
Efficient Intensional Implementation

for Lazy Functional Languages�

A. Charalambidis1, A. Grivas2, N. Papaspyrou2, and P. Rondogiannis1

1 Department of Informatics and Telecommunications
University of Athens, Panepistimiopolis, 15784 Athens, Greece

E-mail: {a.charalambidis,prondo}@di.uoa.gr
2 School of Electrical and Computer Engineering

National Technical University of Athens, Polytechnioupoli, 15780 Zografou, Greece
E-mail: {agrivas,nickie}@softlab.ntua.gr

Abstract. The intensional transformation is a technique that can be
used in order to eliminate higher-order functions from a functional pro-
gram by introducing appropriate context manipulation operators. The
transformation can be applied to a significant class of higher-order pro-
grams and results in equivalent zero-order intensional programs that
can be executed in a simple demand-driven way. Despite its simplicity,
the transformation has never been seriously evaluated with respect to
its efficiency and potential. Certain simple implementations of the tech-
nique have been performed, but the questions regarding the merits of the
method have remained inconclusive. In this paper we demonstrate that
the transformation can be efficiently implemented by using what we call
lazy activation records, namely activation records in which some entries
are filled on-demand. An evaluation of our implementation demonstrates
that the technique outperforms some of the most well-known functional
programming systems, for the class of programs that can be transformed.

1 Introduction

The intensional transformation [Yag84,Ron94,RW97,RW99] is a technique that
systematically reduces the order of a source functional program by introducing
appropriate context manipulation operators. More specifically, given a functional
program of order M , the technique in its first step reduces the program to a
(M − 1)-order intensional program; at the second step, the new program is
reduced so as to become (M − 2)-order, and so on. The final outcome is a
program that contains only zero-order definitions but which also contains context
switching operators that work on M independent dimensions (all these will be
further explained and illustrated in the coming sections). The resulting program
can be evaluated in a simple demand-driven way, and this gives an interesting
scheme for implementing lazy functional languages.
� This work has been partially supported by the University of Athens under the project

“Kapodistrias” (grant no. 70/4/5827).



The transformation in its present form can be applied to functional languages
that allow function names to be passed as parameters in function calls. At present
it remains an open problem whether the technique can be generalized so as to
be applicable to a more general class of higher-order functional programs, e.g.
including partial application of functions (see the concluding section of [RW99]
for a further discussion on this issue).

Despite the above restriction, the technique can be used to implement some
useful and non-trivial functional programming languages. Experimental imple-
mentations of the transformation have been undertaken in the past. In [RW93]
an experimental interpreter and a compiler are described, based on the inten-
sional approach and appearing to be relatively efficient. However, both systems
are based on a technique that extensively uses hashing at run-time, and this
makes the performance of the system to be unpredictable in some cases. More-
over, this hashing-based approach requires a garbage collection process which is
not always very accurate, and also imposes a significant time-overhead to the
execution. Conclusively, the whole idea appeared to be simple and easy to im-
plement, but not viable as a serious implementation framework. In [RW94b] it is
proposed that the runtime of the intensional technique can be adapted to work
along the lines of traditional activation records. Of course, there is a significant
difference, namely that each activation record should now contain information
that would enable the context manipulation operators of the target program to
work properly. This approach appeared to be much more promising than the
hashing-based one. First-order programs appeared to run as efficiently as the
best functional implementations available at that time; however, as the order of
the programs increased, the performance of the technique seemed to degrade.

In this paper we refine and extend the technique of [RW94b]. More specifi-
cally, we extend the activation records of [RW94b] to contain additional informa-
tion related to the higher-order functions of the initial program. The resulting
implementation behaves in a much more uniform way than all the previous at-
tempts. Moreover, our current system outperforms most of the existing compilers
for lazy functional languages, for the class of programs that can be transformed.

2 The Intensional Transformation Technique

The intensional transformation technique can be applied to higher-order func-
tional programs with the following two restrictions:

1. There are no functions returning functions, i.e. the body of every function
definition is zero-order.

2. Partial application of functions is not allowed, i.e. a function name can only
be called with the right number of actual parameters (resulting in a zero-
order value) or passed as a parameter to another function.

For example, the following (in Haskell syntax) is a legitimate program:

result = map inc [1,2,3]
map f l = if l==[] then [] else f (head l) : map f (tail l)
inc y = y+1



but the following is not an acceptable program, because of the partial application
add (s x) in the definition of f:

result = f sq 4
f s x = if x<=1 then s x else f (add (s x)) (x-1)
sq y = y*y
add a b = a+b

Of course, there exist many programs of the second form that can be prepro-
cessed so as to become programs of the first form, but this will not concern us
any further here. In the rest of this paper, we only consider higher-order func-
tional programs that obey the two aforementioned restrictions and, as partial
application is not allowed, we use a Pascal-like notation with parentheses in
function calls for clarity (e.g. f(s,x) instead of f s x). Moreover, for simplicity
reasons, we assume that function parameters have unique names.

