
International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

TOWARDS AUTOMATIC ESTABLISHMENT OF MODEL
DEPENDENCIES USING FORMAL CONCEPT ANALYSIS

IGOR IVKOVIC

Department of Electrical and Computer Engineering, University of Waterloo
Waterloo, Ontario N2L3G1 Canada

iivkovic@swen.uwaterloo.ca
http://swen.uwaterloo.ca/∼iivkovic

KOSTAS KONTOGIANNIS

Department of Electrical and Computer Engineering, University of Waterloo
Waterloo, Ontario N2L3G1 Canada

kostas@swen.uwaterloo.ca
http://swen.uwaterloo.ca/∼kostas

Software evolution is an iterative and incremental process that encompasses the
modification and alteration of software models at different levels of abstraction. These
modifications are usually performed independently, but the objects to which they are

applied to, are in most cases mutually dependent. Inconsistencies and drift among re-
lated artifacts may be created if the effects of an alteration are not properly identified,
recorded, and propagated in other dependent models. For large systems, it is possible
that there is a considerable number of such model dependencies, for which manual ex-
traction is not feasible. In this paper, we introduce an approach for automating the
identification and encoding of dependence relations among software models and their
elements. The proposed dependency extraction technique first uses association rules to
map types between models at different levels of abstraction. Formal concept analysis is
then used to identify clusters of model elements that pertain to similar or associated
concepts. Model elements that cluster together are considered related by a dependency
relation. The technique is used to synchronize business process specifications with the
underlying J2EE source code models.

Keywords: Software evolution; model synchronization; formal concept analysis.

1. Introduction

Software evolves iteratively and incrementally from its inception to its retirement.
The evolution includes change of artifacts at different levels of abstraction, from
very abstract ones, such as business process specifications, to very concrete ones,
such as source code. A change on a design model for instance, such as addition of a
new class in the structural view, could directly affect architecture and implementa-
tion models and through ripple effects even the requirements specifications. If each
change is not propagated to all affected models and if changes that are performed in
parallel are not coordinated, consistency among artifacts is lost and semantic drift

1

2 I. Ivkovic and K. Kontogiannis

is created. To propagate and coordinate transformations that are applied in one
model, it is necessary to resolve differences in the other models. Furthermore, dif-
ferent software models are often used by different stakeholders and may pertain to
various schemas and levels of technical detail. These models are based on languages
that exhibit different capabilities and limitations with regard to their expressiveness
and semantics. Therefore, mapping change from one modeling domain to another
also requires resolving language dissimilarities.

In previous research, we have addressed the problem of model synchronization
through a framework for incremental change propagation and translation titled
mSynTra 8 9 21. The framework is based on the view of evolution in the context of
an iterative and incremental lifecycle such as the Rational Unified Process (RUP) 6.
The methodology follows the Model-Driven Software Evolution (MDSE) paradigm
that is based on the general concepts of Model Driven Architecture (MDA) 11

12. To synchronize changes in mSynTra, using established model dependencies, a
modification that is applied to one model is appropriately translated and applied
to all other affected models. The process is through a collection of synchronization
relations.

This paper represents an extension to the mSynTra framework, where we discuss
an approach to systematically establish and maintain associations among models
and their elements through the use of formal concept analysis (FCA) 4. The basics
of the approach were previously introduced 7. In this paper we extend these find-
ings by presenting a formalization of the algorithm for the identification of model
dependencies; a demonstration of the prototype implementation; additional experi-
mentation results for run-time, space, precision and recall performance; and finally,
elaboration on the formalization of the approach that before was not presented in
detail due to space limitations.

In our approach, each software model is viewed as a context in terms of its ob-
jects and attributes. Furthermore, Formal Concept Analysis (FCA) can be used as
a formal method for identifying groups of objects that share common attributes and
are hence considered dependent. Given that the models are possibly from different
domains, we also introduce the notion of attribute association rules for creating
mappings among heterogeneous attributes. These rules can be defined both at the
domain model and, at the concrete model level. At the domain model level, the rules
represent the mappings between compatible types and relations, while at the model
level, they represent the mappings between objects, attributes, values, and annota-
tions. It is also possible for one to define the association rules at the metamodel or
metametamodel level if needed.

In the proposed approach, we consider that one or more models conform to a spe-
cific domain model that denotes relations and properties between model elements.
Since models may pertain to software artifacts at different levels of abstraction, they
may have a significant semantic gap when compared to each other. We propose that
domain model information can be used to generate a sequence of transformations
that can alter these models to a level where they can be compared and their depen-

Towards Automatic Establishment of Model Dependencies using FCA 3

dencies can be extracted. These domain model transformations can take the form
of association rules or type mappings from one domain model to another.

To validate the approach and demonstrate its applicability in a practical sce-
nario, we make use of a case study where the goal is to synchronize business process
models (BPM) with the enacting Java and Enterprise Java Beans (EJB) 18 source
code. The business models are represented as business workflows that include pro-
cesses, tasks, decisions, data, etc. Due to significant semantic gap between the two
domains, before dependencies can be established, it is necessary on one hand to
augment the representation of the business workflows with implementation infor-
mation, and, on the other hand, to abstract the code representation in terms of
related business functionality. Once models, domain models and, metamodels are
represented in a MOF-compliant form 13, they can then be represented as XML doc-
uments and consequently their transformations can be encoded as XSLT transforms
5.

The remaining paper content is structured as follows. Section 2 discusses the
relation between this research and related findings previously published in the area
of software reuse and hierarchical data management. Section 3 gives an introduction
to the framework for establishment and maintenance of relations among models and
their elements using FCA. Section 4 describes our prototype implementation and
demonstrates the validity and applicability of the approach over a case study, while
Section 5 gives the conclusions and future research directions.

