Full Page

ORDINAL REAL  NUMBERS  2. The arithmetization of  order  types .

 

By Dr. Constantine E. Kyritsis

Department of Mathematics and Computer Science

University of Portsmouth

Software Laboratory

Electrical and Computer Engineering

National Technical University of Athens

http://www.softlab.ntua.gr/~kyritsis

kyritsis@softlab.ntua.gr

 

                                                                                               

 

 

§0 Introduction .  In this second paper on ordinal real numbers are proved, the main (elementary) properties of them. It is proved that the ordinal real numbers Rá of characteristic á, is the maximal field of characteristic á (maximality) and that it is , according  to the theory of Artin-Screier, a real closed field. (It turned out ,after the work was completed and by thinking aside, that they are also  Archimedean complete (see [ Glayzal A. 1937]),formal power series fields with real coefficients ,Dedekind complete (see [Massaza,Carla 1971]),  and Pythagorean fields ).

It is also proved a classification theorem which is analogous to the Hölder theorem for the Archimedean linearly ordered fields.In particular it is proved  that  any  linearly  ordered  field  of characteristic  á contains   the   field   Qá of   ordinal rational   numbers    of characteristic á, as a dense subfield and it is contained in the field Rá of ordinal real numbers of characteristic á, as a subfield ..As it is known, the linear segments of elementary euclidean geometry can be defined as special order-types with Archimedean property, and Archimedean (Hilbert) completness through axioms (see e.g. for a not ancient approach  the Hilbert axiomatisation in [ Hilbert D.1977] ch 1 ).It  can  be

proved  to be order isomorphic with subsets of the real number field R. This is well-known and it can be called , the elementary arithmetisation  of the order-types of Euclidean linear segments . On this fact is based the Cartesian idea of analytic geometry. This was an important turning point in the developments of the ideas and techniques of mathematics , of the discrete nature  of numbers and continuous nature of geometry. The basic principle is that the continuum is developed from the discrete and not vice versa! An instance of this principle is the development of images and animation in computers through pixels and bits! It is surprising that in one of the consequences of the theory of ordinal real numbers, it is proved a far more advanced and complete result for the whole category of order types that has as corollary the previous important and elementary arithmetisation. Although more advanced, the result remains in the context of elementary theory of ordinal real numbers .In this result any order type can be “discretised” or “arithmetised” through the ordinal numbers.

The process of  definition  of  the  maximal  fields  Rá, from  the minimal (double well ordered ) monoids Ná =á, of principal ordinal numbers,we call K- fundamental densification. It is proved that any order-type is order isomorphic to a subset of some field Rá. Thus any order-type is constuctible by K-fundamental densification from ordinal numbers .This is  called the  K-arithmetisation of the  order-types. Although  in  the  way   it   is presented, this result  is softly obtained, throws new light to the relation of ordinal numbers and order-types ,this relation turns out to be similar to the elementary relation of  numbers and line segments in geometry. Also  it,  holds  a  second  kind  of  arithmetisation  ,the  binary  arithmetisation which we state in the same paragraph .

 §1   On the topology of linearly ordered fields. Local deepness, á-sequences.

The ordering of any linearly  ordered  field  F  defines a well known topology : the  order-topology denoted by T<; In this topology, as it is known, the field F is a topological field.

This topology has very good separation properties;  it  is  a T1-T5 topology, that is a completely normal topology (see for instance [ Lynn A.Steen-Seebach J.A. Jr 1970] § 39 p. 66-68, also see [ Munkress J.R. 1975]  Chapters  I,  II)

The previously  described  order  topology is  also  called the  locally  convex  topology compatible with the order (see [Nachbin L. 1976] Ch I, II).  (The convexity defined by the order).

Definition 1. Let X be a topological space. Let pX. The  least ordinal á such that it exists a (local) base denoted by  Bp of open neighbourhoods of the point p which is an  á-sequence such that if x<y<á, Ux Ì Uy, is called local deepness of X  at p.

We notice that the concept of local deepness is very close to the concept of local weight of  a  topological  space,  where instead of ordinal we have  an  initial  ordinal  that  is  a cardinal number (see [Kuratowski K. 1966] V-I p. 53-54).

Examples of topological spaces such that every point has local deepness, are the î*-uniform topological spaces as they are defined in [Cohen L.W.Goffman C. 1949] pp 66 conditions 1.2.3.4.