In the rest of this section we give an intuitive introduction to the inten-
sional transformation technique. The main idea of the transformation is that
an M -order functional program can first be transformed into an (M − 1)-order
intensional program, i.e. a program that uses functions of order at most (M −1)
and which is enriched with context manipulation operators. The same procedure
can then be repeated for the new program, until we finally get a zero-order in-
tensional program. As the transformation consists of a number of steps, we use
a different set of operators for each step. For the first step we use the operators
caseM−1, actualsM−1

i and callM−1
i , where i ranges over the natural numbers.

For the second step we use caseM−2, actualsM−2
i and callM−2

i , and so on.
The semantics of these operators will be described shortly.

The final program that results from the transformation is zero-order, i.e. it
consists solely of nullary variable definitions. The value of this program can be
computed by evaluating its top-level variable result with respect to a context
(or tag). For an initial program of order M , a tag is an M -sequence (a sequence
of length M) of lists, where each list corresponds to a different order of the
program. The operators we mentioned above operate on these M -dimensional
tags. Before we proceed with the details of the execution, we give an example of
the transformation.

2.1 The transformation algorithm

Consider the following simple second-order program:

result = f(inc, 2)
f(g, y) = g(y) * apply(g, y)
apply(h, x) = h(x)
inc(a) = a+1

By an inspection of the program, it is easy to see that the functions f and
apply are second-order. The intensional transformation in its first step eliminates
all first-order parameters: the first argument of f and the first argument of



apply disappear from the calling sites and reappear as additional definitions.
Furthermore, as witnesses of the disappearing parameters, operators of the form
call1i appear in the calling sites, where the superscript 1 is the order of the
parameters that disappeared at this step and the subscript i is simply a counter,
one for each function of the source program.

result = call10(f)(2)
f(y) = g(y) * call10(apply)(y)
apply(x) = h(x)
inc(a) = a+1
g = case1(actuals10(inc))
h = case1(actuals10(g))

In the above program the definitions of g and h contain the actual parameters
that were removed from the calling sites, each prefixed by an intensional op-
erator of the form actuals1i . Both definitions are equations between function
expressions. We can change this by introducing new parameters, z and w:

result = call10(f)(2)
f(y) = g(y) * call10(apply)(y)
apply(x) = h(x)
inc(a) = a+1
g(z) = case1(actuals10(inc)(z))
h(w) = case1(actuals10(g)(w))

After this step of the transformation, all functions are now first-order (they
have only zero-order parameters). A non-standard aspect of this new program
is the existence of certain function calls of the form q(f)(E0, . . .En−1) where q
is an intensional operator, e.g. call1

0(f)(2), or actuals1
0(inc)(z). Such calls

will receive a special treatment in the next step of the transformation.
We can now perform the second and final step of the transformation that will

remove all zero-order parameters and result in a zero-order intensional program.
We proceed as before, the main difference being that we use a new dimension and
corresponding new operators. Notice also below the use of the “·” syntactic com-
position operator, which is introduced for notational convenience. In particular,
an expression of the form q1 · q2(f)will be considered equivalent to q1(q2(f)),
i.e. the composition operator binds stronger than function application.

result = call10 · call00(f)
f = call00(g) * call10 · call00(apply)
apply = call00(h)
inc = a+1
g = case1(actuals10 · call00(inc))
h = case1(actuals10 · call01(g))
y = case0(actuals00 · actuals10(2))
x = case0(actuals00(y))
a = case0(actuals00 · call10(z))
z = case0(actuals00(y), actuals01 · call10(w))
w = case0(actuals00 · actuals10(x))



The transformation is similar to the one that took place in the first step,
the main difference being the treatment of calls of the form q(f)(E0, . . .En−1).
Consider as an example the (generalized) function call call10(f)(2) and notice
the new expression actuals00 · actuals10(2) that appears in the final program
corresponding to the actual parameter 2. The new aspect here is the appearance
of the operator actuals10, which we will call the inverse of the operator call10
that existed in the initial call. In general, the inverse of callm

i is actualsm
i and

vice-versa.
A thorough description of the transformation algorithm is given in [RW99].

Informally, it consists of repeating the following steps until the program becomes
zero-order. For each function f of the current highest order m:

1. Number the textual occurrences of calls to f in the program, starting at 0.
2. Remove from the i-th call to f all the actual parameters of order m − 1.

Prefix the call to f with callm−1
i .

