
DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 1/14

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING
INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES

IOANNIS DROSITIS, NECTARIOS KOZIRIS, NIKOLAOS PAPASPYROU AND
PANAYOTIS TSANAKAS

National Technical University of Athens, Department of Electrical and Computer
Engineering, Division of Computer Science

Zografou Campus, 157-73 Zografou, Athens, Greece
e-mail: {jdros, nkoziris}@cslab.ece.ntua.gr

This paper presents a new method for the problem of mapping of nested
FOR-loops with uniform dependencies, into mesh-connected parallel ar-
chitectures. This method is based on loop mapping for systolic arrays. The
virtual array of cells is derived from the index space, by applying a linear
transformation. This array is divided (cut) into a fixed number of clusters,
equal to the number of available real processors. The basic idea of our
method is that the cutting is performed along properly selected boundary
directions, so as to minimize inter-cluster communication and equilibrate
the number of virtual cells for every cluster. Each cluster is then assigned
to a different processor, which performs in a roughly independent manner,
as the communication requirements are now minimized. This mapping cuts
down overall communication delays, while using a fixed number of proc-
essors from a (n-1)-dimensional mesh-connected distributed architecture.

Keywords: Loop partitioning, loop mapping, hyperplane method, virtual
array of processors, space cuts, distributed architectures.

1 Introduction

The primary task in parallelizing a FOR-loop, is finding a schedule of computations
into time, while preserving the data dependencies of the initial lexicographic loop
order. Most methods are based on finding a linear time transformation, since linear
time scheduling differs only at a constant from the optimal schedule for “fat” do-
mains, as Darte proved in [3]. Linear scheduling was introduced by Lamport in [8],
with the hyperplane method1, which organizes indiced computations into well-
defined distinct groups called hyperplanes. Many methods were proposed in litera-
ture to find the optimal hyperplane; some of them are based on the solution of dio-
phantine equations [8, 10] and others on the use of integer programming [13, 3] or
even linear programming in subspaces [13]. When index spaces with uniform de-

1 For further studying on this method, see [2] and [13].

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 2/14

pendence vectors are concerned, a polynomial complexity scheduling algorithm is
presented in [7].

Once optimal parallel execution is found, an efficient method of mapping the
concurrent groups of computations (hyperplanes) into the parallel architecture
should be applied. A systematic methodology for mapping into fixed size systolic
arrays was presented in [8]. Since the target architecture is synchronously operating,
there is no need for communication efficient mapping and the main criterion for
optimality is now the total number of processors. Other methods dealt with the
same problem of mapping, while reducing not only the size but also the resulting
dimension of the systolic array (see [4, 6, 11]).

Researchers are trying to minimize the inter-processor communication, by di-
viding the index space into as much as possible independent groups of computa-
tions. Shang and Fortes [14], and Peir [12], have presented methods for dividing the
index space into independent sets of computations, which are assigned to different
processors, thus zeroing the communication cost. Unfortunately, the independent
partitioning of the index space is not always feasible. Sheu and Tai have presented a
systematic method of partitioning the index space into groups and assign them into
different processing elements [15]. Their method first projects the n-dimensional
index space onto the zero hyperplane. The resulting projected space is divided into
groups of computations, which preserve the initial optimal time schedule. However,
their method does not reduce overall communications, since it ignores the maximi-
zation of intra-group references. A similar technique was presented by King in [5].
This method produces better results, since it groups together chains of related com-
putations, but requires a greedy (exhaustive) search to define the group, where each
computation belongs. Time scheduling is not explicitly defined. They only discuss
computational structures on two dimensional index spaces. However, they intro-
duced the idea of grouping related computations together. In addition to this, their
target architecture has an unlimited number of processors, which is not realistic for
most of actual large index spaces.

