®  Most developers would

like to avoid redesigning a
system avound a new interface.
But turning a character-based
interface into a graphical one
requires significant time and
resources. The authors describe
bow this process can be partially
automated, giving the results
of their own reverse-

engineering effort.
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any older
programs, especially those in data
processing, have a character-based user
interface. Reengineering these inter-
faces to make them more user friendly
would extend the life of the systems in
which they are embedded, but it can
require significant effort. Developers
must understand how the old interface
was conceived and implemented, and
what constraints the new interface
must respect to remain compatible
with the rest of the system. To make
the level of effort acceptable, develop-
ers need automatic or semiautomatic
tools for reengineering.

In this article, we report on an
effort to develop such tools. Our work
was part of the I'T Macroscope project,
managed by DMR Group, Inc., whose

overall objective was to produce a
comprehensive set of methodologies,
tools, and learning materials that
would support organizations in better
managing their business processes
through information technology. Our
focus — the reverse engineering and
reengineering part of the project —
was to define an interface-reengineer-
ing process that would let developers
shift from a character-based paradigm
to one based on graphical objects.

This work, which was conducted at
the Computer Research Institute of
Montreal, went beyond merely
restructuring or repackaging the inter-
face. We had to provide some way for
developers to gain an in-depth under-
standing of the existing interface. This,
in turn, required that we provide a sufJ
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ficient level of abstraction and an infer-
ence capability. Our process had to be
flexible enough to work with a range of
source code and target languages.

SCOPE AND OBJECTIVES

As part of the work to develop a
reengineering process, we investigated
the feasibility of reverse-engineering a
user interface. Our specific tasks included

¢ Creating and refining a process to
obtain the structural and bebavioral speci-
fications that correspond to the original
interface. We wanted developers to be
able to extract user-interface specifica-
tions from source code, convert them
into graphical specifications, and gen-
erate a new user interface. This task
involved developing an interface-spec-
ification language! that uses an object-
oriented approach to represent user-
interface structures and Milner’s
process algebra’ to model user-inter-
face behavior. It also involved devel-
oping a set of specialized analysis tools
that would let programmers approxi-
mate program properties, including
data- and control-flow analysis, multi-
valued constant propagation,’ and slic-
ing.* These tools can be used to auto-
matically extract some information or,
when automation is not feasible, to
assist in manual reengineering.

& Developing a vesearch prototype based
on the process and testing it on a real system.
The prototype consisted of parsers,
analyzers, and code generators and was
implemented using Reasoning Systems’
Refine environment. The test system
we selected was part of a larger manage-
ment-information system. The compa-
ny was interested in reengineering a
character-based interface into a graphi-
cal one, while preserving the same back
end and extending the system so that
the interface could run on a remote
platform. The part of the system we
studied consisted of six programs — a
total of 24,000 lines of code — and two
communicating transactions (sequences
of programs executing and transferring
control to one another). The programs
ran in the Cobol/CICS environment

and used the CICS Basic Mapping
Support system for terminal display and
user interaction.

Our specific constraints were work-
ing within a new client-server archi-
tecture and aiming for zero modifica-
tions to the application.

REENGINEERING MODEL

Figure 1 shows a model of the reen-
gineering cycle, which consists of the
following phases:

¢ Understand the original system (inter-
face code) and extract code fragments. This
involves parsing the system (analyzing its
syntax) to obtain an abstract syntax tree
representation of the source code, extract-
ing the interface fragments from the
rest of the system, and performing flow
analyses to gather flow information that
will be used in later parts of the cycle.

The fragments are produced by
separating the interface code from the
rest of the system and making the
interface-code fragments subtrees in
the source-code AST. The separation
task may be difficult if the interface
and application code are very interde-
pendent. It may also be relatively easy
if the interface functions are isolated
in specially identified modules with
a clear interface to the rest of the
system. Slicing produces integration
constraints at an interface cut point —
the boundary between two consec-
utive statements, only one of which
belongs to the interface. These con-
straints must be satisfied when the
new interface is integrated with the
original code. In general, they involve
old dependencies, consistency of
accessed routines and data structures,
and so on.