3. Remove from the definition of f the formal parameters of order m − 1.
4. For every formal parameter x of f that was eliminated, introduce a casem−1

definition with as many alternatives as are the calls to f in the program. More
specifically, the i-th argument of casem−1 corresponds to the i-th call to f
in the program, and is an expression starting with actualsm−1

i . Moreover,
if the particular call to f is of the form Q(f)(E0, . . .En−1), where Q is
the syntactic composition of a number of intensional operators, the inverse
of Q must be taken into consideration when creating the subexpressions of
casem−1.

2.2 Evaluating the transformed program

Given a source functional program of order M , the execution model for the
final zero-order program that results from the transformation requires tags to
be M -sequences of lists of natural numbers, where each list corresponds to one
step in the transformation. We will use the notation 〈w0, ..., wM−1〉 to denote
a tag. The evaluation of a program starts with the empty tag: an M -sequence
of empty lists. The operators callm

i and actualsm
i can now be thought of as

operations on tags. The semantics of callm
i can be described as follows: given

a tag, m is used in order to select the corresponding list from the tag. The list
is then prefixed with i and returned to the tag. On the other hand, actualsm

i

takes from the tag the list corresponding to m, verifies that the head of the list
is equal to i and returns the tail of the list to the tag. The casem construct that
appears on newly introduced definitions selects the alternative to be evaluated
by inspecting the head of the list that corresponds to m. More formally, the
semantic equations for the intensional operators that appear in the transformed
(zero-order) programs are:

callm
i (a) 〈w0, . . . wm, . . . wM−1〉 = a 〈w0, . . . i : wm, . . . wM−1〉

actualsm
i (a) 〈w0, . . . i : wm, . . . wM−1〉 = a 〈w0, . . . wm, . . . wM−1〉

casem(a0, . . . an−1) 〈w0, . . . i : wm, . . . wM−1〉 = ai 〈w0, . . . i : wm, . . . wM−1〉



Notice that in the case of the actualsm
i operator, the semantic equation does

not specify what happens if the check made by the operator fails. The result in
this case is undefined. However, the test performed by actualsm

i never fails in
the case of programs generated by the transformation.

The final zero-order programs that result from the transformation can be
executed using an EVAL function, which takes an expression and a tag and re-
turns the result of evaluating this expression under this tag. One can think of
EVAL as a simple interpreter that works by following the semantic equations of
the intensional operators given above. Moreover, EVAL also performs a simple
form of substitution: every time it needs to evaluate a nullary variable of the
program under a specific context, it simply replaces the variable with its defin-
ing expression and continues the evaluation. Execution of a program starts by
demanding the value of result under the empty tag. A complete denotational
semantics for the zero-order intensional language that can serve as a basis for
EVAL is given in [RW99]. We now demonstrate the execution of the previous
program:

EVAL(result, 〈[], []〉)
= EVAL(call10 · call00(f), 〈[], []〉)
= EVAL(f, 〈[0], [0]〉)
= EVAL(call00(g) * call10 · call00(apply), 〈[0], [0]〉)
= EVAL(call00(g), 〈[0], [0]〉) * EVAL(call10 · call00(apply), 〈[0], [0]〉)

Now, the overall result can be computed by evaluating independently the two
expressions and then multiplying the two results. The evaluation of the first
expression proceeds as follows:

EVAL(call00(g), 〈[0], [0]〉)
= EVAL(g, 〈[0, 0], [0]〉)
= EVAL(case1(actuals10 · call00(inc)), 〈[0, 0], [0]〉)
= EVAL(actuals10 · call00(inc), 〈[0, 0], [0]〉)
= EVAL(inc, 〈[0, 0, 0], []〉)
= EVAL(a+1, 〈[0, 0, 0], []〉)
= EVAL(a, 〈[0, 0, 0], []〉) + 1
= EVAL(case0(actuals00 · call10(z)), 〈[0, 0, 0], []〉) + 1
= EVAL(actuals00 · call10(z), 〈[0, 0, 0], []〉) + 1
= EVAL(z, 〈[0, 0], [0]〉) + 1
= EVAL(actuals00(y), 〈[0, 0], [0]〉) + 1
= EVAL(y, 〈[0], [0]〉) + 1
= EVAL(actuals00 · actuals10(2), 〈[0], [0]〉) + 1
= EVAL(2, 〈[], []〉) + 1
= 2 + 1
= 3

The second expression can be evaluated as follows:



EVAL(call10 · call00(apply), 〈[0], [0]〉)
= EVAL(apply, 〈[0, 0], [0, 0]〉)
= EVAL(call00(h), 〈[0, 0], [0, 0]〉)
= EVAL(h, 〈[0, 0, 0], [0, 0]〉)
= EVAL(case1(actuals10 · call01(g)), 〈[0, 0, 0], [0, 0]〉)
= EVAL(actuals10 · call01(g), 〈[0, 0, 0], [0, 0]〉)
= EVAL(g, 〈[1, 0, 0, 0], [0]〉)
= EVAL(case1(actuals10 · call00(inc)), 〈[1, 0, 0, 0], [0]〉)
= EVAL(actuals10 · call00(inc), 〈[1, 0, 0, 0], [0]〉)
= EVAL(inc, 〈[0, 1, 0, 0, 0], []〉)
= EVAL(a+1, 〈[0, 1, 0, 0, 0], []〉)
= EVAL(a, 〈[0, 1, 0, 0, 0], []〉) + 1
= EVAL(actuals00 · call10(z), 〈[0, 1, 0, 0, 0], []〉) + 1
= EVAL(z, 〈[1, 0, 0, 0], [0]〉) + 1
= EVAL(actuals01 · call10(w), 〈[1, 0, 0, 0], [0]〉) + 1
= EVAL(w, 〈[0, 0, 0], [0, 0]〉) + 1
= EVAL(actuals00(x), 〈[0, 0, 0], [0, 0]〉) + 1
= EVAL(x, 〈[0, 0], [0, 0]〉) + 1
= EVAL(actuals00 · actuals10(y), 〈[0, 0], [0, 0]〉) + 1
= EVAL(y, 〈[0], [0]〉) + 1
= EVAL(actuals00 · actuals10(2), 〈[0], [0]〉) + 1
= EVAL(2, 〈[], []〉) + 1
= 2 + 1
= 3

The final value of result is therefore 3 ∗ 3 = 9.

3 The New Execution Model

The execution model of section 2.2, based on the denotational semantics of
the zero-order intensional language [RW99], is quite simple to understand and
implement. However, the efficiency of a näıve implementation is doomed to be
poor. Values that have been computed are often demanded again; an efficient
implementation must memorize such values and not recompute them.

For example, consider the execution of the program in section 2.2. It can be
argued that the evaluation process takes several unecessary steps. Some obvi-
ous recomputations occur, e.g. the variable y is demanded twice under the tag
〈[0], [0]〉 and computed twice, evidently yielding the same value. A more subtle
case is the variable g, a second-order formal parameter in the source program,
which is demanded under the tags 〈[0, 0], [0]〉 and 〈[1, 0, 0, 0], [0]〉. Its evaluation
inspects the second list in the tag, which is the same in both cases, and after
some steps leads to the evaluation of inc. One may argue that an efficient im-
plementation should memorize the fact that the evaluation of g under a tag that
has [0] as a second list leads to the evaluation of inc and therefore avoid the
intermediate steps. Both recomputation patterns tend to become very frequent
in larger and more complex programs.



In this section, we propose an evaluation model that can handle these issues.
In this model, tags hold intermediate information (e.g. already computed val-
ues) which can be used to avoid recomputations. We first define a variation of
the zero-order intensional language. Although modifications are required in the
transformation proposed in [RW99] to produce final programs in this new target
language, these modifications are minor. Subsequently, we define a denotational
semantics for the new zero-order intensional language, which amounts to a new
evaluation model.

3.1 The modified zero-order intensional language

The zero-order intensional language that we use as the target of the transforma-
tion is a variant of the NVIL language used in [RW99], which is the one that we
used in section 2. The new syntax, however, stores additional information that
will be used to improve the performance of the execution model. A program
in the modified zero-order intensional language can be translated to NVIL in a
straightforward way. However, the inverse cannot be achieved without additional
information that can only be obtained during the transformation.

Definition 1 (Syntax). The syntax of the zero-order intensional language is
defined recursively as follows, where x is a variable identifier, c is a constant
and m, n ∈ N.

p ::= d0 . . . dn−1 program
d ::= x = b definition
b ::= σα(e) body of definition
α ::= ε | actualsm · α sequence of “actuals” operators
σ ::= ε | savem

n memorization operator
e ::= c(e0, . . . en−1) | γ(z) expression
γ ::= ε | callm

x0,...xn−1
· γ sequence of “call” operators

z ::= x | argm
n variable

Notice that a variable z can be either a variable identifier or a function
argument, which is denoted by argm

n . Variable identifiers are used for top-level
variables, i.e. variables that have definitions in the source program. An argument
of the form argm

n stands for the current function’s n-th formal parameter of order
m as it was in the source higher-order program. The body of an intensional
definition contains a memorization operator, which is either empty or of the
form savem

n . This operator specifies whether the evaluation of the body must
be followed by memorization of the result and where to; its purpose will become
clear later. As an abuse of notation in favour of simplicity, the parentheses will
be omitted after an empty sequence of call or actuals operators. Also, special
constants (e.g. integers, arithmetic operators, etc.) will be written as is ordinary
in programming languages.

