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Abstract. Hoare logic and proof-carrying code are two independent
frameworks for reasoning that programs meet their specifications. In this
paper, we merge the two approaches by embedding axiomatic specifica-
tions in a type system for foundational proof-carrying code. By annotat-
ing programs with proof hints, proof checking of Hoare triples becomes
decidable and as efficient as type checking.

1 Introduction

Since it was first proposed [1], the axiomatic approach to proving program cor-
rectness which is commonly referred to as Hoare Logic has greatly influenced
the methods for verifying and designing programs [2]. In brief, Hoare logic in-
troduced the strength of formal logic in computer programming, not only as a
tool to reason about program properties but also to derive programs from their
specifications and to define the semantics of programming languages [3, 4].

Modern approaches to building programs that certifiably meet their speci-
fications combine a formal logic with the programming language in which the
programs are written. Proof-carrying code [5] and foundational proof-carrying
code [6] are general frameworks expressing this philosophy: certified programs
are annotated with proofs that their specifications are met. More recently, type-
theoretic frameworks for constructing, composing and reasoning about certified
software have been proposed [7, 8], based on the “formulae as types” principle
[9]. The type-theoretic approach provides an embedding of logic in the type sys-
tem of the programming language: program properties are encoded in types and
proof checking is reduced to type checking.

In this paper, we propose an encoding of Hoare logic in the type-theoretic
approach. Specifications of while programs are represented as Hoare triples,
encoded in a type language that is a variation of the Calculus of Inductive Con-
structions (CIC) [10–13]. We annotate while programs with all that is necessary
to make proof checking decidable. In this way, we obtain a formal system that
automatically checks the correctness of programs w.r.t. their specifications; this
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system is consistent with classic Hoare logic for while programs and builds on
a large body of scientific knowledge in the area of program specifications.

Hamid and Shao have also proposed an interface between Hoare logic and a
syntactic type system [14]. They use preconditions to guarantee that low-level
typed assembly programs do not violate a given safety policy. Our approach
differs in using a high-level programming language and arbitrary Hoare triples
as specifications. The work of Franssen and de Swart [15] is very similar to
ours. They propose an embedding of many-sorted first-order logic in a pure type
system with constants, capable of encoding Hoare logic for while programs.
Our work differs in the expressiveness of the type system which reflects on the
expressiveness of logic (CIC can encode higher-order predicate logic). Moreover,
it does not use constants but is based on foundational mathematical logic.

2 The type language

We split the programming language in two: the type language and the compu-
tation language [7, 16]. The former is the language in which logic is encoded:
propositions and predicates, used in program specifications, as well as proofs are
written in it. The latter, in which programs are written, is while. The abstract
syntax of the type language is given by the following grammar:

A,B ::= Set | Type | Ext | X | Π X :A.B | λX :A.B | AB
| Ind(X :A){A} | Constr(n,A) | Elim[A′](A :B B){A}

where X denotes a variable, A and B denote terms, n denotes a natural num-
ber and A denotes a sequence of terms. The sorts Set, Type and Ext are the
constants of the type language. Apart from sorts and variables, a term can be
a product Π X :A.B, an abstraction λX :A.B, an application A B, an induc-
tive type Ind(X :A){A}, a constructor of an inductive type Constr(n, A) or an
elimination of an inductive type Elim[A′](A :B B){A}.

The typing relation in the type language determines the semantic validity
of terms. For any pair of terms, A : B is read “A has type B”. Among sorts,
we have Set : Type and Type : Ext. Products are essentially dependent function
types: an abstraction λX :A.B has type Π X :A.B′ provided that B : B′ and, if
it is applied to a term of type A, it produces a term of type B′. We write A → B
instead of Π X :A.B if X does not occur free in B.

Inductive types can be defined by using Ind. As an example, the types Bool
of Boolean values and Nat of natural numbers can be defined as follows:

Bool ≡ Ind(X :Set){X; X} : Set
Nat ≡ Ind(X :Set){X; X → X} : Set

Inside Ind, X is a synonym for the defined type. Nat and Bool have two construc-
tors, the types of which are given inside the braces. Constr(n, A) provides access
to the n-th constructor of A but it is convenient to give constructors descriptive
names like true and succ. Most interesting operations on elements of inductive



types require the use of Elim, whose rôle is twofold. First of all, it destructs el-
ements of inductive types and provides access to the components of which they
were built. Moreover, it allows primitive recursion on inductive types.

The type language defines four types of reductions: α, β, η and ι. The first
three are well-known from the study of λ-calculus; the fourth is used in the
elimination of inductive types.

Based on the “formulae as types” principle [9], it is possible to encode propo-
sitions and proofs in the type language. Propositions are terms of type Set. A
proof of a proposition P is a term p such that p : P . Functions P → Q corre-
spond to logical implication, whereas products Π X :A.P correspond to universal
quantification. Inductive types can be used to define specific propositions and
operators; their constructors correspond to logical axioms. For example:

True ≡ Ind(X :Set){X} : Set
False ≡ Ind(X :Set){} : Set
propNot ≡ λP :Set. P → False : Set → Set
propAnd ≡ λP :Set. λQ :Set. Ind(X :Set){P → Q → X} : Set → Set → Set

The constructor of True is an axiom stating that True is a valid proposition. In
contrast, False has no constructors. Negation and conjunction are also naturally
defined. Similarly, we can define properties of mathematical objects, e.g. equal-
ity, and then prove theorems about them, e.g. transitivity and symmetry. The
theories built in this way are the tools that help us in reasoning about programs.

3 The computation language

Let n : Int be any integer number, b : Bool be any boolean value and x : Var be
any variable. We define the simple imperative language while as follows.

e : Expr ::= n | b | x | � e | e ? e
c : Comm ::= skip | x := e | c; c | if e then c else c | while e do c
� : UnOp ::= − | ¬
? : BinOp ::= + | − | ∗ | div | mod | = | 6= | < | > | ≤ | ≥ | and | or

A type τ is either int or bool. The set of types is denoted by Ω. A type environ-
ment Γ is a function mapping variables to types, i.e. an element of Env = Var →
Ω. For each unary operator �, we denote by U1(�) the type of its operand and
by UR(�) the type of the result. Similarly, for each binary operator ? we denote
by B1(?) and B2(?) the types of the two operands and by BR(?) the type of the
result. The typing relations Γ ` e : τ and Γ ` c are easy to define.

The semantic domain corresponding to type τ is denoted by [[τ ]]. We take
[[ int ]] = Int and [[bool ]] = Bool. We also define the semantics of operators as func-
tions [[� ]] : [[U1(�)]] → [[UR(�)]] and [[? ]] : [[B1(?)]] → [[B2(?)]] → [[BR(?)]], e.g.
[[∗ ]] is the multiplication function on elements of Int. Given a type environment
Γ , we define the set of stores satisfying Γ as Store Γ = Π x :Var. [[Γ x ]]. Such a
store s is a function that maps variables to elements of the semantic domains
corresponding to their types. We denote by s{x 7→ v} the store that results from



Table 1. Axioms and rules for expression specifications.

{F n} n {F} {F b} b {F} {λs. F (s x) s} x {F}

{P} e {λv. F ([[� ]] v)}
{P} � e {F}

{P} e1 {G} {G v1} e2 {λv2. F ([[? ]] v1 v2)}
{P} e1 ? e2 {F}

Table 2. Axioms and rules for command specifications.

{P} skip {P}
{P} e {λv. λs. Q s{x 7→ v}}

{P} x := e {Q}
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}

{P} e {F} {F true} c1 {Q} {F false} c2 {Q}
{P} if e then c1 else c2 {Q}

{P} e {F} {F true} c {P}
{P} while e do c {F false}

Table 3. Consequence rules for specifications.

P ⇒ P ′ {P ′} e {F}
{P} e {F}

P ⇒ P ′ {P ′} c {Q}
{P} c {Q}

{P} c {Q′} Q′ ⇒ Q

{P} c {Q}

mapping x to the value v in s. A standard large-step operational semantics can
then be defined: [[e ]] s ⇓ v denotes that evaluation of e in s results in v : [[τ ]]
(where τ is the expression’s type), and [[c ]] s ⇓ s′ denotes that execution of c in
s results in a new store s′.

A predicate P : PredΓ is defined as a function that takes a store and returns a
proposition, i.e. PredΓ = Store Γ → Set. A specification for commands is a Hoare
triple {P} c {Q}, where P and Q are predicates; {P} c {Q} is valid if for all
initial stores s : Store Γ , if P s and [[c ]] s ⇓ s′, for some final state s′ : Store Γ , then
Qs′. Instead of the classical approach, which embeds expressions in predicates,
we use specifications for expressions of the form {P} e {F}, where Γ ` e : τ and
F : [[τ ]] → PredΓ . {P} e {F} is valid if for all s : Store Γ , if P s and [[e ]] s ⇓ v for
some value v : [[τ ]], then F v s. This approach facilitates the encoding of Hoare
Logic in our type language and allows extensions of while where expressions
can have side-effects, e.g. supporting Pascal-like functions.

The axioms and inference rules for deriving specifications are given in Ta-
bles 1 and 2. Table 3 provides the inference rules for strengthening precon-
ditions and weakening postconditions. P ⇒ Q denotes that the proposition
Π s :Store Γ. P s → Qs is provable in the type language. Soundness can easily be
proved: if a specification is derivable then it is valid.

In this formulation of Hoare logic, proof of specifications is undecidable: some
inference rules contain unknown predicates in their premises. In the case of
binary operators, sequential composition and if, weakest preconditions [3] solve
the problem. For example, in the case of sequential composition {P} c1; c2 {Q},
the unknown predicate R that is required in Table 2 as the assertion between
c1 and c2 can be calculated as the weakest precondition wp[c2](Q) (see Table 5
on the next page). However, in the case of while and strengthening/weakening,
decidability can only be achieved by annotating the program with predicates and
proofs. We therefore define an annotated while language. Annotations provide



Table 4. Extra rules for specifications in the annotated language.

{P} assert [p : P ⇒ Q] {Q}

{P} e {F} {F true} c {P}
{P} inv [P ] while e do c {F false}

{Q} e {F}
{P} assert [p : P ⇒ Q], e {F}

Table 5. Weakest preconditions for expressions and commands.

wp[n](F ) = F n
wp[b](F ) = F b
wp[x](F ) = λs. F (s x) s
wp[� e](F ) = wp[e](λv. F ([[� ]] v))
wp[e1 ? e2](F ) =

wp[e1](λv1.wp[e2](λv2. F ([[? ]] v1 v2)))
wp[assert [p : P ⇒ Q], e](F ) = P

wp[skip](Q) = Q
wp[x := e](Q) = wp[e](λv. λs. Q s{x 7→ v})
wp[c1; c2](Q) = wp[c1](wp[c2](Q))
wp[if e then c1 else c2](Q) =

wp[e](λb. if b thenwp[c1](Q) elsewp[c2](Q))
wp[inv [P ] while e do c](Q) = P
wp[assert [p : P ⇒ Q]](Q′) = P

Table 6. Well definedness of weakest preconditions for expressions and commands.

` wp[n](F ) ` wp[b](F ) ` wp[x](F )
` wp[e](λv. F ([[� ]] v))

` wp[� e](F )

` wp[e2](λv2. F ([[? ]] v1 v2))
` wp[e1](λv1.wp[e2](λv2. F ([[? ]] v1 v2)))

` wp[e1 ? e2](F )

wp[e](F ) ⇔ Q

` wp[assert [p : P ⇒ Q], e](F )

` wp[skip](Q)
` wp[e](λv. λs. Q s{x 7→ v})

` wp[x := e](Q)

` wp[c2](Q) ` wp[c1](wp[c2](Q))

` wp[c1; c2](Q)

` wp[c1](Q) ` wp[c2](Q) ` wp[e](λb. if b thenwp[c1](Q) elsewp[c2](Q))

` wp[if e then c1 else c2](Q)

` wp[c](P ) ` wp[e](G) P ⇔ wp[e](λb. if b thenwp[c](P ) else Q)

` wp[inv [P ] while e do c](Q)

Q ⇔ Q′

` wp[assert [p : P ⇒ Q]](Q′)

invariants for while statements. Moreover, all uses of strengthening/weakening
are made explicit and require the use of assert. The new syntax is:

e : AExprΓ ::= n | b | x | � e | e ? e | assert [p : P ⇒ Q], e
c : ACommΓ ::= skip | x := e | c; c | if e then c else c | inv [P ] while e do c

| assert [p : P ⇒ Q]

where P,Q : PredΓ and p is a proof of P ⇒ Q. The additional inference rules
for the annotated language are given in Table 4.

In the annotated language, we use weakest preconditions to make proof of
derivations decidable. Weakest preconditions are defined in Table 5. Nevertheless
these equations do not guarantee the well definedness of weakest preconditions,
because of the presence of annotations. The rules in Table 6 are required for this
purpose. The judgement P ⇔ Q denotes a decidable notion of equivalence be-
tween predicates, which allows substitution of equals for equals in specifications.



Syntactic or αβηι-equality are strong equivalence relations for predicates, but
sufficient for this purpose. A weaker notion of equivalence would result in fewer
explicit assertions, as well as more freedom in formulating predicates.

Our results can be summarized in the three theorems that follow. It can be
proved that the logic of the annotated language is compatible with standard
Hoare logic for while, i.e. by removing annotations one preserves typing, op-
erational semantics and derivation of specifications (Theorem 1). Furthermore,
weakest preconditions are not only correct but also exact, for the annotated
language (Theorem 2). Proving specifications is now decidable: given a decid-
able equivalence relation between predicates, it is possible to decide the well
definedness of a weakest precondition and, thus, to decide the derivability of
specifications (Theorem 3).

Theorem 1 (annotations preserve typing, semantics and logic)
Let e : AExprΓ and c : ACommΓ . Let e′ : Expr and c′ : Comm be the results of
removing all annotations from e and c. Then:

1. If Γ ` e : τ then Γ ` e′ : τ . If Γ ` c then Γ ` c′.
2. If [[e ]] s ⇓ v then [[e′ ]] s ⇓ v. If [[c ]] s ⇓ s′ then [[c′ ]] s ⇓ s′.
3. If {P} e {F} is derivable then {P} e′ {F} is derivable. If {P} c {Q} is

derivable then {P} c′ {Q} is derivable.

Proof sketch All parts are proved in a straightforward way, by induction on
the derivation of the annotated version. �

Theorem 2 (weakest preconditions are correct and exact)
1. If wp[e](F ) is defined, then {wp[e](F )} e {F} is derivable. Conversely, if
{P} e {F} is derivable, then wp[e](F ) is defined and P ⇔ wp[e](F ).

2. If wp[c](Q) is defined, then {wp[c](Q)} c {Q} is derivable. Conversely, if
{P} c {Q} is derivable, then wp[c](Q) is defined and P ⇔ wp[c](Q).

Proof sketch Part (1): The direct is proved by induction on the derivation
that wp[e](F ) is defined. For the converse, both subparts are proved simultane-
ously by induction on the derivation {P} e {F}. Part (2): The direct is proved
by induction on the derivation that wp[c](Q) is defined, using part (1). For the
converse, both subparts are proved simultaneously by induction on the deriva-
tion {P} c {Q}, using part (1). �

Theorem 3 (decidability of proving specifications)
Proving specifications {P} e {F} and {P} c {Q} is decidable.

Proof sketch It is trivial to check that the well definedness of weakest precon-
ditions is decidable, according to Table 6. Consider the algorithm which answers
“yes” if and only if wp[e](F ) is defined and P ⇔ wp[e](F ). If the algorithm an-
swers “yes”, then the direct of part (1) of Theorem 2 guarantees that {P} e {F}
is derivable. Conversely, if {P} e {F} is derivable, then the converse of part
(1) of Theorem 2 guarantees that the algorithm will answer “yes”. Similarly for
commands. �



4 Example

Let us consider the following simple while program p. Assuming that the initial
value of n is positive, this program computes in m the integer part of log2(n).

m := 0; while n > 1 do (n := n div 2; m := m + 1)

An appropriate specification for p, provable in Hoare logic, is the following:

{λs. s n ≥ 1 ∧ s n = X} p {λs. 2s m ≤ X < 2s m+1}

However, the proof of this specification in standard Hoare logic requires an ap-
propriate invariant for the loop to be found. Such an invariant is:

λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0

If this invariant is given by the programmer as an annotation, the rest of
the proof is relatively simple and may be conducted automatically, provided
that the proof checker has access to a theory for integer arithmetic and limited
theorem-proving capabilities. In our prototype implementation, this is not the
case. With an equivalence relation for predicates as strong as αβηι-equality,
several annotations and proofs must be included before the proof checker can
automatically deduce the specification’s proof. The full annotated program is:

assert [p1 : (λs. s n ≥ 1 ∧ s n = X) ⇒ (λs. X/20 = s n ∧ s n ≥ 1 ∧ s n = X)];
m := 0;
inv [λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0]
while assert [p2 : (λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0) ⇒

(λs. (if gt (s n) 1 then

(λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0 ∧ s n > 1)
else

(λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0 ∧ s n ≤ 1)) s)],
n > 1

do assert [p3 : (λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0 ∧ s n ≤ 1) ⇒
(λs. X/2s m+1 = s n/2 ∧ s n/2 ≥ 1 ∧ s m + 1 ≥ 0)];

n := n div 2;
m := m + 1;

assert [p4 : (λs. X/2s m = s n ∧ s n ≥ 1 ∧ s m ≥ 0 ∧ s n ≤ 1) ⇒
(λs. 2s m ≤ X < 2s m+1)]

where p1, p2, p3 and p4 stand for the proofs of four implications that the proof
checker cannot automatically deduce. The reader can easily verify that they are
simple proofs (p4 is the hardest). If a weaker equivalence relation was chosen,
these proofs and the corresponding assert annotations would not be needed.

5 Conclusion

We have shown how certified programs can be represented in a high-level im-
perative language with proof hints as annotations. Specifications are written in



the form of Hoare triples and proof checking is decidable and efficient. The an-
notated language is consistent to the original in terms of typing, operational
semantics and validity of specifications. In this way, we combine the benefits of
using Hoare logic, a well studied formal system for program verification, in a
type-theoretic foundational proof-carrying code setting. For further details and
examples, the reader is referred to the companion technical report [17].
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