2. Related Research

In the approaches that focus on software reuse, Spanoudakis and Constantopoulos
17 measure similarity through a distance metric in order to evaluate the reuse poten-
tial of software artifacts. Engels et al. 2 discuss the transformations between Unified
Modeling Language (UML) Class Diagrams and UML Collaboration Diagrams 14

and Java source code. The approach considers the structural and behavioral map-
pings using transformation patterns. The patterns used are not trivial to extract
and the pattern repository needs to be updated as new transformations are intro-
duced. The approach in this paper uses formal concept analysis to establish the
mappings at the level of model elements. For objects that belong to more than one
concept, conflict resolution is performed using a similarity metric, represented for
instance as a sum of weighted scores.

In the research area of hierarchical data management, an approach by Faid et
al. 3 uses formal concept analysis to discover concepts and rules based on struc-
tured complex objects. Gianolli and Mylopoulos 16 perform semantic mapping of
XML data stores using a common DTD schema. In this paper, the semantics of
hierarchical data structures are mapped using intermediate models. However, the
relations among individual model elements are also inferred based on the mappings
of related attributes.

In the research published by Rich and Wills, subgraphs are used to recognize

4 I. Ivkovic and K. Kontogiannis

program design 15. In their approach, several categories of problems related to es-
tablishing model dependencies are recognized. These include non-contiguousness —
adjacent elements from one flow may be separated in another related flow, imple-
mentation variation — the same design under differing contexts may be represented
by different implementations, overlapping implementations — two or more imple-
mentations may overlap in implemented functionality, and unrecognizable imple-
mentations — no relevant semantic information can be extracted from an infor-
mation flow. This view is extended through our research by considering challenges
related to: n-ary relations — dependencies are not only one-to-one or one-to-many,
but also many-to-many mappings of model elements, partial dependencies — only
parts of model elements are related, and non-applicable dependencies — an element
from one model is not directly mapped to any element in a related model. These
challenges are addressed through the following:

• Non-contiguousness, overlapping implementations and partial dependencies are
addressed through mappings of individual model elements instead of flow pat-
terns.

• Implementation variation is addressed through mappings of interfaces and recog-
nition of differing contexts for each mapping.

• N-ary relations are addressed through definition of model dependencies as tuples
of model elements.

• Unrecognizable implementations and non-applicable dependencies are addressed
through inclusion of user feedback.

3. A Framework for Establishing Model Dependencies using FCA

This section describes the framework for automatically establishing model depen-
dencies using formal concept analysis (FCA), which was introduced in 7. As a part
of this view, models are viewed as collections of objects and attributes. Before FCA
can be used, attribute associations need to be established. To establish relations
between heterogeneous attributes, we make use of attribute association rules to
map attributes and values between models that relate and conform to different do-
main models. The rules are established both at the domain model level and at the
concrete model level. The differences in levels of expressiveness and semantics are
augmented through generation of intermediate models. Once the rules are estab-
lished, FCA is used for clustering objects based on shared attributes. A clustered
group of objects constitute a concept and the objects are then said to be dependent.

More specifically, the steps in this process are:

1. Defining Metamodels and Domain Models
The elements of domain models such as types, relations, and attributes, are ex-
tracted through domain analysis and represented using MOF syntax.

Towards Automatic Establishment of Model Dependencies using FCA 5

2. Generating Intermediate Models
To bridge possible syntactic and semantic gaps between domain models, the
more abstract ones are iteratively annotated and enhanced into more specific
ones, while the more concrete ones are iteratively abstracted and refined into
more abstract ones in an attempt to bridge the syntactic and semantic gap be-
tween the models that need to be associated.

3. Establishing Model Dependencies
After semantic gaps are bridged, the association rules are defined based on com-
patible properties. Using FCA and the association rules, clusters of objects that
share common attributes are identified, and represented as tuples of model de-
pendencies.

4. Validating Established Dependencies
The resulting tuples are validated by comparing them to previously confirmed
results, or through feedback from developers and domain experts.

Model M :: DM M

+instance

Model G :: DM G

Domain Model DM M Domain Model DM G

+instance

Association
Rules AR

Synchronization
Rules SR

+output

+preserves

+defines

Model M’ :: DM M

+transformed

Transformation
Sequence T M

Transformation
Sequence T G

Model G’ :: DM G
Equivalence
Relation R’

+validates

+validates

Dependencies D

+establishes

+provides elements

+provides elements

+input

+transformed

+trace +trace

Association Rules Metamodel

+defines

+defines

Fig. 1. mSynTra Model Synchronization Framework

The broader context of this approach, the mSynTra model synchronization
framework, is illustrated in Figure 1. In this illustration, two models M and G,

6 I. Ivkovic and K. Kontogiannis

which are instantiated from domain models DMM and DMG respectively, are in a
consistent state. For DMM and DMG, the corresponding association rules AR are
established based on compatible domain types and relations. The rules from AR

are used to identify model dependency tuples D from elements of M and G. The
consistent state between M and G is disrupted when M is transformed, through a
sequence of transformations TM , into M′. To identify elements of G that are affected
by change to M, the tuples from D are used. For a tuple (mi, gj) in the dependency
set D, if element mi from model M is changed, then the element gj from model
G is identified as one of the elements that may need to altered to maintain the
synchronization between M, G. Once all of the affected elements are found, they
can be updated automatically if possible, or highlighted for manual updating.

In the proposed framework, systematic change of software models is attained
through model transformations. These include insertion, deletion and modification
of model attributes and model elements. The changes made at the model level are
applied on properties and predicates defined at the domain model level. Each change
performed on one of the models can be mapped or traced to its domain or even its
corresponding metamodel. Hence, we can view individual model transformations in
terms of their atomic elements (i.e., as graph transformations) and recognize and
interpret them as combinations of these basic elements.

To establish that two models are synchronized, a relation between the models
needs to be defined. Such a synchronization relation can be a binary equivalence
relation (i.e., models are or are not synchronized) or expressed as a partial level or
degree of synchronization. An example of a model dependency relation would be
consistency between UML models that represent artifacts from different stages of
design (e.g., message sequence charts and collaboration diagrams) 1.

