
From Program Verification to Certified Binaries?

The Quest for the Holy Grail of Software Engineering

Angelos Manousaridis, Michalis A. Papakyriakou, and Nikolaos S. Papaspyrou

National Technical University of Athens
School of Electrical and Computer Engineering

Software Engineering Laboratory
Polytechnioupoli, 15780 Zografou, Athens, Greece
{amanous, mpapakyr, nickie}@softlab.ntua.gr

Abstract. The long tradition of formal program verification and the
more recent frameworks for proof-carrying code share a common goal:
the construction of certified software. In this paper, mainly through a
simple motivating example, we describe our vision of a complete hybrid
system that combines the two approaches. We discuss the feasibility of
such an ambitious project and report on progress made so far.

Key words: Formal methods, type systems and type theory, certified
code, proof-preserving compilation.

1 Introduction

Program verification aims at formally proving the correctness of a computer
program, with respect to a certain formal specification or property. As a research
field of computer science, program verification is well into the fourth decade
of its existence. However, it can hardly be argued that it is often adopted in
practice by software engineers, except for verifying mission-critical systems. For
the vast majority of software systems, quality assurance amounts to dynamic
testing, which unfortunately can produce no guarantees. In this respect, software
engineering, defined as “the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software” [1], is
still very far from reaching the maturity of other branches of engineering.

Several formal logics, their majority greatly influenced by Hoare Logic [2],
have been proposed in combination with programming languages as the vehicles
for program verification [3]. Most of the proposed approaches advocate a clear
separation between the language in which specifications are given (e.g. first-
order predicate logic), the programming language, and the methodology and the
tools—if any—that support the construction of proofs.
? This work has been funded by the research programme ΠENE∆ (grant number

03E∆ 330), cofinanced by public expenditure (75% by the European Social Fund and
25% by the Greek Ministry of Education, General Secretariat of Research and Tech-
nology) and by the private sector, under measure 8.3 of the Operational Programme
“Competitiveness” in the European Union’s 3rd Community Support Framework.

Proof-carrying code [4, 5] and foundational proof-carrying code [6] are general
frameworks, expressing a relatively modern philosophy towards the verification
of low-level (e.g. machine language) programs. A certified binary is a value (a
function, a data structure, or a combination of both) together with a proof that
the value satisfies a given specification. Certified binaries are essential in mod-
ern distributed computer systems, where executable code is transferred among
computing devices that do not necessarily trust one another. The recipient of a
certified binary does not need to trust the producer: the proof can be mechan-
ically checked and, once found valid, it is known beyond doubt that the binary
conforms to its specification. Existing compilers that produce certified binaries
have mostly focused on simple memory and control-flow safety properties. Al-
though the two frameworks are general enough to express arbitrary program
properties, in the general case not much is known on how to construct certified
binaries or how to automatically generate them from high-level source programs.

More recently, type-theoretic frameworks for constructing, composing and
reasoning about certified software have been proposed [7, 8], based on the “formu-
lae as types” principle [9]. The type-theoretic approach provides an embedding
of logic in the type system of the programming language: program properties
are encoded in types and proof checking is reduced to type checking. In analogy
to a type-preserving compiler, which uses a typed intermediate [10] and a typed
assembly language [11] and propagates type information from the source pro-
gram down to the lower-level equivalent programs, a type-theoretic framework
for certified binaries can support proof-preserving compilation. Provided that a
common logic (type language) is used for expressing properties and proofs, from
the source language to the target language, certified binaries can be generated
by compiling previously verified source programs. This is important, because
high-level programs are easier to reason about than low-level programs.

Still, in a type-theoretic framework such as that proposed by Shao et al.
[7], constructing a proof of correctness even for a small program, written in an
appropriate high-level source language, is far from simple. As the logic is part
of the programming language (more accurately, part of the type language), the
proof must be embedded in the code and has to be constructed at the same time
with it. Although this has long been proposed as the “right way” to produce
software [12, 13], it is not popular with programmers, who generally prefer to
write down their algorithm first and then (if ever) prove its correctness. Further-
more, if something in the specification changes, the code has to change as well
and, sometimes, the modifications can be substantial in size even if the code’s
operational behaviour does not change.

Due to the complexity of the type languages used in the type theoretic frame-
works that support proof-preserving compilation, type inference (or proof infer-
ence) is in general undecidable. The type system of the source language cannot
do miracles. It can therefore be argued that, although the embedding of logic in
the programming language is appropriate for the lower-level languages used by
the compiler, it is not appropriate for the source language, in which the task of
constructing the proof is—more or less—the programmers’ responsibility.

