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Abstract

In this paper we studyλ∀, ref, a Church-style typed lambda calculus with impredicative polymor-
phism and mutable references. We formalize the syntax, type system and call-by-value operational
semantics forλ∀, ref in theIsabelle/HOL theorem prover and prove the type safety of the language.

1 Introduction

Type systems typically guarantee a number of interrelated safety properties, for instance, memory safety
(programs can only access appropriate memory locations) and control safety (programs can only trans-
fer control to appropriate program points). Given a formal definition of a programming language, re-
searchers are typically interested in provingtype safety, in the sense that the static type system precludes
classes of dynamic errors when executing programs.

The polymorphicλ-calculus (usually referred to asF2) is due to Girard and Reynolds, who inde-
pendently discovered polymorphic types [1, 2]. First-class polymorphism in modern programming lan-
guages is a very useful characteristic, as it allows code re-use and modular type-checking. The language
that we study in this paper isλ∀, ref, an extension ofF2 with ML-style mutable references supporting
reference allocation, dereferencing and type-preserving (weak) assignment. Type polymorphism and
mutable references often interact in subtle ways leading to unsoundness. A well-known example is the
problem of polymorphic references in ML [3].

Pencil-and-paper type safety proofs for programming languages of the complexity ofλ∀, ref are very
often error prone. With the aid ofproof assistants, tools that facilitate mechanized theorem proving,
researchers can be guided in such proofs and draw confidence that their proofs are correct. In this paper,
we outline a mechanized type safety proof forλ∀, ref, carried out in theIsabelle/HOL [4] proof assistant.
For the representation of bound variables, we use a technique called “locally nameless” [5]. To the best of
our knowledge, this is the first mechanized type safety proof for a language with polymorphic references
in Isabelle/HOL and the first mechanized type safety proof, irrespective of proof assistant, for a language
with references and first-class (impredicative) polymorphism.

The study of languages with polymorphic references and their metatheory is not new. Tofte proved
type soundness for polymorphic references using co-induction [3]. Harper showed how a type-safety
proof can be arranged so that there is no need for co-induction [6, 7]. Recent research has focused on
how to best mechanize the metatheory of programming languages [8, 9] and especially to the study of
fully-fledged languages, such as ML [10, 11] and Java [12].

∗This paper is based on work within the research project “Theory of Algorithms and Logic: Applications in Computer
Science”, partially funded by the European Social Fund (75%) and the Greek Ministry of Education (25%). EΠEAEK II:
Πυθαγóρας.
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Syntax

τ ::= Unit | α | τ → τ | ∀α. τ | Ref τ

e ::= unit | x | λx :τ. e | Λα. e | e1 e2 | e [τ ]

| new e | deref e | e1 := e2 | loc l

v ::= unit | λx :τ. e | Λα. v | loc l

Well formed types ∆ |= τ

∆ |= Unit ∆, α |= α
∆ |= τ1 ∆ |= τ2

∆ |= τ1 → τ2

∆, α |= τ

∆ |= ∀α. τ

∆ |= τ

∆ |= Ref τ

Typing Γ;∆ ` e : τ

Γ;∆;M ` unit : Unit Γ, x : τ ;∆;M ` x : τ
∆ |= τ Γ, x : τ ; ∆;M ` e : τ ′

Γ;∆;M ` λx :τ. e : τ → τ ′
Γ;∆, α;M ` v : τ

Γ;∆; M ` Λα. v : ∀α. τ

Γ;∆;M ` e1 : τ → τ ′ Γ;∆;M ` e2 : τ

Γ;∆; M ` e1 e2 : τ ′
Γ;∆;M ` e : ∀α. τ ∆ |= τ ′

Γ;∆;M ` e [τ ′] : τ{α 7→ τ ′}
Γ;∆; M ` e : τ

Γ;∆;M ` new e : Ref τ

Γ;∆;M ` e : Ref τ

Γ;∆;M ` deref e : τ

Γ;∆; M ` e1 : Ref τ Γ;∆;M ` e2 : τ

Γ;∆;M ` e1 := e2 : Unit
Γ;∆;M, l : τ ` loc l : Ref τ

Semantics S; e −→ S′; e′

S; e1 −→ S′; e′1
S; e1 e2 −→ S′; e′1 e2

S; e2 −→ S′; e′2
S; v1 e2 −→ S′; v1 e′2

S; e −→ S′; e′

S; e [τ ] −→ S′; e′ [τ ]