Changes O
6

raphical
AUIDL specs
L Inferenc/ anerution
Reverse engineering
Basic New
AUIDL specs interface
Abstrudio@
Interface Flow
fragments information
Extrudior%' \
Abstract N\“\“S\S Integration
synfax free constraints
Parsing
V Integration
Original " New
system ” system

Figure 1. Reengineering model. Reengineering begins with the original system
(lower left corner) and continues through to the implementation of the new sys-
tem. A key part of the process is the reverse engineering of the old interface, which
involves extracting the interface specification, converting it to specifications in the
Abstract User Interface Description Language, and then converting the basic
AUIDL specification to a graphical AUIDL specification in terms of what the

Zl.fET‘pET[CiUeS as Screemns.
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& Perform abstraction and inference to
obtain interface specifications. This phase
takes the extracted interface code frag-
ments from the extraction phase and
converts them into graphical specifica-
tions in terms of screens.

As Figure 1 shows, abstraction and
inference form the core of reverse-
engineering operations. They essen-
tally shift the paradigm
from the world of con-
trol flow to the world of
observable behavior
from the user’s point of
view. From interface
fragments and flow
information, abstraction
produces basic specifi-
cations in the Abstract
User Interface Descrip-
tion Language,' a lan-
guage we designed to
provide an abstract representation of
the original character-based interface.
Inference converts the character-
based, or basic, AUIDL specifications
into graphical AUIDL specifications
that use graphical constructs to
describe objects, screens, and screen
sequences that the user can perceive.

¢ Introduce improvements to the inter-
face. During this phase, developers can
change the graphical AUIDL specifi-
cations. In our case, we did some
restructuring by adding mouse interac-
tion in the form of pushbuttons to the
function keys. We could have done
much more automatic restructuring
but we had limited our prototype to
function-key restructuring. Our main
goal was to determine the feasibility of
the reengineering approach; more
sophisticated restructuring would have
required a process similar to interface
design and involved analyzing pro-
grammer tasks and considering
ergonomical issues — both of which
were beyond the scope of our project.

¢ Generate a new graphical interface.
Developers can automatically generate
a new graphical interface from the
graphical AUIDL specifications using
standard code-generation techniques.
This is particularly important for

AUIDL LETS YOU
AUTOMATICALLY
GENERATE NEW
GRAPHICAL
INTERFACES TO AID
IN PROTOTYPING.

prototyping to quickly evaluate inter-
face redesigns. In our environment, we
implemented a specific code generator
that takes as input the AST produced
by parsing graphical AUIDL specifica-
tions and outputs Easel code.

o Integrate the new interface into the
original system. The difficulty and thus
length of this phase can vary. In our case,
it was practically negligi-
ble because we were able
to use Easel Corp.’s
Easel, an environment
that lets you develop
GUIs that run on desk-
top computers under
‘Windows, OS/2, or DOS
and that communicate
with IBM mainframe
applications through an
Easel 3270 terminal emu-
lator. No integration
effort and no modification of the main-
frame application were required.

In general, though, we expect inte-
gration to be more time-consuming
than this. Developers are likely to
have to change the mainframe code,
including initializing parameters, sup-
plying data, and starting new server
processes that the client may need.
Further, they must take care to make
the communication protocol to ex-
change data and control explicit. This
means generating either automatically
or semiautomatically the extra code
on both the client and server sides.

Moreover, the new code cannot
interfere with the system’s original
behavior. Developers can use integra-
tion constraints to check that old
dependencies have not been altered.
For example, they can check that the
names of variables in the new code do
not conflict with existing names and
that the names and the initial values of
parameters do not alter the original
control flow except for the desired
interface behavioral changes.

This model is a variation of a general
reengineering model,’ which we tai-
lored to user interfaces by adding flow
information and integrating constraints
across the reverse-engineering and

forward-engineering branches. In gen-
eral, the model was successful. Our
main difficulties were in choosing the
representation language, defining spe-
cific flow analyses, and refining the
abstraction and inference processes.
The remainder of the article is devoted
to these issues.