In this paper we propose a new method, based on mapping into an unbounded
array of systolic cells. The initial index space Jn is linearly transformed into another
Jï

n, which is used for initial systolic mapping. Transformation matrix T is divided
into the hyperplane transformation � and the space transformation S, which actually
maps the initial index space Jn to a (n-1)-dimensional projected virtual space. This
space represents a virtual array of cells, which should be further divided to fit the
size of the available hardware. Our method analytically derives a partitioning,
which minimizes communication requirements and delays. This (n-1)-dimensional
array is partitioned into blocks of neighboring virtual nodes, where each block is
assigned to a different physical processor. We establish the notion of a single cut of
the projected index space, along a boundary direction. All possible single cuts along
these directions are evaluated, by a formula calculating the approximate total com-
munication requirements between the separate parts of each cut.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 3/14

Once the optimal cut (the one with the minimum communication requirements)
has been selected, we perform the same procedure along the rest n-2 dimensions.
The resulting set of cuts, called a mapping, divides the virtual space into clusters; all
points of each cluster are assigned to the same physical processor. The inter-
processor communication is reduced, as neighboring virtual processors are merged
together into a physical one. In addition, by cutting the virtual space into equal size
tiles (except boundary effects), overall computational load is balanced. Thus, the
resulting space mapping is efficient, in terms of processor utilization and communi-
cation delays.

Basic terminology and notation used throughout this paper is given in Section
2. Sections 3 presents the properties and algorithms used for partitioning; the virtual
array of systolic cells and the proposed mapping is elaborated in Section 4. An ex-
ample of our method is presented in Section 5 and the obtained results are discussed
in Section 6.

2 Preliminary Concepts and Definitions

We focus on algorithms, which have the form of a nested FOR-loop structure, with
uniform data dependencies [11]. The algorithmic model is formally described as
follows:

for i0 = l0 to u0 do
…
for in-1 = ln-1 to un-1 do

S1

…
Sk

end for
…

end for

where ii, 0 ≤ i ≤ n-1, are the loop variables, li and ui are integer-valued constants that
represent the lower and upper limits for loop variables, and Sj, 1 ≤ j ≤ k, are k as-
signment statements. For the nested loop given above, the index vector is defined as
the vector of dimension n: i = [i0, i1, …, in-1]

T. Furthermore, each statement Sj is an
assignment of the form: v0 = E(v1, v2, …, vp), where v0 is an output variable, vj, 1 ≤ j
≤ p, are input variables and E is an arbitrary expression of the input variables. It
should be noted that all variables in the loop statements, may be indexed by the in-
dex vector i. Let Jn be the set of indices:

}10 where, :],...,,{[J 110 −≤≤∀≤≤∧∈= Τ
− niiuiliiii iiiin

n Z ,

where Z is the set of integer numbers. Jn is an n-dimensional integer space. Each
point in this n-dimensional integer space, is a distinct instantiation of the loop body.
The instance of statement Sj is represented by Sj(i). Notice that the points of Jn are

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 4/14

ordered lexicographically; the usual symbol `<` is used to denote this (linear) or-
dering.

Dependencies may exist between variables appearing in instances of assign-
ment statements. A (directed) dependence between two instances Sj(i1) and Sj(i2), is
characterized by the dependence vector d = i2 - i1, as in [10]. The dependence ma-
trix D contains as columns all existing dependence vectors. A dependence vector is
denoted by di, 1 ≤ i ≤ m. Such an algorithm will be defined by its index space Jn and
its dependence matrix D and will be represented by A(Jn, D).

3 Partitioning the Index Space

In this section, we describe our method of partitioning and mapping an n-
dimensional index space onto a mesh-connected MIMD architecture2. This method
is based on systolic loop mapping.

When bounded number of cells or processors is given, a partitioning methodol-
ogy should also be applied to fit the virtual array (resulting from mapping phase)
into the real one. We follow GPLS method (Globally Parallel Locally Sequential)3.
This means, that since the number of available cells (physical processors) is less
than the number of virtual nodes, the virtual array is partitioned into blocks, whose
number equals the size of the real (physical) array of processors. All virtual nodes
inside the same block are sequentially executed -by the same processor.

The cut of the virtual array into the fixed number of blocks is done along direc-
tions, which reduces the overall communication requirements and divides the array
into equal size partitions. Since everything in each block is executed by the same
physical processor there are no communication requirements. The only communi-
cation overhead is imposed by inter-block message passing, which is unavoidable,
since all blocks are executed in parallel (Globally Parallel). Of course, there are
now more local memory requirements, but the size of memory in distributed archi-
tectures is large enough, and accesses to local memory for the same block are fast.
Hereunder, the details of our approach are further analyzed.