The most striking differences between the modified zero-order intensional
language and NVIL are the argm

n arguments, the lack of case construct, the
lack of subscript for actuals operators and the presence of a finite sequence



of variable identifiers instead of an integer counter as the subscript for call
operators. To illustrate how all these work, let us consider again the simple
second-order program that we used as an example in section 2.1.

result = f(inc, 2)
f(g, y) = g(y) * apply(g, y)
apply(h, x) = h(x)
inc(a) = a+1

For purposes of comparison, we copy here the equivalent NVIL program from
section 2.1, as produced by the intensional transformation [RW99].

result = call10 · call00(f)
f = call00(g) * call10 · call00(apply)
apply = call00(h)
inc = a+1
g = case1(actuals10 · call00(inc))
h = case1(actuals10 · call01(g))
y = case0(actuals00 · actuals10(2))
x = case0(actuals00(y))
a = case0(actuals00 · call10(z))
z = case0(actuals00(y), actuals01 · call10(w))
w = case0(actuals00 · actuals10(x))

The modified transformation produces the following program in the modified
zero-order intensional language.

result = call1g0 · call0y0(f)
f = call0z0(arg

1
0) * call1h0 · call0x0(apply)

apply = call0w0(arg
1
0)

inc = arg00 + 1
g0 = save10 actuals1 · call0a0(inc)
h0 = save10 actuals1 · call0z1(arg10)
y0 = save00 actuals0 · actuals1(2)
x0 = save00 actuals0(arg00)
a0 = save00 actuals0 · call1g0(arg00)
z0 = save00 actuals0(arg00)
z1 = save00 actuals0 · call1h0(arg00)
w0 = save00 actuals0 · actuals1(arg00)
By comparing the two programs, we first notice that variable g has been

substituted with arg10. This happens because g was f’s first formal parameter of
order 1 (remember that subscripted indices start with 0). Similarly, x has been
substituted with arg00 as it was apply’s first formal parameter of order 0. We
also notice that the case definitions have been removed. Each alternative has
been introduced as a new definition, e.g. z0 and z1 instead of a single z. At the
calling sites, the subscript of the call operator now contains a list of the formal
parameters that were removed, each tagged with the original subscript, e.g.



call1g0 when the formal parameter g (of order 1) was removed from the first call
to f. All elements of a list that is a subscript of call must appear in the left-hand
side of newly introduced definitions. The subscripts of the actuals operators
have been dropped and memorization operators have been added to all newly
introduced definitions. For example, in the definition for h0 the memorization
operator is save10 because h was apply’s first formal parameter of order 1.

3.2 Semantics of execution

The modified zero-order intensional language can be given a denotational seman-
tics in a similar way as in [RW99]. In this paper we will define an EVAL function
(or, more precisely, a family of EVAL functions) similar to the one described in
section 2.2.

We first introduce a new notion of tags which support memorization. A tag
contains essentially all information that is available during execution, including
memorized computation results. This information changes during the evaluation
process. It is possible that the evaluation of expression e1 affects the way in
which another expression e2 is evaluated, even if the two are unrelated, because
of memorization. Therefore, tags must be treated as states in the new semantics,
not as environments as in [RW99]. If Expr is the syntactic domain of expressions,
W is the semantic domain of tags and Val the semantic domain of zero-order
values (integer numbers, booleans, etc.), the signature of EVAL must be:

EVAL : Expr × W → Val × W

Similar functions are needed for the syntactic domains of variables and bodies
of definitions. As an abuse of notation, we use the name EVAL for them too.

A tag is an M -sequence of stacks. Each stack contains records, which are finite
sequences of arguments. An argument can be either of the form value(v), where
v is an element of Val, or of the form name(x), where x is a variable identifier.
Intuitively, a record contains a sequence of the actual parameters that correspond
to a function call; all parameters of order 0 are put together in a record that is
placed in the first stack of the tag, and so on for parameters of higher order. When
a record is first built, all its arguments are of the form name(x). Their values are
not yet known. When a zero-order argument is later computed, yielding the value
v, it is replaced by value(v) so as not to be recomputed in the future. On the
other hand, when a higher-order argument is later computed, it may be replaced
by another argument of the form name(x) to avoid redundant evaluation steps.

A revised definition for EVAL must redefine the semantics of intensional
operators. Before going so far, we start with the easy cases. Assuming that there
is a definition x = b in the program, evaluating a variable identifier leads to
evaluating the body of the definition.