AUIDL

As Figure 1 shows, AUIDL was a
big part of our reengineering model
and the key to our success in reverse-
engineering an interface. With AUIDL we
were able to express interface behavior
in a hierarchical, formal way, add
ergonomic improvements to the inter-
face design (such as mouse manipula-
tion), and have the flexibility to evolve
as new dialogue models and control
structures were created. AUIDL also gave
us a sufficient level of abstraction to
handle a variety of languages.

In Figure 1, we refer to basic and
graphical AUIDL specifications.
AUIDL can represent a range of user-
interface types, including the main two,
character-based and graphical. The
main reverse-engineering task becomes
how to map the existing interface, writ-
ten in a specific language, to this
abstract and general representation
language. With this flexibility, AUIDL
is suitable for several roles within the
reengineering cycle: It can be a target
language for reverse engineering, a
working specification language for
redesigning the interface, and a specifi-
cation language for generating an
interface for a specific platform.

Representation. AUIDL lets you rep-
resent structure with object-orienta-
tion’s inheritance and describe behav-
ior with Milner’s process algebra.?
Interface structure captures the possi-
ble relations among interface entities,
while behavior describes the inter-
face’s dynamic aspects. Thus, AUIDL
unites two major design paradigms. It
also lets you formally describe com-
plex interactions as direct manipula-
tion (moving an object) and time-
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sensitive manipulation (paging down
by keeping a mouse button pressed
and pointing to the arrows in a scroll
bar).

The advantages of object-oriented
specifications in terms of reusability
and hierarchy of interface objects are
fairly well-known. The advantages of a
process algebra require some descrip-
tion. Process algebra lets you compact-
ly describe each object’s behavior and
redesign behavior through equation
rewriting. It also represents an inter-
face in an intuitive way — similar to
the way people capture and observe
behavior naturally: Give a stimulus to
an agent and observe its reaction as it
behaves according to some internal
programming that you cannot see.
Thus, the only way you learn behavior
is by observing the actions the agent
performs. In this case, the computer,
interface, and user are the agents.

Another advantage to using process
algebra is that agents can be defined at
any level of granularity, from memory
cells through statements, procedures,
modules, systems, and finally to the
user. This gives agent definitions a def-
inite hierarchy, which makes them eas-
ier to analyze.

Specification elements. Consider the
simple interface in Figure 2a, which
consists of a window and four fields. In
the figure, the interface takes an input
from field A and outputs it into B, or
it takes an input from C and outputs
it into D. Figure 2b contains the
AUIDL description of this interface.
WINDOW denotes the user interface
waiting for an input, while w, denotes
the interface having read an input in A
and ready to write an output in B.

Within AUIDL, you define a class
hierarchy of graphical objects in the
interface. Two mechanisms explicitly
describe the spatial organization of dis-
play objects: containment and importa-
tion. Containment means an object is
contained in another (an object is in-
side a window). To express contain-
ment, we introduced two keywords,
contains and contained by.

parameter x: string:

behavior
W, =
w=

2
end;

instance A: TEXTFIELD
contained by

WINDOW
attribute
Width: INTEGER is 5;
Height: INTEGER is 2;
posn_x: INTEGER is 5;
posn_y: INTEGER is 25
export
Width,Height to B,C,D;

posn_x to C;

posn_y to B
port

GetString: in
end;

instance C:TEXTFIELD
contained by

WINDOW
import

Width rename Std_width,

posn_x from A
attribute

posn_y: INTEGER is 5
export

posn_y to D
port

GetString: in
end;
(B)

A C
B D
(A)
instance WINDOW: MAINWINDOW
containg
A; B; C; D;

WINDOW = A:GetString(x).W, + C:GetString(x).w,
B:PutString(x) .WINDOW
D:PutString(x) .WINDOW

Height rename Std_height, posn_x from B;

instance B: TEXTFIELD
contained by
WINDOW
import
Width,posn_y,
Height from A
attribute

posn_x: INTEGER is 2
export
posn_x to D

port
PutString:
end;

out

instance D: TEXTFIELD
contained by
WINDOW
import
Width,Height from A;

posn_y from C

port
PutString:
end

out

Figure 2. (A) A simple user interface and (B) its description in AUIDL.