Fig. 1. Overview of a hybrid system for generating certified binaries.

In this paper, we register our dream of a hybrid system (half based on tra-
ditional program verification and half type-theoretic). Although similar dreams
must be common among computer scientists who advocate program verification
and proof-carrying code, it seems that they are still rather far from becoming
reality. We outline our experience—limited, so far—in building such a system. If
it turns out that, with the assistance of appropriate program verification tools,
programmers are able to prove the correctness of their programs (we want to be
optimistic and believe this hypothesis to be true), such a system can be thought
of as the Holy Grail of software engineering.

2 A Hybrid System for Generating Certified Binaries

A hybrid system for generating certified binaries from annotated source programs
can be structured in two layers, as depicted in Fig. 1. First, a “programmer-
friendly” program verification layer assists programmers in constructing valid
proofs for their source programs according to the specifications that they have
set. In this layer, specifications and proofs are separate from the actual code and
an ordinary, general-purpose programming language can be used.

The program verification layer can follow the methodology suggested in the
work of Filliâtre et al. related to the Why software verification platform [14, 15].
The source code, written in any from a variety of languages, must be annotated

with specifications (preconditions, postconditions, invariants, etc.) in some ap-
propriate logic. It is then given to a tool serving two purposes: (i) to compile
the source code into a lower-level intermediate language λ−H ; and (ii) to generate
proof obligations that must be proved, in order to verify the correctness of the
source code w.r.t. its specifications.

The language λ−H can be thought of as a typed intermediate language, such as
λH in the paper by Shao et al. [7], with some proofs missing. The missing proofs
are exactly those corresponding to the generated proof obligations. A variety of
tools (from automatic theorem provers to human-driven proof assistants) can be
used to discharge the proof obligations and generate the missing proofs. Subse-
quently, the intermediate program in λ−H can be automatically “linked” with the
constructed proofs, resulting in a λH program. An additional type/proof check-
ing step can be performed, to ensure the correctness of the “linked” program.

The second layer of the hybrid system consists of a type/proof preserving
compiler, which transforms the program in λH and produces a certified binary.
This compiler performs type/proof preserving program transformations that pro-
duce progressively lower-level code. Shao et al. have shown how to perform type
preserving CPS transformation and closure conversion on λH (and call the in-
termediate languages λK and λC respectively). One or more type-preserving
“code generation” steps are required to obtain a certified binary in the form of
a (machine dependent or independent) typed assembly language.

It should be noted that the trusted computing base, i.e. the piece of soft-
ware that the recipient of a certified binary must blindly trust (not shown in
Fig. 1), consists only of a type/proof checker for the typed assembly language
and a (type/proof erasing) translator to native assembly language. Both pieces
of software are of moderate size and relatively easy to build.

3 A Motivating Example

In this section we present a small case study: the construction of a certified binary
from a C function annotated with its specification. The example is intentionally
chosen to be very simple, so that self-contained equivalent programs in λH and
λK can fit in this paper.

Consider a function root that calculates the integer square root of an integer
number n, i.e. the greatest integer r with the property r2 ≤ n. A näıve C program
that implements this function is the following:

int root (int n) {

int y = 0;

while ((y+1)*(y+1) <= n) y++;

return y;

}

Following the notation used by the Why verification platform and the verifi-
cation tool Caduceus for C programs [14, 15], the same program annotated with
the function’s pre- and postcondition and the loop invariant is given in Fig. 2.

//@ predicate leRoot(int r, int x) { r >= 0 && r*r <= x }

//@ predicate isRoot(int r, int x) { leRoot(r, x) && (r+1)*(r+1) > x }

/*@ requires n >= 0

@ ensures isRoot(\result, n)

@*/

int root (int n) {

int y = 0;

//@ invariant leRoot(y, n)

while ((y+1)*(y+1) <= n) y++;

return y;

}

Fig. 2. The example program, annotated with its specification.

root . ∀n :Z. ∀n∗ : (n ≥ 0). sint n � ∃x :Z. ∃x∗ : isRoot x n. sint x
= poly n :Z. poly n∗ : (n ≥ 0). lambda n :sint n.

(fix loop :∀y :Z. ∀y∗ : leRoot y n. sint y � ∃x :Z. ∃x∗ : isRoot x n. sint x.
poly y :Z. poly y∗ : leRoot y n. lambda y :sint y.

if [♣,♣] ((y + cint [1])2 > n,
p∗1 . pack (y, pack (♣, y) as ∃y∗ : isRoot y n. sint y) as

∃x :Z. ∃x∗ : isRoot x n. sint x,
p2

∗. loop [y + 1] [♣] (y + cint [1])))
[0] [♣] cint [0]

Fig. 3. The λ−H term with the missing proofs that correspond to proof obligations (♣).