EVAL(x, t) = EVAL(b, t)

Also, assuming that a semantic function [[c ]] exists for each constant c of arity n,
the semantics of constants is straightforward. Evaluation of a constant’s operands
is performed in left-to-right order.



EVAL(c(e0, . . . en−1), t) =
let (v0, t0) = EVAL(e0, t)

(v1, t1) = EVAL(e1, t0)
. . .
(vn−1, tn−1) = EVAL(en−1, tn−2)

in ([[c ]](v0, . . . vn−1), tn−1)

Function arguments are the next easier. To evaluate argm
n , we take the record

that is on top of the m-th stack of the tag. Assuming that this is a sequence
of K ≥ n arguments (the transformation guarantees that), we inspect the n-th
argument in that sequence. If it is a value, it is immediately reused. Otherwise,
if it is a variable identifier, we evaluate it as previously.

EVAL(argm
n , 〈w0, . . . wm, . . . wM−1〉) =

let 〈a0, . . . an, . . . aK−1〉 = top(wm)
in case an of

value(v) → (v, 〈w0, . . . wm, . . . wM−1〉)
name(x) → EVAL(x, 〈w0, . . . wm, . . . wM−1〉)

In the semantics of a callm operator, we create a new record which contains the
arguments that appear as its subscript. We put this record on top of the m-th
stack of the tag and then evaluate the operand of the callm operator under the
new tag. When its evaluation is complete, we remove the top record from the
m-th stack of the tag.

EVAL(callm
x0,...xn−1

(e), 〈w0, . . . wm, . . . wM−1〉) =
let r = 〈name(x0), . . .name(xn−1)〉

(v, 〈w′
0, . . . w

′
m, . . . w′

M−1〉) = EVAL(e, 〈w0, . . . push(r, wm), . . . wM−1〉)
in (v, 〈w′

0, . . . pop(w′
m), . . . w′

M−1〉)
The semantics of actualsm operators that appear in the body of definitions
is, in some sense, the inverse of that for callm operators. We remove the top
record from the m-th stack of the tag, but we store it so as to be able to put
it back later. We evaluate the operand of the actuals operator (the remaining
of a body of definition, possibly containing more actuals) under the new tag.
When its evaluation is complete, we put back the stored record on top of the
m-th stack of the tag.

EVAL(actualsm(b), 〈w0, . . . wm, . . . wM−1〉) =
let r = top(wm)

(v, 〈w′
0, . . . w

′
m, . . . w′

M−1〉) = EVAL(b, 〈w0, . . . pop(wm), . . . wM−1〉)
in (v, 〈w′

0, . . . push(r, w′
m), . . . w′

M−1〉)
The most complicated part of the semantics is memorization. First, notice that
there is always an actualsm operator following a savem

n memorization operator.
The evaluation of a body of the form savem

n (actualsm(b)) is similar to that of
actualsm(b). The difference is that the record that is put back at the end on
top of the m-th stack of the tag is not (necessarily) the same as the one that
was removed in the beginning; the two may differ in the position argm

n , which



is updated as a result of evaluating the body. If m = 0, i.e. the argument to be
updated is zero-order, then the value that was computed replaces the previous
contents of argm

n . Otherwise, if the argument is higher-order, the updated argu-
ment depends on the syntactic form of b. If b ends with a variable identifier, then
this replaces the previous contents of argm

n . On the other hand, if it ends with
a (possibly different) function argument, this argument in the tag that resulted
from the evaluation of e replaces the previous contents of argm

n .

EVAL(savem
n (actualsm(b)), 〈w0, . . . wm, . . . wM−1〉) =

let 〈a0, . . . an, . . . aK−1〉 = top(wm)
(v, 〈w′

0, . . . w
′
m, . . . w′

M−1〉) = EVAL(b, 〈w0, . . . pop(wm), . . . wM−1〉)
a′

n = if m = 0 then
value(v)

else if b is of the form α(γ(x)) then
name(x)

else if b is of the form α(γ(argm′
n′ )) then

let 〈c0, . . . cn′ , . . . cL−1〉 = top(w′
m′)

in cn′

r = 〈a0, . . . a
′
n, . . . aK−1〉

in (v, 〈w′
0, . . . push(r, w′

m), . . . w′
M−1〉)

4 Implementation on Stock Hardware

The success of an execution model depends primarily on how efficiently it can
be implemented. In this section we outline a quite efficient implementation of
the model that was presented in section 3 on stock hardware. Our implementa-
tion presents similarities to the traditional use of activation records, which are
used to hold a function’s actual parameters and are organized as a stack in the
computer’s memory. In our approach, which is an extension of the scheme pro-
posed in [RW94b], there are two main differences: (i) activation records are lazy,
i.e. the actual parameters are filled in upon demand; and (ii) the construction
and destruction of activation records is controlled by the presence of intensional
operators in the zero-order program.