Importation lets an object import
an attribute and its value from another
object. This provides an easy way to
maintain the consistency of common
attributes. With this mechanism, you
can keep two fields aligned or ensure
that they have the same size or color,

for example. Again, two keywords,
import and export, describe the rela-
tion in both objects.

A behavior section describes how
an object reacts to events through a
list of equations. On the left side of
these equations, an identifier repre-
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sents an agent in a certain state, in
this case, wiNpow. The right side shows
what interactions are possible from this
state and the state after the interaction.
An action that takes place in a specific
object is denoted by <object_
nameY:<action_name>. In the behavior
section for winbpow, for example,
A:GetString(x) means that object A
performs the action of reading a string

«,»

(GetString) on parameter x. The “+

indicates nondeterministic alternatives;
that is, you can choose A or C to start
with, but once started you must proceed
as W, or W,, respectively (because after
an input, nothing else can be done until
the corresponding output is observed).
The dot denotes sequencing, so

WINDOW = A:GetString(x).W; +
C:GetString(x).W,

means that WwINDOW behaves as a nonde-

MAPSET W DFHMSD
MODE=INOUT,
LANG=Cobol,
TERM=3270-2,

TIOAPFX=YES
M, DFEMDI

LINE=004,
COLUMN=001
DFHMDF

CTRL=(FREEKB, FRSET) ,

SIZE=(018,080),

P0S=(001,010),
ATTRB=(ASKIP,NORM) ,
LENGTH=025

INITIAL= “NO.EMPL.”

instance UNNAMED_Field,: UNNAMED FIELD
contained by
M,

attribute
POS_LINE: INTEGER is 1;
POS_COLUMN: INTEGER is 10;
STATUS: STAT ATTR is ASKIP;
INTENSITY: INT_ATTR is NORM;
LENGTH: INTEGER is 25;
INITIAL: STRING is “NO.EMPL.”;

end;

(8

(A)
instance M; : MAP
contained by
MAPSET_W
contains
Field,; UNNAMED_Field,; Field,;
attribute
SIZE LINE: INTEGER is 18;
SIZE_COLUMN: INTEGER is 80;
LINE: INTEGER is 4;
COLUMN: INTEGER is 1:
end;

Figure 3. (4) A sample file in the Basic Mapping Support language and (B) the
BMS file translated into an AUIDL structural specification.

terministic choice between reading a
string x in A and behaving subsequent-
ly as w, or reading a string x in C and
behaving subsequently as w,, where w,
outputs x in B and proceeds as wInpow,
and ¥, outputs x in D and proceeds as
WINDOW.

APPLICATION ISSUES

Using our prototype, programmers
extracted structural properties, in the
form of flow information, by analyzing
the information sent to the screen.
With the prototype, we provided tools
such as specialized control-flow analy-
sis, multivalued constant propagation,
and slicing.

We captured the interface’s behav-
ioral properties through transition
graphs derived from the system con-
trol-flow graph. We then used infer-
ence to transform these graphs into a
graphs whose transitions are in terms
of screen displays.

Structural analysis. In our environ-
ment, as in many old systems, inter-
face code was scattered over several
Cobol programs that interacted some-
how with the user, but the CICS
package supplied an easily identifiable
interface to the rest of the system. We
decided to consider all CICS state-
ments as belonging to the interface
and the remaining Cobol statements
as belonging to the application sys-
tem. This criterion had several advan-
tages. It was easy to implement, it was
not ambiguous, and it made sense
semantically in the Cobol/CICS
world. Other criteria might involve
evaluating properties of the depen-
dency graph, such as slices. However,
rather than having a complex separa-
tion criterion with deep implications
for the application code, we opted to
use this simple criterion along with a
complete dependence analysis and
supply the analytic tools to the pro-
grammers.

The CICS environment posed spe-
cial difficulties, however, because of
the type of display mechanisms it uses.
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Program P, Program P, Program P,
START START
SEND SEND
PAGE MAPB
END END

Program P,

SEND
MAP A

Figure 4. User-interface transition graph. A transition graph represents the
interface’s behavioval description in terms of states and transitions. Transitions

also describe contvol flow at this point.