As in the case of fields that  are  classes,  we  may  permit topological spaces that are classes and the open  sets  is  a class of subclasses closed to union and finite  intersection. For such spaces, the local deepness may be   Ù1 that  is  the class of all ordinal numbers.

Proposition 2. Let X a topological  space  and  á,  a  limit ordinal such that every point has local-deepness á  let  AÍX. It holds that  there  is  an  â-sequence  {xs|s<â}  from elements of A such that . In other words  topological convergence in  X  can  be  treated  with  â-sequences  where â=car(á) is the upper character of á (see  [N.L.Alling 1987]  ch  1 §1.30  pp 29)

The proof is almost direct and to save space we shall not give it here.

Proposition  3.  Let  a  field  denoted  by  F  of   ordinal characteristic á, where á is  a  limit  ordinal.  Then  every point xF in the order-topology has local-deepness car(á), where  car(á)  is  the  upper  character  of  á   (see   [ N.L.Alling 1987] ch 1 §1.30  pp 29 ).

The proof is again direct and outside the scope of the paper.

Corollary 4. Convergence in the order-topology of a field of ordinal characteristic á, can be treated with â-sequences â³car(á)

          Needless  to  say,  that  in  the  case  in   which   the topological   space is a class and the local deepness is  Ù1, then convergence can  be treated with  Ù1-sequences.

 §2 The Holder- type  classification .

Lemma 5. In every field of characteristic athe field Qá  is a dense subset.

Proof. Let a field of characteristic á, which  we  denote  by Fá. By the theorem 17 of [Kyritsis C. OR1] the field Qá is a subfield of Fá. Let us suppose that  it is not dense in Fá. Then  there  are  two elements x,y  Fá x<y , such that there is no element  of  Qá in  the  internal  [x,y].  Then  the  element  z  =  y-x   is Qá-infinitesimal.

This holds because where similarly. But by the hypothesis and every element of Qá can be  written as r2-r1 where r2 (y) and r1 (x).  Also  we  have  that 0<y-x<r2-r1. Then y-x is a  Qá-infinitesimal  and   is  a Qá-infinite element of Fá, thus   >á, contradiction since Char Fá = á.

Then there are not two element y,x  Fá x<y with  no  element of Qá in [x,y], and Qá is dense in Fá. Q E D

Remark. Thus every field Fá of characteristic  á  is  a  Weil completion of the field Qá of  ordinal   rational  numbers (see [ Weil A.] ChIII Definition 2 but applied not only  to  local fields).

Theorem 6 (Maximality or completness up-to-characteristic ).

          The field Rá is the maximal field, of characteristic  á. In the sense that every field of characteristic á is contained as  subfield of Rá (more precisely Rá contains an order preserving  monomorphic image of the field).The field Rá is the unique fundamentally complete field of characteristic á.

Remark. This theorem is analogous to the  well-known  Holders theorem theorem òçéøç óôáôåò that every linearly ordered Archimedean field is  a  subfield of the field of real numbers.  In other words the field of  real numbers is the maximal Archimedean linearly ordered  field. The previous property of the ordinal real numbers Rá relative to their characteristic ,we call maximality or completness up-to  characteristic .

But as an erroneous application  of  terms  R   is  also  the minimal Cauchy complete field of characteristic  w  and  this also applies for the fields Rá in the sense that a completion of a linearly ordered field of characteristic á  must be the field Rá .

Proof. Let any field of ordinal characteristic á  denoted  by Fá. By theorem 17 of [ Kyritsis C. 1991], the field Qá is contained in Fá: QáÍFá. Let x Fá. Let (L(x), R(x)) be the cut that x  defines on Qá (L(x) = {v|v  Qá v<x}, R(x) = {v|v  Qá x<v}).  Since Qá is dense in Fá (Lemma 5). There is  a Cauchy  á-sequence {xn|n Îw(á)} of elements of Qá that converges in Fá to x  (all topologies are the order-topologies). Hence QáÍFáÍRá  and the field Rá is a maximal field of characteristic á ;  but  also  the  field  Rá is actually a minimal   Cauchy complete  field  of characteristic á  in  the  sense  that the  (strong)  Cauchy completion  of any field Fá of characteristic  á  contains the field  Rá:QáÍFá has as a concequence that RáÍ. Thus  if Fá  is complete then RáÍFá, FáÍRá  hence Fá =Rá   q.e.d.

The theory of Artin-Schreier of real closed fields has an excellant application  to the ordinal real numbers .