S; e −→ S′; e′

S; new e −→ S′; new e′
S; e −→ S′; e′

S; deref e −→ S′; deref e′

S; e1 −→ S′; e′1
S; e1 := e2 −→ S′; e′1 := e2

S; e2 −→ S′; e′2
S; v1 := e2 −→ S′; v1 := e′2

S; (λx :τ. e) v −→ S; e{x 7→ v}

S; (Λα. v) [τ ] −→ S; v{α 7→ τ}

S; new v −→ S, l 7→ v; loc l

S, l 7→ v; deref (loc l) −→ S, l 7→ v; v

S, l 7→ v′; loc l := v −→ S, l 7→ v; v

Figure 1: The definition ofλ∀, ref.

types name = nat

datatype ty =
TyUnit

| TyBase name
| TyFreeVar name
| TyVar nat
| TyArrow ty ty ( infixr → 900)
| TyForall ty ( ∀ ._ [900] 900)
| TyRef ty

datatype tm =
TmUnit

| TmFreeVar name
| TmVar nat
| TmAbs ty tm ( λ[_]._ [900,800] 800)
| TmApp tm tm ( infixl · 900)
| TmProd tm ( Λ[*]._ [900] 900)
| TmTapp tm ty (_ 〈_〉 [900,0] 900)
| TmNew tm
| TmAssign tm tm ( infixr := 900)
| TmDeref tm
| TmLoc name

Figure 2: The syntax ofλ∀, ref in Isabelle/HOL.

2 Syntax

The languageλ∀, ref that we study is the polymorphicλ-calculus (F2), extended with first-class ML-style
references. No memory deallocation (free) is possible and there is a “value restriction” for polymorphic
terms [13, p. 335–336]. The syntax, typing and call-by-value semantics ofλ∀, ref is given in Fig.1, in
the way that it is commonly presented. In this and the following sections, we outline the definition of
λ∀, ref in Isabelle/HOL and the proof of its type safety. We focus on explaining and justifying the design
choices we made.

The syntax ofλ∀, ref, as encoded inIsabelle/HOL, is given in Fig.2. In comparison to the standard
syntax of Fig.1, the first difference to notice is the addition of base types (which are easier to deal with,
if we distinguish them from free type variables). The second, and most important difference is the use of
a technique called “locally nameless” for dealing with bound variables [5].

In the locally nameless approach, named variables and DeBruijn indices [14] coexist in the rep-
resentation of types and terms. Each abstraction (λ and Λ for terms,∀ for types) introduces a new
DeBruijn index, not a named variable. However, DeBruijn indices are replaced by named variables
whenever we want to seeinside terms. This means that any given term or type that we examine can-
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not contain unbound DeBruijn indices (we call such terms and typesclosed.) In this way, we can de-
fine substitution without having to shift any DeBruijn indices. We define three kinds of substitution:
vsubst ty (types in types),vsubst tm (terms in terms) andvsubst tmty (types in terms). For
example,vsubst ty τ ′ i τ stands forτ{i 7→ τ ′}. We also definefreshen ty α τ as a shortcut for
vsubst ty (TyFreeVar α) 0 τ . Similarly for the other two kinds of substitution.

A definition that we found very useful is that of asubstitution functionfor types. A substitution func-
tion captures the notion of acontext, possibly containing holes in which closed types can be substituted.
If f andg are two substitution functions, we can show that iff(α) = g(α) for some fresh type variable
α, thenf(τ) = g(τ) for all closed typesτ .