CICS treats each portion of screen as a
single processable unit, a 7ap. The sta-
tic description of a map, including the
fields that compose it, is written in
Basic Mapping Support language.
Figure 3a shows a sample BMS file.

Maps or sets of maps are accumulated
in memory through the statement SEND
MAP and are sent to the screen with the
staternent SEND PAGE. The display oper-
adon in CICS is essentally the result of
sending some maps to the screen using
some SEND MAP commands followed by a
SEND PAGE command. Input operations
consist of reading some maps through
the RECEIVE MAP command. At runtime,
the accumulated maps and the pages sent
change according to program execution.

By tracing the sequence of SENDs
using control-flow analysis, we were
able to identify the maps or map sets
for a particular screen. However, their
names are often hidden in variables,
which generally have a number of per-
mitted values. Because these values
represented interface structures that
could be displayed to the exclusion of
each other, we had to identify the per-
mitted variable values at any given
point in the application program. To
do this, we used a specialized analysis
based on multivalued constant propa-
gaton. The box on p. 70 explains more
about MVCP analysis and issues spe-
cific to our environment.

Figure 3b shows the final AUIDL
specification translated from the BMS
file in Figure 3a.

Behavioral abstraction. Abstracting the
interface’s behavioral properties
requires shifting perspective from the

world of control transfer to the world
of behavior and interaction. The con-
trol-flow graph is a good representa-
tion of control, while the interface’s
transition graph is a good representa-
tion of interface behavior. The transi-
tion graph represents interface behav-
ior in terms of states and transitions
and is used to produce the basic
AUIDL specifications.

Figure 4 is a sample transition
graph that corresponds to three pro-
grams P, P,, and P; belonging to the
same CICS transaction (sequence of
programs executing and transferring
control to one another). The box on
p. 70 gives more details on transac-
tions.

In the graph, sTART identifies the
unique entry point to a program; END
terminates a program’s execution;
RETURN, LINK and XCTL represent the
interprocedural control-transfer
instructions; and the CICS statement
SEND MAP prepares maps A and B to be
displayed on the screen by a SEND
PAGE statement.

Behavioral abstraction consists of
removing the interprocedural control
information from the transition graph.
In this case, we must remove the arcs
xcTL and LINK so that the final transi-
tion graph contains only behavioral
information. Arcs containing XCTL or
LINK statements are replaced with the
complete transition graph correspond-
ing to the called programs.

As Figure 4 shows, the edge xCTL
P, in program P, has been replaced by
the SEND PAGE and END edges in P,.
To replace LINK, the LINK P, edge has
been replaced by SEND MAP B in pro-

Figure 5. The transition graph in
Figure 4 after bebavioral abstraction.
After abstraction, the transition graph
is in terms of basic AUIDL action only,
like SEND MAP and SEND PAGE.

Program P,

START

DISPLAY
SCREEN (A, B)

DISPLAY
SCREEN (A)
DISPLAY
SCREEN (A)

DISPLAY
END END  SCREEN (A, B)

5

Figure 6. The transition graph in
Figure 5 after infevence. Inference is
the process of converting the transitions
that are in terms of basic AUIDL
actions to transitions in terms of graph-
ical AUIDL actions like DISPLAY
SCREEN.

gram P,.

Figure 5 shows the graph in Figure
4 after abstraction. Only basic AUIDL
actions, like SEND PAGE and SEND
MAP, appear as transitions. The XCTL
and LINK statements have been
replaced, and the RETURN and END
edges in programs P, and P,, respec-
tively, have their endpoints merged
and relabeled Enb.