3.1 Transformation of the Index Space Jn

We assume that a linear transformation matrix T has already been selected. T is
given as two submatrices, � and S, as in [10]:





=

S

�
T .

2 In the following lines we will use the notation of [10].
3 For the inverse approach LPGS see [4].

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 5/14

The first row of the above matrix T is the hyperplane vector �, which
determines the time execution ordering for the transformed index space -ïn: -ïn =
T.Jn. The submatrix S, is the space transformation, which maps onto a (n-1)-
dimensional array of systolic cells S.Jn, as in [10]. For the needs of our method, we
consider that T was optimally selected. This means that: � gives the optimal hyper-
plane with respect to the least makespan and S produces the optimal space mapping,
in terms of the total number of cells and communication links, as shown in [7].

By applying the transformation matrix T to the original index space J, the latter
has been transformed to a new index space Jï. By ignoring the first dimension of the
transformed index space Jï, we obtain a projected (n-1)-dimensional index space,
which will be partitioned and eventually mapped to a (n-1)-dimensional mesh of
processing cells, as in [10].

3.2 Cuts and Terminology

In the rest of the paper, the prefix `h-` will be used extensively. It is read as “hyper”
and stands for n-dimensional. The terminology after the prefix is taken from the 3-
dimensional space. That is:
• h-space: the n-dimensional space,
• h-plane: a plane in the h-space, that is a linear subspace of dimension n-1,
• h-line: a line in the h-space, that is a linear subspace of dimension n-2,
• h-mesh: a mesh in the (n-1)-dimensional space, that is an array of cells con-

nected in a mesh topology.
With all this in mind, the original and the transformed index spaces Jn and -ïn, are h-
spaces. The projected transformed index space S.Jn (the virtual array of systolic
cells) is an h-plane, and its bound forms an h-polygon. The h-sides of the h-polygon
define a number of h-lines, which we call binding h-lines:
• binding h-line: an h-line satisfying the following two properties:

a) at least n-1 transformed index points lie on it (line definition);
b) all remaining transformed index points are located in the same h-semi-

plane.
Some more terminology follows:
• cut: an h-line that is parallel to a pair of binding h-lines; a cut separates the

projected transformed index space into two h-semi-planes
• multiple cut: a non-empty set of cuts, whose h-lines are parallel and equidis-

tant; this implies the balanced partitioning of computational load

• mapping: a set of multiple cuts, in which there are no two different multiple
cuts with parallel h-lines.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 6/14

4 The Mapping Method

In the course of our method, one must keep in mind the following issues:4

• matrix T has been previously selected so as, to best meet the needs of our
problem,

• transformed index space is an h-polygon with edges that are parallel in pairs,
• real processor space, onto which our transformed space is to be mapped, is an

h-mesh and that
• optimal cut will be given in terms of continuous space measures (not discrete).

4.1 Communication Cost Function for Alternative Cuts

The cost value of each mapping is computed as the sum of the cost values of its
individual cuts. The cost of a cut is defined to be the number of transformed de-
pendence vectors that traverse the cut's h-line. The formula that computes the cost
value of a single cut is thus the following (cost function 1):

∑
=

⋅⋅
′⋅

′⋅
=

m

1i i

i
!c l

dp

dp
, (2)

where: m is the number of distinct dependence vectors, p is the vector that is per-

pendicular to the cut, id′ is a single transformed dependence vector, u is the

Euclidean norm of vector u , l is the h-length of the segment of the h-line that corre-
sponds to the cut and is within the bounds RI WKH WUDQVIRUPHG K�VSDFH DQG ! LV WKH

density of vectors id′ along an h-line perpendicular to id′ vectors.

The fraction, within the sum of equation 2, is equal to the cosine of the angle
between the two vectors p and id′ and expresses the implicit notion that cuts that

are as parallel as possible to the transformed dependence vectors, are traversed by
fewer such vectors, and thus give better (lower) cost values. The coefficient idp ′⋅
is there to denote the depth of the calculation for each dependence vector in the di-
rection of p .

Theorem Parameter ! is equal to id′ � RU� ! id′ .

Proof: (A simple geometric proof for the case that n = 3, is given. A similar proof
can be easily derived, for greater dimension.)