3 Typing

Our encoding of the typing relation inIsabelle/HOL treats named variables and memory locations iden-
tically. In this way, we use the same environment forΓ andM (see Fig.1). We chose to represent
environments as sets. The type environment∆ contains type variables, while the term environmentΓ
contains pairs of term variables (or locations) and types.

The definition ofwell formedtype (∆ |= τ ) is almost straightforward: all named variables must exist
in the given type environment∆. The case of∀-abstractions is a little tricky, as they introduce new
DeBruijn indices in their bodies. For such an abstraction to be well formed, the body must be well
formed when we substitute the DeBruijn index with afreshnamed variableα, which is introduced in∆.
The notion of afreshvariable is also tricky. A fresh variableα must not appear in∆ or in the abstraction’s
body. However, this is not sufficient for proving essential properties of∆ |= τ , such as weakening (i.e.
if ∆ |= τ andα is fresh, then∆, α |= τ ). To bypass this problem, we also restrictα not to occur in an
arbitrary finite setL, which intuitively represents “all other variables that should be avoided”.

wf_forall[intro!] : [[ ∆ |= TY; finite L;
∀ a. ¬ ∆ defines a ∧ ¬ a free in type τ ∧ a /∈ L −→

∆,(a: ?) |= freshen_ty a τ ]] =⇒ ∆ |= ∀ . τ

We must also restrict ourselves towell formedenvironments. Every finite∆ is well formed. For aΓ to be
well formed, it must be finite, it must not attribute two different types to the same variable (or location)
and all attributed types must be well formed. AsΓ contains both named variables and locations, this
definition imposes a name distinction between the two and is stricter than necessary.

∆ |= TY ≡ finite ∆
Γ; ∆ |= OK ≡ finite Γ ∧ ∆ |= TY ∧ ( ∀ x τ1 τ2. (x Bτ1) ∈Γ ∧ (x Bτ2) ∈Γ −→ τ1=τ2 ∧ ∆ |= τ1)

The typing judgement requires the substitution of DeBruijn indices with fresh named variables, in
a way similar to what we used for well formed types. It is worth noting that no typing rule exists
for DeBruijn indices and the typing rules for named variables and locations are almost identical. The
following excerpt shows the typing rules forλ-abstractions, named variables and locations.

t_var[intro!] : [[ Γ; ∆ |= OK; (x Bτ ) ∈ Γ ]] =⇒ Γ; ∆ ` TmFreeVar x : τ
t_abs[intro!] : [[ Γ; ∆ |= OK; finite L; ∆ |= τ1;

∀ x. ¬ x free in e ∧ x /∈ L ∧ ¬ Γ defines x −→
Γ,(x: τ1); ∆ ` freshen_tm x e : τ2 ]] =⇒

Γ; ∆ ` λ[ τ1]. e : τ1→τ2
t_loc[intro!] : [[ Γ; ∆ |= OK; (l Bτ ) ∈ Γ ]] =⇒ Γ; ∆ ` TmLoc l : TyRef τ

4 Semantics

We used a small step operational semantics forλ∀, ref, similar to the one in Fig.1. However, as we plan
to extendλ∀, ref in the future with reference deallocation and will have to resort to a substructural type
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system [15, ch. 1], we chose to store computed values in memory. Therefore, a storeS contains both
computed values and the contents of memory locations (references). It is a set of pairs of variables
(locations) and terms. A store iswell formedif it is finite, it does not bind a variable (location) to two
different terms and all the terms it contains are indeed values.

S |= Store ≡ finite S ∧ ( ∀ x v1 v2. (x 7→v1) ∈S ∧ (x 7→v2) ∈S −→ v1=v2 ∧ value v1)

Our semantics has an extra rule (e val ) that adds a computed value to a fresh variable (location) in
the store. Thus, in our semantics, we treat variables (e.g.TmFreeVar x ) in the same way that values
are used in Fig.1. To illustrate this, we give below our three evaluation rules that define (call-by-value)
function application. It can easily be shown that the two semantics are equivalent.