Inference. Inference consists of itera-
tively traversing the transition graph
to collect the map sets that can be
encountered on paths between SEND
PAGE or RECEIVE statements® and pro-
ducing a transition graph with only

IEEE SOFTWARE

I

69




INTERPROCEDURAL ISSUES AND MVCP

Analysis involving mul-
tivalued constant propaga-
tion was crucial to obtain-
ing structural descriptions.
MVCP’s main role was to
handle the interprocedural
dataflow aspects inherent
in a Cobol/CICS environ-
ment. Specifically, flow
information can come into
a code fragment from
many calling points and
from parameters that are
sometimes passed among
programs through shared
memory and pointers. In
Cobol/CICS, these calling
points are represented by
PERFORM, LINK, and XCTL
statements.

Handling transactions.
Further complicating the
issue is the presence of
transactions, sequences of
programs executing and
transferring control to one
another. Figure A shows a
sample transaction, which
is defined in terms of three
programs. Each of these
programs transfers control
to the others using LINK,
XCTL, and RETURN con-
structs. Within one pro-
gram, the PERFORM con-
struct acts as a call subrou-
tine mechanism. Thus, we
considered  all  the
PERFORM, LINK, and XCTL
constructs as procedure
calls.

Modifying the control-flow
graph. MVCP analysis pro-
ceeds in the following
manner. MVCP flow infor-
mation is tagged by a
string that summarizes the
activation stack of proce-
dure calls. We could then
use these call strings to
distinguish among flow
information from different

calls, thus taking into
account interprocedural
aspects. We used the out-
put of MVCP analysis —
variables together with
their possible values — to
modify the system control-
flow graph. Figure B shows
a sample control-flow
graph. For each SEND MAP
statement that contains a
variable, we added nodes in
the control-flow graph
with the corresponding
constant map values
detected by MVCP analy-
sis. Figure C shows the
resulting graph. For exam-
ple, suppose MVCP analy-
sis revealed that the y in
SEND MAP My in Figure B
could be a 1, 2, or 3. We
simply change the node
SEND MAP My to three cor-
responding alternative
nodes: SEND MAP M;, SEND
MAP M,, and SEND MAP M,
as shown in Figure C.
Although the interpro-
cedural transfer of control
is particularly tricky to
analyze in the CICS envi-
ronment, MVCP analysis
would be useful to any
environment that lets you
display operations of
structures on the screen or
lets you store structure
names and use them
through variables. Of
course, each environment
comes with its own set of
problems. We found
MVCP analysis suitable
for environments with
sequential transfer of con-
trol and with procedures
that do or do not have
parameters. We have not
addressed issues concern-
ing pointers to dynamic
structures, the dynamic
structures themselves, or
recursive procedures.

Trans,

I RETURN

Program P,

LINK WRN
XaL

Program P, ———————» Program P,

Figure A. Sample transaction. Three programs make up
this transaction, each of which uses certain comstructs to
transfer control to the others. This greatly complicates the
structural and bebavioval analyses of AUIDL specifications.

START

SEND MAP M,
PN
XL MAP M,

e

SEND PAGE

|

RETURN

Figure B. Sample control-flow graph that contains SEND
MAP variables.

. START o

SEND MAP M,

. Xawc

SEND MAP M, . SEND MAP M, . SEND MAP M
N g oriit” o

&

SEND PAGE
o,

T

RETURN
e —

Figure C. Graph in Figure B after MVCP analysis, in
which SEND MAP variables ave replaced with constants.

70

JANUARY 1985




graphical AUIDL actions as transi-
tions. Figure 6 shows the graph in
Figure 5 after inference is applied.
Only graphical AUIDL actions like
DISPLAY SCREEN appear.

Representation choices. Although we
accessed AUIDL behavioral specifica-
tions through graphs, programmers
can opt to display them in terms of
process-algebra equations in text for-
mat using this simple transformation
algorithm:

¢ Take each node in the transition
graph and make it an agent in process-
algebra equations. Every node in the
transition graph is given a unique
name. A “+” in the equation indicates
a branch in transition graph. Graph
vertices represent AUIDL behavioral
states, and edges represent interface
communication actions.

¢ An edge between two nodes, N,
and N,, corresponds to the equation
N, = action.N,.

¢ Iteratively traverse all nodes and
edges in the transition graph to pro-
duce the equations.