The most crucial and at the same time tricky issue in the implementation
of the execution model is the representation of tags, records and arguments and
the implementation of intensional operators. We represent stacks of records by
linked lists, i.e. we add to each record a pointer to the record that is immediately
below on the stack. We represent a tag by a set of M pointers {t0, . . . tM−1}
that point to the first elements of the lists representing the stacks. For the
representation of a record’s arguments, we use one bit to distinguish between a
value(v) and a name(x); the representation of v or x follows. A variable identifier
x can be represented by a pointer to the code that implements the corresponding
definition.

There is an obvious similarity between the semantics of call and actuals
operators and traditional stack-based activation records: a call can be viewed as
putting a record on the stack, evaluating the “function body” and then removing



name(x0)

name(h0)

value(2)

name(g0)

t0 t1

Fig. 1. An example of lazy activation records.

the record from the stack. On the other hand, actuals ignores the record that
is on top of the stack and switches the context to the one immediately below,
in order to evaluate its body; then it switches the context back to what it was.
This remark allows us to group the records of successive calls, in the sense of
the execution model of section 3, in lazy activation records that we place on a
stack in the computer’s memory. The form of some lazy activation records that
appear during execution of the example in section 2.2 is shown in Fig. 1.

As execution begins, the first lazy activation record that is constructed is
the one for f, with g and y as arguments (the top one in the figure). After
some time, y is evaluated giving the value 2, which replaces the argument on
the stack. When apply is called, with arguments h and x, a new lazy activation
record is placed on the stack (the stack grows downward in the figure). Notice
at this point of execution the pointers 〈t0, t1〉 in the current tag, pointing to two
separate linked lists, one for each dimension.

5 Performance Comparison and Related Work

In this section we briefly summarize other implementation techniques for higher-
order functional programming languages and compare our implementation with
some other known implementations in terms of performance.

The traditional implementation technique for lazy functional languages is
based on graph reduction [SPJ87]. Great effort has been made over the years for
efficient implementations [Joh84] and optimizations. We consider the well-known
compilers for Haskell (ghc and hbc) and Clean as representatives of the several
existing implementations of graph reduction. They are mature compilers and
implement more features than we discuss in this paper. Despite the restrictions



of our technique, reduction-based compilers provide a good reference point for
evaluating the efficiency and viability of the intensional approach.

We are also interested in comparing the new execution model with a hashing-
based implementation of the intensional approach [RW93]. The same idea is
used for implementing intensional languages, e.g. Lucid [Wad91]. We use as a
reference point a more recent implementation of the intensional approach that
uses a garbage-collecting warehouse for memorizing intermediate values [Gri04].

The experimental compiler that we developed3 is based on the execution
model and implementation technique described in sections 3 and 4 [Cha05]. It
compiles source programs, written in a higher-order functional language, to low-
level C code. At its present state, our compiler does not try to optimize function
bodies (a number of such optimizations are performed by the C compiler) and
does not eliminate tail-recursive calls, which occur very often in the final C
program.

We used the following programs as benchmarks for comparing the perfor-
mance of the aforementioned implementations. The order of each program is
shown in parentheses.

nofib (1): A standard benchmark, computing a variation of Fibonacci numbers
in exponential time, for n = 30.

queens (1): A program solving the N queens’ problem for N = 9, using large
integer numbers to encode chessboard configurations.

primes (1): A program computing prime numbers up to 7500.
ack (1): A program computing Ackermann’s function for m = 3 and n = 9.
tak (2): A program computing a second-order variation of Takeuchi’s function

for x = 24, y = 16 and z = 8.
ntak (3): A program computing a third-order variation of Takeuchi’s function

for x = 24, y = 16 and z = 8.
integrate (3): A program that computes several integrals using various meth-

ods of integration.
church (4): A program that performs some integer arithmetic with Church

numerals.

Table 1 shows the execution times obtained by executing the benchmark
programs. For a fair comparison, optimizations such as strictness analysis were
disabled in compilers that perform them. Moreover, when there was an option
to produce C instead of native code, it was preferred.

First of all, it is clear that our implementation is a significant improvement
over the hashing-based implementation, as it outperforms it by several orders of
magnitude in most cases. For most benchmarks, our implementation is as fast
as the reduction-based systems. In some cases, usually in first-order programs,
our implementation appears to outperform Haskell’s compilers. Moreover, the
behaviour of our technique in programs with a high number of function calls

3 Our compiler and the sources of the benchmark programs can be obtained from:
ftp://ftp.softlab.ntua.gr/pub/users/nickie/software/lar.tar.gz



Table 1. Execution times for benchmark programs.

