

ered to be the current expression� This expression is used in the next transformation

step� The user can drag the mouse to select a part of this expression� the current

subexpression� If a subexpression is selected� only this subexpression will be used in

the next transformation step�

����� Starting a proof

There are three ways to start a proof� each corresponding to a prede�ned proof

technique �see x����
�� The three relevant commands are�

� Proof j To fact� Start a proof to a fact�

� Proof j From fact� Start a proof from a fact� The currently selected fact �in the

facts window� is used as the fact to start from� The user can type a substitution

of this fact�s free variables in the input window�

� Proof j By transformation� Start a proof by transformation� The user must

type the starting expression in the input window�

�

����� Using facts

One way to add steps to a proof is by using proved facts� Such facts can be either

applied or substituted� The corresponding commands are Transform j Apply fact

and Transform j Substitute fact� The user has to select the fact to be used from

the facts window and optionally type a substitution of its free variables in the input

window�

When using Transform j Apply fact� the current subexpression is matched with

part of the current fact �after all user�speci�ed substitutions have taken place�� The

fact�s free variables are matched with terms in the current subexpression� If there

are still free variables after the matching� they are �xed� A transformation step is

created� according to what is described in x������

When using Transform j Substitute fact� if the current subexpression is the

default true value� it is replaced by the current fact �after all user�speci�ed substitu�

tions have taken place and remaining free variables are �xed�� Otherwise� the current

subexpression is matched with the current fact� If it is an instance of this� a trans�

formation step is created �with the equality operator� and the current expression is

substituted by the default true value�

It should be noted here that� although the matching of the current subexpression

with the current fact is always correct �that is� the transformation steps are always

valid�� it is not necessarily what the user expects� Free variables can usually be

matched in various ways� resulting in completely di	erent transformation steps� If

more than one way is possible� the proof editor will choose one of them� If the user

wanted something di	erent� they have to delete the step and try again by specifying

�

the substitutions manually� To delete the last transformation step in the current

proof� the user can select command Proof j Delete step�

����� Completing proofs

A proof can be completed by selecting command Proof j QED� Completing a proof

is not always valid� the proof�s correctness is checked when the user selects this

command� as described in x����
� Completing a proof does not automatically close it�

It can be undone by selecting Proof j Delete step� However� after closing a complete

proof� the user cannot ever change it again �unless they change the module�s internal

representation��

����� Applying operator�quanti�er properties

Operator and quanti�er properties can be applied to the current subexpression by

using the commands of menu Property� When applying an operator property� the

current subexpression�s outermost operators �see x������ must be in�x operators�

When applying a quanti�er property� the current subexpression must be an instance

of one of the two sides of a quanti�er prede�ned property �see x������� For all these

properties� a transformation step with the equality operator is created�

The operator properties that can be applied are the following�

� Symmetry � If the outermost operator of the current subexpression is symmetric�

its two operands are reversed� Otherwise� if it has a dual� its two operands are

reversed and the operator is replaced by its dual�

� Conjunctionality � If the current subexpression is a chain of conjunctional opera�

Figure ����� Operator equivalent form�

tors� it is transformed into a conjunction of these operators� If it is a conjunction

of conjunctional operators� it is transformed into a chain�

� Equivalent form� The dialog box of Fig����� appears and the user must choose

one of the equivalent forms of the current subexpression�s outermost operator�

The quanti�er properties that can be applied are described in x������ These have

not been implemented in the current version of the proof editor� so they will not be

described in more detail now�

�

����� Parentheses and substitutions

There are three more commands that create transformation steps� All of them create

transformation steps with the equality operator� These are�

� Transform j Insert parentheses� Insert parentheses around the current sub�

expression�

� Transform j Remove parentheses� Remove all unnecessary parentheses from

the current subexpression�

� Transform j Perform substitution� Perform all possible substitutions in the

current subexpression�

����� Applying user�de�ned rules

By using command Transform j Apply rule� the user can apply a user�de�ned rule�

The syntax and semantics of user�de�ned rules can be found in x����� and x�����

respectively� To apply a rule� the user needs only select it from the rules window� Its

application may depend on the current expression or subexpression� the current fact

and the contents of the input window�

��� Error messages

This section presents and explains brie�y the various error messages that the proof

editor will display when something goes wrong� For each error message� the line of

code that generated it is shown �for debugging purposes� and� if the error is related