The advantage of process-algebra
equations is that they can be manipu-
lated as text. The advantage of transi-
don graphs is that they are natural mech-
anisms for visualization and manipula-
tion in a graphical environment.

Problems. Inference in our case gave
rise to specific problems, including
how to solve interprocedural issues
and how to treat ERASE, a statement
that stops the flow of maps along a
certain path in the transition graph.

To solve the interprocedural prob-
lems, we used a technique similar to
what we did during MVCP analysis:
tagging the flow information with call
strings and mapping and unmapping
procedural parameters.

We solved the ERASE problem by
collecting two kinds of map flow infor-
mation for each statement.® One kind
represents the current state of the
screen in terms of maps; the other rep-
resents the cumulative flow of maps
since the last SEND PAGE was encoun-

tered in the flow graph.

Figure 7 gives the AUIDL behav-
ioral specification for the transition
graph in Figure 6, where SCREEN(A,B)
denotes the screen that corresponds to
the CICS maps A and B, and p1spLay

is the action of screen visualization.
RESULTS

As part of our work, we developed a
research prototype of our approach.
The system consisted of

¢ extensions to the Refine/Cobol
parser to analyze CICS constructs;

¢ MVCP and dependencies analyz-
ers;

¢ programs for extracting inter-
face fragments and performing ab-
straction and inference;

¢ an AUIDL parser; and

¢ the Easel code generator.

After using the prototype on the
test system, we identified many differ-
ent functionalities in the interface as
screens, including

¢ Data exchange only: 14

¢ Data exchange and function keys: 3

¢ Data exchange, function keys,
and headers: 5

¢ Combinations of data exchange,
function keys, headers, and error mes-
sages: 178

This corresponds to a total of 13
CICS maps: eight maps for data ex-
change, three maps containing head-
ers, one map defining function keys,
and one map containing an error mes-
sage. These results suggest that if data
exchanges, function keys, headers, and
error messages are considered as dif-
ferent kinds of dialog boxes, the com-
plexity of the interface specifications is
still low. If, on the other hand, you
consider every screen as a distinct
object, you would get 200 different
screens and a very complex interface
specification.

We included automatic restructur-
ing of function keys into pushbuttons.
Other forms of automatic restructur-
ing involving headers and error mes-
sages could easily be implemented.

We validated the extracted AUIDL

S, = SCREEN(A) :Display.S;
+ SCREEN(A,B):
Display.S,

S, =8,

S, = SCREEN(A) :Display.S,
+ SCREEN(A,B):
Display.S, + S;

S, = nil

Figure 7. Example of AUIDL bebav-
ioral specification in the form of
process-algebra equations for the tran-
sition graph in Figure 6.

specifications by inspection. Afterward,
the user selected six data-exchange
screens and one error screen for auto-
matic interface generation on an IBM
PC under OS/2. We then tested the
generated interface using a coverage
criterion, which says that the set of test
cases, when executed, should cause the
flow of control to go through paths
whose union covers the entire pro-
gram. We were able to demonstrate to
the user that the new interface correct-
ly corresponded to the original system
in both layout and functionality. Our
correspondence criteria were

+ Every interaction (I/O) possible in
the old screen is possible in the new one.

¢ The intrascreen navigation possi-
ble in the new screen was also possible
in the old screen and vice versa.

¢ The sequence of screens (inter-
screen navigation) possible in the new
interface was also possible in the old
system and vice versa.

Achievements. The most visible result
of our work was the proof that our
interface reengineering approach was
valid. We successfully extracted graph-
ical interface specifications that cor-
rectly represented the existing system
from the 24,000 LOC of Cobol/
CICS source code. These specifica-
tions, furthermore, were suitable for
automatically generating a new inter-
face on a PC.

Our approach is also suitable for
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other source code and target languages.
Changing the version of Cobol would
require modifying only the Cobol pars-
er. To handle the CICS language, for
example, we simply modified the
Refine/Cobol parser. Changing the
programming language could be slight-
ly more complicated because it might
affect other operations in the reengi-
neering model, like abstraction and
inference. However this is true only if
the semantic model changes. If devel-
opers stick to imper-
ative  languages,
which have proce-
dures and parameter-
passing mechanisms,
modifications should
be slight.