The program in Fig. 2 is subsequently compiled to the λ−H program of Fig. 3.
Readers not familiar with the syntax of λH will probably find it hard to decipher
the code. However, two things are obvious. First, the specifications in Fig. 2
have been translated to the types that are embedded in the term of Fig. 3. For
instance, the type of root itself contains a direct translation of the function’s
pre- and postconditions. Second, there are five parts of this code, marked with
the symbol ♣, that are missing. The first of these five is the predicate associated
with the condition of the if expression. The remaining four are proofs that have
to be constructed externally. Four proof obligations are therefore produced by
the verification condition generator.

The proof obligations must now be discharged, either by an automatic theo-
rem prover or by a proof assistant. Suppose that the second alternative is used
and the human prover provides the code given in Fig. 4 for the Coq1 proof as-
sistant [16]. The missing parts of Fig. 3 can then be filled in, resulting in the λH

program of Fig. 5.

1 Coq uses the Calculus of Inductive Constructions (CIC) as its type language and,
for this reason, Coq proofs can be directly embedded in λH , which is also based on
CIC. Other theorem provers or proof assistants can be used instead, but the resulting
proofs would then have to be translated to CIC. It is worth mentioning that all proof
obligations were easily proved automatically (by auto) in Isabelle/HOL.

Definition leRoot (r : Z) (x : Z) := (r >= 0 /\ r*r <= x)%Z.

Definition isRoot (r : Z) (x : Z) := leRoot r x /\ ((r+1)*(r+1) > x)%Z.

Definition decidable (P : Prop) (b : bool) := if b then P else ~P.

Lemma geDecidablePrf: forall n m : Z, decidable (n >= m)%Z (Zge_bool n m).

intros; unfold decidable, Zge, Zge_bool;

case (Zcompare n m); [discriminate | auto | discriminate].

Lemma gtDecidablePrf: forall n m : Z, decidable (n > m)%Z (Zgt_bool n m).

intros; unfold decidable, Zgt, Zgt_bool;

case (Zcompare n m); [discriminate | discriminate | auto].

Lemma Z_ge_refl: forall n : Z, (n >= n)%Z.

auto with zarith.

Lemma Zplus_ge_compat:

forall n m p q : Z, (n >= m -> p >= q -> n + p >= m + q)%Z.

intros n m p q; intros H1 H2; apply Zle_ge; apply Zplus_le_compat;

apply Zge_le; assumption.

Fig. 4. Coq code, useful in discharging the proof obligations.

root . ∀n :Z. ∀n∗ : (n ≥ 0). sint n � ∃x :Z. ∃x∗ : isRoot x n. sint x
= poly n :Z. poly n∗ : (n ≥ 0). lambda n :sint n.

(fix loop :∀y :Z. ∀y∗ : leRoot y n. sint y � ∃x :Z. ∃x∗ : isRoot x n. sint x.
poly y :Z. poly y∗ : leRoot y n. lambda y :sint y.

if [decidable ((y + 1)2 > n), gtDecidablePrf (y + 1)2 n] (
(y + cint [1])2 > n,
p∗1 . pack (y, pack (conj y∗ p1

∗, y) as ∃y∗ : isRoot y n. sint y) as
∃x :Z. ∃x∗ : isRoot x n. sint x,

p2
∗. loop [y + 1] [conj (Zplus ge compat y 0 1 0

(proj1 y∗)
(geDecidablePrf 1 0))

(Znot gt le (y +1)2 n p2
∗)] (y+ cint [1])))

[0] [conj (Z ge refl 0) (Zge le n 0n∗)] cint [0]

Fig. 5. The λH term with the “linked” proofs.

Proof-preserving compilation phases can now be applied to the λH program.
However, after CPS transformation, the size and complexity of the resulting
program are too much for the human reader. The λK program obtained by
the CPS transformation of the λH program of Fig. 5 and after some simple
optimizations (such as constant propagation and beta contraction) is given in
Fig. 6 at the end of this paper. To increase readability, the types of continuation
parameters have been omitted from the λK program. In subsequent phases,
still lower-level programs are obtained. The corresponding λC program, after a
näıve closure conversion, is a few hundred lines long when expressed in the same
textual format. To obtain an efficient implementation, it is essential to invent
and implement proof-preserving compiler optimizations and to find a compact
representation for proofs.