3.1. Defining metamodels and domain models

The models that need to be synchronized are based on schemas that we refer to
as domain models. The elements of domain models represent, using MOF syntax,
types, relations, and attributes that are specific to a particular domain. The domain
models need to accurately represent their domain constituents in a format that
provides for easy access and manipulation. Domain models based on MOF could be
for instance represented in XML 23, where the domain model elements are used to
define the corresponding DTD schema.

As an example, a domain model for business workflows, shown in Figure 2, is a
schema represented in UML that denotes Processes, Tasks, Decisions, Data, etc. as
UML classes, where process is a container class for itself and other classes.

A domain model can be instantiated to yield a concrete model that describes a
specific process or a source code segment. Relationships between one or more do-
main models can be represented by the use of metamodels. In this context, models,
domain models, and metamodels can be considered as typed, attributed, labeled,
directed graphs. If the domain models are not available, as part of the requirements

Towards Automatic Establishment of Model Dependencies using FCA 7

-Name
-Notes

Process

ExternalProcesses

-Name
-Notes
-ExternalEntityName

ExternalProcess

Tasks

-Name
-Notes
-OrganizationUnitName
-RoleName

Task

Phis

-Name
-Notes
-Type

Phi

PhiTypes

-PhiTypeName
-PhiTypeCategory

PhiType

Decisions

-Name
-Type

Decision

Choices

-Type

Choice

Fig. 2. Business Process Domain Model

or design documentation, they may need to be extracted using a technique such as
Feature-Oriented Domain Analysis (FODA) 10.

3.2. Generating intermediate models

For two models that need to be synchronized, the relations between them can be
established directly at the model level, as also at the domain model, or even meta-
model level. To establish dependencies at the metamodel level, associations between
MOF-compliant and non-MOF-compliant models need to be established first. Since
we consider for our study only MOF-compliant models we therefore, do not discuss
the problem of establishing relations between metamodels. Finally, to establish rela-
tions at the domain model level, types, relations, and attributes that are dependent
need to be derived and recorded as association rules. To establish relations at the
concrete model level, the rules established at one of the higher levels are used to
identify tuples of model elements that are related.

Since the approach is focused on heterogeneous models at different levels of
abstraction, establishing relations directly without refinement may be quite difficult.
To overcome the differences in model expressiveness and semantics, we propose to
generate more closely related intermediate models. These models would be less

8 I. Ivkovic and K. Kontogiannis

syntactically and semantically diverse and therefore, establishing relations among
them would be easier.

Information System
Abstract Model

Customer Workflow
Detailed Model

Information System

Customer Business Workflow

Extract

Extract

SynchronizeSynchronize

Fig. 3. Synchronizing Business Processes with Source Code

For example, in the problem of synchronizing business processes with source
code, we annotate and enhance business process models with concrete data flow
and control flow information, and at the same time, we abstract the source code to
yield activity-like models. In Figure 3, this convergence is illustrated, where Cus-
tomer Business Workflow models are annotated to yield Customer Workflow De-
tailed models, and Information System models are abstracted to yield Information
System Abstract models.

We describe this process more formally as follows:

1. Let M and G be be instantiated from DMM and DMG respectively. Analyze
DMM and DMG to establish compatible domain elements such as domain types,
relations, events, etc.

2. Create convergent DMM
′ and DMG′ from DMM and DMG respectively, so that

DMM
′ and DMG′ are more closely related and relations among them can now

be established.
3. From M and G, generate M′ and G′ based on DMM

′ and DMG
′, respectively.

The sections below will discuss this process in more detail.

Figure 4 illustrates an example of an abstracted source code domain model. The
source code elements such as classes and methods are represented through abstrac-
tion as ControllerCommand that are containers for other ControllerCommand and
second-level abstractions such as JavaBeans for invocation of Java Beans, TaskCom-
mands for external invocation, PseudoTaskCommands for clustered fragments of

Towards Automatic Establishment of Model Dependencies using FCA 9

-Name
-Comments

ControllerCommand

JavaBeans

-Name
-Comments
-LineNumber
-Input
-Output

JavaBean

TaskCommands

-Name
-Comments
-LineNumber
-Input
-Output

TaskCommand

PseudoTaskCommands

-Name
-Comments
-LineNumber
-Input
-Output

PseudoTaskCommand

Decisions

-Name
-Type
-Comments

Decision

Choices

-Name
-Comments
-LineNumber

Choice

Fig. 4. Source Code Domain Model

code, and Decisions. The source code files are represented in XML, where this do-
main model is encoded as a DTD schema 24. The mappings between source code
and other models can thus be performed as mappings of XML Document Object
Model (DOM) trees.

3.2.1. Attribute association rules

The domain models for a particular domain at a particular level of abstraction
based on our assumption would have common properties such as consistent features
maps, lexicons, ontologies, etc. The attribute association rules can thus be viewed
as mappings between attributes of heterogeneous models based on the mappings
of the domain-specific properties. The classification of the association rules is as
follows, and the examples for each of the rules are based on the domain models for
business workflows and source code (Figures 2 and 4 respectively).

• Hierarchical Association Rules — Models are parts of model hierarchies and

10 I. Ivkovic and K. Kontogiannis

feature maps for the hierarchies are extracted. Based on the containment relations
between models and features, two association types are recognized:

(a) direct, where models M and G are associated directly since they implement
related features FM and FG, or

(b) indirect, where models M and G are associated indirectly since M contains a
model M′ that implements a feature FM that is related to a feature FG that
G implements. In this case, M′ and G are directly related.

To illustrate hierarchical association rules, let M be a process “Process order”
and let M′ be process “Prepare inventory” that is contained within M and that
implements a feature FM “Inventory management”. Also, let G be a source code
class “InventoryAllocation” that implements a feature FG “Inventory manage-
ment”, and let features FM and FG be related. From the relation between FM

and FG, it follows directly that M′ and G are related, and indirectly that M and
G are related since M contains M′.