Another advan-
tage of our approach
is that it separates
interface and applica-
tion code, which in
conjunction with the
use of the Easel envi-
ronment, let us gen-
erate new interface
code for a PC with-
out modifying the old
code. If we had had to modify the appli-
cation code on the mainframe, our task
would have been more complex.

Finally, because AUIDL specifica-
tions are also available in text format,
programmers can easily modify them.
This adds flexibility to our automated
restructuring rules. Developers can use
AUIDL for fast interface prototyping
after reverse engineering.

Limitations. Our approach is limited
by the approximation inherent in stat-
ic analysis. CICS is a highly dynamic
model of user interaction. Our chal-
lenge was to use static analysis to
determine dynamic behavior, the pos-
sible sets of maps a user could per-
ceive on the screen and their
sequence at execution time. The static
approximation may identify screens
that were artificially introduced by
our approach and that correspond to
paths that may not be executable at

OUR APPROACH
SEPARATES THE
INTERFACE AND
APPLICATION CODE,
SO YOU CAN
GENERATE NEW
INTERFACE CODE FOR
A PCWITHOUT
MODIFYING THE OLD.

runtime. Although we did not observe
such screens in our specifications,
they may appear and must be
removed manually.

We have not investigated ways to

improve this approach, such as analyz-
ing traces and profiles of program exe-
cution. Using dynamic analysis would
also remove this problem, but it would
yield less complete results because you
can dynamically analyze only a finite
number of paths. Thus, both static and
dynamic analysis suffer
from drawbacks. A com-
parison of the two might
be a worthwhile research
topic.
Another limitation is
that our approach is cur-
rently only semiauto-
matic. In our test case,
programmers specified
the result of flow analysis
for certain routines.
These turned out to be
helpful in weeding out
parts of the system that
were coded in assembly,
didn’t contribute to the
interface at all, or con-
tributed in a very straightforward man-
ner, such as sending pages on the
screen. Assembly routines in our system
took about 3,500 LOC. This program-
mer assistance saved us from writing an
assembly analyzer, which generally
should be done.

We also required manual assistance
in MVCP analysis to deal with state-
ments like LINK program_
variable MVCP analysis depends on
the construction of a system control-
flow graph, which in turn depends on
the results of the analysis itself (the
pOSSible values of program variabl e).
The LINK program variable node is
expanded into several nodes LINK P, in
the control-flow graph, where p, rep-
resents all the programs in the system.
A programmer can reduce this expan-
sion to the number of programs he or
she believes can be accessed from such a
statement. A more elegant solution
would be to consider a higher order

MVCP analysis in which both the con-
trol-flow graph and the results of the
analysis are incrementally constructed.
Finally, we had to limit the Cobol/
CICS computational model so that we
could analyze the source code. How-
ever, these limitations were not overly
restrictive; they simply called for pro-
gramming styles that would avoid cer-
tain structures. Fortunately, these
styles often matched the companies’
internal programming guidelines.

lthough we have described our re-

engineering model in the context
of a specific environment, it as well as
AUIDL and the analysis tools are
portable. Further research is needed to
study slicing and dependence analysis,
since these approaches can be valuable
in integrating new interface code into
the original system.

Some other directions for further
work include

¢ Introducing new design concepts
that are totally absent from the char-
acter-based design, such as multi-
thread dialogues and concurrency.

¢ Measuring and evaluating exist-
ing systems for ease of interface re-
engineering. Using the results of flow
analysis, several interface diagnostic
tools could be developed. Tools could
also detect extra execution paths,
which might lead to navigations that
were not originally designed but that
happen to be available.

¢ Extending the approach to
address more client functions. Our
target interface architecture followed
the client-server paradigm. Other
functions on the client side, such as
help and data validation, might be
migrated to the interface.

We believe our reengineering
approach will let the interface of a
legacy system evolve as new interface
technologies emerge. This extends the
life of the system and improves its
overall quality. As a bonus, the knowl-
edge gained during reverse engineer-
ing will greatly enhance interface
maintenance over the years. *

|
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