Corollary 7. The fields of ordinal real numbers  Rá are  real closed fields.

Proof.  Direct  from  Theorem  6 , and  remark 5 of [ Kyritsis C.1991]      q.e.d.

 Post written Remark A. The author developed the theory of ordinal real numbers during 1990-1992 He had used the name “transfinite real numbers” without being aware that this term had been introduced by A.Glayzal during 1937 for his theory of linearly ordered fields. From the moment he fell upon the work of A.Glayzal (see [ Glayzal A. 1937 ])  in the bibliography of the Book of N.L alling (see [N.L.Alling 1987 ] ) he changed the title to “Ordinal Real Numbers” . After the work had been  completed ,the author realised , by  thinking  aside,  a  quite  unexpected and not unhappy fact :That the fields of ordinal real numbers are algebraically and order isomorphic to the   fields of transfinite real numbers of Galyzal  .This can be deduced by the fact that the fields of transfinite real numbers are exactly all the Archemidean complete fields (see [Glayzal A. 1937] theorems 4,8,9) and by the maximality of the ordinal real numbers (theorem 6). Thus if Rá is a field of ordinal real numbers of  characterisic  á, any  Archemidean  (linearly ordered  field  ) extension of it ,it shall have the same characteristic with Rá. It seems that it can be proved , that any cofinal (coterminal) linearly ordered field extension ,is  of  the same characteristic . By the maximality of Rá (theorem 6) it shall have to coinside with  Rá. In other words the fields of ordinal real numbers are Archemidean complete fields (although they may be non-Archemidean ).But this is a characteristic property of the fields of transfinite real numbersb of Glayzal.

Thus they are order and field isomorphic with fields of transfinite real numbers .Conversely ,let any  field  R(ë)  of  transfinite  real numbers  of  Archemidean base  ë. Let  us  denote   by   á   its ordinal characteristic .Let us suppose  that  there  is  an order and  field extension of it with the same characteristic .Then it has to be an Archemidean extension of R(ë). By the Archemidean completness of the transfinite real numbers ,it has to coinside with the R(ë). Thus the transfinite real numbers are also complete up-to-characteristic .

But this is a characteristic property of the fields of the ordinal real numbers.Hence they are order and  field  isomorphic  with  fields  of ordinal  real  numbers  .Thus  the ordinal  real  numbers  should   be considered as a different technique ,nevertheless indispensable and more far reaching .It is the technique  that  everyone  would  like  to work.

Post written Remark B .Let  a  field  Rá of  ordinal  real  numbers  of ordinal characteristic á. It is also a field  of  transfinite  real numbers of archemidean base  ë. The  set  of  all  elements  of  Rá that as formal power series have support of  ordinality  less  than  â£o(ë)=maximum ordinality of well ordered set of ë, and which we denote

by Rá,â is a field ,subfield of Rá .Indeed Rá,ï(ë) =Rá. For  the applications  and  especially  with   measurment proceeses ,the fields Rá,ù are of prime interest and indispensable .

Post written remark C .The  facts of the previous remark ,have as a concequence that the fields of ordinal real numbers are formal power series  fields  with  coefficients  in  the  real  numbers  and exponents in some order types.Thus the n-roots of their positive elements are contained in them (see [Neumann B.H. 1949] pp 211 ,4.91 Corollary).In other words  they are Pythagorean complete fields.

     Theorem 8. (The Holder-type classification theorem).

     Every field of ordinal characteristic á, denoted by Fá (where á is a principal ordinal) is contained between the fields  Qá and Rá :QáÍFáÍRá .

     Proof. Contained in the proofs of the theorem 7  and lemma 5       q.e.d.

     Remark.9 The previous theorem gives that the hierarchy of ordinal real numbers has universal embedding property for the category of linearly ordered fields, that is every linearly ordered field has an monomorphic image in some field of the hierarchy.The hierarchy of transfinite real numbers is known to have, also, this property .Such hierarchies  we call universal embedding hierarchies. Especially  the hierarchy of ordinal real numbers after the classification theorem 8 ,we call also, universal classification hierarchy.

Remark.10 We  notice  that since every order type ë is order-embeddable in some transfinite real number field R(ë) (see [Glayzal A. 1937]   )as Archemidean base which in its turn is embeddable in some ordinal real number field Rá ,the above two hierarchies as hierarhies of order-types are universal embedding hierarchies for the category of order-types .Let an order type ë ; the least principal ordinal number á  such that ë is order-embeddable (by a monomorphism) in the order-type and field Rá, is called the fundamental density of the order type ë and is denoted by df(ë).