�

to text parsing� its context is given �e�g� �le name and line number�� Errors are

categorized as follows�

� Internal errors� Such errors should never happen� They mean that there is a

bug in the proof editor�

� Fatal errors� Errors that cause the proof editor application to stop�

� Common errors� Errors from which the proof editor can recover�

� Warning messages� Usually not important possible errors�

If an internal error happens� please send the author a report containing the error

message and a description of how it happened �as detailed as possible�� The same if

the system crashes� or if the proof editor does not behave as it should �make sure to

look at x���� though��

Here is a list of various common error messages� in alphabetical order�

Assertion failed

Internal error� An assertion failed� Please report this�

Cannot apply conjunctionality to this expression

Operator conjunctionality cannot be applied to the current subexpression�

Cannot apply symmetry�duality to this expression

Operator symmetry or duality cannot be applied to the current subexpression�

Cannot change existing proof mode

A proof mode has already been selected for the current proof and cannot be changed�

To change it� you have to delete all steps of the proof�

��

Cannot open a dependent scope in this proof

A dependent scope can be opened only in a proof to a fact�

Cannot open file ��lename�

File ��lename� cannot be opened� for reading or writing� If for reading� it is possible

that the �le does not exist or cannot be found� If for writing� it is possible that the

�le already exists and cannot be overwritten�

Cannot read from file ��lename�

File ��lename� cannot be read� Perhaps there is a problem with the disk�

Cannot resolve operator precedence

Operator precedence between these operators has not been de�ned� The expression

containing them is ambiguous�

Cannot set precedence �check all precedences�

Operator precedence cannot be set� because it is already de�ned� Check all prece�

dences to �nd where the problem is�

Cannot write to file ��lename�

File ��lename� cannot be written� Perhaps there is a problem with the disk� or the

disk is full�

Constant cannot be �property�

This constant cannot be given this property� Possible reasons are type incompat�

ibility� or another constant has already been given the same property� Check the

conditions for this property in chapter ��

��

Different array in EXP

A di	erent array is given in an EXP expression from what was previously declared in

parentheses�

Identifier has already been defined

This identi�er has already been de�ned for something else� Use unique identi�er

names�

Incomplete proof

This proof cannot be completed� For details on proof correctness� read x����
�

Invalid module� expected �module�

This �le does not contain a valid module� A text �le must start with module�

Misplaced identifier

A constant or variable identi�er is found in an expression in a place where an operator

is expected�

Misplaced operator

An operator is found in an expression in a place where a term is expected�

No current expression exists

No current expression exists in the current proof�

No default �value� has been defined

A default value is needed and has not been de�ned�

No proof is being edited

Some command that requires a proof to be edited was used without a current proof�

��

Operator�s� cannot be �property�

This operator cannot be given this property� Possible reasons are type incompat�

ibility� or another operator has already been given the same property� Check the

conditions for this property in chapter ��

Operator has no �property�

This property is needed and has not been de�ned for this operator�

Operator precedence not totally ordered

The operator precedence is not totally ordered� This operator will not be placed in

the precedence table�

Operator precedence over itself is forbidden

You cannot de�ne that an operator has higher precedence than itself�

Out of memory

The proof editor application has run out of memory� Try increasing the memory from

Finder�s command File j Get Info�

Quantifier cannot be defined

This quanti�er cannot be de�ned� Check the conditions speci�ed in chapter ��

Rule cannot be applied�

This error message is the result of execution of a fail user�de�ned rule statement�

Select a fact first

You cannot apply a fact� because no fact is currently selected in the facts window�

Select a rule first

You cannot apply a rule� because no rule is currently selected in the rules window�

��

Select a theorem first

You have selected Edit j Open proof without a theorem being selected in the facts

window�

Syntax error in rule condition

Check the user�de�ned rule text for a syntax error �see x�����

The current fact cannot be applied

The current fact cannot be applied to the current subexpression� because no matching

was found or the outermost operator is not a connective�

The current fact cannot be used �conditions not satisfied�

The current fact�s conditions are not satis�ed� so the fact cannot be used�

The current fact cannot be used �not proved�

The current fact is an unproved theorem� so it cannot be used�

The current fact cannot be used �out of range�

The current fact is out of the range of theorems that can be used�

The current subexpression is invalid

What is currently selected in the proof window is not a valid subexpression of the

current expression�

The current subexpression is not a fact

You have selected Transform j Substitute fact� but the current subexpression is

neither the default true value nor an instance of the current fact�

There is no equivalent form for this expression

There are no equivalent forms for the current subexpression�s outermost operator�

��

This statement should never be executed

Internal error� A statement was executed that was not supposed to� Please report

this�

Too few arguments in call to function

A function call has fewer arguments than necessary�

Too few expressions in substitution

There are fewer expressions than variables in a substitution�

Too many arguments in call to function

A function call has more arguments than necessary�

Too many expressions in substitution

There are more expressions than variables in a substitution�

Type mismatch

A di	erent type was found from the one expected�

Undefined �object�

An object is used but not de�ned�

Unknown PED exception

Internal error� Something wrong with the exception handler� Please report this�

Unrecognized �object�

This object is not recognized� Perhaps a spelling mistake"

Unterminated comment

A comment has not been terminated� and the end of the �le has been reached�

��

Unterminated string

A string has not been terminated� and the end of the �le has been reached�

��	 Unimplemented features and known bugs

Here is a list of features that have not been implemented in the current version of

the proof editor� although they are present in chapter ��

�� Quanti�er properties have not been implemented� Many things about quanti�

�ers have not been thoroughly tested� so it can be said that� in this version�

quanti�ers do not work�

�� User�de�ned rules containing EXP terms do not work�

�� Dependent proof scopes have been implemented� but the current interface does

not support them� They cannot be used in this version�

�� Facts that can be applied under conditions have been implemented but cannot

be created using the current interface� Fact conditions have not been thoroughly

tested�

�� There is no way to hide obvious hints �e�g� operator symmetry� conjunctionality�

etc��� This should be in the options menu� which has not been implemented�

For the same reason� all �les have to be in the same directory as the application

�le �unless full path names are used when including �les��

�� Operator idempotency� associativity� identities and zeroes cannot be applied on

the �y in transformation steps� The author thinks that this is not necessary

��

�usually there is a fact doing the same thing and it is not desired to hide the

hints�� except for associativity�

� There is no default type for free variables and quanti�er dummies� All types

have to be speci�ed explicitly�

�� Command File j Print LaTeX has not been implemented�

�� It is not possible to restrict the range of facts to be used when proving a

theorem�

The following features are not present in chapter � but are considered to be useful

and are treated as �unimplemented features��

�� There is no way to write comments in a proof� especially when applying rules

�e�g� �Proof by contradiction��� etc���

�� It is not possible to see information about facts and rules� apart from command

File j Show source� There should be something easier there�

�� It is not possible to see information about other symbols� especially operators�

It would be useful to be able to see a list of all properties de�ned for a particular

operator�

�� Before selecting something in a window� the user has to click the window to

make it active� Therefore� for selecting something in a non�active window two

clicks are necessary� Besides� the selected lines in a non�active window are not

shown�

�

�� There should be an option to print a proof separately �in a LaTEX �le� instead

of the whole �le�

Finally� here is a list of known bugs �some very annoying� of the current version�

�� It is possible to edit a proof of a theorem that is de�ned in an included �le� By

saving the �le� this proof is not saved�

�� Clicking button Cancel in the �rst New module dialog box and then quitting

the application causes a system crash�

�� The system may crash in low�memory situations �although a low�memory er�

ror handler has been implemented�� This may be because exceptions are not

handled properly �some �ag was wrong when compiling"��

�� Some fatal errors should not be fatal�

Bibliography

�BVW��� Roland Backhouse� Richard Verhoeven� and Olaf Weber� Mathpad� User
Manual� Technical report� Department of Computer Science� Eindhoven
University of Technology� January �����

�C���� Robert Constable et al� Implementing Mathematics with the Nuprl Proof

Development System� Prentice Hall� Englewood Cli	s� N�J�� �����

�GS��� David Gries and Fred B� Schneider� A Logical Approach to Discrete Math�
Springer�Verlag� New York� N�Y�� �����

�GS��a� David Gries and Fred B� Schneider� A New Approach to Teaching Mathe�
matics� Technical report� Department of Computer Science� Cornell Uni�
versity� February �����

�GS��b� David Gries and Fred B� Schneider� Teaching Math More E	ectively�
Through the Design of Calculational Proofs� Technical report� Depart�
ment of Computer Science� Cornell University� March �����

�vdS��a� Jan L�A� van de Snepscheut� Mechanized Support for Stepwise Re�nement�
Technical report� Department of Computer Science� California Institute of
Technology� January �����

�vdS��b� Jan L�A� van de Snepscheut� Proxac� an Editor for Program Transfor�
mation� Technical report� Department of Computer Science� California
Institute of Technology� February �����

��

