
; ;

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών
και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής
και Υποοιστών

Υοποίηση μιας μεοδοοίας αναοίτν
ασισμένη σε backpointers

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΕΥΘΕΡΙΟΣ ΚΡΗΤΙΚΟΣ

Επιέπν : Νικόαος Σ. Παπασπύρου
Επίκ. Καηητής Ε.Μ.Π.

Αήνα, Σεπτέμριος 2012

; ;

; ;

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών
και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής
και Υποοιστών

Υοποίηση μιας μεοδοοίας αναοίτν
ασισμένη σε backpointers

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΕΥΘΕΡΙΟΣ ΚΡΗΤΙΚΟΣ

Επιέπν : Νικόαος Σ. Παπασπύρου
Επίκ. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 19η Σεπτεμρίου 2012.

. .

Νικόαος Παπασπύρου
Επίκ. Καηητής Ε.Μ.Π.

. .

Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

. .

Ευστάιος Ζάος
Καηητής Ε.Μ.Π.

Αήνα, Σεπτέμριος 2012

; ;

. .

Εευέριος Κρητικός
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright c© Εευέριος Κρητικός, 2012.
Με επιφύαξη παντός δικαιώματος. All rights reserved.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου ή
τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή ια
σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να αναφέρεται
η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν τη ρήση της
ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.
Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον συραφέα
και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού Μετσόιου
Πουτενείου.

; ;

Περίηψη

Ο κάδος της τυπικής επαήευσης ασοείται με την απόδειξη της ορότητας προραμμάτν
και αορίμν. Καώς αυξάνεται -εκετικά- η πουποκότητα τν υποοιστικών συστημάτν
αά και ενσματώνονται σε καίρια σημεία, εντείνεται η ανάκη να υπάρουν αδιαμφισήτητες
ευήσεις ότι ένα πρόραμμα α έει την επιυμητή συμπεριφορά.

Ένα από τα πιο ενδιαφέροντα προήματα στην περιοή της τυπικής επαήευσης είναι
το πρόημα framing. Σε αυτή τη διπματική ερασία ασοούμαστε με μια νέα μέοδο
που επεκτείνει τις μέρι σήμερα μεοδοοίες αντιμετώπισης του προήματος framing, τους
backpointers.

Οι backpointers επεκτείνουν την εκφραστικότητα τν προδιαραφών παρέοντας τη δυνα-
τότητα αναφοράς σε αντικείμενα μη προσάσιμα από τη τρέουσα στοία. Δημιουρήσαμε μια
υοποίηση τν backpointers ια τη Chalice, μια αντικειμενοστραφή και concurrent ώσσα
προδιαραφών που ρησιμοποιεί implicit dynamic frames και fractional permissions. Τέος,
ρησιμοποιήσαμε την επέκταση αυτή ια την απόδειξη της ορότητας μιας ταυτόρονης δομής
δεδομένν, τις copy-on-write ίστες και του priority inheritance protocol. Σύμφνα με την
έρευνα μας είναι η πρώτη προσπάεια απόδειξης ενός προράμματος αυτής της κατηορίας με
ρήση αυτόματης επαήευσης.

Λέξεις κειδιά
backpointers, Chalice, τυπική επαήευση, προδιαραφές, copy-on-write ίστες, τυπικές μέο-
δοι, πρόημα framing, implicit dynamic frames, fictional disjoint δομές δεδομένν, priority
inheritance protocol

5

; ;

; ;

Abstract

Solid guarantees that a computer program will behave the desired way is only possible by
formal verification. As the complexity of designs grows exponentially and computer systems
are used in critical applications, it becomes increasingly important to prove the correctness
of algorithms.

One of the most challenging problems in formal specification and verification is the framing
problem. In this thesis we propose an new formalism that extends the current methodologies
targeting the framing problem: Backpointers.

Backpointers increase the expressiveness by allowing specifications to include objects not
accessible from the current stack. We implemented this approach in Chalice, an object-
oriented and concurrent specification language that uses implicit dynamic frames and fraction-
al permissions. Finally, by using this extension of Chalice we worked on proving the validity
of a concurrent implementation of copy-on-write lists and the priority inheritance protocol.
To the best of our knowledge this is the first attempt to prove a program from this family of
problems using an automated verifier.

Key words
backpointers, Chalice, verification, specification, copy-on-write lists, formal methods, framing
problem, implicit dynamic frames, fictional disjoint datastructures, priority inheritance prolo-
col

7

; ;

; ;

Ευαριστίες

Θα ήεα να ευαριστήσ τον Γιάννη Κασσιό ια την ευκαιρία που μου έδσε να δουέψ
πάν σε ένα πάρα πού ενδιαφέρον έμα στο τομέα τν τυπικών μεόδν καώς ια την πού
ευάριστη και καρποφόρα συνερασία που είαμε.

Επίσης τον καηητή και υπεύυνο της διπματικής κ. Νίκο Παπασπύρου και τον καηητή
κ. Στάη Ζάο ια αυτά που μου έμααν όσο ήμουν στο πουτενείο.

Τέος, έ να ευαριστήσ την οικοένειά μου ια την στήριξή και την υπομονή τους όα
αυτά τα ρόνια καώς και τους φίους μου που συμπαραστάηκαν.

7c8e21f6bab324679072568a1b39585f2792cbf68072466e5a7b471ddb56f0a4f93efdb09a2ed7e-
97abb0d968a56003c661000a86f671fed78feeb4e645d8485

Εευέριος Κρητικός,
Αήνα, 19η Σεπτεμρίου 2012

Η ερασία αυτή είναι επίσης διαέσιμη ς Τενική Αναφορά CSD-SW-TR-1-12, Ενικό Μετσόιο Πο-
υτενείο, Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών, Τομέας Τενοοίας Πη-
ροφορικής και Υποοιστών, Εραστήριο Τενοοίας Λοισμικού, Σεπτέμριος 2012.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9

http://www.softlab.ntua.gr/techrep/
ftp://ftp.softlab.ntua.gr/pub/techrep/

; ;

; ;

Contents

Περίηψη . 5

Abstract . 7

Ευαριστίες . 9

Contents . 11

List of Figures . 13

Listings . 15

1. Introduction . 17

2. Background . 19
2.1 The evolution of verification methodologies 19

2.1.1 The framing problem . 19
2.1.2 Relative work on the framing problem 19
2.1.3 Implicit dynamic frames . 21
2.1.4 Fractional and Counting permissions 22
2.1.5 Verification Condition Generation (VCG) 23

2.2 SMT solvers and Z3 . 23
2.3 Boogie . 25
2.4 Chalice . 30
2.5 Translating Chalice into Boogie . 43

3. Backpointers in Chalice . 47
3.1 Backpointers . 47
3.2 Backpointer encoding . 47
3.3 Aggregates . 50
3.4 Axioms . 54
3.5 Framing syntax . 57
3.6 Triggering - “use axiom” syntax . 57

4. Applications of Backpointers . 61
4.1 Copy-on-Write Lists . 61

4.1.1 Programmer’s code . 62
4.1.2 Interface Specification . 66
4.1.3 Verification . 68

4.2 Priority Inheritance Protocol (PIP) . 71

11

; ;

5. Conclusion . 75
5.1 Results . 75
5.2 Related work . 75
5.3 Future work . 77

Appendices

A. Copy-on-Write lists program listing . 79

B. Priority inheritance protocol program listing 85

C. Source code and tools . 87

Bibliography . 89

12

; ;

List of Figures

2.1 Boogie expressions . 26
2.2 Boogie’s statement grammar . 28
2.3 A object’s life cycle . 33
2.4 Sequence syntax of Chalice . 43
2.5 Exhale and Inhale operations . 45
2.6 Translation of Chalice statements into Boogie code 46

3.1 Assignment on a tracked field . 49
3.2 Triggering functions per axiom . 59

4.1 Making a copy of a copy-on-write list . 62
4.2 Changing a non-shared node (n2); no copying 62
4.3 Changing a shared node (n4) implies copying 63
4.4 Changing a shared node with refCount . 63
4.5 Changing a shared node with refCount and transRefCount 69
4.6 An instance of PIP . 72

13

; ;

; ;

Listings

2.1 A Cell with dynamic frames . 20
2.2 A Cell with implicit dynamic frames . 21
2.3 A Cell with permissions hidden with an abstract predicate 22
2.4 Example SMT theory . 24
2.5 SMT prover result . 24
2.6 Fictional disjoint Cell . 36
2.7 Fictional disjoint Cell with interface fixed . 39
2.8 Interface of linked lists expressed in terms of sequences 42
3.1 Simple example with backpointers . 48
3.2 Chalice code . 48
3.3 Boogie code produced from Chalice code 3.2 48
3.4 Boogie backpointer prelude . 48
3.5 Boogie code for assignment on tracked field 49
3.6 Using the cardinality of a backpointer set . 50
3.7 Sum aggregate usage . 50
3.8 Boogie backpointer prelude (aggregates) . 51
3.9 Boogie code for assignment on tracked field with aggregates 52
3.10 Boogie code: changing an int field of an object that belongs to a backpointer 53
3.11 Example usage of “use-axiom” syntax . 58
4.1 Copy-on-Write lists: Program listing . 63
4.2 Specification of the List interface . 67
4.3 Simple client for the List interface in listing 4.2 67
4.4 The addOneToTransRefCount method . 70
4.5 The priority inheritance protocol user code 71
A.1 Copy-on-Write lists: complete program listing 79
B.1 Priority inheritance protocol: complete program listing 85

15

; ;

; ;

Chapter 1

Introduction

Formal verification of computer programs is the art of proving the correctness of programs
using formal methods of mathematics; it has been a very active field of research in Computer
Science for some time now [Hoar69]. There have been a lot of advances using various ap-
proaches; one of them is automated program verification.

Automated program verification is based on a tool, the verifier; the user provides the
source code as well as the desired specification and the verifier proves the validity of the
program with little or no help from the user. The specifications are written in a language based
on a mathematical framework and in some cases they are integrated into the programming
language of the source code. The language along with the underlying framework and optional-
ly a set of rules, which determine which programs are valid, are sometimes called a verification
methodology.

One of the most challenging problems in formal specification and verification is the framing
problem. In an ordinary imperative language, a formalism is used in the semantics of a
statement to define which part of the heap is affected by this statement. When seen from an
object-oriented perspective, the specification of a class and its methods cannot and should
not speak about the whole heap, but rather depend only on locally accessible objects; in this
object-oriented setting, preserving abstraction boundaries in the specifications is of utmost
importance. Since Hoare Logic, many new methodologies have been proposed that attempt
to solve the framing problem, some of the most notable ones being Separation Logic and
Dynamic Frames.

Formal verification is hard. Formal verification for concurrent programs is even harder as
verification methodologies should be able to prove complex properties, such as absence of
race conditions and deadlocks. One of the most useful approaches in a concurrent setting is
the methodology of implicit dynamic frames that use fractional and counting permissions to
reason about race conditions in a very concise way.

Chalice is an object-oriented language and its concurrency model supports threads and
shared objects using monitors. Chalice, as a specification language, has been proved successful
in verifying the correctness of concurrent algorithms and datastructures using the aforemen-
tioned methodology of implicit dynamic frames. Chalice also supports monitor invariants, a
methodology that is very important in verifying object-oriented programs.

While specification methodologies that focus on solving the framing problem succeed
in describing a plethora of problems, there are cases where these techniques fail to give a
good solution, for example in programs whose specifications and invariants do not depend
on objects that are visible from the current frame while they still have a degree of locality.
More specifically there are cases where the invariants of an object a depend on other objects
directly pointing to a through some field.

Backpointer methodology tries to attack exactly this type of problems. In this thesis we
base our work on implicit dynamic frames, a methodology that builds upon dynamic frames,
liberating the user from writing frame annotations by replacing them with access permissions,
in a style that reminds us of the separation logic frame rule. A backpointer (A.b)−1 on an
object b is the set of all objects a of type A that point to b through the field A.b. We extended

17

; ;

Chalice to support this new formalism and made some extensions and changes to the existing
implementation.

Using this extension of Chalice we worked on proving the validity of a challenging algo-
rithm from the area of fictional disjointed datastructures, a concurrent implementation of
copy-on-write lists. Similar problems have been investigated in the past [Mehn12] and are
interesting verification challenges. To the best of our knowledge this is the first attempt to
prove a program from this family of problems using an automated verifier.

In the following chapters we first introduce the basic methodology (section: 2.1) and the
tools (Z3 and Boogie, sections: 2.2 and 2.3) that Chalice depends on. Then, we will introduce
Chalice in section 2.4 and the technical details of its implementation in section 2.5. Afterward,
in chapter 3 the methodology of backpointers is introduced with the respective extensions of
Chalice. In chapter 4 we show how our formalism can be used to verify complex concurrent
programs, using one example from the family of fictional disjointness datastructures and
one concurrent datastructure from system programming. We explain the concurrent copy-on-
write lists implementation (section 4.1) and give a specification, proving it using Chalice with
Backpointers. We also provide a verification for the priority inheritance protocol (section 4.2)
based on backpointers. Finally, in chapter 5 we show the results of our work and give directions
on how this work can be extended in the future.

18

; ;

Chapter 2

Background

2.1 The evolution of verification methodologies

2.1.1 The framing problem
One of the most important challenges of program specification and verification is the framing
problem. To describe the framing problem we will study an assignment statement in a
framework similar to Hoare logic. Such as assignment will have the following form:

{. . .} x := 42 {x = 42}
While the changes in variable x are fully specified, the aforementioned code is not a

complete specification because of the unknown modifications that may occur to the other
variables of the program. This problem is especially intensified in case of an infinite heap
space. Moreover, when writing a specification for an object oriented programming language
it is of utmost importance that the specifications do not cross the abstraction boundaries; the
specification must only refer to fields or functions accessible to the client in order to preserve
the modularity of the code.

2.1.2 Relative work on the framing problem
There are many approaches that address the framing problem:

• Separation logic

• Dynamic Frames

• Implicit dynamic frames

• Ownership and Universes type systems1

• Regional logic2

Separation logic [Reyn02] extends Hoare logic by using partial functions to model heaps
and assert the disjointness of two heaps as the disjointness of the two function domains. The
notation h |= l 7→ e implies that the partial function h (the heap) is defined in exactly one
position, at l, and has the value e. Using this notion of disjointness one can separate the heap
(hence the name of the methodology) into the part that is affected by a statement and a part
that is not affected.

The separating conjunction operator (∗) is used to denote propositions that are valid in
disjointed parts of the heap. With this formalism the frame rule can be expressed as:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

modifies(C) ∩ freevariables(R) = ∅

1 [Clar98, Mull02, Barn06, Diet07]
2 [Bane08]

19

; ;

This way, it is possible to reason locally about the statement C and then generalize to a
bigger heap with R as long as the two are disjoint and the variables that C modifies are not
mentioned in R.

On the other hand, the methodology of dynamic frames [Kass06] uses a different approach:
specification3 variables or specification functions4 are used to encode the set of locations that
a statement can affect, which is referred as the dynamic frame. This however requires that
the frame of a statement is explicitly annotated in its specification. By following the above
methodology, when a statement changes a variable, we can deduce that any variable that
belongs in a frame that is disjointed with the frame of the changed variable is not affected
by the statement.
� �

1 class Cell {
2 private int x;
3
4 Cell()
5 ..writes ?;
6 ensures getX() = 0;
7 ..ensures fresh(footprint());
8 {}
9

10 pure int getX()
11 ..reads footprint();
12 { return x; }
13
14 void setX(int value)
15 ..writes footprint();
16 ensures getX () = value;
17 ..ensures fresh(footprint() \ old(footprint()));
18 { x := value; }
19
20 ..pure set footprint()
21 .. reads footprint();
22 ..{ return { &x }; }
23 }
24
25 // Client code
26 Cell c1 := new Cell();
27 c1.setX(5);
28
29 Cell c2 := new Cell();
30 c2.setX(10);
31
32 assert c1.getX() = 5;
� �

Listing 2.1: A Cell with dynamic frames

An example written in the form of [Sman08] with an object-oriented Java-like setting
shown in listing 2.1 examines the specification of a boxed integer, a cell. Highlighted are
the parts that have to do with the dynamic frame bookkeeping. Expressions inside old()
are referring to the state just before the start of the method. We declare frames, i.e. sets of
locations, with the type set. The specification function footprint() defines all the locations
related to this class. Every method or function needs to declare its frame, i.e. the set of
locations it depends on, using reads or writes clauses. The constructor initializes footprint
with the location of x (&x). The set method restates that the fresh locations must be the ones

3 Specification variables, sometimes called ghost variables, are variables that are only used in the specification
and ordinary code cannot depend on them. Specification functions are functions that can depend on specification
variables and can be used in other specifications

4 If not specified otherwise the term function is used to denote pure functions without any side-effects

20

; ;

newly found in footprint, even though footprint is not changed, encoding the swinging
pivot property.

The dynamic frames theory improves separation logic by making the specification more
modular and enable hiding the internal implementation from the client. Additionally, it
supports sharing of locations between objects, something that was not possible with separa-
tion logic. One the other hand, explicitly encoding the frame for each method is cumbersome,
both for the developer and the tool used for the verification, something that the implicit
dynamic frames approach tries to solve.

2.1.3 Implicit dynamic frames
Implicit dynamic frames [Sman09] extend the logic used in specification with permissions.
A permission to a location is needed in order, for the code and the specification, to refer to
that particular location. From the specification, one can then infer an upper bound of the
set of locations writable or readable by the corresponding method. Reminiscent of separation
logic’s frame rule, programmers write access assertions in a linear logic style multiplicative
conjunction, with the access permission to a location acc(x) being the equivalent of x 7→ in
Separation Logic [Park11]. At the same time this formalism uses explicitly written annotations
in the specifications in order to supply the frame of a method and access permissions can be
encoded in specification predicates or functions the same way it is done in dynamic frames.
� �

1 class Cell {
2 int x;
3
4 Cell()
5 ensures ..acc(this.x) ∧ getX() = 0;
6 { this.x := 0; }
7
8 void setX(int v)
9 requires ..acc(this.x);

10 ensures ..acc(this.x) ∧ getX() = v;
11 { this.x := v; }
12
13 pure int getX()
14 requires ..acc(this.x);
15 { return this.x; }
16
17 void dispose()
18 requires ..acc(this.x)
19 // no ensures
20 { /* delete x */ }
21 }
22
23 // Client code
24 Cell c1 := new Cell();
25 c1.setX(5);
26
27 Cell c2 := new Cell();
28 c2.setX(10);
29
30 assert c1.getX() = 5;
31 c1.dispose()
32 assert c2.getX() = 10; // fails!
� �

Listing 2.2: A Cell with implicit dynamic frames

The previous cell example written with implicit dynamic frames formalism [Sman09],
listing 2.2, uses the access permission on x wherever the specification or the implementation

21

; ;

needs access to this location. We know that when a permission to a particular location is lost
then we have no way of knowing what happens to that location, and thus can assert nothing
about it.

We can improve on this example by hiding the permission on this.x in an abstract
predicate [Park05]. This way the internal field x is hidden from the client. The resulting code
is shown in listing 2.3. In this example an extra method swap() is provided. Keep in mind
that permissions and abstract predicates as expressed in [Sman09] are resources, meaning
that one cannot assume that:
� �

1 acc(this.x) =⇒ acc(this.x) ∗ acc(this.x)
� �

This predicate valid is used by the client of the class as a token with which the client can
use the interface of Cell. All methods and functions of Cell take it as a requirement and
ensures its validity as a postcondition.
� �

1 class Cell {
2 int x;
3
4 Cell()
5 ensures ..valid() ∧ getX() = 0;
6 { this.x := 0; }
7
8 void setX(int v)
9 requires ..valid();

10 ensures ..valid() ∧ getX() = v;
11 { this.x := v; }
12
13 predicate bool ..valid()
14 { return ..acc(this.x); }
15
16 pure int getX()
17 requires ..valid();
18 { return this.x; }
19
20 void swap(Cell c)
21 requires ..valid() ∗ c 6= null ∧ ..c.valid();
22 ensures ..valid() ∗ ..c.valid();
23 ensures getX() = old(c.getX());
24 ensures c.getX() = old(getX());
25 { int i := x; x := c.getX(); c.setX(i); }
26 }
� �

Listing 2.3: A Cell with permissions hidden with an abstract predicate

2.1.4 Fractional and Counting permissions
When considering a multi-threaded environment where many threads can operate on the same
data/objects, one can argue that many threads must have permission on the same location
at the same time. Of course we want to exclude the possibility of two threads reading and
writing on the same location, without a predefined ordering of operations, creating a race
condition. In order to avoid this we can impose a simple rule: either only one thread can
write (and read) on a location and no one else can access it or multiple threads can read
from the same location but no one can write to it. Given this scheme one can think of two
types of permissions, given an implicit dynamic frames setting, a write permission and a read
permission. Write permissions must be unique while read permissions on the same location
can exist in many copies, and the existence of a read permission must exclude the write

22

; ;

permission. One way to think of it is to model the access permission on a location as an
quantity that can be split; this is the methodology of fractional permissions, proposed by
[Boyl03] and used by [Zhao07]. The permission has initially the value 100% and is preserved
(there is no way to make more of this). Access permissions are fractions of this quantity, for
example, one can have 50% access on some field x. When a thread has the full permission,
i.e. 100%, then it has write access on the location while anything less than 100% is a read
permission. By having a permission (100% or less), it is possible to split this permission
into multiple (read) permissions, and thus a client can spawn threads that read of the same
variable. Furthermore, when the threads terminate and join in the client, they return their
permissions and the client can sum them up, regaining the original permission. Notice that
by using this scheme only one thread can have write permission at any given time. There
is also a alternative way to split access permissions, called counting permission [Born05] in
which we use indivisible infinitesimal permission fractions called epsilon permission. Epsilon
permissions are essentially read permissions.Note that in this methodology, we keep a counter
of how many epsilon permissions were subtracted from a fractional permission; therefore, it
can always be restored. This technique is useful when it is required to know how many objects
have access to a specific location.

2.1.5 Verification Condition Generation (VCG)
There are many proposed ways to check or verify specifications: some methodologies make
use of a proof assistants while others use run-time assertions checked by the run-time system,
e.g. [Meye97, Cheo02]. Model checking [Clar82, Quei82], abstract interpretation [Cous77] and
symbolic execution [King76] are also common techniques in formal verification. Finally, some
methodologies make use of type-systems to express the desired behavior. In the context of
automated verification, verification condition generation is a methodology for proving the
validity of a program given its specifications. With this methodology, logic formulas are
generated based on the source code and the specifications called verification conditions, or
VC; the validity of these verification conditions implies the correctness of the original code
against the specifications. VCs are usually first-order logic formulas and can be given to an
independent proving tool to be verified. Popular proving tools used with this methodology
are SMT (Satisfiability Modulo Theories) solvers like Z3. For a comparative study of VCG
and symbolic execution see [Kass12b].

VCG is so popular that there are tools and libraries, such as Why/Why3 5 [Fill03, Bobo11]
and Boogie, that assist in the generation of VCs. Boogie from [Lein08] is a intermediate
language that assists in the VCG process, acting as a proxy for VC generation. When building
a verification tool for some other language one can translate the source language into Boogie
code and then Boogie is responsible for generating the appropriate VCs and prove them (using
some SMT solver). In fact, this is exactly the technique used in the verification tool Chalice,
that is the implementation target of this thesis.

2.2 SMT solvers and Z3
Satisfiability Modulo Theories (SMT) is a research domain of mathematics and computer
science that has produced many valuable results. SMT solvers are an extension to SAT
solvers that can handle mathematical theories with equality; these solvers usually support
the decision problem for some theory and also provide a model for that theory if it is proved
satisfiable.

A common input and output languages for SMT solvers is the SMT-LIB version 2 language

5 http://why.lri.fr/, http://why3.lri.fr/

23

http://why.lri.fr/
http://why3.lri.fr/

; ;

([Barr10a] and [Barr10b] and a good tutorial: [Cok12]) developed by the SMT-LIB initiative6.
In this language, that bears many similarities in its syntax with LISP, theories can be
expressed and the validity of those can be verified by an SMT solver.
� �

1 (set-option :print-success false)
2 (set-option :produce-models true)
3 (set-option :interactive-mode true)
4 (set-logic QF_NIA) ; non-linear integer arithmetic
5 (declare-fun x () Int)
6 (declare-fun y () Int)
7 (declare-fun z () Int)
8 (assert (> x 0))
9 (assert (> y 0))

10 (assert (> z 0))
11 (assert (= (+ (* x x) (* y y)) (* z z)))
12 (check-sat)
13 (get-value (x y z))
14 (exit)
� �

Listing 2.4: Example SMT theory

In listing 2.4 we assert the existence of three integer variables x, y, z and some constrains
on them; these constrains are not-linear so in line 4 we use the integer theory without
the linearity restriction. We ask the prover about the satisfiability of this theory and a
corresponding model; in listing 2.5 we see the output of an SMT solver that proved the
theory and founding a model for it.
� �

1 sat
2 ((x 12)
3 (y 9)
4 (z 15))
� �

Listing 2.5: SMT prover result

There are many industrial strength tools that can prove the satisfiability of logic formulas,
such as Alt-Ergo7, CVC38, STP9, Yices10 and Z3. Our work is based on Z3 from Microsoft
Research11 [De M08]; Z3 can handle theories with linear arithmetic, nonlinear arithmetic,
bitvectors, arrays and datatypes, as well as empty theories.

Theories in SMT can include axioms with universal quantification; as a result the prover
cannot be complete (although modern provers manage to cope well with quantification). Z3
uses several approaches to handle quantifiers [Z3Qu]; the most prolific approach is using
pattern-based quantifier instantiation. The universal quantifier is annotated with a pattern:
an expression that mentions all the quantified variables. Then, whenever in the search space
ground-terms matching the pattern appear, the body of the quantifier is instantiated with
the values found in the pattern. Any expression can be used as a pattern; it is not required to
appear in the body of the quantifier. This method might, depending on the pattern, make Z3
incomplete and also put the decision procedure into a matching loop if newly created ground
terms transitively match the pattern that created them. Z3 uses many heuristics to break
matching loops which typically severely hinder the performance of the prover.

6 http://www.smt-lib.org/
7 http://ergo.lri.fr/
8 http://www.cs.nyu.edu/acsys/cvc3/
9 http://sites.google.com/site/stpfastprover/

10 http://yices.csl.sri.com/
11 http://z3.codeplex.com/

24

http://www.smt-lib.org/
http://ergo.lri.fr/
http://www.cs.nyu.edu/acsys/cvc3/
http://sites.google.com/site/stpfastprover/
http://yices.csl.sri.com/
http://z3.codeplex.com/

; ;

2.3 Boogie

Boogie from Microsoft Research12 is an intermediate verification language which is used as a
library to help with the verification condition generation procedure. It is used by a variety of
tools including Spec# [Barn05], VCC [Cohe09], Dafny [Lein10a] and of course Chalice.

The Boogie language is a simple procedural language focused on specifications with a
bounded space of global variables. Boogie features seven kinds of declarations: the mathemat-
ical constructs are types, constants, functions, and axioms while the imperative constructs
are global variables, procedure declarations, and procedure implementations.

Type declarations introduce type constructors. For example,
� �

1 type String;
� �

declares a type (more precisely, a nullary type constructor) intended to represent strings.
Types can be polymorphic by adding type variables to the type constructor, e.g.
� �

1 type Field a;
� �

is the type of fields of type a. Instantiations of Field can include Field int for the type of
all integer fields and Field String for all string fields. Boogie supports some basic build-in
types including int and bool. Boogie also supports possibly polymorphic maps also known
as update-able maps, non-rigid functions or heterogeneous arrays. Syntactically, the domain
types are listed within square brackets, followed by the range type. For example,
� �

1 type Permissions = [Reference]bool;
� �

makes Permissions a type alias of a map from References to booleans that could encode
the access permissions. Maps can have tuples13 as their domain and can be polymorphic. For
example
� �

1 type Heap = <a>[Reference,Field a]a;
� �

is a map from a Reference and a Field of type a to a and can model the heap. Symbolic
constants are introduced by constant declarations, like
� �

1 const emptyString : String;
� �

which denotes that emptyString is a fixed yet unspecified value of type String. Function
declarations introduce mathematical functions. For example,
� �

1 function length(String) returns (int);
� �

declares a function intended to return the length of Strings. A function may have more than
one return parameters, all written inside parentheses. Properties of constants and functions
are postulated by axiom declarations. For example,
� �

1 axiom length(emptyString) == 0;
� �

12 http://research.microsoft.com/en-us/projects/boogie/, http://boogie.codeplex.com/
13 Cartesian product

25

http://research.microsoft.com/en-us/projects/boogie/
http://boogie.codeplex.com/

; ;

says that length returns 0 for the emptyString.
The program state is created with mutable variables. Global variable declarations introduce

the state on which all procedure operate. For example,
� �

1 var heap: Heap;
� �

introduces the variable heap for holding the current state of the program. A procedure
declaration gives a name to a set of execution traces, which are specified by pre- and post-
conditions. For example,
� �

1 procedure NewFavorite(n: Wicket);
2 modifies favorite;
3 ensures favorite == n;
� �

Finally, an implementation declaration defines a set of execution traces by giving a body of
code. The implementation is correct if and only if its set of traces is a subset of the traces
specified by the corresponding procedure. For example,
� �

1 implementation NewFavorite(n: Wicket)
2 {
3 favorite := n;
4 }
� �

gives a correct implementation of the procedure NewFavorite. Procedures are specified via
pre- and post-conditions with a modifies clause used to encode which variables are affected
by each procedure. Inside procedures ordinary control-flow structures are available.

Boogie expressions include many of the usual constructs like constants, variables, equality
and arithmetic relations, boolean connectives, simple arithmetic operators and logical quanti-
fiers. Figure 2.1 is a useful but not complete list of Boogie expressions.

expr ArithmOp expr ArithmOp is an arithmetic operator
one of +, -, *, / or %

expr CompOp expr CompOp is a relational operator
one of ==, !=, <, <=, > or >=

!expr Negation
expr && expr Conjunction
expr || expr Disjunction
expr ==> expr Implication
expr <==> expr Equivalence
id(expr, expr, . . .) Function call
expr[expr] Map selection
expr[expr := expr] Map update
(forall var: type :: expr) Universal quantification
old(expr) Expression referring to the pre-state

Figure 2.1: Boogie expressions

Besides the usual expressions, Boogie supports selecting and updating syntax for maps.
Another worth mentioning feature is the ability to reference “old” expressions. Expressions
that are inside an old() expression refer to the pre-state, the state of the world just before the
method began. Universal quantification over, possibly infinite, domains is allowed in Boogie
expressions. Boogie also supports existential quantification, a feature not explored here.

26

; ;

When quantification is used, one can also supply triggers for the quantifier. Boogie triggers
are directly translated to patterns at SMT level. A trigger can be supplied just before the
body of the quantification, inside curly braces, as shown below.
� �

1 (forall a: A :: {trig1} {trig2} ...body...)
� �

Each trigger is a list of comma separated expression patterns that mention the bounded
variables of the quantification and maybe some of the visible variables or constants. For
example:
� �

1 function pow(a: int, n: int): int;
2 axiom (forall a: int, n: int :: { pow(a, n) }
3 pow(a, n) == if n == 0 then 1 else a * pow(a, n-1)
4);
5 axiom (forall a: int, b: int :: { (a * b) } (b * a) / b == a);
� �

Writing triggers that are too specific limits completeness but preserves soundness. There are
some restrictions on the use of triggers:

1. The list of terms in a trigger must include all bound variables of the quantifier.

2. A term listed in a trigger must not be a bound variable itself.

3. A trigger must not include logical operators or quantifiers.

Procedure implementations consist of ordinary statements found in most imperative lan-
guages but also support some constructs specific to program verification. Figure 2.2 is the,
almost complete, syntax of Boogie statements. Note that procedures and functions have
multiple return parameters and the assignment syntax can use multiple l-values at the same
time.

The Boogie statements related to specification and verification are:

1. loop invariant syntax.

2. assert statement

3. assume statement

4. havoc statement

Loop invariants are conditions that must be true before and after one run of the loop
body. Assert is used to force the prover to prove some property, in the form of a predicate,
at a particular point in the code. For example:

27

; ;

Body ::= { LocalVarDecl∗ StmtList }
LocalVarDecl ::= var Attribute∗ IdsTypeWhere+, ;

StmtList ::= LStmt∗ LEmpty?
LStmt ::= Stmt | Id : LStmt

LEmpty ::= Id : LEmpty?
Stmt ::= assert Attribute∗ Expr ;

| assume Attribute∗ Expr ;
| havoc Id+, ;
| Lhs+, := Expr+, ;
| call CallLhs? Id (Expr∗,) ;
| IfStmt
| while (Expr) LoopInv∗ BlockStmt
| break Id? ;
| return ;
| goto Id+, ;

Lhs ::= Id MapSelect∗
MapSelect ::= [Expr+,]
CallLhs ::= Id+, :=

BlockStmt ::= { StmtList }
IfStmt ::= if (Expr) BlockStmt Else?
Else ::= else BlockStmt | else IfStmt

LoopInv ::= invariant Attribute∗ Expr ;

Terminal symbols in the grammar are written in monospace font while non-terminal are
oblique. The usual notation (expr∗, expr+, expr?) for repetition and optional inclusion in

EBNF grammars is used while expr∗, or expr+, is used to denote repetition separated with
a comma (,).

Figure 2.2: Boogie’s statement grammar

28

; ;

� �

1 var a: int; var b: int; var c: int; var n: int;
2 a, b, c, n := 1, 1, 1, 3;
3 while (true)
4 invariant a >= 1;
5 {
6 a := a + 1;
7 while (true)
8 invariant b >= 1;
9 {

10 b := b + 1;
11 while (true)
12 invariant c >= 1;
13 {
14 c := c + 1;
15 while (true)
16 invariant n > 2;
17 {
18 assert pow(a, n) + pow(b, n) != pow(c, n);
19 n := n + 1;
20 assert pow(a, n)/a + pow(b, n)/b != pow(c, n)/c;
21 }
22 }
23 }
24 }
� �

In line 18 Boogie will try to prove the condition and, in case of failure, a warning message will
be produced. For the rest of the program the proposition of the assert statement is assumed
valid. Therefore, the next assert statement in line 20 will be easily proved.

Assume statements have the same effect as assert statements but the validity of the
proposition is not proved but instead is just assumed for the rest of the program. Turning
the first assert into an assume statement will not produce any errors.
� �

17 ...
18 ..assume pow(a, n) + pow(b, n) != pow(c, n);
19 n := n + 1;
20 assert pow(a, n)/a + pow(b, n)/b != pow(c, n)/c;
21 ...
� �

Using an assume statement might introduce a contradiction without a warning so it should
be used with caution. However, there are many cases where parts of the truth can only be
axiomatically assumed so assume statements are required.

Another feature that is not found in many ordinary programing languages is the havoc
statement. Havocing a variable has the effect of assigning to the variable an unspecified
“random” value (the type of the variable is preserved). It is not the same as assigning null to
the variable which is a specific value. A variable that has been havoced is a variable that we
know nothing about it so any assertion regarding that variable will fail. Havoc is usually used
in conjunction with a subsequent assume that limits the effects of havocing. For example:
� �

1 havoc x;
2 assume x*x - 5*x +6 == 0;
� �

will have the effect of setting x to one solution of the equation.
For a full reference of the Boogie language refer to [Lein08] and [Barn06].

29

; ;

2.4 Chalice

Chalice14 is an object oriented, specification language for concurrent programs and a verifica-
tion tool for that language. It supports the commonly encountered features of object oriented
languages such as encapsulation and modularity that play a significant role in formal speci-
fication. Chalice programs are translated into Boogie intermediate language and the Boogie
verification engine is used to prove the validity of program specifications.

Most of the imperative structures of Chalice are similar to the ones found in Boogie. From
now on we will focus on the concurrent features of Chalice, exploring them through a series
of examples.

Let’s assume that we want to model a cell; a simple datastructure whose only purpose
is to “box” a simple value. Chalice doesn’t support polymorphic types or classes (known as
generics in Java), so we will assume that this a integer cell.
� �

1 class Cell
2 {
3 var x: int;
4 }
� �

Let’s assume that we want to implement a method in the class Cell that doubles the
enclosed value. As mentioned before, Chalice uses implicit dynamic frames to solve the
framing problem, so we need to have access permission in order to access the x field.
� �

1 class Cell
2 {
3 var x: int;
4
5 method double()
6 requires acc(x)
7 ensures acc(x) && x == 2*old(x)
8 {
9 x := x*2;

10 }
11 }
� �

In the contract of the method double we add the permission acc(x) both in the precondition
and in the postcondition. The permission acc(x) (write permission or full permission) is
needed because we modify the variable x. This way we do not lose any permissions, and the
client of the method can subsequently access the field after using the call. In addition, we
add a post-condition that describes the effect of this method i.e. doubling of the value x.

A simple client for this method would be:
� �

1 class Client
2 {
3 method foo()
4 {
5 var c: Cell;
6 c := new Cell;
7 c.x := 21;
8 call c.double();
9 assert c.x == 42;

10 }
11 }
� �

14 http://www.pm.inf.ethz.ch/research/chalice/, http://research.microsoft.com/en-us/projects/
chalice/

30

http://www.pm.inf.ethz.ch/research/chalice/
http://research.microsoft.com/en-us/projects/chalice/
http://research.microsoft.com/en-us/projects/chalice/

; ;

Given the previous definition of Cell the assert statement will succeed. In Chalice every call
to a method has the effect of spawning a thread to run this method. So, in effect the previous
call to c.double() is syntactic sugar for:
� �

1 ...
2 fork tk := c.double();
3 join tk;
4 ...
� �

The fork statement creates a thread that will execute c.double() and return a token. This
token can then be used by a join statement that will wait for the previous thread to complete
the execution.

When a thread executes a method with a fork statement, it consumes all the access
permissions from the precondition of the method. That way, it is impossible for a second
thread to execute c.double() concurrently.
� �

1 method bar()
2 {
3 var c: Cell;
4 c := new Cell;
5 c.x := 21;
6 fork tk1 := c.double();
7 fork tk2 := c.double(); // fails!
8 join tk1;
9 join tk2;

10 assert c.x == 42;
11 }
� �

The second fork in this client would fail because at that point the calling thread does not
have the permission on x. One way to solve this is to introduce a read permission; instead of
double() we could have:
� �

1 class Cell
2 {
3 var x: int;
4
5 method returnDouble() returns (res: int)
6 requires rd(x)
7 ensures rd(x) && res == 2*old(x)
8 {
9 res := x*2;

10 }
11 }
� �

returnDouble(), a method that does not change the cell value but rather return it doubled.
We no longer have the full permission acc(x), just a read permission on x denoted by rd(x).
However, consuming a read permission does not imply that no read permissions are left; a
read permission can be split into arbitrary many copies. Using this implementation of Cell
the client becomes:
� �

1 class Client
2 {
3 method baz()
4 {
5 var c: Cell;
6 c := new Cell;
7 c.x := 21;

31

; ;

8 fork tk1 := c.returnDouble();
9 fork tk2 := c.returnDouble(); // no problem

10 var c1: int; var c2: int;
11 join c1 := tk1;
12 join c2 := tk2;
13 assert c1 == 42 && c2 == 42;
14 }
15 }
� �

The initial full permission, created when the Cell object was constructed, is split by the first
fork of c.returnDouble() into two read permissions, one consumed by the fork and one left
on the calling thread. This way, the calling thread has the necessary permission to fork one
more time the same method before joining them. Tokens tk1 and tk2 are used in fork and
join statements in order to retrieve the value returned by the methods. The assertion succeeds
in determining that both calls return the double of the initial value.

Access permission can be passed from caller to callee through a fork statement and vice
versa through a join statement. Access permissions can be lost but can only be created by
creating a new object. In particular a write permission can be split in arbitrary many read
permissions and read permissions can be subsequently split into more rd read permissions.
It is also worth noting that we cannot combine some read permissions to make a write one.
Using implicit dynamic frames and fractional access permissions ensures that no two distinct
threads can access the same place (field of an object) and cause a race-condition. Only a single
thread can have a write permission in a field while many threads can have read permissions
at the same time and read from the same location. For a more detailed presentation of read
permissions see [Heul11].

It is possible to solve the problem of concurrent access to the same resource using
thread locks on resources hence introducing the concept of monitors [Hoar74]. A monitor
is responsible for sequencing accesses to objects held by the monitor and pausing the thread
until access to the objects is safe.

In Chalice terms, an object is initially unshared, i.e. it cannot be held by any monitor
and is thread-local to the thread that created it. Sharing an object makes it available for
locking and assigns a monitor to that object. The process of locking an object by a thread is
called acquiring that object and the reverse is releasing. When an object o is acquired by an
thread we say that the object is held by the thread or that the thread has locked the object,
and the predicate holds(o) is true inside that thread. To make an object o available for
locking we use the syntax share o. The acquire statement is used to acquire an object from
the monitor while the release is used to release the object. An auxiliary statement share
acquire is supplied that atomically shares an object and acquires it in the current thread.
This statement was added during this thesis and is not part of the official release of Chalice.
The object’s life cycle is shown in figure 2.3.

In terms of access permissions, a monitor can hold access permissions just as a thread
can. Taking the lock on an object from the monitor is translated in consuming the access
permissions held by that monitor on the specific object. The access permissions held by a
monitor when the object is shared and not held by any thread are those specified by the
monitor invariant [Lein09b, sec. 4.0]. A monitor invariant is a set of predicates, along with
access permissions, that must be held when the object is shared and not locked. That means
that a thread can acquire an object, access it, change its state, but when it releases that object
back to the monitor, the state of the object must comply with the specification encoded in the
monitor invariant. Finally, before releasing, a thread must give back any permissions specified
by the monitor invariant.

Revisiting the cell example, we have modeled the Cell class so that the cell is shared.

32

; ;

..local.r := new R; .shared .held
.share r;

.share acquire r;

.acquire r;

.release r;

Figure 2.3: A object’s life cycle

� �

1 class Cell
2 {
3 var x: int;
4
5 invariant acc(x) && x % 2 == 0
6
7 method safeDouble()
8 {
9 acquire this;

10 x := x*2;
11 release this;
12 }
13 }
� �

The monitor invariant for the cell has full access to field x, and thus each thread that locks
a cell can change its value. We can also impose some other checks on the value of the cell, in
this example that the value must be an even number. The “thread-safe” version of doubling,
safeDouble(), first acquires the cell and then, when it is given the permission on x, can
change the value before releasing. A client for this method could be:
� �

1 class Client
2 {
3 method run(c: Cell)
4 requires c != null
5 {
6 while(true)
7 {
8 call c.safeDouble();
9 }

10 assert 42 == 17
11 }
12 }
� �

Multiple clients can run in parallel without any interference between them, since the
critical section of the value update is inside an acquire-release block.
� �

1 class Main
2 {
3 method main()
4 {
5 var c: Cell;
6 var client1: Client;
7 var client2: Client;
8 c := new Cell;

33

; ;

9 c.x := 2;
10 client1 := new Client;
11 client2 := new Client;
12 share c;
13 fork tk1 := client1.run(c);
14 fork tk2 := client2.run(c);
15 join tk1;
16 join tk2;
17 }
18 }
� �

Object invariants can been lengthy. It is common practice to break up the invariant into
logical blocks concerning particular parts of the implementation. This tactic is also followed
when some part of the invariant is “broken” i.e. does not hold at a particular point but the
rest of the invariant holds true. This is a common case when we have acquired an object,
changed its state, but have not finished processing it and some portion of its invariant is
not valid. With a extension of Chalice, proposed and implemented in this thesis, we have a
convenient way of expressing situations like this. Parts of the invariant can be named using
an identifier and a colon (:) just after the keyword invariant:
� �

1 class Cell
2 {
3 var x: int;
4 invariant Perm: acc(x)
5 invariant Even: x % 2 == 0;
6 ...
7 }
� �

Then in the specifications we can mention the invariants with the syntax object.invariant(
invariantNames); for example something like:
� �

41 ...
42 assert o.invariant(Perm);
43 ...
� �

means that in this particular point in the code we assert that we have write permission for
o.x. Replacing the name of the invariant with * implies that all the invariants hold at that
point. Also the syntax broken invariantNames can be used to denote that all the invariants,
except the ones named in it, hold. A common pattern emerges when a method is called to
fix the invariant of an object already acquired. We can use the same syntax with the holds
predicate:
� �

41 ...
42 assert holds(this, Perm);
43 assert holds(this, *);
44 assert holds(this, broken Even);
45 ...
� �

implying that the object this is acquired by the current thread and that the invariants
mentioned hold: only the Perm invariant, all the invariants and all but the Even invariants
respectively. For example the specification of a method of class Cell would be:
� �

1 class Cell
2 {
3 ...
4 method FixInv()

34

; ;

5 requires holds(this, broken Even);
6 requires (x + 1) % 2 = 0;
7 ensures holds(this, *)
8 {
9 x := x + 1;

10 }
11 }
� �

This syntax is inspired by considerate reasoning from [Summ10].
With this scheme we cannot know what is happening inside a cell and cannot assert

anything about the state of its value since we have no permission on the field x. All the
permissions are held by the monitor or by a thread that has locked the cell. The only thing
we can be sure about is that when we acquire a cell the value must be an even number, i.e.
only properties encoded in the monitor invariant.

Let’s study a more flexible version of the cell, one that enables read access from different
threads concurrently if the cell is shared and grants write access to the field x only if the
cell is “owned” by only one thread. We need two distinct classes for this scheme. One class is
the actual internal representation of the cell, called CellImpl and an interface, sentinel class,
called Cell. An actual cell can be accessed through multiple sentinel objects, and we need
to keep track of how many sentinels refer to that particular cell. This is done by introducing
reference counting and the corresponding integer field refCount. As long as refCount = 1
we know that the cell is not shared and we can change the value of x.

To model access permissions we need to consider the following limitations:

1. Each sentinel object needs at least read access to the implementation cell in order to
read its value.

2. If the cell is not shared we should be able the change the value.

By using read permissions (rd(x)) one cannot reconstruct a write permission and, in effect,
the write access is lost forever, even if only one has read access. We need a way to know
how many permissions are given away, or lost from the full permission, a methodology called
counting permissions [Born05]. We coin the notion of an infinitesimal read permission that
cannot be split called epsilon permission, symbolically ε. We also assert the existence of a read
permission that is created if we consume a defined finite number (k) of epsilon permissions,
symbolically written as: 100%−kε. An 100%−kε permission can be further split into arbitrary
more epsilon permissions, and can be joined with exactly k epsilons to form a full permission.

In our example we can assign one epsilon permission to each of the sentinel nodes and
store the in the monitor invariant remaining permission, in order to ensure that it will not be
lost. The remaining permissions are exactly 100%−refCountε. That way each sentinel has
access to the internal field x and if it is the only sentinel pointing to that cell (i.e. refCount
= 1) it can reconstruct the full permission and write onto the cell, by acquiring the internal
cell. When a sentinel finishes processing a cell it should return the epsilon permission on that
cell, by properly updating the refCount field.
� �

1 class CellImpl
2 {
3 var x: int;
4 var refCount: int;
5 invariant acc(refCount) && acc(x, 100 - rd(refCount))
6 }
7
8 class Cell
9 {

10 var c: CellImpl;
11

35

; ;

12 method set(x: int)
13 requires acc(c) && c != null && acc(c.x, rd(1))
14 ensures acc(c) && c != null && acc(c.x, rd(1))
15 ensures c.x == x
16 {
17 acquire c;
18 if (c.refCount == 1)
19 {
20 c.x := x;
21 release c;
22 } else {
23 ???
24 }
25 }
26 }
� �

The Chalice syntax for one epsilon permission on x is acc(x, rd(1)) while for the permission
100% − kε on x it is acc(x, 100-rd(k)). Note that in line 20 having acquired the internal
cell c and knowing that c.refCount = 1 we can conclude that we have full access on c.x
and so we can change it’s value. With this syntax it is also possible to specify exact fractions
[Boyl03] of the full permission and even mix them with counting permissions. For example
acc(x, 25) means 25% of the full permission and acc(x, 50+rd(42)) means 50% with 42
extra epsilon permissions. For example this expression:
� �

1 acc(x, 25) && acc(x, 50+rd(42)) && acc(x, 25-rd(42))
� �

is equivalent to a full permission.
The aforementioned methodology can be further illustrated by the following example:

assume that we want to build a complete interface for the sentinel objects Cell, providing
methods for creating new cells, copying existing cells, getting the value of a cell and setting
a value to a cell. Internally, a copy will be represented by a new sentinel node that will
point to the copied CellImpl after increasing the refCount value by one. When the cell is
assigned a value, if the cell is not shared, the code above will be used. If the cell is shared
(refCount > 1) then we will create a new internal cell, set its value and decrease the old
cell’s refCount. A possible code is shown in listing 2.6. The syntax of returning values from
a method is illustrated in line 30.
� �

1 class Cell
2 {
3 var c: CellImpl;
4
5 method init(x: int)
6 requires acc(c) && c == null
7 ensures acc(c) && c != null && acc(c.x, rd(1))
8 ensures get() == x
9 {

10 c := new CellImpl;
11 c.x := x;
12 c.refCount := 1;
13 share c;
14 }
15
16 method initCopy(other: Cell)
17 requires acc(c) && c == null
18 requires other != null && acc(other.c) && other.c != null &&
19 acc(other.c.x, rd(1))
20 ensures acc(c) && c != null && acc(c.x, rd(1))
21 ensures acc(other.c) && other.c != null && acc(other.c.x, rd(1))

36

; ;

22 ensures other.c.x == c.x
23 {
24 acquire other.c;
25 c := other.c;
26 other.c.refCount := other.c.refCount + 1;
27 release other.c;
28 }
29
30 method get() returns(res: int)
31 requires acc(c) && c != null && acc(c.x, rd(1))
32 ensures acc(c) && c != null && acc(c.x, rd(1))
33 ensures res == c.x
34 {
35 res := c.x
36 }
37
38 method set(x: int)
39 requires acc(c) && c != null && acc(c.x, rd(1))
40 ensures acc(c) && c != null && acc(c.x, rd(1))
41 ensures c.x == x
42 {
43 acquire c;
44 if (c.refCount == 1)
45 {
46 c.x := x;
47 release c;
48 } else {
49 c.refCount := c.refCount - 1;
50 release c;
51 c := null;
52 call init(x);
53 }
54 }
55 }
� �

Listing 2.6: Fictional disjoint Cell

Even though this is a accepted solution, it has one critical flaw. The client of the interface
Cell needs to know about the internals of its implementation. In order to preserve information
hiding and to abstract the implementation we introduce abstract predicates and functions.

Functions are pure expressions that are given a name and some necessary permissions.
Functions are side-effect free and simply express the state of the object, as viewed from the
domain specific point of the class. For example in our cell example the value of the cell could
be modeled into a function and so replace the get() method:
� �

1 function get(): int
2 requires acc(c) && c != null && acc(c.x, rd(1))
3 {
4 c.x
5 }
� �

Because Chalice functions are pure, they can be used in expressions and most importantly in
specification pre- and post-conditions. That way the specifications of the methods of a class
can be expressed in terms of it’s functions; i.e. the effect of the method that can be observed
through it’s public interface. This way we hide the internal representation of the class and
the client does not need to know anything about how the class is implemented. For example
the specifications of method set() becomes:

37

; ;

� �

1 method set(x: int)
2 requires acc(c) && c != null && acc(c.x, rd(1))
3 ensures acc(c) && c != null && acc(c.x, rd(1))
4 ensures ..get() == x
� �

Another example of the usage of functions in specifications could be the interface of a list:
� �

1 class List
2 {
3 ... // Implementation here
4
5 function at(i: int): int // value at index
6 ensures i < length()
7 { ... }
8
9 function length(): int // length of the list

10 { ... }
11
12 method deleteAll() // empties the list
13 ensures length() == 0
14 { ... }
15
16 method append(x: int) // append an element to the end of the list
17 ensures length() == old(length()) + 1
18 ensures (forall i: int :: i < old(length()) ==> at(i) == old(at(i)))
19 ensures at(length() - 1) == x
20 { ... }
21
22 method update(i: int, x: int) // update elemet at index i with value x
23 ensures length() == old(length())
24 ensures (forall j: int :: j < length() ==>
25 ite(i == j, at(j) == x, at(j) == old(at(j))))
26 { ... }
27 }
� �

The expression ite(a, b, c) has the semantics of if-then-else and is short-hand for (a ==> b
&& !a ==> c). The code does not include the actual method implementation and the required
permissions for simplicity.

As we can see from the code, the methods of class Cell need some, very specific, per-
missions and conditions in order to function properly. In particular, the predicate needed by
most methods is:
� �

1 acc(cell.c) && cell.c != null && acc(cell.c.x, rd(1))
� �

on some Cell cell. We abstract this as an abstract predicate [Park05] called valid. valid is
used as a token (not to be confused with the token returned by a join statement) by the client
in order to use a cell. Acquisition of a valid predicate is possible only when the client has
the required permissions to use the cell. All methods require a valid predicate and ensure its
return back to the client after the call to the interface method. The only method not requiring
this predicate, but only producing it, is the constructor methods init() and initCopy().
For example the specification of set() introducing valid would be:
� �

1 method set(x: int)
2 requires valid
3 ensures valid
4 ensures get() == x
� �

38

; ;

Abstract predicates are also useful when dealing with permissions or conditions that are
arbitrary long and can be expressed using a recursive predicate, e.g. a type of the “token”
required by a linked list class. In order to access all the items we would need read permissions
for all the (finite, but arbitrary many) nodes of the list. A suitable predicate would be:
� �

1 class Node {
2 var next: Node;
3 var value: int;
4
5 predicate valid {
6 acc(next) && acc(value) && (next != null ==> ..next.valid)
7 }
8 }
� �

Due to the recursive form of the predicate and its infinite expandability, the prover cannot
decide how many times to expand it. This is a well known problem with recursive functions
when dealing with automated provers. The solution given by Chalice is to manually direct the
prover when to expand or retract an abstract predicate, using the unfold and fold directives
respectively. When a predicate is unfolded the predicate is replaced with its body. The reverse
happens when folding a predicate; if the necessary conditions and permissions of the body
of the predicate are valid, they are replaced with the predicate itself. Note that abstract
predicates, like permissions, use linear logic, e.g. a predicate can be consumed by a fork
statement or can be returned by a join statement. A more important consequence is that a
folded predicate cannot be spit it into two separate ones, consumed by different by different
calls. In figure 2.7 we can see the whole implementation of Cell with its interface abstracted
from its implementation. The highlighted code ensures that an object that is about to be
acquired is not already acquired by the current thread.
� �

1 class Cell
2 {
3 var c: CellImpl;
4
5 predicate valid { acc(c) && c != null && acc(c.x, rd(1)) }
6
7 method init(x: int)
8 requires acc(c) && c == null
9 ensures valid

10 ensures get() == x
11 {
12 c := new CellImpl;
13 c.x := x;
14 c.refCount := 1;
15 share c;
16 fold valid;
17 }
18
19 method initCopy(other: Cell)
20 requires acc(c) && other != null && other.valid
21 ..requires unfolding other.valid in !holds(other.c)
22 ensures valid && other.valid
23 ensures other.get() == get()
24 ..ensures unfolding other.valid in !holds(other.c)
25 {
26 unfold other.valid;
27 acquire other.c;
28 c := other.c;
29 other.c.refCount := other.c.refCount + 1;
30 release other.c;
31 fold other.valid

39

; ;

32 fold valid
33 }
34
35 function get(): int
36 requires valid
37 {
38 unfolding valid in c.x
39 }
40
41 method set(x: int)
42 requires valid
43 ..requires unfolding valid in !holds(c)
44 ensures valid
45 ensures get() == x
46 ..ensures unfolding valid in !holds(c)
47 {
48 unfold valid;
49 acquire c;
50 if (c.refCount == 1)
51 {
52 c.x := x;
53 release c;
54 fold valid;
55 } else {
56 c.refCount := c.refCount - 1;
57 release c;
58 c := null;
59 call init(x);
60 }
61 }
62 }
� �

Listing 2.7: Fictional disjoint Cell with interface fixed

Besides race condition prevention another feature Chalice supports is deadlock prevention
[Lein10b]. A deadlock occurs when some threads, even only one, try to transitively acquire
the same resource. In order to avoid this situation all shared objects are ordered with a partial
ordering relation. When trying to acquire an object, one must prove that the specific object
is “higher” in the chain of objects for all other objects already acquired by this thread.

The ordering relation (⊏), textually denoted by the << operator, is defined to be dense on
a set of values, Ord. Each object is equipped with a implicit special field called µ or in code
.mu, of type Ord. The max of all the mu field of all acquired objects is called waitlevel and is
a ghost variable of type Ord maintained by the implementation of Chalice, i.e. for waitlevel
it is always true that:

waitlevel = max
o∈holds(o)

o.µ

When sharing an object we must specify the bounds of its mu field. We do that with the share
syntax:
� �

1 share o above α;
� �

meaning that:
α ⊏ o.µ

or by:
� �

1 share o below β;
� �

40

; ;

meaning that:
o.µ ⊏ β

finally
� �

1 share o between α and β;
� �

would mean that:
α ⊏ o.µ ⊏ β

where α and β are valid expressions of type Ord. If no bounds are given it is implied that the
object is shared above waitlevel.

For the mu field of the objects, even though it is implicitly defined in every class, we still
need access permissions to access and modify it. Only the share statements modify the mu
field but whenever we want to acquire an object we need read access to the mu field in order
to prove that it is above waitlevel. For example the specifications of init(), initCopy()
and set() could be re-written using deadlock avoidance:
� �

1 method init(x: int)
2 requires acc(c) && c == null
3 ..requires acc(c.mu) && c.mu == lockbottom
4 ensures valid
5 ensures get() == x
6 ..ensures rd(c.mu) && waitlevel << mu
7 {
8 ...
9 share c; // above waitlevel

10 ...
11 }
12
13 method initCopy(other: Cell)
14 requires acc(c) && other != null && other.valid
15 ..requires unfolding other.valid in
16 .. rd(other.c.mu) &&
17 .. waitlevel << other.c.mu
18 ensures valid && other.valid
19 ensures other.get() == get()
20 ..ensures unfolding other.valid in rd(other.c.mu)
21 {
22 ...
23 acquire other.c; // succeededs due to the precondition
24 ...
25 }
26
27 method set(x: int)
28 requires valid
29 ..requires unfolding valid in
30 .. rd(c.mu) &&
31 .. waitlevel << c.mu
32 ensures valid
33 ensures get() == x
34 ..ensures unfolding valid in rd(c.mu)
35 {
36 ...
37 acquire c; // succeededs due to the precondition
38 ...
39 }
40 }
� �

41

; ;

At every given time the following theorem is valid:

∀o : waitlevel ⊏ o.µ =⇒ !holds(o)

It is possible to run Chalice without the checks done for deadlock avoidance using the flag
-noDeadlockChecks. Using that, Chalice will ignore the check of the mu field during acquire
and a manual proof that the current thread has not already acquired the object has to be
supplied. This is useful in case of cyclic datastructures that cannot be fully ordered with an
ordering relation, like in section 4.2.

When objects are not shared, the mu field of the object is set to the special value
lockbottom. Thus, an alternative way to express that an object o is not shared is by:
� �

1 assert o.mu == lockbottom;
� �

Another useful feature of Chalice is the built-in type of sequences, also known as immutable
lists. Figure 2.4 displays the basic syntax constructs of sequences in Chalice. The operations
on sequences are functional: they don’t modify the sequence, just return a new altered
copy. Sequences are zero-indexed. The syntax of the sequence update, shown in figure 2.4,
(seq[idx:=value]) is a new proposed extension to Chalice, developed during this thesis. The
sequence type is handy in expressing properties of datastructures, especially lists. For example
the interface of a linked list datastructure could be the one shown in listing 2.8. Access
permissions are omitted for simplicity. With the addition of toSeq() the functions at() and
length() are obsolete.
� �

1 class Node
2 {
3 var value: int;
4 var next: Node;
5
6 function toSeq(): seq<int>
7 { [value] ++ ite(next != null, next.toSeq, []) }
8
9 function at(i: int): int // value at index

10 ensures i < |toSeq()|
11 { toSeq()[i] }
12
13 function length(): int // length of the list
14 { |toSeq()| }
15
16 method deleteAll() // empties the list
17 ensures toSeq() == []
18 { ... }
19
20 method append(x: int) // append an element to the end of the list
21 ensures toSeq() == old(toSeq()) ++ [x]
22 { ... }
23
24 method update(i: int, x: int) // update elemet at index i with value x
25 ensures toSeq() == old(toSeq())[i := x]
26 { ... }
27 }
� �

Listing 2.8: Interface of linked lists expressed in terms of sequences

In chapter 3 we introduce the new concept of backpointers added in Chalice during this
thesis. For a more detailed presentation of Chalice see [Lein09a].

42

; ;

seq<type> The type of sequence with elements of type type
[] The empty sequence
[e1, e2, e3] A sequence with elements e1, e2 and e3
seq1 ++ seq2 The concatenation of the two sequences seq1 and seq2
seq[idx] The idx’th element of seq
seq[idx1..idx2] A subsequence of seq from index idx1 to idx2 (exclusive)
seq[..idx] The first idx elements of subsequence seq
seq[idx..] The sequence seq after dropping the first idx elements
seq[idx:=value] A copy of seq with the element at index idx replaced with value
|seq| The length of the sequence seq

Figure 2.4: Sequence syntax of Chalice

2.5 Translating Chalice into Boogie

In this section we sketch the methodology used to translate Chalice into Boogie code. Fields
of Chalice are encoded as values of the polymorphic type Field a, where a is the type of the
field. All the locations/objects of the heap are of type ref. The entire heap of the program is
encoded in a polymorphic partial map in Boogie, which is indexed by locations and fields and
thus encoding the state of all the objects of Chalice. The Boogie type of this map is called
HeapType and the Boogie variable is called Heap

All permissions are encoded as a pair of integer (p, n): p is a percentage of the full
100% permission hence ranging from 0 to 100 and n is how many epsilon permissions we
have, raging from −∞ to +∞. We can visually think of the permission as: p + nε%. The
permissions of all fields at a given point are encoded as another map, the Mask. This map is
also indexed by locations and fields, but returns the permission in the form of a map from
PermissionComponent to int. PermissionComponent has two values, perm$R and perm$N.
All the definitions described until now are in the prelude of every Boogie file generated by
Chalice:

� �

1 type ref;
2 const null: ref;
3 type Field a;
4
5 type HeapType = <a>[ref,Field a]a;
6 var Heap: HeapType;
7
8 type PermissionComponent;
9 const unique perm$R: PermissionComponent;

10 const unique perm$N: PermissionComponent;
11 type MaskType = <a>[ref,Field a][PermissionComponent]int;
12 var Mask: MaskType where IsGoodMask(Mask);
13 const ZeroMask: MaskType;
14 axiom (forall<T> o: ref, f: Field T ::
15 ZeroMask[o,f][perm$R] == 0 && ZeroMask[o,f][perm$N] == 0);
� �

The various permission types have corresponding translations given the aforementioned
encoding:

43

; ;

acc(o.x) ≡ Mask[o, O.x][perm$R] == 100 && Mask[o, O.x][perm$N] == 0
rd(o.x) ≡ Mask[o, O.x][perm$R] > 0 || Mask[o, O.x][perm$N] > 0

acc(o.x, p) ≡ Mask[o, O.x][perm$R] == p && Mask[o, O.x][perm$N] == 0
acc(o.x, rd(n)) ≡ Mask[o, O.x][perm$R] == 0 && Mask[o, O.x][perm$N] == n

acc(o.x, p - rd(n)) ≡ Mask[o, O.x][perm$R] == p && Mask[o, O.x][perm$N] == -n

Here we consider o been an instance of class O with a field x.
From now on we use the following shorthands:

CanRead(o.x) ≡ o != null &&
Mask[o, O.x][perm$R] == 0 && Mask[o, O.x][perm$N] == 0

CanWrite(o.x) ≡ o != null &&
Mask[o, O.x][perm$R] > 0 || Mask[o, O.x][perm$N] > 0

Permissions can be consumed and returned by statements. The transfer of permissions is
done with two operations of the translation: exhale and inhale. Both operations are defined
by structural induction on the shape of expressions.

Roughly speaking, Exhale(E) checks that expression E holds, more specifically, that the
current thread holds the permissions required by E, and then takes away these permissions.
Inhale(E) assumes E and transfers the permissions required by E to the current thread. If
the current thread obtains some permission for a location o.f for which it previously had
no permission, Inhale assigns an arbitrary value to o.f, which models the fact that another
thread might have modified the location since the current thread last accessed it (framing
rule). The definitions for both operations are shown in figure 2.5. With Tr(E) we denote the
translation of simple Chalice expressions into Boogie which is almost identical. Tr(E) should
never be called on an expression E containing a permission. These cases are forbidden (for
example using a permission in the left-hand-side of an implies operator).

The translation of Chalice includes the translation of the special fields held and µ for each
object. These fields are directly translated to Boogie as ordinary fields. held is a boolean field
and mu has the special type Mu. As mentioned before, a partial order relation ⊏ on values
of Mu is defined and translated as the Boogie function MuBelow. The mu field of non-shared
objects has the special value LockBottom. waitlevel is a special local variable of type mu
translated into the max of all the mu fields of the object the current thread holds. For example
the expression waitlevel ⊏ u is translated to:
� �

1 (forall p: ref :: Heap[p, held] ==> IsBelow(Heap[p, mu], u))
� �

The fragment of the prelude regarding the aforementioned translation follows:
� �

1 type Mu;
2 const unique mu: Field Mu;
3 function MuBelow(Mu, Mu) returns (bool); // strict partial order
4 axiom (forall m: Mu, n: Mu ::
5 { MuBelow(m,n), MuBelow(n,m) }
6 !(MuBelow(m,n) && MuBelow(n,m)));
7 axiom (forall m: Mu, n: Mu, o: Mu ::
8 { MuBelow(m,n), MuBelow(n,o) }
9 MuBelow(m,n) && MuBelow(n,o) ==> MuBelow(m,o));

10 const $LockBottom: Mu;
11 axiom (forall m, n: Mu :: MuBelow(m, n) ==> n != $LockBottom);
12
13 const unique held: Field bool;
� �

44

; ;

Exhale(acc(E.f, p + rd(n))) ≡
assert Mask[Tr(E), f][perm$R] >= Tr(p) &&

(Mask[Tr(E), f][perm$R] == Tr(p) ==> Mask[Tr(E), f][perm$N] >= Tr(n));
Mask[Tr(E), f][perm$R] := Mask[Tr(E), f][perm$R] - Tr(p);
Mask[Tr(E), f][perm$N] := Mask[Tr(E), f][perm$N] - Tr(n);

Exhale(rd(E.f)) ≡
assert Mask[Tr(E), f][perm$R] > 0;
var p: int; havoc p;
assume p > 0 && p < Mask[Tr(E), f][perm$R];
Mask[Tr(E), f][perm$R] := Mask[Tr(E), f][perm$R] - p;

Inhale(acc(E.f, p + rd(n))) ≡
if(Mask[Tr(E), f][perm$R] == 0 && Mask[Tr(E), f][perm$N] == 0)

{ havoc Heap[Tr(E), f]; } //Modeled as IsGoodInhaleState
Mask[Tr(E), f][perm$R] := Mask[Tr(E), f][perm$R] + Tr(p);
Mask[Tr(E), f][perm$N] := Mask[Tr(E), f][perm$N] + Tr(n);

Inhale(rd(E.f)) ≡
if(Mask[Tr(E), f][perm$R] == 0 && Mask[Tr(E), f][perm$N] == 0)

{ havoc Heap[Tr(E), f]; } //Modeled as IsGoodInhaleState
var p: int; havoc p;
assume p > 0 && Mask[Tr(E), f][perm$R] + p < 100;
Mask[Tr(E), f][perm$R] := Mask[Tr(E), f][perm$R] + p;

Exhale(P && Q) ≡
Exhale(Q);
Exhale(P);

Exhale(P ==> Q) ≡
if(Tr(P)) { Exhale(Q); }

Otherwise:
Exhale(E) ≡
assert Tr(E);

Inhale(P && Q) ≡
Inhale(Q);
Inhale(P);

Inhale(P ==> Q) ≡
if(Tr(P)) { Inhale(Q); }

Otherwise:
Exhale(E) ≡
assume Tr(E);

Figure 2.5: Exhale and Inhale operations

45

; ;

x := new C; ≡
havoc x;
assume x != null;
assume Heap[x, held] == false;
assume Heap[x, mu] == lockbottom;
//Foreach field f of class C:
assume Mask[x, C.f][perm$R] == 100;
assume Mask[x, C.f][perm$N] == 0;
//Foreach reference field f
//of class C:
assume Heap[x, C.f] == null;15

while (cond)
invariant inv;

{ body } ≡
Exhale(inv);
havoc variables<body>;
if(cond) {
Mask := ZeroMask;
Inhale(inv);
Tr(body);

} else { // assume !cond
Inhale(inv);
// The rest of the method body

}

x := o.f; ≡
assert CanRead(o.f);
x := Heap[o, f];

o.f := x; ≡
assert CanWrite(o.f);
Heap[o, f] := x;

fork o.foo(); ≡
Exhale(o.Precondition<foo>);

join o.foo(); ≡
Inhale(o.Postcondition<foo>);

call o.foo(); ≡
Exhale(o.Precondition<foo>);
Inhale(o.Postcondition<foo>);

share o between p and s; ≡
assert CanWrite(o, mu);
assert Heap[n, mu] == lockbottom;
assert MuBelow(p, s);
var w: Mu; havoc w;
assume MuBelow(p, w) && MuBelow(w, s);
Heap[o, mu] := w;
Exhale(o.invariant(*));

acquire o; ≡
assert CanRead(o.mu);
(forall p: ref :: Heap[p, held] ==>
MuBelow(Heap[p, mu], Heap[o, mu]));

Heap[o, held] := true;
Inhale(o.invariant(*));

release o; ≡
assert o != null;
assert Heap[o, held];
Exhale(o.invariant(*));
Heap[o, held] := false;

Figure 2.6: Translation of Chalice statements into Boogie code

The translation of most Chalice statements is shown in figure 2.6. In [Lein09b] one can
find more information on the implementation of Chalice and its translation in Boogie code.
Also, for more recent developments in Chalice see [Heul12, Heul13].

15 This initialization was implemented during this thesis.

46

; ;

Chapter 3

Backpointers in Chalice

3.1 Backpointers

A backpointer1 defines the reverse relation of a class field. It is the set of all objects pointing
to a specific object.
� �

1 class A {
2 var x: B;
3 }
4
5 class B { ... }
6
7 ...
8 ...
9 var bar: B;

10 bar := new B;
11 ...
� �

In the listing above, class A has a field x pointing to an object of type B. For an instance
of class B e.g. bar, the backpointer (A.x)−1 is the set of all the objects of type A pointing to
bar through the field x.

..bar

.a1 .a2 .a3

.x .x

In the situation displayed in the figure above, the backpointer set bar.(A.x)−1 consists
of objects a1 and a2, and not a3. In Chalice, fields of classes that can potentially have
backpointers are declared by using the tracked modifier.

Backpointers are considered a ghost field, maintained by Chalice. A backpointer on
an object bar is denoted by bar.∼(A.x). As any other field, backpointers have access
permissions; in order to assign a value to a tracked field it is required to gain not only
the access permission for that field but also access permission on all the backpointer fields
that are modified, as demonstrated in the code snippet 3.1 where a value is assigned in line 11.

3.2 Backpointer encoding
Backpointers are encoded as regular fields in Boogie code. For every tracked field A.x a
backpointer field named A.x$BP is defined. This encoding of backpointers as Boogie state

1 Also introduced in [Kass12a] in terms of separation logic

47

; ;

� �

1 class A {
2 tracked var x: B;
3
4 method test(newX: B)
5 requires acc(x) && acc(x.∼(A.x)) &&
6 acc(newX.∼(A.x))
7 ensures acc(x) && acc(x.∼(A.x)) &&
8 acc(newX.∼(A.x))
9 ensures x == newX

10 {
11 this.x := newX
12 assert this in newX.∼(A.x)
13 }
14 }
� �

Listing 3.1: Simple example with backpointers

makes our methodology easier to implement, since assignments in Boogie code are easily
managed. The Boogie code in listing 3.3 describes the tracked field A.x in listing 3.2.
� �

1 class A {
2 tracked var x: B;
3 }
� �

Listing 3.2: Chalice code

� �

1 const unique A.x: Field (ref);
2 const unique A.x$BP: Field (BackpointerSet);
3 axiom isBackpointerField(A.x$BP);
4 axiom isBackpointerFieldOf(A.x$BP, A.x);
� �

Listing 3.3: Boogie code produced from Chalice code 3.2

The set of the objects belonging to the backpointer are encoded as a map from references
to booleans as displayed in listing 3.4. Two helper functions, isBackpointerField and
isBackpointerFieldOf, define the relationship of ordinary fields with backpointer fields.
Equality on backpointer sets is also defined.
� �

1 type BackpointerSet = <a>[BackpointerSetComponent a]a;
2 type BackpointerSetComponent a;
3 const unique BackpointerSetComponent#Set: BackpointerSetComponent ([ref]bool);
4 function isBackpointerField<a>(bpf: Field(a)) returns (bool);
5 function isBackpointerFieldOf(bpf: Field(BackpointerSet),
6 f: Field(ref)) returns (bool);
7 function BackpointerSet#Equal(a: BackpointerSet, b: BackpointerSet) returns (bool)
8 {
9 a[BackpointerSetComponent#Set] == b[BackpointerSetComponent#Set]

10 }
� �

Listing 3.4: Boogie backpointer prelude

48

; ;

..a

.oldX .newX

.O1.O2.O3.. . . .P1 .P2 .P3
.oldX.x−1

.
.newX.x−1

.x

Before

..a

.oldX .newX

.O1.O2.O3.. . . .P1 .P2 .P3
.oldX.x−1

.
.newX.x−1

.x

After

Figure 3.1: Assignment on a tracked field

An assignment on a tracked field:
� �

1 a.x := newX;
� �

is performed in three sequential steps:

1. Remove a from a.x’s backpointer set

2. Add a to newX’s backpointer set

3. The actual assignment

The situation is depicted graphically in figure 3.1. The produced Boogie code for the
above operation is shown in listing 3.5.
� �

1 // Remove from old object’s backpointer set
2 if (Heap[this, A.x] != null) {
3 assert {:msg ” 8.9: LHS.∼(A.x): location might not be writable”}
4 CanWrite(Mask, Heap[a, A.x], A.x$BP);
5 Heap[Heap[a, A.x], A.x$BP][BackpointerSetComponent#Set][a] := false;
6 }
7
8 // Add to new object’s backpointer set
9 if (newX != null) {

10 assert {:msg ” 8.9: RHS.∼(A.x): location might not be writable”}
11 CanWrite(Mask, newX, A.x$BP);
12 Heap[newX, A.x$BP][BackpointerSetComponent#Set][a] := true;
13 }
14
15 // update field next
16 assert {:msg ” 8.9: Location might not be writable”}
17 CanWrite(Mask, a, A.x);
18 Heap[a, A.x] := newX;
� �

Listing 3.5: Boogie code for assignment on tracked field

As shown in the Boogie code in listing 3.5 to perform a single assignment, three write
permissions should be acquired: one for each backpointer set that is affected and one for the
tracked field where the assignment is performed.

49

; ;

3.3 Aggregates
By using the aforementioned additions to Chalice it is now possible to use aggregates on
backpointer sets such as:

1. Cardinality

2. Sum

3. Min

4. Max

5. Product

6. Average

Currently only the first four aggregates are fully implemented and documented in Chalice;
sum, min, max, product and average are performed over integer fields of objects in the
backpointer set.
� �

1 class Node {
2 method test1()
3 requires acc(next) && next == null {
4 var x: Node;
5 x := new Node;
6 assert |x.∼(Node.next)| == 0
7 this.next := x;
8 assert |x.∼(Node.next)| == 1
9 }

10 }
� �

Listing 3.6: Using the cardinality of a backpointer set

The syntax of cardinality over backpointer sets is shown in listing 3.6. The syntax is
borrowed by the sequence feature of Chalice. The syntax used for the rest aggregates is:

(aggregate name running variable:backpointer set :: running variable.integer field)

At the moment, only expressions with the above format are allowed in the body of an
aggregate. An example of usage is shown in listing 3.7.
� �

1 class Node {
2 tracked var next: Node;
3 var x: int;
4 method test2()
5 requires acc(next) && next == null
6 && acc(x) && x == 42 {
7 var newNode: Node;
8 newNode := new Node;
9 this.next := newNode;

10 assert (sum o in newNode.∼(Node.next) :: o.x) == 42
11 this.x := 24;
12 assert (sum o in newNode.∼(Node.next) :: o.x) == 24
13 }
14 }
� �

Listing 3.7: Sum aggregate usage

50

; ;

In order to frame a sum such as (sum o in this.∼(Node.next) :: o.x) , besides
the permission in the backpointer set this.∼(Node.next) we should have permission in all
fields x of objects o that belong in the backpointer set. Therefore, the framing permission for
sum is rd(this.∼(Node.next)) && (∀ o ∈ this.∼(Node.next) . rd(o.x)). The special
syntax introduced in Chalice for the bulk permission is: acc(this.∼(Node.next).x) (see
section 3.5).

To implement the aggregates we extended the implementation for backpointers that was
shown above in the following way:
� �

1 const unique BackpointerSetComponent#Cardinality: BackpointerSetComponent (int);
2 const unique BackpointerSetComponent#Sums: BackpointerSetComponent ([Field int]int);
3 const unique BackpointerSetComponent#Mins: BackpointerSetComponent ([Field int]int);
4 const unique BackpointerSetComponent#Maxs: BackpointerSetComponent ([Field int]int);
5 function BackpointerSet#Equal(a: BackpointerSet, b: BackpointerSet) returns (bool)
6 {
7 a[BackpointerSetComponent#Cardinality] == b[BackpointerSetComponent#Cardinality]
8 && a[BackpointerSetComponent#Set] == b[BackpointerSetComponent#Set]
9 }
� �

Listing 3.8: Boogie backpointer prelude (aggregates)

One backpointer set component for each aggregate is used. Aggregates, like sum and max,
that are defined in terms of a integer field are modeled as maps indexed by that field. We
extend the definition of backpointer equality to include only cardinality (see section 3.5).

Chalice maintains aggregates of backpointer sets. Aggregates change when an object is
added or removed from the set. In an assignment, one object is deleted and one is added
(provided that there is no null reference involved). Assume a backpointer set bps, and an
object a that is added or removed from bps. In pseudo Boogie code these two operations
are shown in listing 3.9 (BackpointerSetComponent abbreviated as BSC) which the revised
version of listing 3.5 with aggregates taken into account.

Sum, min and max of sets are also affected by assignments on the respective integer fields
of objects that belong to the set. Chalice’s implementation maintains these fields when such
an assignment happens. For example the assignment:
� �

1 a.n := newN;
� �

where a of type A with an integer field n, is translated into the code in listing 3.10. This
code is produced for each tracked field of class A. The treatment of min and max in our
implementation is incomplete but it is sufficient for most cases.

51

; ;

� �

1 addRefToBackpointerSet(bps, a) {
2 bps[BPC$Set][a] := true;
3 bps[BPC$Cardinality] := bps[BPC$Cardinality] + 1;
4 // for each int field n of a
5 bps[BPC$Sums][A.n] := bps[BPC$Sums][n] + Heap[a, A.n];
6 if(bps[BSC$Mins][A.n] > Heap[a, A.n])
7 bps[BSC$Mins][A.n] := Heap[a, A.n];
8 if(bps[BSC$Maxs][A.n] < Heap[a, A.n])
9 bps[BSC$Maxs][A.n] := Heap[a, A.n];

10 // end for each
11 }
12

13 removeRefFromBackpointerSet(bps, a) {
14 bps[BPC$Set][a] := false;
15 bps[BPC$Cardinality] := bps[BPC$Cardinality] - 1;
16 // for each int field n of a
17 bps[BPC$Sums][A.n] := bps[BPC$Sums][n] - Heap[a, A.n];
18 if(bps[BSC$Mins][A.n] == Heap[a, A.n])
19 havoc bps[BSC$Mins][A.n];
20 assume bps[BSC$Mins][A.n] <= Heap[a, A.n];
21 if(bps[BSC$Maxs][A.n] == Heap[a, A.n])
22 havoc bps[BSC$Maxs][A.n];
23 assume bps[BSC$Maxs][A.n] >= Heap[a, A.n];
24 // end for each
25 }
26
27
28 // Remove from old object’s backpointer set
29 if (Heap[this, A.x] != null) {
30 assert {:msg ” 8.9: LHS.∼(A.x): location might not be writable”}
31 CanWrite(Mask, Heap[a, A.x], A.x$BP);
32 removeRefFromBackpointerSet(Heap[Heap[a, A.x], A.x$BP], a);
33 }
34
35 // Add to new object’s backpointer set
36 if (newX != null) {
37 assert {:msg ” 8.9: RHS.∼(A.x): location might not be writable”}
38 CanWrite(Mask, newX, A.x$BP);
39 addRefToBackpointerSet(Heap[newX, A.x$BP], a);
40 }
41
42 // update field next
43 assert {:msg ” 8.9: Location might not be writable”}
44 CanWrite(Mask, a, A.x);
45 Heap[a, A.x] := newX;
� �

Listing 3.9: Boogie code for assignment on tracked field with aggregates

52

; ;

� �

1 // for each tracked field x of a
2 // a belongs the backpointer set bps
3 // bps ≡ Heap[Heap[a, A.x], A.x$BP]
4 // Sums
5 bps[BPC$Sums][A.n] := bps[BPC$Sums][A.n] - Heap[a, A.n] + newN;
6 // Mins
7 var oldMin: int;
8 oldMin := bps[BPC$Mins][A.n];
9 havoc bps[BPC$Mins][A.n];

10 assume (oldMin >= newN) ==> (bps[BPC$Mins][A.n] == newN);
11 assume (oldMin < newN && oldMin != Heap[a, A.n])
12 ==> (bps[BPC$Mins][A.n] == oldMin);
13 assume (oldMin < newN && oldMin == Heap[a, A.n])
14 ==> (newN >= bps[BPC$Mins][A.n] && bps[BPC$Mins][A.n] >= oldMin);
15 // Maxs
16 var oldMax: int;
17 oldMax := bps[BPC$Maxs][A.n];
18 havoc bps[BPC$Maxs][A.n];
19 assume (oldMax <= newN) ==> (bps[BPC$Maxs][A.n] == newN);
20 assume (oldMax > newN && oldMax != Heap[a, A.n])
21 ==> (bps[BPC$Maxs][A.n] == oldMax);
22 assume (oldMax > newN && oldMax == Heap[a, A.n])
23 ==> (newN <= bps[BPC$Maxs][A.n] && bps[BPC$Maxs][A.n] <= oldMax);
24 // end for each
25 Heap[a, A.n] := newN;
� �

Listing 3.10: Boogie code: changing an int field of an object that belongs to a backpointer

53

; ;

3.4 Axioms
The backpointer theory is founded on top of certain axioms. Those axioms are often a crucial
part of the verification process since they define the behavior of backpointers as well as the
aggregates on the backpointer sets. The following axioms make the treatment of backpointers
as ghost state more complete and provide a way to prove specifications involving backpointers
through axiomatization.

• The first axiom defines backpointers:

Axiom 1. Definitional axiom
for a tracked field A.f:

∀{a, b} ∈ A × B . a.f = b iff a ∈ b.(A.f)−1

In other words, a points to b if and only if a belongs to the corresponding backpointer
set of b. It is implemented in Boogie with the following code
� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType, f: Field(ref),
2 a: ref, b: ref, bpf: Field(BackpointerSet) ::
3 (wf(h, m, sm) && isBackpointerFieldOf(bpf, f) &&
4 a != null && b != null) ==>
5 (h[a, f] == b <==> h[b, bpf][BackpointerSetComponent#Set][a]));
� �

In all the axioms we take special care for the case of the null pointer.

• All cardinalities are positive integers or zero. This is expressed in our theory with the
second axiom:

Axiom 2. Cardinality is not negative
for a tracked field A.f:

∀b ∈ B .
∣∣b.(A.f)−1

∣∣ ≥ 0

and in Boogie code:
� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType, bps: BackpointerSet ::
2 bps[BackpointerSetComponent#Cardinality] >= 0);
� �

In the following axioms we describe an empty backpointer set.

• If a set has cardinality zero (i.e. is an empty set) no object can belong to this backpointer
set. This is expressed by the following axiom:

Axiom 3. Belongs to empty set

∀ bps ∈ BP, a ∈ A . |bps| = 0 =⇒ a 6∈ bps,

BP is the class of all backpointer sets and A a class A.

and in Boogie code:

54

; ;

� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, a: ref ::
3 (wf(h, m, sm) && a != null) ==>
4 (bps[BackpointerSetComponent#Cardinality] == 0 ==>
5 !bps[BackpointerSetComponent#Set][a]));
� �

Most axioms that include an implication can be read in an contrapositive way. For
example this axiom can be read as “if there is some object that belongs to the set
then the cardinality cannot be zero”. This is a useful way of thinking in the process of
verification.

• If a set has cardinality zero then every sum on that set is zero:

Axiom 4. Sum of empty set

∀ bps ∈ BP . |bps| = 0 =⇒
∑

α∈bps

α.n = 0,

BP is the class of all backpointer sets and A.n a integer field of class A.

and in Boogie code:
� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, n: Field(int) ::
3 wf(h, m, sm) ==>
4 (bps[BackpointerSetComponent#Cardinality] == 0 ==>
5 bps[BackpointerSetComponent#Sums][n] == 0));
� �

The following axioms are used in case of an unit set (i.e. a set with only one element).

• This axiom asserts that no two distinct objects can belong to a unit set.

Axiom 5. Two members of unit set

∀ bps ∈ BP, a1 ∈ A, a2 ∈ A . |bps| = 1 ∧ a1 ∈ bps ∧ a2 ∈ bps =⇒ a1 = a2,

BP is the class of all backpointer sets and A a class A.

Due to the special treatment of universal quantification in Z3, and SMT solvers in
general, this axiom is encoded in two different forms in Boogie:
� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, a: ref ::
3 (wf(h, m, sm) && a != null) ==>
4 ((bps[BackpointerSetComponent#Set][a] &&
5 bps[BackpointerSetComponent#Cardinality] == 1) ==>
6 (forall b: ref ::
7 (b != null && bps[BackpointerSetComponent#Set][b]) ==>
8 a == b)));
� �

55

; ;

� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, a: ref, b: ref ::
3 (wf(h, m, sm) && a != null && b != null) ==>
4 ((bps[BackpointerSetComponent#Set][a] &&
5 bps[BackpointerSetComponent#Set][b] &&
6 bps[BackpointerSetComponent#Cardinality] == 1) ==>
7 a == b));
� �

Each version is specialized in verifying different assertions.

• When we know that a set has only one element and if we have an object belonging
to that set then we know the value of all aggregates on that set. Hence the following
axioms:
Axiom 6. Sum of unit set

∀ bps ∈ BP, a ∈ A . |bps| = 1 ∧ a ∈ bps =⇒
∑

α∈bps

α.n = a.n,

BP is the class of all backpointer sets and A.n an integer field of class A.
Axiom 7. Max of unit set

∀ bps ∈ BP, a ∈ A . |bps| = 1 ∧ a ∈ bps =⇒ max
α∈bps

α.n = a.n,

BP is the class of all backpointer sets and A.n an integer field of class A.
Axiom 8. Min of unit set

∀ bps ∈ BP, a ∈ A . |bps| = 1 ∧ a ∈ bps =⇒ min
α∈bps

α.n = a.n

,
BP is the class of all backpointer sets and A.n an integer field of class A.

The corresponding code in Boogie is:
� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, n: Field(int), a: ref ::
3 (wf(h, m, sm) && a != null) ==>
4 ((bps[BackpointerSetComponent#Cardinality] == 1 &&
5 bps[BackpointerSetComponent#Set][a]) ==>
6 (bps[BackpointerSetComponent#Sums][n] == h[a, n])));
� �

� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, n: Field(int), a: ref ::
3 (wf(h, m, sm) && a != null) ==>
4 ((bps[BackpointerSetComponent#Cardinality] == 1 &&
5 bps[BackpointerSetComponent#Set][a]) ==>
6 (bps[BackpointerSetComponent#Mins][n] == h[a, n])));
� �

� �

1 axiom (forall h: HeapType, m: MaskType, sm: MaskType,
2 bps: BackpointerSet, n: Field(int), a: ref ::
3 (wf(h, m, sm) && a != null) ==>
4 ((bps[BackpointerSetComponent#Cardinality] == 1 &&
5 bps[BackpointerSetComponent#Set][a]) ==>
6 (bps[BackpointerSetComponent#Maxs][n] == h[a, n])));
� �

56

; ;

3.5 Framing syntax
When using a aggregate on a backpointer set, the frame of this expression is not only the access
permission to the backpointer field but also the permission on the field that is aggregated
over all the objects that belong to the backpointer set. This special bulk permission is written
as:
� �

1 acc(o.∼(A.x).n) or rd(o.∼(A.x).n) or acc(o.∼(A.x).n, 50)
� �

for all the objects of the backpointer set o.∼(A.x) on the integer field n. For the first
expression, it is just like writing (with some variations in the implementation; it uses triggers
internally to improve the prover’s speed):
� �

1 (forall i:A :: i in a.∼(A.x) ==> acc(i.n))
� �

This syntax is used in any kind of permission.
It takes a lot of time to check bulk permissions by the prover, especially for Chalice’s

framing check (see section: 2.5), where we check for the necessary permissions for each field
in order to infer if there has been a change by a statement. So, by default, Chalice assumes
that all the aggregates are lost during statements like this, unless the programmer explicitly
specifies that Chalice should check for this bulk permission. The equality relation used in the
inhale implementation is the one defined in section 3.3. The syntax introduced is a predicate
following the statement written with a triple &. For example, if we want the call to a method
foo() to preserve the aggregates of the backpointer set o.∼(A.x) on a field n we should
write the following:
� �

1 call x.foo() &&& acc(o.∼(A.x).n)
� �

forcing Chalice to make an extra check if this permission is indeed preserved by the call and
if so, to assume that all the aggregates of the set o.∼(A.x) on the field n are the same as
before the call. The statements that support this framing syntax are:

• while

• share

• release

• lock (not mentioned here)

• send (not mentioned here)

• method call

• method fork

3.6 Triggering - “use axiom” syntax
The set of axioms presented in section 3.4 are not a complete definition of the aggregates
specified but makes a good case for most examples that we explored. For a more detailed
presentation of aggregates and a discussion of triggering issues see [Lein09c].

Even so, these axioms make heavy use of universal quantification and thus lower the
performance of the prover. In our implementation, the developer is responsible for introducing

57

; ;

most of the axioms, enabling him to fine-tune the prover. Whenever an axiom is needed by
the prover, the user has to make a fake call to a function on a backpointer set that will trigger
the usage of the axiom. The parameters of the function call are the values of the universally
quantified variables in the body of the axiom. Some axioms take as a parameter a field and for
those axioms we extended Chalice to include references to class fields, prefixing the qualified
name of the field with the “at” sign (@). Some examples of triggering axioms are shown in
listing 3.11.
� �

1 class Lala {
2 ghost tracked var x: Mama;
3 var n: int;
4 }
5
6 method BPReversibility1(z: Lala)
7 requires z != null && acc(z.x) && z.x == this && acc(∼(Lala.x))
8 requires holds(this; A)
9 ensures acc(∼(Lala.x)) && z in ∼(Lala.x)

10 {
11 assert z.useDefinitionalAxiom(@Lala.x, this);
12 }
13
14 method BPReversibility2(z: Lala)
15 requires z != null && acc(z.x) && acc(∼(Lala.x)) && z in ∼(Lala.x)
16 ensures acc(z.x) && z.x == this
17 {
18 assert z.useDefinitionalAxiom(@Lala.x, this);
19 }
20
21 method EmptySetCardinality3(r: Lala)
22 requires acc(∼(Lala.x)) && r != null && r in ∼(Lala.x)
23 ensures acc(∼(Lala.x)) && |∼(Lala.x)| > 0
24 {
25 assert ∼(Lala.x).useAxiomBelongsToEmptySet(r);
26 assert ∼(Lala.x).useAxiomCardinalityNotNegative();
27 }
28
29 method UnitSetSum2(z: Lala)
30 requires z != null && acc(∼(Lala.x)) && z in ∼(Lala.x) && rd(z.n)
31 && rd(∼(Lala.x).n) && (sum y in ∼(Lala.x) :: y.n) != z.n
32 ensures z != null && acc(∼(Lala.x)) && |∼(Lala.x)| > 1
33 {
34 assert ∼(Lala.x).useAxiomSumOfUnitSet(z, @Lala.n);
35 assert ∼(Lala.x).useAxiomBelongsToEmptySet(z);
36 assert ∼(Lala.x).useAxiomCardinalityNotNegative();
37 }
� �

Listing 3.11: Example usage of “use-axiom” syntax

The definitional axiom for an object x, that points through the field f to an object y, is
used on the object x and the two parameters of the function are first the reference to the field
f and the other object y. All the other “axiom trigger functions” are called on the backpointer
set they refer to. The list of functions that are supported, along with the corresponding
axioms, are shown in figure 3.2.

58

; ;

Axiom 1 <object>.useDefinitionalAxiom(<field>, <object>)
Axiom 2 <BPSet>.useAxiomCardinalityNotNegative()
Axiom 3 <BPSet>.useAxiomBelongsToEmptySet(<object>)
Axiom 4 <BPSet>.useAxiomSumOfEmptySet(<int field>)
Axiom 5 first form <BPSet>.useAxiomTwoMembersOfUnitSet1(<object>)
Axiom 5 second form <BPSet>.useAxiomTwoMembersOfUnitSet2(<object>, <object>)
Axiom 6 <BPSet>.useAxiomSumOfUnitSet(<object>, <int field>)
Axiom 7 <BPSet>.useAxiomMaxOfUnitSet(<object>, <int field>)
Axiom 8 <BPSet>.useAxiomMinOfUnitSet(<object>, <int field>)

Figure 3.2: Triggering functions per axiom

59

; ;

; ;

Chapter 4

Applications of Backpointers

Backpointers may be of use in various areas of verification problems. Some problem examples
include:

1. Copy-on-Write lists

2. Double linked lists

3. Composite

4. Union-Find

5. Priority inheritance protocol (PIP)

Fictional disjointness is a datastructure feature where the interface of the datastructures
promises to the user that each object is distinct while the objects share data in the imple-
mentation level. This category of problems is of great interest in the verification area and
many attempts have been made to prove programs as it provides a verification challenge not
only for automated verification but also for verification with the use of proof assistants.

A notable example from this family is the snapshotable trees that were examined in
[Mehn12]. By using proof assistants (Coq in particular) it was proved that the implementation
presented there is a fictional disjointed datastructure consisting of a mutable tree structure
were snapshots of the tree could be taken for later use. The snapshots of the tree are immutable
subsequent changes of the tree. Furthermore, four variations of the trees were presented from
which only one’s correctness was proved while the rest are left as a verification challenge.

We mainly studied a similar problem from the area of fictional disjointed problems, the
Copy-on-Write list datastructure.

4.1 Copy-on-Write Lists
This datastructure implements a mutable list interface. At any moment the user may create
a copy of a list which is guaranteed that it will be distinct and separate from the original
list; in other words, disjoint. This implies that a change in the original list will not affect the
copied list and vice versa. However, the implementation optimizes the way the lists are stored
in order to minimize the consumed memory by sharing parts of lists. In particular, the copied
lists share with the original the longest common tail.

As displayed in figure 4.1 in order to make a copy of list L1, L2, we can simply make
a shallow copy of L1 into L2. Here the sentinel objects (or interface nodes) are shown with
squares and the actual nodes of the implementation are shown with circles. As it is observable,
the user has the illusion that a second, independent list has been created with L2 being its
sentinel node while the pointer L1 is still accessible. However, as it is shown, the actual
implementation saves memory space by having both of L1 and L2 point on the same list.

Adding a head node to any list is easy because the new node created is not shared with
any other list. Changing a value at a specific node of a list is more complicated. For example

61

; ;

n1

n2

n3

L1

→
n1

n2

n3

L1 L2

Figure 4.1: Making a copy of a copy-on-write list

consider the example in figure 4.2. We want to change the first element of L2, n2. The fact
that nodes n3, n4 and n5 are shared with list L1 is irrelevant since the node we want to
change, n2, is not shared and can be done in-place. However, it is not possible to change n4
(the third element of list L2, figure 4.3) in-place because that would also change the third
element of L1. As a result, the shared part of the list’s implementation, up to the point we
want to change, nodes n3 and n4, must be copied to new nodes n3∗ and n4∗, as shown in
figure 4.3.

n2

n3

n1

n4

n5

L1 L2

→
n2

n3

n1

n4

n5

L1 L2

Figure 4.2: Changing a non-shared node (n2); no copying

4.1.1 Programmer’s code

The problem we encounter is determining whether a node is shared with another list. To
solve this, the programmer uses reference counting, more specifically a form of local reference
counting using an integer field, refCount, that keeps track of how many objects point to a
node. These objects can either be node objects or list objects, the sentinel class. In the example
above, the usage of refCount is shown in figure 4.4, with the field refCount abbreviated as
rc. However it is not possible to deduce if a node is shared or not just from that. To utilize this
information, the algorithm traverses the nodes of the list up to the node we wish to change.
At any point, if a node with refCount > 0 is found, we infer that all nodes from that point
on are shared and the implementation starts copying them. Note that the field refCount is
a real field existing in the program without specifications. Also, while we copy the nodes, the

62

; ;

n4

n5

n1

n3

n2

L1 L2

→
n4*

n5

n1

n3

n2

n3*

n4

L1 L2

Figure 4.3: Changing a shared node (n4) implies copying

original nodes have their refCount field decreased by one since list L2 no longer ”owns” them.
Listing 4.1 is the implementation of the aforementioned datastructure in Chalice syntax.

n2

rc=1

n3

rc=2

n1

rc=1

n4

rc=1

n5

rc=1

L1 L2

→

n2

rc=1

n3*

rc=1

n1

rc=1

n3

rc=1

n4

rc=1

n5

rc=2

n4*

rc=1

L1 L2

Figure 4.4: Changing a shared node with refCount

� �

1 class List
2 {
3 var head:Node
4
5 function toSeq(): seq<int>
6 {
7 head == null ? [] : head.toSeq()
8 }
9

10 method initEmpty()
11 {
12 share this;
13 }
14

63

; ;

15 method initCopy(other: List)
16 {
17 share acquire this;
18 acquire other;
19 if(other.head != null)
20 {
21 acquire other.head;
22 head := other.head;
23 head.refCount := head.refCount + 1;
24 release head;
25 }
26 release other;
27 release this;
28 }
29
30 method insert(value: int)
31 {
32 var n: Node;
33 n := new Node;
34 n.value := value;
35 if(head != null) { acquire head; }
36 n.next := head;
37 head := n;
38 head.refCount := 1;
39 if(head.next != null) { release head.next; }
40 share head;
41 }
42
43 method set(index: int, value: int)
44 {
45 var h: Node;
46 if(head != null)
47 {
48 acquire head;
49 if(head.refCount == 1)
50 {
51 call head.set(index, value);
52 }
53 else
54 {
55 head.refCount := head.refCount - 1;
56 h := head;
57 head := new Node;
58 call h.copySet(index, value, head);
59 }
60 }
61 }
62 }
63
64
65 class Node
66 {
67 var value: int;
68 var next: Node;
69 var refCount: int;
70
71 function toSeq(): seq<int>
72 {
73 [value] ++ (next == null ? [] : next.toSeq())
74 }
75
76 method set(index: int, newValue: int)
77 {

64

; ;

78 var h: Node;
79
80 if (index == 0)
81 {
82 value := newValue;
83 release this;
84 }
85 else
86 {
87 if(next != null)
88 {
89 acquire next;
90 if (next.refCount == 1)
91 {
92 release this;
93 call next.set(index - 1, newValue);
94 }
95 else
96 {
97 next.refCount := next.refCount - 1;
98 h := next;
99 next := new Node;

100 call h.copySet(index - 1, newValue, next);
101 release this;
102 }
103 }
104 else /* next == null (index out of bounds) */
105 {
106 release this;
107 }
108 }
109 }
110
111 method copySet(index: int, newValue: int, newNode: Node)
112 {
113 var h: Node
114
115 newNode.refCount := 1;
116 if(next != null)
117 {
118 acquire next
119 }
120 if(index == 0)
121 {
122 newNode.value := newValue
123 newNode.next := next
124 if(next != null)
125 {
126 next.refCount := next.refCount + 1
127 release next;
128 }
129 }
130 else
131 {
132 newNode.value := value;
133 if(next != null)
134 {
135 newNode.next := new Node;
136 call next.copySet(index - 1, newValue, newNode.next);
137 }
138 else
139 {
140 newNode.next:=null;

65

; ;

141 }
142 }
143 share newNode;
144 release this;
145 }
146 }
� �

Listing 4.1: Copy-on-Write lists: Program listing

There are a few things worth mentioning about the implementation.
• Whenever an index is given that is out of bounds the implementation ignores the call.

• The interface of the List class contains four methods and a function.

• There are two constructor methods List#initEmpty and List#initCopy. The former
constructs an empty list, encoded with head == null, while the latter makes a copy of
an existing list by simply using the same head as the other list.

• The other two methods mutate a list. List#insert prepends an element in a list while
List#set changes an element at index with the new value being the parameter value.

• The function List#toSeq simply translates Lists to Chalice’s native sequences and is
a pure function.

• The implementation is concurrent. The objects that are going to be examined or changed
are first locked by an acquire statement and latter released.

• The Node’s implementation is split into two methods. Method Node#set traverses the
nodes of the list until a node with refCount > 0 is found. Method Node#copySet is
called which makes a copy (line 135) of each node it visits generating a copy of the
original sequence in newNode parameter. Both methods stop when they find the node
that needs to be changed. If that happens in Node#set then the change is done in place
since the node is not shared. Otherwise, in method Node#copySet the copy of the node
is altered and it is set to point to the rest of the old list structure.

• The algorithm locks all the nodes as it traverses them in order to ensure thread safety
and then releases them in the reverse order.

• The algorithm is expressed in a recursive form and not in iterative form.

• The List objects are not thread-safe themselves, but the internal implementations is,
meaning that using two different lists for different threads is safe even thought the two
implementation may share some nodes.

4.1.2 Interface Specification
We will first examine the specifications of the sentinel class and then specify the interface
class’ behavior which is the target of our verification process. The specifications of the List
class are shown in listing 4.2 in which the highlighted pre- and post-conditions ensure the
absence of deadlocks and can be ignored.We assume the existence of a predicate inv that is a
token used by client code to abstractly store the necessary permissions. The two constructor
methods absorb the permissions of the newly created list object and make up the inv token.
The mutation methods require an inv token and return it in the end. The specification is
given in terms of the function toSeq. initCopy ensures that the list that is copied does
not change and that the new list is the same as the other. Methods insert and set use
the sequence notation to encode the desired specification. Notably, the specification of set
encodes the behavior in case index is out of bounds (i.e. index >= |toSeq()|) .

66

; ;

� �

1 class List
2 {
3 predicate inv { ... }
4
5 function toSeq(): seq<int>
6 requires inv
7 {
8 ...
9 }

10
11 method initEmpty()
12 requires acc(head) && acc(sequence) && head == null
13 ..requires acc(mu) && mu == lockbottom
14 ensures inv
15 ..ensures rd*(mu) && waitlevel << mu
16 ensures toSeq() == []
17 {
18 ...
19 }
20
21 method initCopy(other: List)
22 requires acc(head) && acc(sequence) && head == null
23 ..requires acc(mu) && mu == lockbottom
24 requires other != null && this != other && other.inv
25 ..requires rd*(other.mu) && waitlevel << other.mu
26 ensures inv && other.inv
27 ..ensures rd*(mu) && waitlevel << mu
28 ..ensures rd*(other.mu) && waitlevel << other.mu
29 ensures toSeq() == other.toSeq()
30 ensures other.toSeq() == old(other.toSeq())
31 {
32 ...
33 }
34
35 method insert(value: int)
36 requires inv
37 ..requires rd*(mu) && waitlevel << mu
38 ensures inv
39 ..ensures rd*(mu)
40 ensures toSeq() == [value] ++ old(toSeq())
41 {
42 ...
43 }
44
45 method set(index: int, value: int)
46 requires inv && 0 <= index
47 ..requires rd*(mu) && waitlevel << mu;
48 ensures inv
49 ..ensures rd*(mu)
50 ensures index < old(|toSeq()|)
51 ? toSeq() == old(toSeq()[index := value])
52 : toSeq() == old(toSeq())
53 {
54 ...
55 }
56 }
� �

Listing 4.2: Specification of the List interface

With this specification we can now use the List class with a client and reason about the
behavior of copy-on-write lists. A sample client is show in listing 4.3.

67

; ;

� �

1 class Main
2 {
3 method main()
4 {
5 var l1:List
6 var l2:List
7
8 l1 := new List
9 call l1.initEmpty()

10 assert l1.toSeq() == []
11 call l1.insert(42)
12 assert l1.toSeq()[0] == 42
13 call l1.insert(43)
14 assert l1.toSeq()[0] == 43
15 assert l1.toSeq()[1] == 42
16 l2 := new List
17 call l2.initCopy(l1)
18 assert l2.toSeq() != []
19 assert l2.toSeq()[0] == 43
20 assert l2.toSeq()[1] == 42
21 call l1.set(0, -42)
22 assert l1.toSeq()[0] == -42
23 assert l2.toSeq()[0] == 43
24 assert |l1.toSeq()| == 2
25 assert |l2.toSeq()| == 2
26 call l2.insert(1337)
27 assert l2.toSeq()[0] == 1337
28 assert l2.toSeq()[1] == 43
29 assert l2.toSeq()[2] == 42
30 assert l1.toSeq()[0] == -42
31 assert l1.toSeq()[1] == 42
32 assert |l1.toSeq()| == 2
33 assert |l2.toSeq()| == 3
34 call l1.set(1, -99)
35 assert l1.toSeq()[1] == -99
36 assert l2.toSeq()[2] == 42
37 }
38 }
� �

Listing 4.3: Simple client for the List interface in listing 4.2

4.1.3 Verification

In order for the List class to be able to access the nodes of the list, the sentinel node must
have read permissions to all the nodes that belong to the list. In particular we can give one
epsilon permission to each sentinel on the fields value and next of each Node transitively
accessible by the sentinel. We do that by a recursive predicate:
� �

1 predicate inv {
2 acc(value, rd(1)) && acc(next, rd(1)) &&
3 (next != null ==> next.inv)
4 }
� �

We use counting permission in order to know exactly how many epsilons we have given
away to sentinels. To achieve this we introduced a new field, transRefCount, that denotes
how many List objects have access to a node. Using this field we can write the remaining
permission to a Node as:

68

; ;

� �

1 acc(value, 100-rd(transRefCount)) && acc(next, 100-rd(transRefCount))
� �

Using this counting scheme and knowing that the field transRefCount = 1 we can deduce
that, when combined with the epsilon permission from the sentinel, we have full (write)
access to the node; in other words we can prove that the node is not shared. Note here that
transRefCount is a field introduced for verification and no “real” code can depend on it (i.e.
a ghost field). The example in figure 4.4 with transRefCount introduced, abbreviated as trc,
in shown in figure 4.5

n2

rc=1

trc=1

n3

rc=2

trc=2

n1

rc=1

trc=1

n4

rc=1

trc=2

n5

rc=1

trc=2

L1 L2

→

n2

rc=1

trc=1

n3*

rc=1

trc=1

n1

rc=1

trc=1

n3

rc=1

trc=1

n4

rc=1

trc=1

n5

rc=2

trc=2

n4*

rc=1

trc=1

L1 L2

Figure 4.5: Changing a shared node with refCount and transRefCount

The theorem that we want to prove about the programmer’s code is that as the algorithm
iterates the nodes of the list, as long as we visit nodes with refCount = 1 these nodes are
not shared. For our verification model (using transRefCount to model sharing nodes) this
is translated to deducing that, assuming that transRefCount = 1 for the current node and
that refCount = 1 for the next node, transRefCount = 1 for then next node. In compact
form:

this.transRefCount = 1 ∧ next.refCount = 1 =⇒ next.transRefCount = 1

This is not a trivial theorem! Our proposed solution is the use of backpointers. Using the
extensions described in chapter 3 we can write two monitor invariants that can lead to the
desired conclusion.

this.refCount =
∣∣this.(Node.next−1)

∣∣ +
∣∣this.(List.head−1)

∣∣
this.transRefCount =

∑
n∈this.(Node.next−1)

n.transRefCount +
∣∣this.(List.head−1)

∣∣
These invariants are always valid and describe the semantics of refCount and transRefCount.
They are especially useful in case this.transRefCount = 1 and this.next.refCount = 1.

69

; ;

Bellow we provide an outline of the proof. Our premise is that this.transRefCount = 1
and next.refCount = 1. We know that this.next 6= null therefore, by using the definitional
axiom (1), we infer that this ∈ next.(Node.next)−1. Using both the contrapositive of axiom 3
(on next.(Node.next)−1 and this) and axiom 2 we get that:∣∣next.(Node.next−1)

∣∣ = 1 ∧
∣∣next.(List.head−1)

∣∣ = 0

from the first invariant on next. from the second invariant on next we can deduce that:

next.transRefCount =
∑

n∈next.(Node.next−1)

n.transRefCount

Using axiom 6 on next.(Node.next−1) since we know that
∣∣next.(Node.next−1)

∣∣ = 1 and
this ∈ next.(Node.next)−1 we get:

next.transRefCount =
∑

n∈next.(Node.next−1)

n.transRefCount = this.transRefCount

and thus next.transRefCount = 1.
So, in the end, the invariant for the Node becomes:

� �

1 invariant A: acc(refCount,50) && acc(transRC,50) &&
2 acc(next, 100-rd(transRC)) && acc(value, 100-rd(transRC));
3 invariant B: refCount == |∼(Node.next)| + |∼(List.head)|;
4 invariant C: transRC == (sum x in ∼(Node.next) :: x.transRC) + |∼(List.head)|;
5 invariant D: (next==null ==> acc(refCount,50) && acc(transRC,50));
6 invariant E: (forall o:∼(Node.next) :: acc(o.refCount,50) && acc(o.transRC,50));
7 invariant F: acc(∼Node.next) && acc(∼List.head);
� �

The A part of the invariant gives the necessary permissions to refCount and transRC for
the current node as well as (read) access to value and next with counting permissions
as described before. We need access to the fields refCount and transRC of our “parents” in
relation to Node.next and List.head and because of that we have to split the full permission
on those fields and give 50% in the invariant of the current node and 50% to the invariant
of the object this.next. That is the E part of the invariant, expressed with backpointers. If
the this.next field is null then we should not loose any permissions, so we keep the 50%
of the full permission to the invariant of current node and that is part D. Parts B and C
are the invariants used for the proof of the theorem done above. Finally, in part F, we give
permissions to the backpointer fields of this Node.next and List.head.

When attaching a new List object to some Node, during the initCopy() method we
have to make up a new Node.inv for that list. The way this is done is by increasing the
transRefCount by one, recursively, through the rest of the list. This is done with the
addOneToTransRefCount() method. This is not an actual method of the implementation,
it is a ghost method operating on the ghost field transRefCount. The method takes the
invariant broken at C and fixes it by returning an extra inv predicate. This way the new
List gains interest in the nodes of it’s implementation. The method is shown is listing 4.4.
� �

1 method addOneToTransRefCount()
2 requires inv
3 requires holds(this; broken C) && ..unfolding inv in waitlevel==mu
4 requires transRefCount ==
5 (sum n in ∼(Node.next) :: n.transRefCount) + |∼(List.head)| - 1
6 ensures inv && ..inv
7 ensures holds(this; *) && ..unfolding inv in waitlevel==mu
8 ensures toSeq() == old(toSeq())

70

; ;

9 ensures ∼(Node.next)==old(∼(Node.next)) && ∼(List.head)==old(∼(List.head))
10 {
11 unfold inv
12 if(next!=null)
13 {
14 acquire this.next
15 assert useDefinitionalAxiom(@Node.next, next)
16 }
17 transRefCount := transRefCount + 1;
18 if(next!=null)
19 {
20 call next.addOneToTransRefCount() &&& rd(∼(Node.next).transRefCount)
21 release this.next &&& rd(∼(Node.next).transRefCount)
22 }
23 fold inv
24 fold inv
25 }
� �

Listing 4.4: The addOneToTransRefCount method

Losing interest to nodes of the list happens when we make a new copy of the nodes during
copySet(). This is done inside the method while traversing the nodes of the list in contrast
with addOneToTransRefCount(). Again the precondition of the method takes the invariant
broken at C and fixes it by removing one from transRefCount and releasing one epsilon
permission into the monitor invariant of the node.

Full listing of the actual code used in verification can be found in appendix A.

4.2 Priority Inheritance Protocol (PIP)
The priority inheritance protocol [Sha90] is an algorithm and datastructure from the domain
of system programming about synchronizing tasks executing in parallel multiprocessors. From
the point of view of formal methods [Summ09] PIP is a very interesting example of a practical
datastructure that has non-local invariants. PIP is, abstractly, a graph structure represented
by Node objects, in which a Node has at most one parent and where cycles in the parent
relation are possible (see figure 4.6). In listing 4.5 we can see the programmer’s code for the
PIP datastructure.
� �

1 class Node
2 {
3 var parent: Node;
4 var initVal: int;
5 var value: int;
6
7 method init(val: int)
8 {
9 parent := null;

10 value := val;
11 initVal := val;
12 }
13
14 method acquire(nd: Node)
15 {
16 nd.parent := this;
17 call this.update(nd.value);
18 }
19
20 method update(newValue: int)
21 {
22 if(newValue > value)

71

; ;

23 {
24 if(parent != null)
25 { parent.update(value); }
26 }
27 }
28 }
� �

Listing 4.5: The priority inheritance protocol user code

The transitive invariant that all Nodes must obey is:

node.value = max({node.initV al} ∪ {n.value | node ∈ n(.parent)∗})

stating that the current node’s value must be the maximum of its initVal value, and the
value of all its (transitive) descendants. This property for the nodes is obviously true given
the implementation in listing 4.5. It is interesting to note that it is a non-local invariant; the
invariant on node depends on objects not accessible from node.

In [Summ09] four solutions to PIP are given one of which is the usage of a ghost variable
to track the “backpointer” of the parent relation. In the paper it is dismissed in favor of
considerate reasoning [Summ10] because there are no guarantees that the ghost set of objects
is correctly maintained. The formulation of backpointers in this thesis does exactly that.

We have implemented the PIP using the formalism of backpointers in Chalice. The above
invariant, written in our formalism, is:
� �

1 value == (|∼(Node.parent)|==0 ?
2 initVal :
3 max(initVal, (max c in ∼(Node.parent) :: c.value)))
� �

We use the aggregate max directly on the backpointer field for the descendants relation. The
specification of update(), in the spirit of considerate reasoning, takes the invariant broken
and in the postcondition returns it fixed.

A problem we encountered was the fact that PIP is potentially a cyclic datastructure.
The current implementation of Chalice prohibits cyclic datastructures because all objects
that can be shared must be in a partial ordering relation, due to the restriction imposed

..

.

.

.

.

.parent.parent

.parent

.parent

.parent

Figure 4.6: An instance of PIP

72

; ;

by the deadlock avoidance mechanism. We had to circumvent this obstacle and verify PIP
without the guarantee of deadlock freedom.

The full code listing of the implementation of PIP can be found in appendix B.

73

; ;

; ;

Chapter 5

Conclusion

In this chapter we discuss the contribution of this work in the field of formal specification
and verification, and in particular in the field of invariant disciplines and the research on
observational disjointness. We compare our work with other methodologies targeting similar
problems. Finally, we also examine the ways in which this work can be extended in the future.

5.1 Results
We developed a verification methodology based on backpointers. We implemented it in the
verification language Chalice and solved some issues that were caused by implementing
this discipline in the framework of implicit dynamic frames with fractional and counting
permissions. We revisited our initial approach on backpointers and simplified it by relying on
the already existing infrastructure of field access permissions and implicit dynamic frames of
Chalice instead of using complex rules to deduce when an assignment is permitted.

After successfully implementing our extension we tried the new formulation on some
challenging problems, namely copy-one-write lists and the priority inheritance protocol. We
found that our methodology succeeded in encoding the specifications of those datastructures,
which have the common characteristic that their object invariants rely on objects that are
non-accessible from the local frame. To the best of our knowledge this is the first time such
an attempt based on automated proving is made for a problem of the general category of
fictional disjoint datastructures.

An importand issue we resolved was optimizing the verification process to shorten the
verification times which were, in the beginning, too large to be practical, even for small
programs. We modified the encoding and the implementation of backpointers many times
in order to guide the prover. Many triggering issues had to be solved and some times an
incomplete axiomatization was needed, in favor of better verification times.

Despite our efforts, one branch of the copy-one-write lists implementation remains un-
proved, probably due to a matching loop in the automated prover. We were not successful in
finding and eliminating the conditions that led the prover into a loop.

5.2 Related work
The backpointer methodology is in effect an invariant discipline. It is a set of rules ensuring
that the definitional axiom of a backpointer’s ghost field is always valid, i.e. that r ∈ r.f.f−1

in any state, for any non-null record r and tracked field f such that r.f 6= null. We call
conditions like these system invariants. Some other conditions are given by the programmer,
for example object or monitor invariants. There are several ways of treating program-specific
invariants, mostly focusing on the special case of object invariants [Dros08]. Various forms of
ownership [Lein04, Barn05, Mull02] are popular invariant disciplines.

There was an academic debate on the necessity and usefulness of invariant disciplines.
[Park07] stated the case in favor of using abstract predicates. In [Summ09] the authors argued

75

; ;

that even with the usage of abstract predicates, object invariant are still useful in expressing
properties of objects in an object oriented way that does better job in separating concerns in
specification. In the same paper the term global invariant is used to describe object invariants
that are closely related to invariants concerning backpointers in Chalice. Their verification
of PIP [Sha90] uses a “backpointer” ghost field to localize the non-local property of this
datastructure. It seems, the authors argue, that the priority inheritance protocol example is
not easy to handle with abstract predicates alone.

Our verification methodology used in verifying the copy-on-write lists case is heavily
inspired by considerate reasoning [Summ10]. Their specification and verification technique
based on object invariants provides a way for method specifications to “notify” all interested
parties about an object invariant that might break. Our specification and verification of
addOneToTransRefCount is an adaptation of their addToTotal method from the implemen-
tation of the composite pattern.

Observational disjointness is a field of study that posses many challenges on formal
verification. Separation logics have been very successful in describing the part of the heap
that a data structure resides in, but have many problems when it comes to datastructures
that are observationally disjoint but share some internal representation. Our approach based
on implicit dynamic frames and fractional/counting permission enables a more flexible de-
scription of the heap. In particular, bookkeeping of reference counting through backpointers
and counting permissions is essential to the copy-on-write lists case study.

Concurrent abstract predicates [Dins10] is a theory where special predicates called capabil-
ities allow exclusive access to a shared portion of the heap, thus supporting hidden sharing of
state. This approach has been successful in specifying and verifying indexing datastructures
[da R11] however, our work does not emulate the theory of CAPs in dealing with these
problems. After all, it is not clear how CAPs would handle copy-on-write lists. Backpointers
and CAPs are orthogonal methodologies, and one could, in the future, combine both of them
in solving even more difficult problems.

Fictional Separation Logic [Jens12] is an ambitious mathematical framework that allows
the implementer to choose their own separation algebra as part of the implementation. This
idea completely decouples heap disjointness from separating conjunction. The use of fractional
permissions as well as other examples of observational disjointness are shown to be special
cases of this very general methodology. The generality comes at the price of complexity at the
part of the implementer, so it remains an open question if this idea scales up to reasonably-
sized programs. Furthermore, it seems that fictional separation logic has no provision for
object and monitor invariants, nor does it provide the means of mentioning unreachable
parts of the heap, like we do.

In [Mehn12] another problem from the family of fictional disjoint data structures, the
snapshotable trees, is proposed as a challenge. In this example clients see the same mutable
tree and can take immutable snapshots of the tree at any time. All snapshots and the tree
appear to be heap-disjoint, but, in fact, the implementation uses lazy copying and shares as
much as possible. There are four different versions of the structure, one of which is verified by
the authors, using whole-heap predicates (and therefore restricting it to sequential programs).
Compared to copy-on-write lists the implementation of snapshotable trees is easier since each
copy of the tree (snapshot) is immutable and thus no resorting to reference counting is needed.
In the terminology of [Dris86], snapshotable trees are partially persistent, while copy-on-write
lists are fully persistent. Snapshotable trees could be verified using the framework of Chalice
without the usage of backpointers, which is not true for the case of copy-on-write lists.

76

; ;

5.3 Future work
One future extension to this work could be the complete verification of the copy-on-write
lists example, possibly by identifying and fixing any remaining triggering issues in the current
implementation of backpointers in Chalice. An even further inspection of the implementation
for matching loops could lead to an even better performance from the prover.

One could extend the specification language of backpointers in many ways. One approach
could be the exploration of other commonly used patterns of ghost fields that, along with some
discipline, could make non-local properties accessible to the specifications. Another possibility
could be to extend the list of aggregate functions currently supported by the implementation
or even to lift the restriction on the kinds of expressions that can appear inside the body
of the aggregate. Note that enabling referencing fields of fields in the body of aggregates
introduces the risk of abstract aliasing [Lein02]. Last, a more comprehensive set of axioms,
inspired from [Lein09c], could be implemented.

In conjunction with some techniques that could reduce or infer the, at the moment,
necessary permission annotations in the specification, one could dramatically reduce the
specifications needed by even the simplest of examples that uses backpointers as is the
formalism at the moment in Chalice.

The current version of our methodology, binded with the overall framework of Chalice
does not deal with inheritance and subtyping, features commonly found in object oriented
languages. This is a topic that could be explored in the future.

Finally, the current interface specification of copy-on-write lists exposes a subtle but very
important implementation detail to the client: the usage of locks. Furthermore, they impose a
non-trivial requirement about the locking behavior of the client. This is due to technicalities
of the Chalice deadlock-avoidance features. A future work could be to find a way to hide
this information from the client, possibly by refining the deadlock avoidance methodology in
Chalice.

77

; ;

; ;

Appendix A

Copy-on-Write lists program listing

Here is the complete listing of Copy-on-Write lists that we tried to verify.
� �

1 class List
2 {
3 tracked var head:Node
4 var sequence:seq<int>
5
6 predicate inv
7 {
8 acc(head) && acc(sequence) && rd*(mu)
9 && (head != null ? head.inv && sequence==head.toSeq() && rd*(head.mu) && mu <<

head.mu
10 : sequence==[]
11)
12 }
13
14 function toSeq():seq<int>
15 requires inv
16 { unfolding inv in sequence }
17
18 method initEmpty()
19 requires acc(head) && acc(sequence) && acc(mu) && mu==lockbottom && head==null
20 ensures inv && rd*(mu) && waitlevel<<mu
21 ensures toSeq() == []
22 {
23 share this above waitlevel
24 sequence:=[]
25 fold inv
26 }
27
28 method initCopy(other:List)
29 requires acc(head) && acc(sequence) && acc(mu) && mu==lockbottom && head==null
30 requires other!=null && this!=other && other.inv && rd*(other.mu) && waitlevel

<<other.mu
31 ensures inv && other.inv
32 ensures rd*(mu) && waitlevel<<mu
33 ensures rd*(other.mu) && waitlevel<<other.mu
34 ensures toSeq() == other.toSeq()
35 ensures other.toSeq() == old(other.toSeq())
36 {
37 unfold other.inv
38 sequence:=other.sequence
39 share this between waitlevel and other.mu
40 acquire this
41 acquire other
42 if(other.head!=null)
43 {
44 acquire other.head
45 head := other.head
46 head.refCount := head.refCount + 1

79

; ;

47 call head.addOneToTransRefCount()
48 release head
49 }
50 release other
51 release this
52 fold other.inv
53 fold inv
54 }
55
56 method insert(value:int)
57 requires inv && rd*(mu) && waitlevel<<mu
58 ensures inv && rd*(mu) && toSeq() == [value]++old(toSeq())
59 {
60 var n:Node;
61 n:=new Node;
62 n.value:=value;
63 unfold inv;
64 if(head!=null) { acquire head; }
65 n.next:=head;
66 head:=n;
67 head.refCount:=1;
68 head.transRefCount:=1;
69 head.sequence:=[value]++sequence;
70 sequence:=[value]++sequence;
71 if(head.next!=null) { release head.next &&& rd(head.∼(Node.next).transRefCount)

}
72 share head between this and head.next
73 fold head.inv
74 fold inv
75 }
76
77 method set(index:int, value:int)
78 requires inv && 0<=index
79 requires rd(mu) && waitlevel<<mu;
80 ensures inv && (index<old(|toSeq()|) ? toSeq()==old(toSeq()[index:=value]) :

toSeq()==old(toSeq()))
81 {
82 var h:Node
83 unfold inv
84 if(head!=null)
85 {
86 acquire head
87 if(head.refCount==1)
88 {
89 assert useDefinitionalAxiom(@List.head, head)
90 assert head.∼(List.head).useAxiomBelongsToEmptySet(this)
91 assert head.∼(List.head).useAxiomCardinalityNotNegative()
92 assert head.∼(Node.next).useAxiomCardinalityNotNegative()
93 assert head.∼(Node.next).useAxiomSumOfEmptySet(@Node.transRefCount)
94 assert head.∼(List.head).useAxiomSumOfUnitSet(this, @Node.transRefCount)
95 call head.set(index, value)
96 }
97 else
98 {
99 head.refCount:=head.refCount-1

100 h:=head
101 head:=new Node
102 call h.copySet(index, value, head)
103 }
104 sequence:=head.toSeq()
105 }
106 fold inv
107 }

80

; ;

108 }
109
110
111
112 class Node
113 {
114 var value:int
115 var sequence:seq<int>
116 tracked var next:Node
117 var refCount:int
118 var transRefCount:int
119
120 invariant A: acc(refCount) && acc(transRefCount, 50) && acc(value, 100-rd(

transRefCount)) && acc(next, 100-rd(transRefCount)) && acc(sequence, 100-rd(
transRefCount))

121 invariant D: next==null ==> acc(transRefCount, 50)
122 invariant F: acc(∼(Node.next)) && acc(∼(List.head))
123 invariant B: refCount == |∼(Node.next)| + |∼(List.head)|
124 invariant E: acc(∼(Node.next).transRefCount, 50)
125 invariant C: transRefCount == (sum n in ∼(Node.next) :: n.transRefCount) + |∼(

List.head)|
126
127 predicate inv
128 {
129 acc(value, rd(1)) && acc(next, rd(1)) && acc(sequence, rd(1)) && rd*(mu) &&

lockbottom != this.mu &&
130 (next != null ? next.inv && rd*(next.mu) && this.mu << next.mu && sequence==[

value]++next.toSeq() : sequence==[value])
131 }
132
133 function toSeq():seq<int>
134 requires inv
135 { unfolding inv in sequence }
136
137 method set(index: int, newValue:int)
138 requires inv && rd*(mu)
139 requires holds(this; *) && waitlevel==mu
140 requires transRefCount == 1 && refCount == 1
141 requires 0<=index
142 lockchange this
143 ensures inv
144 ensures index<old(|toSeq()|) ? toSeq() == old(toSeq()[index:=newValue]) : toSeq

() == old(toSeq())
145 ensures !holds(this)
146 {
147 var h:Node
148 var O:seq<int>
149
150 unfold inv
151 assert sequence==old(toSeq())
152 if (index == 0)
153 {
154 value := newValue
155 sequence:=sequence[0:=newValue]
156 release this
157 }
158 else
159 {
160 if(next!=null)
161 {
162 acquire next
163 if(index<|sequence|) { sequence:=sequence[index:=newValue] }
164 if (next.refCount == 1)

81

; ;

165 {
166 release this &&& rd(next.∼(Node.next).transRefCount)
167
168 assert useDefinitionalAxiom(@Node.next, next)
169 assert next.∼(Node.next).useAxiomBelongsToEmptySet(this)
170 assert next.∼(Node.next).useAxiomCardinalityNotNegative()
171 assert next.∼(List.head).useAxiomCardinalityNotNegative()
172 assert next.∼(List.head).useAxiomSumOfEmptySet(@Node.transRefCount)
173 assert next.∼(Node.next).useAxiomSumOfUnitSet(this, @Node.transRefCount)
174 call next.set(index-1, newValue)
175 }
176 else
177 {
178 next.refCount:=next.refCount-1
179 h:=next
180 assert useDefinitionalAxiom(@Node.next, next)
181 next:=new Node
182 assert acc(transRefCount)
183 assert useDefinitionalAxiom(@Node.next, next)
184 assert next.∼(Node.next).useAxiomTwoMembersOfUnitSet1(this)
185 call h.copySet(index-1, newValue, next) &&& rd(∼(Node.next).transRefCount

)
186 assert refCount == |∼(Node.next)| + |∼(List.head)|
187 assert transRefCount == (sum n in ∼(Node.next) :: n.transRefCount) + |∼(

List.head)|
188 release this
189 }
190 }
191 else { release this }
192 }
193 O:=sequence
194 fold inv
195 assert toSeq()==O
196 }
197
198 method copySet(index:int, newValue:int, newNode:Node)
199 requires inv && rd*(mu)
200 requires newNode!=null && acc(newNode.value) && acc(newNode.next) && newNode.

next==null && acc(newNode.sequence) && acc(newNode.refCount) && acc(newNode
.transRefCount) && acc(newNode.mu) && newNode.mu==lockbottom

201 requires acc(newNode.∼(Node.next)) && acc(newNode.∼(List.head)) && |newNode.∼(
Node.next)|+|newNode.∼(List.head)|==1

202 requires acc(newNode.∼(Node.next).transRefCount ,50) && (sum m in newNode.∼(
Node.next) :: m.transRefCount) + |newNode.∼(List.head)| == 1

203 requires waitlevel==mu && holds(this; broken C)
204 requires transRefCount == (sum m in ∼(Node.next) :: m.transRefCount) + |∼(List.

head)| + 1
205 requires 0<=index
206 lockchange this
207 ensures newNode.inv
208 ensures index<old(|toSeq()|) ==> newNode.toSeq() == old(toSeq()[index:=newValue

])
209 ensures index>=old(|toSeq()|) ==> newNode.toSeq() == old(toSeq())
210 ensures rd*(newNode.mu) && rd*(mu) && mu<<newNode.mu
211 ensures !holds(this) && !holds(newNode)
212 {
213 var h:Node
214 var O:seq<int>
215
216 unfold inv
217 assert sequence==old(toSeq())
218 newNode.refCount:=1
219 newNode.transRefCount:=1

82

; ;

220 if(next!=null)
221 {
222 acquire next
223 assert useDefinitionalAxiom(@Node.next, next)
224 }
225 assert useDefinitionalAxiom(@Node.next, next)
226 transRefCount:=transRefCount-1
227 if(index==0)
228 {
229 newNode.value:=newValue
230 assert useDefinitionalAxiom(@Node.next, next)
231 newNode.next:=next
232 if(next!=null)
233 {
234 next.refCount:=next.refCount+1
235 release next &&& rd(newNode.∼(Node.next).transRefCount) && rd(∼(Node.next).

transRefCount)
236 }
237 }
238 else
239 {
240 assert newNode.transRefCount==1
241 newNode.value:=value
242 if(next!=null)
243 {
244 assert newNode.useDefinitionalAxiom(@Node.next, newNode.next)
245 newNode.next:=new Node
246 call next.copySet(index-1, newValue, newNode.next) &&& rd(∼(Node.next).

transRefCount) && rd(newNode.∼(Node.next).transRefCount)
247 }
248 else { newNode.next:=null }
249 }
250 newNode.sequence:= [newNode.value] ++ (newNode.next!=null ? newNode.next.toSeq

() : [])
251 assert newNode.transRefCount==1
252 share newNode between this and newNode.next &&& rd(∼(Node.next).transRefCount)
253 O:=newNode.sequence
254 fold newNode.inv
255 assert newNode.toSeq()==O
256 release this
257 assert index<old(|toSeq()|) ==> newNode.sequence == old(toSeq()[index:=newValue

])
258 assert index>=old(|toSeq()|) ==> newNode.toSeq() == old(toSeq())
259 }
260
261 method addOneToTransRefCount()
262 requires inv
263 requires holds(this; broken C) && unfolding inv in waitlevel==mu
264 requires transRefCount == (sum n in ∼(Node.next) :: n.transRefCount) + |∼(List.

head)| - 1
265 ensures inv && inv
266 ensures holds(this; *) && unfolding inv in waitlevel==mu
267 ensures toSeq() == old(toSeq())
268 ensures ∼(Node.next)==old(∼(Node.next)) && ∼(List.head)==old(∼(List.head))
269 {
270 unfold inv
271 if(next!=null)
272 {
273 acquire this.next
274 assert useDefinitionalAxiom(@Node.next, next)
275 }
276 transRefCount := transRefCount + 1;
277 if(next!=null)

83

; ;