Remark. In the [ Massaza Carla, 1971] Definition I , is defined which cuts are the Dedekind cuts in  linearly  ordered  fields  .It  is   proved   also that   the Dedekind completion D(F) of a linaerly ordered field F is also its  Cauchy completion  (in the order topology ).If  we  take the  Dedekind completion D(Rá) of a field of ordinal real numbers Rá, it has  to  be its Cauchy completion which is again the  Rá. Thus the fields of the ordinal real numbers are also Dedekind complete . Conversely ,let any Dedekind complete linearly field F .Let us denote with á its ordinal characteristic .Then by the Holder type classification (theorem 8 ) it is a subfield of the field Rá of ordinal real numbers of characteristic á .Since the Dedekind completion D(F) =F coincides with the F and also with its Cauchy completion ,we get that F=Rá, because the Cauchy completion of F is the Rá. In other words the class of Dedekind complete fields coincides with the class of the fields of  ordinal real numbers .

Summarising we mention that the fields of ordinal real numbers have at least four kinds of completnesses that characterise them : Cauchy completness ,Dedekind completness,completness up-to-characteristic, Archemidean  completness  .It seems that he previous four completnesses  can  be  summarised  by  saying  that   there   is   no cofinal (coterminal ) order field extensions of them ;in short they are cofinally complete ,or cofinally maximal .They are also real complete (closed ,Artin-Shreier )  and Pythagorean complete.

Remark. By corollary 7 we get that the field Cá is the algebraic closure of Rá :Cá= .

          We close this paragraph by mentioning that an  axiomatic definition of the field Rá (á is a principal  ordinal)  would be the following:

      First  axiomatic   definition   of   Rá.

     The   field of ordinal real numbers   Rá   is   the unique Funtamental (Canchy)-complete,   in   the order-topology, field    of characteristic á.

     Second axiomatic definition of Rá .

     The field  of ordinal real numbers Rá is  the unique complete (up-to-characteristic)  field of characteristic á . These  definitions apply even in the case of the field of real numbers (a = ù).

  § 3 The arithmetisation of order-types .

Remark.As it is known the linear segments of elementary Euclidean geometry can be defined as special order-types with Archimedean property and Hilbert completness through axioms (see e.g. for a not ancient approach  the Hilbert axiomatisation in [Hilbert D 1977] ch 1 ).Then ,they can be proved to be order isomorfic with subsets of the real number field R. This is known as the elementary arithmetisation of the order-types of Euclidean linear segments.

 Proposition 10.(the K- funtamental arithmetisation theorem of order-types.)

  Every order-type ë is K-arithmetisable with ordinal numbers and has a fundamental density df(ë) which is a principal ordinal number .

In the next paper ,after the unification theorem of the transfinite real ,surreal ,ordinal real numbers ,a second arithmetisation theorem shall be proved. Two more universal hierarchies of formal power series fields shall be, also, proved that they are universal embedding hierarchies .We state these results here. For the definition of tree ,height of a tree, level of a tree, binary tree e.t.c.see [Kuratowski K.-Mostowski A. 1968] ch ii § 1, § 2 . The binary tree of height the ordinal á we denote with Dá. After the previously mentioned unification theorem 17 of the next paper we  get  that  the  hierarchy  of  binary  trees  is  a universal embedding  hierarchy for the order- types . Since the binary trees are subsets of linearly ordered fields and their elements consisting exclusively from 1's in the binary sequence,  correspond  to   the   ordinal   numbers with   the Hessenberg operations (see also [Conway J.H. 1976] ch 3 note pp 28 and  also [ Kyritsis C. 1991Alt] the characterisation theorem ) this universal   embedding property   we   call also   binary  arithmetisation .The least ordinal á such that an  order-type ë is order embeddable in the binary tree Dá ,we call the binary density of ë ,and we denote it by  db(ë).

Theorem 11 ( The binary arithmetisation theorem of order-types )

Every order-type ë  is binary arithmetisable and has a binary density db(ë) which is an ordinal number .

From the previous theorem ,by denoting a level of height á of a binary tree ,by Tá ,and giving to the Cartesian product   the lexicographical ordering ,we also get the next  :

Corollary 12. The formal power series hierarchies R((Dá)), , are universal embedding hierarchies for the linearly ordered  fields .

§ 4 Some general results on linearly ordered fields .

In this paragraph we give some results generally for the category of linearly ordered fields. To save space we shall not give the proofs, since they do not have serious dificulties,nevertheless we shall indicate how they can be obtained .

     Lemma 13 (On the rank and characteristic)

     Let us suppose that the characteristic of the field F is   where á, is á limit ordinal. It holds  that  the  rank  of the extension F/K is a cofinal order-type with the characteristic of the field F. That is cf(r(F/K))= cf(charF)=cf(char F-char K).

Remark.For the definition of the rank of an extension see [ Kyritsis C. 1991] § 4. For the proof of the previous theorem we use the

existence for any principal ordinal  of the ordinal real numbers fields of characteristic  .

          Let F be  a linearly ordered field. If xF by L(x) we denote the set L(x) = {y| yF y<x} and by R(x) the set R(x) ={y| yF x<y}.

          By elementary arguments on linearly ordered  fields  the following identities can be proved.

     Lemma  14

          Let x, y  F. The following hold

     1.   L(-x) = - L(x)                          R(-x) = -R(x)

     2.   L(x+y) = L(x)+y = x+L(y)

          R(x+y) = R(x)+y = x+R(y)

     3.   L(x.y) = L(x).y + xL(y) - L(x).L(y)  = R(x).y + xR(y) - R(x)R(y)

          R(x.y) = L(x).y+xR(y) - L(x).R(y) = R(x).y + xL(y) - R(x).L(y)

     4.

     5.   

          The previous identities show also that the definition of operations used to define the surreal number fields   are  not  something  peculiar  to  these  fields  but hold in any linearly ordered field .

      In the next paper  of  this  work  we  will understand the   true   peculiarity   of    the    technique    of    the surreal  numbers.

     Lemma 15  If F/k is an  extension  of  two  linearly  ordered fields , it  holds that  

     tr.d.(F/k) £ 2À(Char.F) where tr.d.is the transandental degree of the extension .

     Remark. For the definition of the  transandental  degree, base e.t.c see for instance [ Zariski O.-Samuel P. 1958] vol. I pp. 95-102 also [Kyritsis C. 1991 ] § 4 ). The proof is obtained by using the Holder-type classification for F :Qá Í F Í Rá where á=char(F).

    The  next proposition shows that  all  the  information of  an extension of linearly ordered fields is to be found in the ideal of infinitesimals (or in the infinite elements). Proposition 16. Let F/k, F'/k two (ordered) extensions of the same linearly ordered field k. If the  ideals  of K-infinitesimals of the extension denoted respectively by mF and mF' are isomorphic as ordered integral domains ,then this isomorphism is extendable to an algebraic  and order isomorphism of the fields F, F'.

 Remark .The  proof is direct from the definitions.

Remark. An extension F/k of the linearly ordered field  k  to F, is transcendental if Char F>char k and then  the field F is an infinite dimensional vector space over k.

Proposition 17 .  Let  F  be  a  linearly   ordered   field   of characteristic char(F)=  where á is a limit ordinal . It holds that the field F in the order topology is totally disconnected .

Remark. The proof  uses  the  existence,  for  every  principal ordinal  , of the fields of ordinal real numbers R.

Theorem 18  The classes of transfinite real numbers CR, and of ordinal real numbers Ù1R, coinside.

Proof. Since both Hierarchies of transfinite real and ordinal real numbers have the  universal embedding property (see remark 9 ) ,every transfinite real number-field is contained in some ordinal real number-field and every ordinal  real-number   field   in   some   transfinite   real number-field.Thus CR Í Ù1R  and  Ù1R Í CR, and CR = Ù1R .      Q.E.D.

§ 5       The A-Archimedeanity

       The, at least  two different, definitions of archemideanity, that can be found for instance in [Glayzal A. 1937] and in other authors as in [ Conway J.H. 1976 ] or [ Arin E. Schreier O. 1927] give us the opportunity to treat them in unified way through the concept of archemideanity relative to a monoid.

     The  fact  that  the  linearly  ordered  field   F   has characteristic ù  (the least infinite ordinal)  is  equivalent with the statement that the field F is Archimedean  according to any (classical) known definition.

     Let us denote by G a linearly ordered group and by A a monoid  of endomorphisms of G  as a group.