Intensional Reduction-based

Stack-based Hashing-based GHC HBC Clean

First order

nofib 0.080 2.650 0.550 1.363 0.005
queens 0.050 2.170 0.320 0.837 0.005
primes 0.030 0.820 0.435 1.232 0.010
ack 1.270 40.580 2.453 6.889 0.270

Higher order

tak (2) 0.310 43.610 0.372 0.664 0.090
ntak (3) 0.750 126.410 1.452 4.854 0.240
integrate (3) 0.300 too long! 0.765 1.373 0.050
church (4) 0.010 0.040 0.001 0.001 0.001

(e.g. nofib, ack, tak, ntak) is competitive; it can be significantly improved by im-
plementing tail recursion elimination. On the other hand, in most cases, Clean’s
compiler produces faster code than all the others. A possible explanation is that
it produces native code instead of C and makes some tail-call transformation to
obtain more efficient code. Garbage collection and the handling of heap-allocated
closures is one of the reasons that add a time overhead to reduction-based imple-
mentations. Our technique operates using a stack; that is, no garbage collecting
is needed as long as no heap is used. Garbage collection may become necessary
when complex data structures are supported in the source language.

In general, the performance of our implementation is competitive to that of
current efficient reduction-based implementations. Furthermore, no performance
degradation occurs when the order of program increases, in contrast to [RW94b].

6 Conclusion and Future Work

The intensional transformation has long been proposed as an alternative imple-
mentation technique for lazy functional languages. Its main idea is to transform
a higher-order source functional program into an equivalent zero-order inten-
sional program. The purpose of this paper was to assess the efficiency and via-
bility of this technique. We have proposed an efficient model for executing the
transformed intensional zero-order programs and compared a prototype imple-
mentation of this model with other techniques, reduction-based or intensional.
The results indicate that the intensional technique can be as efficient as most
modern implementation techniques for lazy functional languages, for the class
of programs that can be transformed.

Although our results are very promising, this technique is still far from being
able to implement a fully featured lazy functional language. Apart from the



known shortcomings of the intensional transformation, imposing restrictions on
the source programs [RW99], a long list of features remain to be supported
by this technique. One of the most important missing features is arbitary data
structures. Furthermore, optimizations of our implementation such as strictness
analysis and tail recursion elimination must be investigated as future work.

References

[Cha05] A. Charalambidis. An Efficient Technique for Implementing Lazy Functional
Programming Languages. Diploma Dissertation. Department of Informatics
and Telecommunications, University of Athens, June 2005.

[Gri04] A. Grivas. Implementation of Functional Languages using the Branching
Dimensions Transformation. Diploma Dissertation. School of Electrical and
Computer Engineering, National Technical University of Athens, October
2004.

[Joh84] T. Johnsson. Efficient Compilation of Lazy Evaluation. in Proceedings
of ACM Compiler Construction, Montreal, Canada, June 1984, ACM SIG-
PLAN Notices, 19(6), pp. 58–69.

[SPJ87] S. L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

[Ron94] P. Rondogiannis. Higher-Order Functional Languages and Intensional
Logic. PhD thesis, Department of Computer Science, University of Victoria,
Canada, 1994.

[RW93] P. Rondogiannis and W. W. Wadge. A Dataflow Implementation Technique
for Lazy Typed Functional Languages. In Proceedings of the Sixth Inter-
national Symposium on Lucid and Intensional Programming, pages 23–42,
1993.

[RW94a] P. Rondogiannis and W. W. Wadge. Compiling Higher-Order Functions for
Tagged-Dataflow. In Proceedings of the IFIP International Conference on
Parallel Architectures and Compilation Techniques, pages 269–278. North-
Holland, August 1994.

[RW94b] P. Rondogiannis and W. W. Wadge. Higher-Order Dataflow and its Imple-
mentation on Stock Hardware. In Proceedings of the ACM Symposium on
Applied Computing, pages 431–435. ACM Press, 1994.

[RW97] P. Rondogiannis and W. W. Wadge. First-Order Functional Languages and
Intensional Logic. Journal of Functional Programming, 7(1):73–101, January
1997.

[RW99] P. Rondogiannis and W. W. Wadge. Higher-Order Functional Languages
and Intensional Logic. Journal of Functional Programming, 9(5):527–564,
September 1999.

[Wad91] W. W. Wadge. Higher-Order Lucid. In Proceedings of the Fourth Interna-
tional Symposium on Lucid and Intensional Programming, 1991.

[Yag84] A. A. Yaghi. The Intensional Implementation Technique for Functional Lan-
guages. PhD thesis, Department of Computer Science, University of War-
wick, Coventry, UK, 1984.