Consider the dependence vector []T,bai =′d shown in Figure 1, as the length seg-

ment AC.

4 As well as the assumptions found in [3].

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 7/14

Assume also that 0 is the line perpendicular to vector id′ � 7KH GHQVLW\ ! RI GHSHQd-

ence vectors id′ along the line 0, equals to the number w of id′ vectors that traverse

the CE segment, divided by the length / of CE, i.e.:
/

w=! .

φ

φ
dïi

/

a

b

dïi

0

B C

A

E

F

D

Figure 1. Computing parameter ! for the 2-dimensional case (n = 3).

In order to compute the number w, of the dependence vectors that traverse CE, one
should first notice that these vectors must have their starting point within the paral-
lelogram ACEF. The area of ACEF is equal to the area of ABCD and thus is a.b.
Since the starting point of each dependence vector has integer coordinates and there
are no holes in the projected transformed index space, we conclude that the number
of vectors with their starting point within ACEF, is equal to the area of ACEF. Thus
w = a.b. Also the length of the segment CE is computed by the formula:

ii

aba
bbb/

dd ′
=

′
⋅=⋅=φ⋅=

AC

AD
)cos(

thus, density ! equals to:

i

i

ab
ab

�

w
d

d

′=

′

==� . (3)

�

Cost function 1 is therefore simplified to (cost function 2):

∑
=

′⋅
⋅=

m

i

ilc
1 p

dp
. (5)

The cost function 2 that is defined above, gives a heuristic measure, of how good a
mapping is. Moreover, when the projected transformed index space is an h-

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 8/14

parallelogram, applying the cost function to all different mappings, leads to the op-
timal solution with optimal processor utilization.

4.2 Determining Possible Cut Directions

Algorithm 1. Calculating the binding h-lines
Step 1.1: Define matrix V of dimension nx2n, containing as columns all the permu-
tations (2n) of the coordinates of the index space boundary points:























=

−−−−

−−−−

1n1n1n1n

2n2n2n2n

1111

0000

ulul

uull

uull

uull

�

�

����

�

�

V .

Step 1.2� &DOFXODWH WKH WUDQVIRUPDWLRQ RI 9� 9ï T.V.
Step 1.3: Ignore first row of V, which represents time coordinate, and construct
matrix W of dimension (n-1)x2n, containing the other rows. W represents boundary
point coordinates in the projected transformed index space.
Step 1.4: Calculate the convex hull of all points contained in W. The result is an h-
polygon. The h-sides of the convex hull are the binding h-lines.
Step 1.5: Since the h-sides of the convex hull come in pairs of parallel h-lines5, they
can be represented in pairs by inequalities of the form:

γ≤α+′α++′α+′α≤β −− nnn xxx 112211 � .

Let the number of such pairs be b.

4.3 Mapping Algorithm

In order to find all possible mappings, we compute all different ways in which the
projected transformed h-space can be allocated to the processor space. We assume
that the processor space is denoted by a vector � , of n-1 elements. Each element
shows how many processing cells are available on each direction of the h-mesh,
where the transformed h-space is to be mapped6. This is equal to the number of cuts
that should be made along this direction plus one.

Our mapping algorithm is divided in two phases: pre-calculation, where con-
stant coefficients are calculated once and for all, and calculation, where the cost of

5 This can be easily proved, since the original index space is an h-cube and the con-

vex hull is the projection of its linear transformation.
6 If the actual h-mesh has smaller dimension than n-1, some of its elements will

have to be taken equal to 1.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 9/14

all possible mappings is calculated. In the following, � will denote the number of
different non-trivial values in vector � and %j will denote these values, for 1 ≤ j ≤ �.

Algorithm 2. Pre-calculation of cost for multiple cuts
Step 2.1: For all pairs of binding h-lines:

bixxx ininniiii ≤≤γ≤α+′α++′α+′α≤β −− 1,,11,22,11, � .

Step 2.1.1: Let ip be the perpendicular vector: T
1,2,1,],,,[−ααα= niiii �p .

Step 2.1.2: Calculate the constant coefficient for cuts in the direction of ip :













′⋅= ∑

=

m

j
ji

i
idepCost

1

1
dp

p
.