     It is said that x is A-Archimedean to y where x,yG  iff there are a,bA with a(x)³y and b(y)³x.   If A is the domain Z of integers (the endomorphisms  are  multiplication  with  an integer )we simply say that x is Archimedean to y. If for every pair x,y of elements of G holds that x is A-Archimedean to y, it is said that G is A-Archimedean

     Let F be a linearly ordered field .If we consider it as an additive group, and we denote by A1 a monoid of endomorphisms of the additive group ,   we get the concept of x being A-additively Archimedean to y. If we consider the multiplicative group F* and we take a monoid, denoted by A2, of edomorphisms of the multiplicative group, we get the concept of x  being A-multiplicatively Archimedean to y.

     Let A=A1VA2 be the monoid of mappings from F to F generated by the previous monoids . It is said that x is A-field-Archimedean to y iff there are a, bA such that a(x)³y, b(y)³x.

     In any extension F/k of a field K by a field F, where F,k are fields of ordinal characteristic  with  char  F>Char  K,  if we take as A1, to be the multiplication with elements from the field K ( considering the field  F as a linear space over K), we get the concept of x being K-additively Archimedean to y.( For K=R this is also known as "x is commensurate to y " see [Conway J.H. 1976] ch 3 pp 31 ).

     If A1 is the multiplication with  integers and A2 is  power  with integral exponents ,then it is simply said that x is field Archimedean to y  (Known also from  the A.  Gleyzal’s  definition of  Archimedeanity)

     A non-Archimedean linearly ordered field denoted by F is simply  a linearly ordered field  for which  not all pairs (x,y) of its elements are mutually additively Archimedean. (Thus charF>ù ) But it can be very well A-additively Archimedean for other monoids A.In particular if charF=á and A is the monoid of endomorphisms of the additive group of F defined by  (field ) multiplication with ordinals less than á, then it is A-additively Archimedean  and we denote it by writing that it is á-additively Archimedean

Acknowledgments. I would like to thank professors W.A.J.Luxemburg and A. Kechris (Mathematics Department of the CALTECH) for the interest they showed and that they gave to me the opportunity to lecture about the ordinal real numbers in CALTECH. Also the professors H. Enderton and G.Moschovakis (Mathematics Department of the UCLA) for their interest and encouragement to continue this project.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Bibliography

[N. L. Alling 1987]                                Foundations of analysis over surreal number fields North-Holland  Math.Studies  V. 141 1987 .

[Artin  E.  Schreier   O.1927]                 Algebraishe   konstruktion reellerkorper,Abh.   Math. Sem.Univ. Hamburg 5 (1927) pp 85-99  .

[Artin E. - Tate J. 1967]                         Class  Field   Theory  Benjamin 1967.

[Baer   Reinold 1970 ]                           Dichte,Archimedizitat   und Starrheit geordneter Korper, Mathematische Annalen 188 pp 165-205,1970.

[Baker Alan 1975]                                 Trancendental Number Theory Cambridge University Press, 1975.

[Bourbaki N1952]                                 Elemente de Mathematique algebre,  chapitre III Hermann Paris 1948, chapitre VI Hermann Paris 1952.

[Brown Ron 1971 ]                                Real places and Ordered Fields Rocky Mountain Journal of Mathematics, Vol 1 ,pp 633-636, 1971.

[Brown R.,Craven T.C.,                         Ordered fields satisfying Rolle's Theorem

    Pelling M.J.1986]                               Illinois Journal of Mathematics Vol 30, n 1 Spring 1986 pp 66-78.

[Clliford   A. H,1954]                            Note  on  Hahn's  theorem  on ordered  abelian groups. Proc. of the Amer. Math. Soc. 5 (1954) pp 860-863.

[Cohen   L.W.-   Goffman   C,1949]      Theory  of  transfinite Convergence.Transact. of the Amer. Math. Soc. 66  (1949) pp 65-74.

[Cohn P.M,1965]                                  Universal  Algebva Harper - Row 1965  .

[Conway J.H,1976]                               On numbers and  games  Academic press 1976 .

[Cuesta  Dutardi  N,1954]                     Algebra  Ordinal  Rev.  Acad. Cientis Madrid 4 (1954) pp 103-145 .

[Dugundji J,1966]                                  Topology, Allyn and  Bacon  inc. 1966.

[Ehreshmann Ch,1956]                          Categories et structure Dunod  1956

[Ehrlich P,1988]                                     An alternative construction of Conway's Ordered Field No, Algebra Universalis 25  (1988) pp 7-16 .

[Ehrlich P]                                              The Dedekind completion of No ,submitted to Algebra Universalis.

[Endler  O,1972]                                   Valuation  Theory,   Springer 1972.

[Erdos P.-Gillman L.-                             An isomorphism theorem for real closed fields

     Henrkiksen  M,1955]                        Ann.  of Math.(2) 61 (1955)pp 542-554.

[Frankel A.A,1953]                               Abstract  set  Theory.  North  - Holland 1953.

[Fuchs L,1963]                                      Partially ordered algebraic systems Pergamon   Oxford 1963.

[Gillman L.-Jerison M,1960]                  Rings of continuous functions. Van Nostrand Princeton 1960.

[Gleyzal A,1937]                                   Transfinite real numbers. Proc. of the Nat. Acad.of scien. 23 (1937) pp 581-587.

[Gravett K.A.H,1956]                           Ordered abelian groups. Quart. J. Math. Oxford 7 (1956) pp 57-63.

[Hahn H,1907]                                      Uber die nichtarhimedishen Grossensysteme.S.  Ber. Akad. Wiss. Wein. Math. Natur.Wkl Abt.   IIa   116   (1907)    pp 601-655.

[Hausner M.-Wendel J.G,1952]             Ordered Vector Spases Proc. of the Amer. Math. Soc.3 (1952) pp 977-982.

[Hessenberg G,1906]                             Grundbegriffe der Mengenlehre (Abh. der Friesschen  Schule, N.S. [1] Heft 4) Gottingen 220 1906).

[Hilbert D,1977]                                    Grundlagen der Geometry Teubner Studienbucher 1977 .

 [Hilbert D. -Ackermann W.,1950]        Principles of Mathematical Logic. Chelsea  Pub. Comp. N.Y. 1950.

[Kaplansky I,1942]                                Maximal fields with valuations Duke Math. J. 9 (1942)   pp 303-321.

[ Krull W,1931]                                     Allgemeine Bewertungs theorie. J.reine angew. Math. 176 (1931) pp 160-196.

[Kuratowski K,1966]                            Topology  v.I   v.II   Academic Press 1966.

[Kuratowski K. -Mostowski A,1968]     Set  Theory  North  -  Holland 1968.

 [ Kyritsis  C.E1991]                              Algebraic characterisation of the Hessenberg operations in the ordinal numbers. (unpublished yet).

[Kyritsis C.E1991]                                 Ordinal real numbers 1. The ordinal characteristic.

[Lang S,1984]                                       Algebra .  Addison-Wesley   P.C. 1984 .

[Lam T.Y,1980]                                    The Theory of Ordered Fields Ring theory and Algebra III. Edited  by  B.R.  McDonald Dekker 1980 pp 1-268.

[Laugwitz Detler ,1983 ]                        V Calculus as a  Generalization of  Field Extension.  An alternative   approach   to non-Standard  analysis  "Recent developments  in   non-standard analysis" Lecture Notes in Math 983   Springer 1983.

[MacLane  S,1939]                               The  Universality  of  Formal Power Series fields.Bull. of the Amer. Math. Soc. 45  (1939) pp 880-890.

[MacLane S,1971]                                Categories for the working mathematician  Springer 1971

[Massaza ,Carla,1971 ]                          On the comletion of ordered fields. Practica (=Proceedings) of the Academy of Athens ,Vol 45 ,1970 (published 1971 )

[Monna A.F,1970]                                Analyse non-Archimedienne Springer 1970.

[Munkress J.R,1975]                             Topology. Prenctice Hall 1975.

[Nachbin  L,1976]                                 Topology   and   Order. Robert E.Krieger P.C. N.Y. 1976.

[Neubrunnova Anna,1980   ]                  On transfinite convergence and generalised continuity. Mathematica Slovaca vol 30,1, 1980.

[Neumann B.H.,1949]                           On ordered division rings. Transact. of the Amer. Math. Soc. 66 (1949) pp 202-252.   .

[Prestel Alexander,1980 ]                      Lectures on formaly real fields .Lecture Notes 1093, Springer ,1980 .

[Robinson A,1966]                                Non-Standard analysis.  North  - Holland 1974 (1966).

[Robinson A.,1972 ]                              On thr real Closure of a Hardy  Field. pp 427-433 in the Theory of Sets and topology. A Collection of papers   in   honour   of    Felix Hausdorff , VEB ,1972 .