4 Conclusion

The realization of a complete hybrid system for constructing certified binaries
requires the implementation of the system’s two main software layers. Both for
program verification and for type-based proof-preserving compilation, there is
still a long way to go. However, in order to exploit the feasibility of such a system,
we have used existing techniques and tools. To verify high-level source programs
and produce proof obligations, a platform such as Why/Caduceus can be used.
The integration of such a platform with a compiler from the source language to
λ−H and the implementation of a proof checker and linker are still future work.

So far, we have partially implemented a proof-preserving compiler in OCaml,
manipulating programs in the set of languages described by Shao et al. [7]. As
an implementation of the type language (CIC) we have used the Coq proof
assistant, whose source code is freely available. In this way, we can build on Coq’s
rich set of proof libraries. Our system is incompetent with long and complex
source programs. There is much to be done before such an approach to software
verification can be applied to real software.

References

1. IEEE: Standard Glossary of Software Engineering Terminology. IEEE Standard
610.12-1990.

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (1969) 576–585

3. Cousot, P.: Methods and logics for proving programs. In van Leeuwen, J., ed.:
Formal Models and Semantics. Volume B of Handbook of Theoretical Computer
Science. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1990)
843–993

4. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM Symposium on
the Principles of Programming Languages. (1997) 106–119

5. Necula, G.: Compiling with Proofs. PhD thesis, Carnegie Mellon University (1998)
6. Appel, A.W.: Foundational proof-carrying code. In: Proceedings 16th IEEE Sym-

posium on Logic in Computer Science. (2001) 247–258

(lambda k. k
(poly n :Z. lambda k. k
(poly n∗ : (n ≥ 0). lambda k. k
(lambda xarg :sint n× Kc(∃x :Z. ∃x∗ : isRoot x n. sint x).
let n = sel [N lt prop 0 2] (xarg, cnat [0]) in

let k0 = sel [N lt prop 1 2] (xarg, cnat [1]) in

(fix loop [y :Z] (k :Kc(∀x∗ : leRoot y n. sint y � ∃x :Z. ∃x∗ : isRoot x n. sint x)). k
(poly y∗ : leRoot y n. lambda k. k
(lambda xarg :sint y × Kc(∃x :Z. ∃x∗ : isRoot x n. sint x).
let y = sel [N lt prop 0 2] (xarg, cnat [0]) in

let k1 = sel [N lt prop 1 2] (xarg, cnat [1]) in

let z1 = y + cint [1] in
let z2 = z1 ∗ z1 in

let z3 = z2 > n in

if [decidable ((y + 1)2 > n), gtDecidablePrf (y + 1)2 n] (z3,
p∗1 . k1 (pack (y, pack (conj y∗ p∗1 , y) as K(∃y∗ : isRoot y n. sint y)) as

K(∃x :Z. ∃x∗ : isRoot x n. sint x)),
p∗2 . loop [y + 1] (lambda k. k [conj (Zplus ge compat y 0 1 0 (proj1 y∗)

(geDecidablePrf 1 0))
(Znot gt le (y + 1)2 n p∗2)]

(lambda k. let z1 = y + cint [1] in k 〈z1, k1 〉)))))) [0]
(lambda k. k [conj (Z ge refl 0) (Zge le n 0n∗)] (lambda k. k 〈cint [0], k0 〉))))))

Fig. 6. The λK term, after the proof-preserving CPS transformation and some opti-
mizations.

7. Shao, Z., Trifonov, V., Saha, B., Papaspyrou, N.: A type system for certified
binaries. ACM Transactions on Programming Languages and Systems 27(1) (2005)
1–45

8. Crary, K., Vanderwaart, J.C.: An expressive, scalable type theory for certified
code. In: Proceedings of the 7th ACM International Conference on Functional
Programming. (2002) 191–205

9. Howard, W.A.: The formulae-as-types notion of constructions. In Seldin, J.P.,
Hindley, J.R., eds.: To H. B. Curry: Essays on Computation Logic, Lambda Cal-
culus and Formalism. Academic Press, Boston, MA (1980) 479–490

10. Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analy-
sis. In: Proc. 22nd ACM Symp. on Principles of Prog. Lang. (1995) 130–141

11. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. In: Proc. 25th ACM Symp. on Principles of Prog. Lang. (1998) 85–97

12. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
13. Gries, D.: The Science of Programming. Springer-Verlag (1981)
14. Filliâtre, J.C.: Why: A multi-language multi-prover verification tool. Research

Report 1366, LRI, Université Paris Sud (March 2003)
15. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive

program verification. In: Computer Aided Verification. Volume 4590 of LNCS.
Springer (2007) 173–177

16. The Coq Proof Assistant Reference Manual, URL: http://coq.inria.fr/