Step 2.1.3: For all different numbers %j in the vector of processors, 1 ≤ j ≤ �:
Step 2.1.3.1: Calculate the constant coefficient for multiple cuts in the direc-

tion of every ip , cutting the projected transformed index space in %j

segments:

∑
−ψ

=











ψ
β−γ

=
1

1
21, ,,...,,

j

k j

ii
biji cutAreadepCostmcCost ppp ,

where cutArea() is a function that returns the h-length of the cut’s h-line, according
to Algorithm 4.

Algorithm 3. Calculation of the minimal mapping

Step 3.1: For all valid mappings: T
21],,,[bmmm �=m :

Step 3.1.1: cost := 0.
Step 3.1.2: For all pairs j of binding h-lines, 1 ≤ j ≤ b:

Step 3.1.2.1: If mi > 1 then cost := cost + mcCosti,j, 1 ≤ j ≤ � , such that %j = mi.
Step 3.1.3: Keep track of the lowest cost.

Algorithm 4. Calculation of the h-length for a cut
Parameters: - All ip vectors, perpendicular to binding h-lines and

T
121],,,[−= nppp �p the one that is perpendicular to the cut.

- The constant coordinate for the cut: pn.
Therefore, the equation of the cut’s h-line is: nnn pxpxpxp =′++′+′ −− 112211 � .

Step 4.1: Let P the set of points that define the cut's h-line segment, initially
empty: ∅=P .

Step 4.2: For all combinations of (n-2) binding h-lines not perpendicular to p (for

all pi ≠ p):
Step 4.2.1: Add the given h-line.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 10/14

Step 4.2.2: Solve the linear system of dimension (n-1)x(n-1) to compute the point
of intersection of the n-1 h-lines.

Step 4.2.3: If the solution satisfies all the remaining binding h-lines, then add it
to P, else discard it.

Step 4.3: Calculate the h-length of the h-line segment defined by the points in P.

Since all points in P lie on the given h-line, they define an h-line segment7. H-line
segments are really finite subspaces of dimension n-2, whose h-length must be cal-
culated. The calculation of the h-length of an h-line segment that is defined by a set
of k points, where k ≥ n-1, can be reduced to the same calculation, but for a set of n-
1 points. The problem does not apply for the case of n = 3, but it is easy to see that
in the case of n = 4 the h-line segment is a polygon and we have to triangulate it, in
order to calculate its area. Thus, it suffices to define the h-length of an h-line seg-
ment that is defined by n-1 points, and this can be done inductively:

Algorithm 5. Inductive definition of h-length
Step 5.1: Base case, for n = 3, use Euclidean distance.
Step 5.2: Inductive case, for n > 3 do the following:
Step 5.3: Exclude one point arbitrarily: u .
Step 5.4: Use same algorithm to calculate the h-length lï of the h-line segment that

is defined by the remaining n-2 points (in an h-space of dimension n-3).
Step 5.5: Find the projection u′ of u on the h-plane defined by the remaining n-2

points.
Step 5.6: Calculate the Euclidean distance d between u and u′ .
Step 5.7: The result is the product of l and d.

5 EXAMPLE

Consider the following FOR-loop:
for i0 = 1 to 6 do

for i1 = 1 to 4 do
for i2 = 1 to 3 do

)1,,(),,1(),1,(),,(210210210210 −α+−α+−α=α iiiiiiiiiiii

In this loop, every index point α(i0, i1, i2) is computed relatively to the values of
three other points of the index space. The dependence matrix is thus, as long as the
transformation assumed:

7 In the case that n = 3, we are certain that only two points will be in P, since all
other points will have been discarded. However, for n > 3, the number of points in P
can be larger.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 11/14
















=

100

001

010

D ,
















=

110

011

111

T .

The transformation matrix T has been selected, so as to best demonstrate the pro-
posed method. At the end of the example, an optimal transformation will be pre-
sented. The transformed index vector i ′ and data dependence matrix Dï are:

















+
+

++
=⋅=

















′
′
′

=′

21

10

210

2

1

0

T

ii

ii

iii

i

i

i

ii and
















=⋅=′

101

011

111

DTD .