• Type-Based Association Rules — Domain elements such as domain types,
relations, and attributes defined in different domain models are associated based
on compatible structural properties (e.g., equivalent domain model, metamodel,
or even metametamodel classification).
To illustrate type-based association rules, let us consider the types Process and
ControllerCommand of respective domain models. The compatible properties are
that they are both root types of each model, that they contain themselves and
other subtypes, and that they have related attributes (Name, Name) and (Notes,
Comments). As a result, Process and ControllerCommand are associated.

• Spatial Association Rules — A flow of data in a model is represented as
order attributes, such that object o1 precedes object o2. The associations are
established based on the order attributes.
To illustrate spatial association rules, let us consider a flow (m1, m2) for a model
M and a flow (g1, g2) for a model G. The attributes of the first flow would be
for m1 “Preceded by null” and “Followed by m2”, and for m2 “Preceded by m1”
and “Followed by null”. The attributes for the second flow would be analogous,
so m1 and g1 could be matched since they are both preceded by null, and m2 and
g2 could be matched since they are both followed by null.

• Text-Based Association Rules — Informal information attributes (i.e., com-
ments, descriptions, variable names, types, etc.) are viewed as strings of text.
The difference in syntax and semantics are resolved through:

(a) thesaurus replacements — related synonyms are mapped,
(b) stemming — each word is reduced to its root (e.g., resource, resources, re-

sourceful to resource),
(c) abbreviation expansion — abbreviations that are recognized for a particular

domain are expanded,
(d) stop-word elimination — words with no semantic meaning, locally or globally,

are eliminated,

Towards Automatic Establishment of Model Dependencies using FCA 11

(e) word-matrix matching — groups of attributes that share words with semantic
meaning are recognized, and

(f) n-gram matching — strings are divided into substrings of size n and matched
accordingly.

To illustrate text-based association rules, let ma := “Verify the order line item
is still old” and gb := “Verify that this order item still meets the criteria for
being stale” be related attributes for elements m ∈ M and g ∈ G. We perform
text-based matching as follows:

(1) Eliminate stop words and replace synonyms to obtain ma
′ := “verify order

line item stale” and gb
′ := “verify order item meets criteria stale”

(2) Use 3-gram matching and the match level of 0.6 on ma
′′ := “ver eri rif ify

ord rde der lin ine ite tem sta tal ale” and gb
′′ := “ver eri rif ify ord rde der

ite tem mee eet ets cri rit ite ter eri ria sta tal ale” to obtain average(3-gram-
match(ma

′′, gb”′′), 3-gram-match(gb”′′, ma”′′)) = 0.744 for the successful
match.

The attribute association rules are formally represented as OCL descriptions 22.
The following illustrates in OCL the preceding 3-gram matching rule at the match
level of 0.6:

M− >iterate(m : ModelElement |
G− >iterate(g : ModelElement;

result : Boolean = NGramMatching.ApplyRule(m− >a, g− >b, 3, 0.6)))

Unmatched objects
The unmatched objects may be recognized through association of their imme-

diate neighbors based on additional or refined attributes and rules. For instance,
in the following two flows (m1, m2, m3, m4) and (g1, g2, g3, g4), tuples (m1, g1),
(m1, g2), (m3, g4) are found as model dependencies. It may be possible to ascertain
dependencies for unmatched objects m2, g3, and m4 by performing additional clus-
tering on these objects and their matched neighbors with new or changed attributes
and rules. If for instance m2 is now found to be related to m1 and g1, a tuple (m2,
g1) would be created.

Conflict resolution rules
For the objects that are a part of two or more clusters, it may be necessary for

practical reasons to decide to which cluster they more strongly belong. This conflict
resolution may be achieved by weighted scoring of individual rules, where some rules
are assigned a higher value through initial experiments for a particular domain. The
best match is selected by maximizing the weighted score. In case more than one
cluster is found with the maximum score, all of the tuples from such clusters would
be encoded as model dependencies.

More formally, let AR be a set of applicable attribute association rules and let
MG := M x G be a set of tuples of model elements. For a tuple (mp, gq) ∈ MG,

12 I. Ivkovic and K. Kontogiannis

the weighted score WSpq :=
∑

wi * ari(mp, gq) where ari : Boolean ∈ AR and
wi are domain-specific weight parameters. The maximum score for an element mp

is WSpmax := max{WSp0, WSp1 . . .} and the top matches for an element mp are
tuples (mp, gi) for which the WSpi := WSpmax.

3.3. Establishing model dependencies

The complexity and the accuracy of individual mappings between models depends
on the type and the amount of information that is available from each model. If
we compare concurrent mapping of structural and temporal properties to mapping
of only structural or only temportal properties, it holds that the number of eligible
elements available would increase in the former case as would the complexity of the
mapping. As a result, the accuracy of the mapping in the latter case may be higher.

This paper focuses on a set of specific domain model properties based on the
corresponding structural, temporal, spatial, and behavioral attributes. As part of
the approach, all domain models and all instantiated concrete models are viewed
as directed, labelled, attributed graphs. All model properties are then viewed as
labels and attribute-value pairs of individual nodes and edges. With regard to se-
mantic homogeneity of considered domains, we assume that models belonging to a
particular domain, such as database management, represented at a particular level
of abstraction would be based on consistent features and types, and would also con-
tain specific lexicons and ontologies. Based on this assumption, we create matches of
models and model elements by associating related lexical and ontological concepts
as part of the attribute association rules.

3.3.1. Introduction to FCA

Before using FCA to establish model dependencies, we first need to introduce related
FCA definitions 4.

Definition 1. A formal context K := (O, A, I) contains two sets O and A, and a
relation I between O and A. The elements of the first set O are called the objects,
and the elements of the second set A are called the attributes of the context.

If we need to express that an object o from O is in a relation I with an attribute
a from A, we would write this as oIa and read it as “the object o has the attribute
a”. The relation I in this case is called the incidence relation of the context M.

From this definition, we interpret domain models as contexts DM := (ODM ,
ADM , IDM) that consist of a set of domain types ODM , a set of domain attributes
ADM , and a set of domain relations IDM . The models instantiated from respective
domain models are also contexts M := (OM , AM , IM), but with model elements OM ,
model attribute values AM , and relations IM , which are the mappings of types and
attributes from domain model and the values in M. It follows then that a domain
model DMM is a metacontext for a model M that is instantiated from DMM . Since

Towards Automatic Establishment of Model Dependencies using FCA 13

Context:

Concept Lattice:

Association Rules:

a1 a2 a3 a4
O1 x
O2 x x
O3 x
O4 x x

a5
x
x
x
x

O5 x x

a2

a4a1 a3

O3

O4

O1

O2

1 < 5 > { } ==> a5;
2 < 0 > a3 a4 a5 ==> a1 a2;
3 < 1 > a2 a5 ==> a3;
4 < 0 > a1 a3 a5 ==> a2 a4;

a5

O5

Fig. 5. FCA Example

FCA dictates binary contexts, we provide a mapping of n-ary to binary relations
through combinatorial scaling. For example, an object o and n possible values v1,
v2. . . are represented as binary relations (o, ∅), (o, v1), (o, (v1, v2)), . . . (o, (v1, v2,
. . . vn)).

For a set O1 ⊆ O of objects, let

A1 := {a ∈ A | oIa,∀o ∈ O1} (1)

be the set of attributes common to the objects in O1. Also, for a set A2 ⊆ A of
attributes, let

O2 := {o ∈ O | oIa,∀a ∈ A2} (2)

be the set of objects which have all the attributes in A2.

Definition 2. A formal concept of the context (O, A, I) is a tuple (O1, A2) with
O1 ⊆ O, A2 ⊆ A, O1 = O2 and A2 = A1, where O1 is the extent and A2 is the
intent of the concept (O1, A2).

The relations between attributes in A are represented through a relation of
format “Ai → Aj”, where Ai and Aj are subsets of A. This statement implies that

14 I. Ivkovic and K. Kontogiannis

an object that has the attributes in Ai also has the attributes in Aj . To visualize
these relations, a concept lattice can be built.

In Figure 5, a context of five objects O := {o1, o2, o3, o4, o5} and five attributes
A := {a1, a2, a3, a4, a5} is represented as a matrix. Each cell in the matrix represents
a relation between an object and an attribute, where a filled cell indicates that a
particular object has a particular attribute (e.g., o3Ia1 since the cell (3, 1) is filled).
From the context, the attribute associations can be inferred as shown in the figure
(e.g., {} → a5 implies that all objects in the context exhibit attribute a5). The
concept lattice is built from the attribute associations, and from the concept lattice
concepts can be read by reading the objects from the bottom and the attributes
from the top (e.g., object o3 and attributes a1 and a5 are a concept, objects o3, o4,
o5 and attributes a1, a4, a5 are a concept).

We refer to the rules for defining associations between attributes of different
contexts as attribute association rules.

3.3.2. Establishing model dependencies

Before discussing the method for establishing dependencies, we first define model
dependency as follows.

Definition 3. A model dependency between models M and G is a set of tuples
(mi, gj) of elements obtained from models M and G such that mi and gj have
associated attributes.

More formally, let M and G be two models at different levels of abstraction with
corresponding domain models DMM and DMG. Let OM and OG be the objects and
let AM and AG be the attributes for M and G. Also, let

AMG := {aM , aG | aM ⊆ AM , aG ⊆ AG, aM ⇒ aG} (3)

be related attributes from AM and AG. The attribute logic for attribute associations
aM ⇒ aG of attributes from different contexts is defined as a set AR of attribute
association rules.

For nonempty sets OM
′ ⊆ OM and OG

′ ⊆ OG of objects, let

A′
MG := {a ∈ AMG | o1Ia, o2Ia,∀o1 ∈ O′

M , ∀o2 ∈ O′
G} (4)

be the set of attributes common to the objects in OM
′ and OG

′. Also, for a nonempty
set AMG

′ ⊆ AMG, let

B′
MG := {o1 ∈ OM , o2 ∈ OG | o1Ia, o2Ia,∀a ∈ A′

MG} (5)

be the set of objects which have all the attributes in AMG
′.

Definition 4. An inter-context concept of two contexts M and G is a set (OM
′,

OG
′, AMG

′) with OM
′ ⊆ OM , OG

′ ⊆ OG, AMG
′ ⊆ AMG, and BMG = (OM

′ ∪
OG

′).

Towards Automatic Establishment of Model Dependencies using FCA 15

The algorithm for establishing model dependencies then includes the following
steps.

Algorithm MD-FCA Establishing Model Dependencies Through FCA
Input:

1. Model M := (OM , AM , IM)
2. Model G := (OG, AG, IG)
3. Domain Model DMM

4. Domain Model DMG

Output:
1. Established Model Dependencies D

Steps:
Step 1. Identify a set AMG of related attributes from AM and
AG based on compatible properties such as matched types, associ-
ations, data flow, spatial properties, informal information, etc. of
DMM and DMG.
Step 2. Given AMG, derive a set AR of corresponding association
rules based on the matched properties of DMM and DMG. For
example, for attributes matched based on spatial properties, use
the spatial-matching rules.
Step 3. Iterate through elements of M and G to identify an initial
set of inter-context concepts D that share the attributes from AMG

using the rules from AR for association of concrete attributes.
Step 4. Exclude from D all of its irrelevant (e.g., include only the
objects from one context) and redundant (e.g., equivalent associa-
tion results based on different sets of attributes) elements.
Step 5. For those elements of M and G that cannot be matched
using attribute associations, attempt matching using their already-
matched neighbors.
Step 6. For those elements of M and G that are matched to more
than one cluster, select the matchings using a corresponding con-
flict resolution rule. For example, each association rule could be
assigned a weight and those elements with a maximum weighted
score are selected as the top results.
Step 7. Return D as the set of established model dependencies.

To further clarify the algorithm, we demonstrate its usage on a simple scenario
of two models, a workflow M and a source code class G, that were matched based
on suitable properties. We focus on matching of their elements, so we apply the
algorithm. For Step 1, we identify a set of compatible attributes AMG := ((Process
Name, Class Name), (Notes, Comments), (Subsystem, Package), (Previous Element
in the Process Flow, Previous Element in the Information Flow), (Next Element
in the Process Flow, Next Element in the Information Flow)) from the workflow
and abstracted source code domain models. For Step 2, based on AMG we identify

16 I. Ivkovic and K. Kontogiannis

a set of association rules AR that includes: text-based matching using a combina-
tion of techniques including stemming, abbreviation expansion, stop-word elimina-
tion, n-gram matching, etc. on attribute pairs (Process Name, Class Name) and
(Notes, Comments); type-based and hierarchical matching by extracting workflow
and source code hierarchies on attribute pair (Subsystem, Package), and type-based
and spatial matching using position and data flow on attribute pairs (Previous El-
ement in the Process Flow, Previous Element in the Information Flow) and (Next
Element in the Process Flow, Next Element in the Information Flow). In Step 3,
we iterate through elements of M and G to identify those that cluster together. For
example, we matched the following two model elements:

• oM := ((Process Name, “Find stale order line items”), (Notes, “Find order line
items that are stale”), (Subsystem, “Order”), (Previous Element in the Process
Flow, “Time to execute” (Task)), (Next Element in the Process Flow, “Are there
more order items”(Decision))) and

• oG := ((Class Name, “abOrderJDBCHelper.findStaleOrderItems”), (Comments,
“Call the Order query to get the list of expired order items”), (Package, “Order”),
(Previous Element in the Information Flow, “startUse” (Task)), (Next Element
in the Information Flow, “hasMoreElements” (Decision))).

The matching of elements, if we consider text-based matching rules, is based on:

• n-gram distance between semantically relevant words using thesaurus replace-
ments of (Process Name, “Find stale order line items”) and (Class Name, “abOr-
derJDBCHelper.findStaleOrderItems”),

• n-gram distance and hierarchical (i.e., Subsystem to Package) mapping of (Sub-
system, “Order”) and (Package, “Order”), and

• n-gram distance, type-matching (i.e., Decision to Decision), and spatial matching
of (Previous Element in the Process Flow, “Time to execute” (Task)) and (Previ-
ous Element in the Information Flow, “startUse” (Task)), and (Next Element in
the Process Flow, “Are there more order items” (Decision)) and (Next Element
in the Information Flow, “hasMoreElements” (Decision)).

3.4. Validating established dependencies

Once the dependency tuples are established, they have to be validated. If there exists
a source of previously encoded dependencies, the validation may be automated. If
not, developers and domain experts are to be queried for feedback, where the results
are submitted for review. For unsatisfactory recall and precision levels, the process
settings may need to be changed. For example:

• Existing attribute association rules may need to be excluded or new ones defined
and added,

• Attribute associations at the domain model or metamodel level may need to be
adjusted, and

Towards Automatic Establishment of Model Dependencies using FCA 17

Run-Time Performance Results

Memory Performance Results

0

100

200

300

400

500

600

700

800

900

1,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500

original source code in KB

ab
st

ra
ct

ed
 s

o
u

rc
e

co
d

e
in

 K
B

0

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250 300 350 400

seconds

el
em

en
t

co
m

b
in

at
io

n
s

/ m
o

d
el

Fig. 6. Run-Time and Memory Performance Results

18 I. Ivkovic and K. Kontogiannis

• Threshold levels, which can be used to eliminate results with scores lower than
the threshold, may need to be increased (i.e., higher precision but lower recall)
or decreased (i.e., higher recall but lower precision).

In its current form, the proposed framework is based on user assisted validation
where dependencies are presented to the user for evaluation. A weighted score WS,
as defined above, is used to rank the dependencies from the most plausible to the
least plausible ones.

To analyze run-time and memory performance of the framework, we have per-
formed a set of four subsystem queries, one for each of the four data sets from
the case study and we have included the results as Figure 6. The run-time perfor-
mance was measured in seconds versus number of element combinations per model
that were parsed in the matching process, and the analysis of the results indicates
a quadratic performance. The memory performance was measured in kilobytes of
source code versus kilobytes of abstracted source code, and the analysis indicates
approximately linear performance.

4. Case Study: Synchronizing Business Workflows and J2EE
Source Code

We have implemented a prototype of our framework in Java, and we have integrated
it with the previously developed mSynTra plug-in for the Eclipse development en-
vironment 20.

Figure 7 depicts the prototype as a Workflow Synchronization Plug-In (WSP)
Perspective in Eclipse. The dependency view shows two model repositories, the
BPMs on the left and the source code models on the right. Clicking on one of the
model elements on the left will show the corresponding dependencies selected on the
right, with the details of the match including positively matched rules, the weighted
score, and other possible matches in the middle. Additional interface is provided
for reparsing of model elements based on the changed criteria such selecting or
deselecting particular model attributes, and increasing or decreasing the threshold
level for the weighted score. Through these settings users can change the size of the
domain of matching, and hence, iteratively improve the accuracy of the results.

The prototype is used in a case study of synchronizing business process mod-
els (BPM) represented as business workflows with the enacting Java 2 Enterprise
Edition (J2EE) platform compliant source code 19. Based on the domain analysis
and discussion with different stakeholders, it was concluded that the business work-
flows are typically created independently of source code. It was also noted that the
mappings between the related models are not consistently recorded, and as a result,
they are incomplete and out of date. Thus, developers and architects of the system
would be required to validate the extracted model dependencies.

The main target for the case study is to enable bidirectional change propaga-
tion, where changes from a workflow are propagated to underlying source code and
changes from a source code file are propagated to related workflows. The first step

Towards Automatic Establishment of Model Dependencies using FCA 19

Fig. 7. Prototype Implementation in Eclipse

in this process is to establish relations among models and model elements, and the
approach presented in this paper is used to fulfill the requirements of this goal.

In the ensuing text, we describe how each of the steps of the approach is applied.
Namely, we discuss the process of recovery of intermediate models to bridge syn-
tactic and semantic gaps between the workflows and the source code. The derived
intermediate models are used as a basis for extraction of inter-context concepts,
derived as clusters of objects that share related attributes. The extracted depen-
dencies are validated based on the corresponding feedback, from which the precision
and recall levels are also measured.

4.1. Generating intermediate models

In this step, we transform the business workflows by enriching and annotating their
representations. We also transform the source code models through abstraction and
annotation.

The workflow transformation includes:

1. Analyzing the workflow models and deriving their simplified representation in re-
lation to source code artifacts. The workflow functionality that is not performed
by a machine along with elements that have no source code representation are
excluded. The data flow and control flow information is preserved. The call in-

20 I. Ivkovic and K. Kontogiannis

formation for processes and run-time modules, which can be found in the source
code, is also preserved.

2. Adding annotations as attributes to workflow elements for which additional in-
formation may be derived. The annotations may include attributes for context,
role, hierarchical relation, implemented features, etc.

3. Extracting content from workflows automatically into XML, with the domain
model schema as a DTD for the XML files.

The source code transformation includes:

1. Analyzing the source code models and deriving their simplified representations
in relation to business process artifacts. The source code functionality that has
no relation to business processes along with elements that have no workflow
representation are excluded. The data flow and control flow information is pre-
served. The call information for task commands, pseudo task commands, and
Java Beans is also preserved.

2. Adding annotations as attributes to source code elements for which additional
information may be derived. The annotations may include attributes for param-
eter passing, informal text, hierarchical relation, implemented features, etc.

3. Extracting content from source code files automatically into XML, with the
domain model schema as an XML DTD.

4.2. Establishing model dependencies

From the refined domain models, the attribute association rules may be created.
For the BPM domain model, type-based and hierarchical associations are created.
The types are mapped to the compatible source code types, while processes are
recognized as parts of the overall hierarchy and relations are established based on
directly or indirectly implemented features. For the source code domain model,
hierarchical associations could not be established in addition to the type-based
ones since no meaningful hierarchy of source-code models could be identified. For
the concrete models, the compatible attributes are identified and spatial and text-
based association rules are defined. The settings for each rule are adjusted through
initial experimentation on a representative set of related workflow and source code
models. Using FCA and the association rules, dependency tuples are identified and
the results are stored in XML.

Figure 8 shows the mapping of the BPM and the source code attributes and
properties. Different levels of mapping, from Level 0 to Level 3, indicate different
steps in the matching process: at Level 0, hierarchical and type-based clustering
of top-level elements (i.e., processes and classes); at Level 1, clustering of top-level
elements using specified attributes; at Level 2, clustering of model elements using
specified attributes; and at Level 3, matching of unmatched elements using spatial
information.

Figure 9 demonstrates a successful mapping between a workflow (at the top)

Towards Automatic Establishment of Model Dependencies using FCA 21

comparing Business Flow Source Code

Objects Workflow process
A set of corresponding

Java classes

Attributes
Process name,
process notes

Class name, top-level
comments

Objects
Elements of the

workflow process
Elements of the source

code flow

Attributes
Element name, type,

description, data input
and output, spatial info

Element name, type,
comments, method
params, spatial info

Objects
Unmatched elements of

the workflow process
Unmatched elements of

the source code flow
Attributes Spatial information Spatial information

Properties
Hierarchical and type-

based associations
Type-based associations

Objects
A set of workflow

processes
A set of Java source

code files

Level 1:

Level 2:

Level 3:

Level 0:

Fig. 8. Attribute and Property Mappings

and a corresponding source code model (at the bottom). As part of this figure, two
spatial association rules are presented in OCL.

4.3. Validating established dependencies

Since the previously established model relations are not available, or are, at best,
incomplete, the validation process is based on feedback from developers and archi-
tects. Several iterations are performed, each with the goal of improving precision and
recall levels through adjustment of corresponding settings (e.g., change of attribute
associations, addition of new rules).

Based on the set of four queries, one for each of the four subsystems that were
available to us, we have measured and analyzed the precision and recall levels for the
top-level matches derived using our framework. Figure 10 shows the initial results
of estimated precision versus estimated recall, where it is indicative that there is
a decline in recall levels from approximately eighty to approximately sixty percent
with the precision slightly increasing but remaining close to twenty six percent. The
decline in recall levels may depend on several factors including:

• possible attrition of information when considering source code elements that have
indirect or partial relations to their business workflow counterparts,

• nonconformity of certain related workflows and source code flows, and
• inconsistency and drift that may have occurred over time between related work-

flow and source code models.

22 I. Ivkovic and K. Kontogiannis

Yes
startUse

findLocked
Orders

verifyLocked
Orders

StopNo

hasMore
Elements ReprepareOrderCmdAllocateInventoryCmd

Task Decision

Process
Termination

Legend:

Legend:

Task

Decision

Data Element

Process
Termination

Loop
Reference

Workflow Model:

Source Code Model:

Sample OCL Rules:
1. SpatialMatching.ApplyRule(Workflow->ElementLeft,
 SourceCode->ElementLeft)
2. SpatialMatching.ApplyRule(Workflow->ElementRight,
 SourceCode->ElementRight)

changedOrder
Yes

ProcessOrderCmd
No

Process

Fig. 9. Dependency Mapping Example

5. Conclusions and Future Research

This paper discussed a framework that makes use of Formal Concept Analysis
(FCA) to systematically establish relations among models and their elements. The
steps in the framework included (1) creation of domain models for chosen domains,
(2) generation of intermediate models to bridge possible representational and ab-
straction gaps between domains, (3) establishing model dependencies based on at-
tribute association rules using FCA, and (4) validation of established dependencies.
For the third step, details and an OCL representation for attribute association rules
is discussed along with an algorithm for establishing model dependencies. The ap-
proach was evaluated and its applicability demonstrated through a case study of
synchronizing business workflows with its underlying J2EE source code.

Towards Automatic Establishment of Model Dependencies using FCA 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.258 0.259 0.26 0.261 0.262 0.263 0.264 0.265

Estimated Precision

E
st

im
at

ed
 R

ec
al

l

Fig. 10. Estimated Precision and Recall

In the next steps of our research, we aim to further extend the approach by
applying it to additional case studies that exhibit different concerns. We also plan
to investigate an approach where model synchronization can be viewed as a lan-
guage translation problem, whereby models are treated as sentences in languages
that are defined through grammar-based representation of their domain models.
The synchronization would then become a problem of language translation, where
algorithms from the theory of natural language processing (NLP) could also be
considered as part of a possible solution.

6. Acknowledgements

This work is funded in part by and performed in collaboration with the IBM Canada
Ltd. Laboratory, Center for Advanced Studies (CAS) in Toronto. We would espe-
cially like to thank Tack Tong and Ross McKegney for their comments and sugges-
tions.

24 I. Ivkovic and K. Kontogiannis

References

1. A. F. Egyed. Heterogeneous View Integration and Its Automation. PhD thesis, Uni-
versity of Southern California, August 2000.

2. G. Engels, R. Huecking, S. Sauer, and A. Wagner. UML Collaboration Diagrams and
their Transformation to Java. In Proceedings of the Second International Conference
on The Unified Modeling Language (UML), Fort Collins, CO, Oct 1999.

3. M. Faid, R. Missaoui, and R. Godin. Knowledge Discovery in Complex Objects. Com-
putational Intelligence, 15(1), Jan 1999.

4. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1999.

5. G. K. Holman. What is XSLT? O’Reilly’s XML.com, Aug 2000.
http://www.xml.com/pub/a/2000/08/holman/.

6. IBM. Rational Unified Process (RUP). Online by IBM Corporation, 2004.
http://www.ibm.com/software/awdtools/rup/.

7. I. Ivkovic and K. Kontogiannis. Using Formal Concept Analysis to Establish Model
Dependencies. In Proceedings of the IEEE International Conference on Information
Technology Coding and Computing, Las Vegas, NV, Apr 2005.

8. I. Ivkovic and K. Kontogiannis. Model Synchronization as a Problem of Maximizing
Model Dependencies. In Proceedings of the 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2004), Van-
couver, BC, Oct 2004.

9. I. Ivkovic and K. Kontogiannis. Tracing Evolution Changes through Model Synchro-
nization. In Proceedings of the 20th IEEE International Conference on Software Main-
tenance (ICSM 2004), Chicago, IL, Sep 2004.

10. L. Kean. Feature-Oriented Domain Analysis. Software Technology Review, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1997.

11. A. Kleppe, J. Warmer, and W. Bast. The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

12. OMG. Model Driven Architecture - A Technical Perspective. Object Management
Group’s (OMG’s) Architecture Board ORMSC Document ORMSC/01-07-01, Object
Management Group, Jul 2001.

13. OMG. Meta Object Facility (MOF) Specification Version 1.4. Technical report, Ob-
ject Management Group (OMG), April 2002. http://www.omg.org/docs/formal/02-
04-03.pdf.

14. OMG. Unified Modelling Language (UML) Specification. Technical report, Object
Management Group, Mar 2003. http://www.omg.org/docs/formal/03-03-01.pdf.

15. C. Rich and L. M. Wills. Recognizing a Program’s Design: A Graph-Parsing Approach.
IEEE Software, Jan 1990.

16. P. Rodriguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-Based Data
Integration. In Proceedings of the 20th International Conference on Conceptual Mod-
eling, 2001.

17. G. Spanoudakis and P. Constantopoulos. Measuring Similarity between Software Ar-
tifacts. In Proceedings of 6th International Conference on Software Engineering and
Knowledge Engineering (SEKE 94), Jurmala, Latvia, Jun 1994.

18. Sun Microsystems. Enterprise JavaBeans (EJB) Technology Specification. Online by
Sun Microsystems Inc, Nov 2003. http://java.sun.com/products/ejb/docs.html.

19. Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE) Specification. Online
by Sun Microsystems Inc, Nov 2003. http://java.sun.com/j2ee/j2ee-1 4-fr-spec.pdf.

20. The Eclipse Foundation. Eclipse Platform Technical Overview. Online by the Eclipse
Foundation, Jul 2003. http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

Towards Automatic Establishment of Model Dependencies using FCA 25

21. T. Tong, R. McKegney, T. Lau, K. Kontogiannis, I. Ivkovic, P. Liew, Y. Zou, Q. Zhang,
and M. Hung. Model Synchronization for Efficient Software Application Maintenance.
In Proceedings of the 12th International Workshop on Program Comprehension (IWPC
2004), Bari, Italy, Jun 2004.

22. J. Warmer and A. Kleppe. The Object Constraint Lanugage (OCL). Addison-Wesley,
1999.

23. W3C XML Core Working Group. Extensible Markup Language (XML) Specifica-
tion. Technical report, W3C, October 2000. http://www.w3.org/TR/2000/REC-xml-
20001006.pdf.

24. Y. Zou, T. Lau, K. Kontogiannis, T. Tong, and R. McKegney. Model Driven Business
Process Recovery. In Proceedings of the 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004), Amsterdam, The Netherlands, Nov 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