278 {
279 call next.addOneToTransRefCount() &&& rd(∼(Node.next).transRefCount)
280 release this.next &&& rd(∼(Node.next).transRefCount)
281 }
282 fold inv
283 fold inv
284 }
285 }
286
287
288
289 class Main
290 {
291 method main()
292 {
293 var l1:List
294 var l2:List
295
296 l1 := new List
297 call l1.initEmpty()
298 assert l1.toSeq() == []
299 call l1.insert(42)
300 assert l1.toSeq()[0] == 42
301 call l1.insert(43)
302 assert l1.toSeq()[0] == 43
303 assert l1.toSeq()[1] == 42
304 l2 := new List
305 call l2.initCopy(l1)
306 assert l2.toSeq() != []
307 assert l2.toSeq()[0] == 43
308 assert l2.toSeq()[1] == 42
309 call l1.set(0, -42)
310 assert l1.toSeq()[0] == -42
311 assert l2.toSeq()[0] == 43
312 assert |l1.toSeq()| == 2
313 assert |l2.toSeq()| == 2
314 call l2.insert(1337)
315 assert l2.toSeq()[0] == 1337
316 assert l2.toSeq()[1] == 43
317 assert l2.toSeq()[2] == 42
318 assert l1.toSeq()[0] == -42
319 assert l1.toSeq()[1] == 42
320 assert |l1.toSeq()| == 2
321 assert |l2.toSeq()| == 3
322 call l1.set(1, -99)
323 assert l1.toSeq()[1] == -99
324 assert l2.toSeq()[2] == 42
325 }
326 }
� �

Listing A.1: Copy-on-Write lists: complete program listing

84

; ;

Appendix B

Priority inheritance protocol program listing

Here is the complete listing of priority inheritance protocol implemented in Chalice with
backpointers.
� �

1 class Node
2 {
3 function mx(x:int, y:int):int { x>y ? x : y }
4
5 tracked var parent: Node;
6 var value: int;
7 var initVal: int;
8
9 invariant /* A */ acc(∼(Node.parent)) && acc(∼(Node.parent).value, 50) && acc(

value, 50) && rd*(initVal) && acc(parent, 50);
10 invariant /* B */ value == (|∼(Node.parent)|==0 ? initVal : mx(initVal, (max c in

∼(Node.parent) :: c.value)));
11 invariant /* C */ (parent==null ==> acc(value, 50));
12
13 method Init(v:int)
14 requires acc(parent) && parent==null && acc(value) && acc(initVal) && acc(∼(

Node.parent)) && |∼(Node.parent)|==0 && this.mu == lockbottom;
15 ensures acc(parent, 50) && lockbottom << this.mu;
16 {
17 initVal:=v;
18 value:=v;
19 share this;
20 }
21
22 method acq(n:Node)
23 requires acc(mu) && acc(n.mu) && lockbottom << this.mu && !holds(this) && acc(

parent, 50) && parent==null && n!=null && n!=this;
24 ensures rd*(parent) && parent==n;
25 {
26 acquire n;
27 parent:=n;
28 call n.update(value);
29 release n;
30 }
31
32 method update(v:int)
33 requires holds(this);
34 requires /* A */ acc(∼(Node.parent)) && acc(∼(Node.parent).value, 50) && acc(

value, 50) && rd*(initVal) && acc(parent, 50);
35 requires v<=value ==> /* B */ value == (|∼(Node.parent)|==0 ? initVal : mx(

initVal, (max c in ∼(Node.parent) :: c.value)));
36 requires /* C */ (parent==null ==> acc(value, 50));
37 requires v>value ==> v == mx(initVal, (max c in ∼(Node.parent) :: c.value))

&& !holds(parent);
38 ensures holds(this);
39 ensures /* A */ acc(∼(Node.parent)) && acc(∼(Node.parent).value, 50) && acc(

value, 50) && rd*(initVal) && acc(parent, 50);

85

; ;

40 ensures /* B */ value == (|∼(Node.parent)|==0 ? initVal : mx(initVal, (max c in
∼(Node.parent) :: c.value)));

41 ensures /* C */ (parent==null ==> acc(value, 50));
42 {
43 if(v>value)
44 {
45 if(parent!=null) { acquire parent; call parent.update(value); }
46 value:=v;
47 if(parent!=null) { release parent; }
48 }
49 }
50 }
� �

Listing B.1: Priority inheritance protocol: complete program listing

86

; ;

Appendix C

Source code and tools

The source code of the extensions in Chalice, developed during this thesis, in the form of
patches as well as information and examples about the usage of backpointers in Chalice can
be found under:
http://www.softlab.ntua.gr/~lkritik/backpointers

All patches are based on Chalice from Boogie version 9c96c519e063 found here:
http://boogie.codeplex.com/SourceControl/changeset/9c96c519e063

Binary builds of Boogie can be found here:
http://boogie.codeplex.com/
and binary releases of Z3 here:
http://z3.codeplex.com/ or
http://research.microsoft.com/en-us/um/redmond/projects/z3/download.html

To build Chalice from source use “./sbt compile”.

To run Chalice use one of “./chalice.sh file.chalice” or “chalice.bat file.chalice” depending
on your operating system.

The patches are released under the same license Chalice and Boogie are released, the Microsoft
Public License (Ms-PL).

Chalice, Boogie and Z3 are not intellectual property of the author or in any way related
to the author or the National Technical University of Athens.

87

http://www.softlab.ntua.gr/~lkritik/backpointers
http://boogie.codeplex.com/SourceControl/changeset/9c96c519e063
http://boogie.codeplex.com/
http://z3.codeplex.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/download.html

; ;

; ;

Bibliography

[Bane08] Anindya Banerjee, David A. Naumann and Stan Rosenberg, “Regional Logic for
Local Reasoning about Global Invariants”, in Proceedings of the 22nd European
conference on Object-Oriented Programming, ECOOP ’08, pp. 387–411, Berlin,
Heidelberg, 2008, Springer-Verlag.

[Barn05] Mike Barnett, K. Rustan M. Leino andWolfram Schulte, “The spec# programming
system: an overview”, in Proceedings of the 2004 international conference on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
CASSIS’04, pp. 49–69, Berlin, Heidelberg, 2005, Springer-Verlag.

[Barn06] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs and
K. Rustan M. Leino, “Boogie: a modular reusable verifier for object-oriented
programs”, in Proceedings of the 4th international conference on Formal Methods
for Components and Objects, FMCO’05, pp. 364–387, Berlin, Heidelberg, 2006,
Springer-Verlag.

[Barr10a] Clark Barrett, Aaron Stump and Cesare Tinelli, “The SMT-LIB Standard: Version
2.0”, in A. Gupta and D. Kroening, editors, Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[Barr10b] Clark Barrett, Aaron Stump and Cesare Tinelli, “The SMT-LIB Standard: Version
2.0”, Technical report, Department of Computer Science, The University of Iowa,
2010. Available at www.SMT-LIB.org.

[Bobo11] François Bobot, Jean-Christophe Filliâtre, Claude Marché and Andrei Paskevich,
“Why3: Shepherd Your Herd of Provers”, in Boogie 2011: First International
Workshop on Intermediate Verification Languages, pp. 53–64, Wroc law, Poland,
August 2011.

[Born05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn and Matthew Parkinson,
“Permission accounting in separation logic”, in Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’05, pp. 259–270, New York, NY, USA, 2005, ACM.

[Boyl03] John Boyland, “Checking interference with fractional permissions”, in Proceedings
of the 10th international conference on Static analysis, SAS’03, pp. 55–72, Berlin,
Heidelberg, 2003, Springer-Verlag.

[Cheo02] Yoonsik Cheon and Gary T. Leavens, “A runtime assertion checker
for the Java Modeling Language (JML)”, in PROCEEDINGS OF
THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
RESEARCH AND PRACTICE (SERP ’02), LAS VEGAS, pp. 322–328, CSREA
Press, 2002.

[Clar82] Edmund M. Clarke and E. Allen Emerson, “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”, in Logic of
Programs, Workshop, pp. 52–71, London, UK, UK, 1982, Springer-Verlag.

89

www.SMT-LIB.org

; ;

[Clar98] David G. Clarke, John M. Potter and James Noble, “Ownership types for flexible
alias protection”, in Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’98, pp.
48–64, New York, NY, USA, 1998, ACM.

[Cohe09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l
Moskal, Thomas Santen, Wolfram Schulte and Stephan Tobies, “VCC: A Practical
System for Verifying Concurrent C”, in Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, TPHOLs ’09, pp. 23–42,
Berlin, Heidelberg, 2009, Springer-Verlag.

[Cok12] David R. Cok, The SMT-LIBv2 Language and Tools: A Tutorial, GrammaTech,
Inc., August 2012. Available at http://www.grammatech.com/resources/smt/
SMTLIBTutorial.pdf.

[Cous77] Patrick Cousot and Radhia Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints”, in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’77, pp. 238–252, New York, NY,
USA, 1977, ACM.

[da R11] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner
and Mark Wheelhouse, “A simple abstraction for complex concurrent indexes”,
in Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’11, pp. 845–864, New
York, NY, USA, 2011, ACM.

[De M08] Leonardo De Moura and Nikolaj Bjørner, “Z3: an efficient SMT solver”,
in Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg, 2008, Springer-Verlag.

[Diet07] Werner Dietl, Sophia Drossopoulou and Peter Müller, “Generic universe types”,
in Proceedings of the 21st European conference on Object-Oriented Programming,
ECOOP’07, pp. 28–53, Berlin, Heidelberg, 2007, Springer-Verlag.

[Dins10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson
and Viktor Vafeiadis, “Concurrent abstract predicates”, in Proceedings of the 24th
European conference on Object-oriented programming, ECOOP’10, pp. 504–528,
Berlin, Heidelberg, 2010, Springer-Verlag.

[Dris86] J R Driscoll, N Sarnak, D D Sleator and R E Tarjan, “Making data structures
persistent”, in Proceedings of the eighteenth annual ACM symposium on Theory
of computing, STOC ’86, pp. 109–121, New York, NY, USA, 1986, ACM.

[Dros08] S. Drossopoulou, A. Francalanza, P. Müller and A. J. Summers, “A Unified
Framework for Verification Techniques for Object Invariants”, in Proceedings of
the 22nd European conference on Object-Oriented Programming, ECOOP ’08, pp.
412–437, Berlin, Heidelberg, 2008, Springer-Verlag.

[Fill03] Jean-Christophe Filliâtre, “Why: a multi-language multi-prover verification tool”,
Research Report 1366, LRI, Université Paris Sud, March 2003. http://www.lri.
fr/~filliatr/ftp/publis/why-tool.ps.gz.

90

http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz

; ;

[Heul11] Stefan Heule, K. Rustan M. Leino, Peter Müller and Alexander J. Summers,
“Fractional permissions without the fractions”, in Proceedings of the 13th Workshop
on Formal Techniues for Java-Like Programs, FTfJP ’11, pp. 1:1–1:6, New York,
NY, USA, 2011, ACM.

[Heul12] S. Heule, I. T. Kassios, P. Müller and A. J. Summers, “Verification Condition
Generation for Permission Logics with Abstract Predicates and Abstraction
Functions”, Technical Report 776, ETH Zurich, Department of Computer Science,
11 2012.

[Heul13] S. Heule, K. R. M. Leino, P. Müller and A. J. Summers, “Abstract Read
Permissions: Fractional Permissions without the Fractions”, in Verification, Model
Checking, and Abstract Interpretation (VMCAI), Lecture Notes in Computer
Science, Springer-Verlag, 2013. To appear.

[Hoar69] C. A. R. Hoare, “An axiomatic basis for computer programming”, Commun. ACM,
vol. 12, no. 10, pp. 576–580, October 1969.

[Hoar74] C. A. R. Hoare, “Monitors: an operating system structuring concept”, Commun.
ACM, vol. 17, no. 10, pp. 549–557, October 1974.

[Jens12] Jonas Braband Jensen and Lars Birkedal, “Fictional separation logic”, in
Proceedings of the 21st European conference on Programming Languages and
Systems, ESOP’12, pp. 377–396, Berlin, Heidelberg, 2012, Springer-Verlag.

[Kass06] I. Kassios, “Dynamic frames: Support for framing, dependencies and sharing
without restrictions”, FM 2006: Formal Methods, vol. 4085, pp. 268–283, 2006.

[Kass12a] I. T. Kassios and E. Kritikos, “A Discipline for Program Verification based on
Backpointers and its Use in Observational Disjointness”, Technical Report 772,
ETH Zurich, Department of Computer Science, 2012.

[Kass12b] Ioannis T. Kassios, Peter Müller and Malte Schwerhoff, “Comparing verification
condition generation with symbolic execution: an experience report”, in
Proceedings of the 4th international conference on Verified Software: theories,
tools, experiments, VSTTE’12, pp. 196–208, Berlin, Heidelberg, 2012, Springer-
Verlag.

[King76] James C. King, “Symbolic execution and program testing”, Commun. ACM,
vol. 19, no. 7, pp. 385–394, July 1976.

[Lein02] K. Rustan M. Leino and Greg Nelson, “Data abstraction and information hiding”,
ACM Trans. Program. Lang. Syst., vol. 24, no. 5, pp. 491–553, September 2002.

[Lein04] K. R. M. Leino and P. Müller, “Object Invariants in Dynamic Contexts”,
in M. Odersky, editor, European Conference on Object-Oriented Programming
(ECOOP), vol. 3086 of Lecture Notes in Computer Science, pp. 491–516, Springer-
Verlag, 2004.

[Lein08] K. Rustan M. Leino, “This is Boogie 2”, Technical report, Microsoft Research,
Microsoft Research, Redmond, WA, USA, 2008. Available at http://research.
microsoft.com/~leino/papers.html.

[Lein09a] K. Leino and Peter Müller, “A Basis for Verifying Multi-threaded Programs”, in
Giuseppe Castagna, editor, Programming Languages and Systems, vol. 5502 of
Lecture Notes in Computer Science, pp. 378–393, Springer Berlin / Heidelberg,
2009. 10.1007/978-3-642-00590-9 27.

91

http://research.microsoft.com/~leino/papers.html
http://research.microsoft.com/~leino/papers.html

; ;

[Lein09b] K. Rustan Leino, Peter Müller and Jan Smans, “Foundations of Security Analysis
and Design V”, in Alessandro Aldini, Gilles Barthe and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design V, chapter Verification of Concurrent
Programs with Chalice, pp. 195–222, Springer-Verlag, Berlin, Heidelberg, 2009.

[Lein09c] K. Rustan M. Leino and Rosemary Monahan, “Reasoning about comprehensions
with first-order SMT solvers”, in Proceedings of the 2009 ACM symposium on
Applied Computing, SAC ’09, pp. 615–622, New York, NY, USA, 2009, ACM.

[Lein10a] K. Rustan M. Leino, “Dafny: an automatic program verifier for functional
correctness”, in Proceedings of the 16th international conference on Logic for
programming, artificial intelligence, and reasoning, LPAR’10, pp. 348–370, Berlin,
Heidelberg, 2010, Springer-Verlag.

[Lein10b] K. Rustan M. Leino, Peter Müller and Jan Smans, “Deadlock-Free channels and
locks”, in Proceedings of the 19th European conference on Programming Languages
and Systems, ESOP’10, pp. 407–426, Berlin, Heidelberg, 2010, Springer-Verlag.

[Mehn12] Hannes Mehnert, Filip Sieczkowski, Lars Birkedal and Peter Sestoft, “Formalized
Verification of Snapshotable Trees: Separation and Sharing”, in Rajeev Joshi,
Peter Müller 0002 and Andreas Podelski, editors, VSTTE, vol. 7152 of Lecture
Notes in Computer Science, pp. 179–195, Springer, 2012.

[Meye97] Bertrand Meyer, Object-oriented software construction (2nd ed.), Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1997.

[Mull02] Peter Müller, Modular specification and verification of object-oriented programs,
vol. 2262 of Lecture Notes In Computer Science, Springer-Verlag, Berlin,
Heidelberg, 2002.

[Park05] Matthew Parkinson and Gavin Bierman, “Separation logic and abstraction”, in
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’05, pp. 247–258, New York, NY, USA, 2005, ACM.

[Park07] M. Parkinson, “Class invariants: The end of the road”, International Workshop
on Aliasing, Confinement and Ownership, 2007.

[Park11] Matthew J. Parkinson and Alexander J. Summers, “The relationship between
separation logic and implicit dynamic frames”, in Proceedings of the 20th European
conference on Programming languages and systems: part of the joint European
conferences on theory and practice of software, ESOP’11/ETAPS’11, pp. 439–458,
Berlin, Heidelberg, 2011, Springer-Verlag.

[Quei82] Jean-Pierre Queille and Joseph Sifakis, “Specification and verification of
concurrent systems in CESAR”, in Proceedings of the 5th Colloquium on
International Symposium on Programming, pp. 337–351, London, UK, UK, 1982,
Springer-Verlag.

[Reyn02] John C. Reynolds, “Separation Logic: A Logic for Shared Mutable Data
Structures”, in LICS, pp. 55–74, 2002.

[Sha90] L. Sha, R. Rajkumar and J. P. Lehoczky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization”, IEEE Trans. Comput., vol. 39, no. 9,
pp. 1175–1185, September 1990.

92

; ;

[Sman08] Jan Smans, Bart Jacobs, Frank Piessens and Wolfram Schulte, “An automatic
verifier for Java-like programs based on dynamic frames”, in Proceedings of the
Theory and practice of software, 11th international conference on Fundamental
approaches to software engineering, FASE’08/ETAPS’08, pp. 261–275, Berlin,
Heidelberg, 2008, Springer-Verlag.

[Sman09] Jan Smans, Bart Jacobs and Frank Piessens, “Implicit Dynamic Frames:
Combining Dynamic Frames and Separation Logic”, in Proceedings of the 23rd
European Conference on ECOOP 2009 — Object-Oriented Programming, Genoa,
pp. 148–172, Berlin, Heidelberg, 2009, Springer-Verlag.

[Summ09] Alexander J. Summers, Sophia Drossopoulou and Peter Müller, “The need for
flexible object invariants”, in International Workshop on Aliasing, Confinement
and Ownership in Object-Oriented Programming, IWACO ’09, pp. 6:1–6:9, New
York, NY, USA, 2009, ACM.

[Summ10] Alexander J. Summers and Sophia Drossopoulou, “Considerate Reasoning and
the Composite Design Pattern”, in Gilles Barthe and Manuel V. Hermenegildo,
editors, VMCAI, vol. 5944 of Lecture Notes in Computer Science, pp. 328–344,
Springer, 2010.

[Z3Qu] “Z3 SMT 2.0 Guide”. http://rise4fun.com/z3/tutorial/guide section
Quantifiers.

[Zhao07] Yang Zhao, Concurrency analysis based on fractional permissions, Ph.D. thesis,
University of Wisconsin at Milwaukee, Milwaukee, WI, USA, 2007. AAI3279111.

93

http://rise4fun.com/z3/tutorial/guide

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	Listings
	Introduction
	Background
	The evolution of verification methodologies
	The framing problem
	Relative work on the framing problem
	Implicit dynamic frames
	Fractional and Counting permissions
	Verification Condition Generation (VCG)

	SMT solvers and Z3
	Boogie
	Chalice
	Translating Chalice into Boogie

	Backpointers in Chalice
	Backpointers
	Backpointer encoding
	Aggregates
	Axioms
	Framing syntax
	Triggering - ``use axiom'' syntax

	Applications of Backpointers
	Copy-on-Write Lists
	Programmer's code
	Interface Specification
	Verification

	Priority Inheritance Protocol (PIP)

	Conclusion
	Results
	Related work
	Future work

	Copy-on-Write lists program listing
	Priority inheritance protocol program listing
	Source code and tools
	Bibliography