The first line of Dï denotes time dependence of transformed algorithm and is ig-
nored, while the remaining matrix has as columns the space dependencies in the
transformed index space. In our example, the transformed dependencies are:

T
2

T
1

T
0]1,0[,]0,1[,]1,1[=′=′=′ ddd .

2

3

4

5

6

7

2 3 4 5 7 8 9 106

y = 2

x - y = 5

x = 10x - y = -2

y = 7

x = 2

d2ï

d1ï

d0ï j2ï

 j1ï

Figure 2. The projected transformed index space.

In Figure 2 we can see the projected transformed index space, together with the
transformed dependencies. In order to calculate the bounds of the projected trans-
formed index space, we apply Algorithm 1. The matrices that are calculated in the
first three steps of the algorithm are, respectively:

V = ,

31313131

44114411

66661111

















9ï VT⋅ =

















75427542

1010775522

13111088653

 ⇒

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 12/14

W = 







75427542

1010775522
.

The convex hull of the points, whose coordinates are given in matrix W, is a poly-
gon whose vertices are the points: (2, 2), (7, 2), (10, 5), (10, 7), (5, 7) and (2, 4). The
inequalities that describe the interior of this polygon, in the form of pairs of parallel
lines, are the following:

pair 1: 2 ≤ x ≤ 10, pair 2: 2 ≤ y ≤ 7, pair 3: -2 ≤ z ≤ 5.

2

3

4

5

6

7

2 3 4 5 7 8 9 106

P3,2

P3,1

P2,1 P1,2

P2,2 P1,3

P2,3

pair 2

pair 1

pair 3
2

3

4

5

6

7

2 3 4 5 7 8 9 106

pair 2

pair 1

pair 3

Figure 3. The mapping that was suggested for
our example.

Figure 4. The real communication cost for the
suggested mapping.

For our example, we select � to be equal to [3, 3]	, which means that the final 2-
dimensional mesh will have 3 processors in the first direction and 3 processors in
the other, giving a total processor space of 9 cells. Next, we apply Algorithm 2, in
order to pre-calculate the constant coefficients for the mapping costs. The results of
the algorithm are the following:

2)|0||1||1|(
1

1
1 =++⋅=depCost , 2)|1||0||1|(

1

1
2 =++⋅=depCost ,

4142.1)|1||1||0|(
2

1
3 =−++⋅=depCost ,

6668.18)6667.46667.4(21,1 =+⋅=mcCost ,

6668.26)6667.66667.6(21,2 =+⋅=mcCost ,

20)07108.707108.7(4142.11,3 =+⋅=mcCost ,

where the length of the cuts have been calculated by using Algorithms 4 and 5.
It is not difficult to see that the best mapping indicated by Algorithm 3 consists

of two multiple cuts, one in the direction of pair 1 and one in the direction of pair 3.
This mapping is shown in Figure 3. Its total cost is:

6668.381,31,1 =+= mcCostmcCostcost .

This does not significantly deviate from the real cost, as can be seen in Figure 4.
We can see that the real cost of the multiple-cut in the direction of pair 1, i.e. the

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 13/14

number of dependence vectors traversing the vertical lines, is equal to 20, whereas
the estimated cost was 18.6668.8 Similarly, the real cost of the multiple cut in the
direction of pair 3, is equal to 22, instead of the estimated 20.

We should note here, that if the projected transformed index space is not an h-
parallelogram, there is inevitably a loss of processing cells. This is the case in our 2-
dimensional example here, where the underused processors can be seen in Figure 3.

If we apply the method proposed in [9], for finding an optimal transformation
when mapping to systolic cells, the following results will be produced, among many
others, for our example:

T1 =

















110

011

111

, T2 =

















010

011

111

, T3 =

















010

110

111

, T4 =

















100

010

111

.

These matrices result in systolic arrays of 42, 24, 12 and 12 cells respectively. They
all preserve the optimal hyper-plane [1, 1, 1]	. The optimal transformation for the
needs of our problem is T4. This matrix maps into the least possible number of cells,
as shown in [1], and is better than T3, because it produces an array requiring only
two external communication links (two external transformed dependence vectors).
In the beginning of the example, we have selected T1 for presentation, because the
resulting structure is big enough to demonstrate the merits of our method.