e_val[intro!] : [[ ¬ S defines z; S |= Store; value v ]] =⇒ S;v ↪→ S,(z 7→v);TmFreeVar z
e_app_p1[intro!] : [[ S;e1 ↪→ S’;e1’ ]] =⇒ S;e1 ·e2 ↪→ S’;e1’ ·e2
e_app_p2[intro!] : [[ S;e2 ↪→ S’;e2’ ]] =⇒ S;(TmFreeVar x) ·e2 ↪→ S’;(TmFreeVar x) ·e2’
e_beta[intro!] : [[ (z 7→λ[ τ ].e1) ∈ S ]] =⇒ S;(TmFreeVar z) ·(TmFreeVar y) ↪→ S;freshen_tm y e1

5 Metatheory

As usual, we prove the type safety ofλ∀, ref by proving two theorems: progress and preservation. Several
standard lemmata are needed. Canonical form lemmata allow one to deduce the syntactic form of a well
typed value, given its type. Weakening lemmata allow one to extend the environments in a judgement
with fresh bindings. A substitution lemma, in general, states that typing is preserved when a term of the
same type is substituted for a free variable. Given below are the definitions of our two main substitution
lemmata, for terms and types. They are somewhat tricky, because of the locally nameless approach.

lemma substitution:
assumesΓ; ∆ ` e’ : τ ’
and Γ,(x: τ ’); ∆ ` vsubst_tm (TmFreeVar x) i e : τ
and ¬ x free in e
shows Γ; ∆ ` vsubst_tm e’ i e : τ

lemma substitution_ty:
assumes∆ |= τ ’
and vsubst_ty_env (TyFreeVar a) i Γ; ∆,(a: ?) `

vsubst_tmty (TyFreeVar a) i e : vsubst_ty (TyFreeVar a) i τ
and ¬ a free in term e ∧ ¬ a free in type τ ∧ ¬ a free in env Γ ∧ ¬ ∆ defines a
and vsubst_ty_env τ ’ i Γ; ∆ |= OK
shows vsubst_ty_env τ ’ i Γ; ∆ ` vsubst_tmty τ ’ i e : vsubst_ty τ ’ i τ

Both are proved by induction on the size of terme. The proof of the latter requires the property of
substitution functions that was mentioned in§2.

The correspondence between a storeS and typing environmentsΓ and∆ is captured by thestore
typing relation|= S : Γ; ∆. The definitions of the two main theorems, preservation and progress, easily
follow. Preservation states that operational semantics preserves typing, with possibly extended environ-
ments. Progress states that a well typed term is notstuck: either it is a variable (containing a computed
value in the store), or the operational semantics can make one more evaluation step. Both theorems can
be proved by induction on the typing derivation.

|= S : Γ; ∆ ≡ S |= Store ∧ ( ∀ x τ . (x Bτ ) ∈ Γ −→ ( ∃ v. (x 7→v) ∈ S ∧ Γ; ∆ ` v : τ ))

theorem preservation:
assumesΓ; ∆ ` e : τ
and S;e ↪→ S’;e’
and |= S : Γ; ∆
shows ∃Γ’ ∆’. Γ ⊆ Γ’ ∧ ∆ ⊆ ∆’ |= S’ : Γ’; ∆’ ∧ Γ’; ∆’ ` e’ : τ

theorem progress:
assumesΓ; ∆ ` e : τ
and |= S : Γ; ∆
shows not_stuck e S
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6 Conclusions and Future Work

In this paper we outlined a mechanized proof of type safety forλ∀, ref, the extension ofF2 with ML-
style mutable references, using theIsabelle/HOL proof assistant. To the best of our knowledge, it is the
first fully mechanized type safety proof for a language with polymorphic references inIsabelle/HOL.
Additionally, it is the first fully mechanized type safety proof for a language with mutable references and
impredicative polymorphism.

We intend to introduce an operator for explicit reference deallocation (free) in λ∀, ref. To guarantee
the type safety of the resulting language, we will employ a substructural type system. The interplay
between linear pointer types (necessary for deallocation and strong assignment) and unrestricted pointer
types (useful for dereferencing and weak assignment) is one of the primary interests of our future work.
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