[Rolland,Raymond . 1981  ]                   Etudes des courpure dans les groupes et corps ordonnes. Dans Geometrie Algebrique Reeles et Formes Quadradiques. Rennes 1981. Proceedings, Lecture Notes in Mathematics 959 Springer ,pp 386-405 .

[Rudin W,1960]                                     Fourier analysis on groups. Interscience Pub 1960 .

[Shilling O.F.G,1972]                             The theory of valuastions. Amer. Math. Soc. 1950.

[Schubert  H,1972]                                Categories Springer 1972.

[Scott, Dana , 1969]                              On Completing Ordered Fields. In Applications of Model theory to Algebra, Analysis and Probability edited by W.A.J. Luxenburg pp 274-278, Holt Rinehart and Winston 1969.

[Sirkoski R,1948]                                  On an ordered algebraic field. Warsow, Towarzytwo Nankowe Warzawskie 41  (1948) pp 69-96.

[Stone A.L,1969]                                  Non-Standard analysis in  topological algebra in Applications of  Model  Theory  to  Algebra, Analysis and  Probability  N.Y. (1969) PP 285-300.

[Stroyan, K.D. and                                Introduction to the  theory  of Infinitecimals

     Luxenburg W.A.J,1976]                   N.Y.1976.

[Lynn A.Steen-                                      Counterexamples    in   Toplogy Springer 1970 .

     Seebach J.A. Jr,]             

[Viswanathan T.M,1977]                       Ordered fields and sign-changing polynomials. Journal fur reine und angewante Mathematik, 296 pp 1-9,1977.

[Van der Waerden B.L,1970]                Algebra V1  V2 Frederick  Unger Pub. Co. N.Y. 1970.

[Weil A,1967]                                       Basic Number  Theory,  Springer Verlag Berlin, Heidelberg  N.Y. 1967.

[Zakon E,1955]                                     Fractions  of  ordinal numbers Israel Institute of Tecnology Scient. Public. 6, 94-103 1955.

[Zariski O. -Samuel P,1958]                  Commutative    Algebra   V.I.II Springer 1958.

[Zervos,S.P.1961]                                 Sur les  rapportes entre la completions la cloture algebrique des corps commutatifs de caracteristique zero C.R. Acad. Sc. Paris, 5 Avril 1961 t. 282 pp 2053-2055.

[Zervos,S.P.1991]                                 Simple  abstract  and concrete considerations suggested by Thue's theorem. Mathematics revisited, mathematicians remembered Vol.1  1991.pp 1-68.

 

 

List of special symbols

 

   á,â,ù           :  Small Greek letters

 

      Ù1         :  Capital   Greek   letter   omega   with    the subscript 1

 

     Fa          :  Capital   letter F  with   superscript  a. 

 

     N      :  Capital Aleph ,the first letter of the hebrew alphabet . In the text is used a capital script. letter n .

       : cross in a circle, point in a circle .

     Ná,Zá,Qá,Rá,:  Roman capital  letters  with subscript small Greek letters

     Cá,Há

      *×, *R et.c  :  Capital standard or roman letters with left superscript a star.

     CN,CZ,CQ,      :Capital   standard    letter    c    followed    by capital  letters

     C*R,                   with  possibly  a  left superscript  a  star

                :  Capital tstandard letter with a cap.

     Ó           :  Capital Greek letter sigma

            :  Capital standard  D with subscript a  small Greek  letter and in upper place a small zero.

 

 

 

 

 

 

Ordinal real numbers 2.The arithmetisation of order  types .

 

 

 

                                                                                                  by

                                         Dr.Konstantin E.Kyritsis

                                         Mathematics Dept.

                                         University of the Aegean

                                         Karlovassi     83200

                                         Samos          Greece

 

                               Abstract

     In this paper the main results are :Proofs that the ordinal real numbers are real closed fields and complete up-to-characteristic .They are also Dedekind ,and Archemidean complete fields .They are real formal power series fields and Pythagorean     complete fields It   is proved   and discussed   the K-fundamental arithmetisationand  the   binary   arithmetisation   of   the order  types .

 

Subject Classification of AMS 03,04,08,13,46

 

 

 

 

 

 

                          Key words

 

real closed commutative fields

Grothendick group

Archemidean complete fields

linearly ordered commutative fields

full binary trees