6 Conclusion

In this paper we have presented a new method for the partitioning and mapping of
nested loops onto fixed size, distributed, mesh-connected architectures. This method
is based on transforming the initial n-dimensional index space Jn into an equivalent
-ï

n, using a transformation (matrix) T, and then divide the projected virtual (n-1)-
dimensional space, through S, into blocks which are assigned to different proces-
sors. Interprocessor communication is considerably reduced, by choosing the opti-
mal cut along each dimension. As it was shown, the proposed method is formally
presented and easily programmable. Future work includes affine by statement parti-
tioning of the index space, to further reduce the redundant interprocessor communi-
cation links.

7 References

 1. T. Andronikos, N. Koziris, G. Papakonstantinou, P. Tsanakas, "Optimal Sched-
uling for UET/UET-UCT Generalized N-Dimensional Grid Task Graphs,"

8 The deviation is due to the fact that continuous space properties are used. Devia-
tions are quite large in our example, because of its small size. They become insig-
nificant when the size of the index space is larger.

DKP_WS99_Paper.doc submitted to World Scientific : 07/10/99 : 12:49 PM 14/14

Journal of Parallel and Distributed Computing, vol. 57, no. 2, pp. 140-165,
May 1999.

 2. A. Darte and Y. Robert, “Constructive Methods for Scheduling Uniform Loop
Nests”, IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp.
814-822, August 1994.

 3. A. Darte, L. Khachiyan, and Y. Robert, “Linear Scheduling is Nearly Optimal”,
Parallel Processing Letters, vol. 1.2, pp. 73-81, 1991.

 4. A. Darte and Y. Robert, “Mapping Uniform Loop Nests onto Distributed
Memory Architectures”, Parallel Computing, vol. 20, pp. 679-710, 1994.

 5. C.-T. King, W.-H. Chou, and L. Ni, “Pipelined Data-Parallel Algorithms: Part
II – Design”, IEEE Transactions on Parallel and Distributed Systems, vol. 1,
pp. 486-499, October 1990.

 6. N. Koziris, G. Papakonstantinou and P. Tsanakas, “Mapping Nested Loops
onto Distributed Memory Multiprocessors” in Proceedings of the 1997 IEEE
International Conference on Parallel and Distributed Systems (ICPADS97),
IEEE Press, pp. 35-41, Seoul, Korea, Dec. 1997.

 7. N. Koziris, G. Papakonstantinou, P. Tsanakas, “Automatic Mapping and Parti-
tioning into Systolic Architectures”, Proceedings of the 5th Panhelenic Confer-
ence on Informatics, pp. 777-790, Dec. 1995, Athens.

 8. L. Lamport, “The Parallel Execution of DO Loops”, Communications of the
ACM, vol. 17, pp. 83-93, February 1974.

 9. P.-Z. Lee and Z. M. Kedem, “Mapping Nested Loop Algorithms into Multidi-
mensional Systolic Arrays”, IEEE Transactions on Parallel and Distributed
Systems, vol. 1, pp. 64-76, January 1990.

 10. D. I. Moldovan and J. A. B. Fortes, “Partitioning and Mapping Algorithms Into
Fixed Size Systolic Arrays”, IEEE Transactions on Computers, vol. C-35, pp.
1-11, January 1986.

 11. D. I. Moldovan, “Parallel Processing: From Applications to Systems”, Morgan
Kaufmann Publishers, 1993.

 12. J. K. Peir and R. Cytron, “Minimum Distance: A Method for Partitioning Re-
currences for Multiprocessors”, IEEE Transactions on Computers, vol. 38, pp.
1203-1211, August 1989.

 13. W. Shang and J. A. B. Fortes, “Time Optimal Linear Schedules for Algorithms
with Uniform Dependencies”, IEEE Transactions on Computers, vol. 40, pp.
723-742, June 1991.

 14. W. Shang and J. A. B. Fortes, “Independent Partitioning of Algorithms with
Uniform Dependencies”, IEEE Transactions on Computers, vol. 41, pp. 190-
206, February 1992.

 15. J.-P. Sheu and T.-H. Tai, “Partitioning and Mapping Nested Loops on Multi-
processor Systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 2, pp. 430-439, October 1991.

