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Abstract

Software re-engineering consists of a set of activities intended to restructure a legacy system to a new target system that conforms

with hard and soft quality constraints (or non-functional requirements, NFR). This paper presents a framework that allows specific

NFR such as performance and maintainability to guide the re-engineering process. Such requirements for the migrant system are

modeled using soft-goal interdependency graphs and are associated with specific software transformations. Finally, an evaluation

procedure at each transformation step determines whether specific qualities for the new migrant system can be achieved.
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1. Introduction

Over the past few years, legacy system re-engineering

has emerged as a business critical activity. Software

technology is evolving by leaps and bounds, and in most

cases, legacy software systems need to operate on new

computing platforms, be enhanced with new function-
ality, or be adapted to meet new user requirements.

Given the amount of human effort required to manually

re-engineer even a medium-sized system, most re-engi-

neering methodologies have come to rely extensively on

computer aided software engineering tools in order to

reduce human effort on performing these re-engineering

tasks. Not surprisingly, the topic of software re-engi-

neering has been researched heavily for some time,

leading both to a variety of commercial tool-sets for

particular re-engineering tasks (Cordy and Carmichael,

1993; Software Refinery, Reasoning Systems, 1984;

Sneed, 1992), and to research prototypes (Baxter, 1990;

Finnigan et al., 1997; Kazman et al., 2000; Kontogiannis

et al., 1998; M}uuller et al., 1993).
Software re-engineering aims to achieve hard and soft

quality requirements and objectives such as ‘‘the re-

engineered systemmust runas fast as theoriginal’’, or ‘‘the

new system should be more easily maintainable than the

original’’. For example, the Open Group identifies in

(The Open Group Architecture Framework Version 7,

2001) a number of software system qualities related to

evolution, which range from increasing user productiv-
ity, to improving portability and scalability, improving

vendor independence, enhancing security, manageabil-

ity, and more. These desired qualities (or, more pre-

cisely, desired deltas on software qualities) should play a

fundamental role in defining the re-engineering process

and the tools that support it. Unfortunately, there is

little understanding of what this role is and how it fits in

the re-engineering process. In this paper, we are inter-
ested in developing a software re-engineering model that

is driven by specific non-functional requirements (NFR)

and addresses issues related to the evolution of the

system requirements and software architecture (Garlan
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and Shaw, 1993). Understanding the architecture of an

existing system assists on predicting the impact evolu-

tionary changes may have on specific quality charac-

teristics of the system (Tahvildari et al., 1999). This

research bridges the gap between NFR Framework,

software architecture evolution, and software transfor-
mations.

The remainder of this paper is organized as follows.

Section 2 defines the problem of quality-driven re-engi-

neering. Section 3 discusses the proposed quality-driven

software re-engineering process. Section 4 presents the

NFR Framework to model software qualities and their

interdependencies. Section 5 reports on our efforts to

catalogue performance and maintainability qualities as
well as relevant architectural transformations using the

NFR Framework. Section 6 presents and discusses ex-

perimental results obtained by applying the method on

two different software systems. Section 7 reviews related

work. Finally, Section 8 summarizes the contributions

of this work and outlines directions for further research.

2. Problem definition

We assume the following scenario: an existing legacy

system is being re-engineered in order to conform with a

quality requirement (i.e., performance enhancement).

After studying the code and the desired requirement, it is

concluded that the existing structure of the program

makes the desired extension difficult to achieve, and that
the application of some design patterns, or source code

transformations would help to achieve the desired

property. In this context, the aim is to provide support

for the developer to decide what design patterns or

transformations to apply towards achieving the specific

quality requirement for the new system (e.g., perfor-

mance enhancement).

To denote the problem more precisely, we assume
that the re-engineering process consists of a series of

transformations t1; t2; . . . ; tn on the abstract syntax tree

ASTðSÞ (Aho et al., 1988) of a software system S. We

also assume that for each quality of interest, say Q, there

is a metric MQ which measures how well a software

system (or system fragment) fares with respect to the

specific quality. Examples of software properties for the

migrant system include ‘‘The target application should

run on NT platforms’’, while examples of qualities in-

clude ‘‘time and space performance’’, ‘‘maintainability’’,
‘‘portability’’, ‘‘customizability’’, and the like. A quality-

based re-engineering problem can be defined as follows:

Given a software system S, relevant quality metrics

MQ1;MQ2; . . . ;MQn, a desired software property P,

and a set of constraints C1;C2; . . . ;Ct on the soft-

ware qualities Q1;Q2; . . . ;Qn, find a sequence of

transformations t1; t2; . . . ; tn such that the new re-
engineered system S0 ¼ tnðtn�1ð. . . ðt1ðASTðSÞ . . .Þ
is such that P ðS0Þ and the constraints

C1ðS0Þ;C2ðS0Þ; . . . ;CtðS0Þ are satisfied.

To address the problem presented above in a more

systematic fashion, we need to resolve several research

issues, namely: (i) the composition a list of software

transformations which relate to particular software
qualities, (ii) the investigation of the mutual impact

these transformations have on software qualities, (iii)

the design of a method to quantitatively assess the im-

pact of a particular transformation on a particular qual-

ity in terms of metrics or quantitative software indices.

This paper reports on the design and development of

such a re-engineering framework that aims on address-

ing these issues. The results include a catalog of the
transformations that relate to two specific qualities of

the migrant system namely, performance and maintain-

ability, and a quantitative framework to assess the im-

pact these transformations have on the specific qualities.

3. A quality-driven re-engineering framework

In this section, we present an evolutionary view of the

software re-engineering life-cycle. This view is illustrated

in Fig. 1 and is composed of six phases (Tahvildari and

Kontogiannis, 2000).

Fig. 1. The re-engineering life-cycle.
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Requirements analysis phase: refers to the identification

of concrete re-engineering goals for a given re-engi-

neering project. The specification of the criteria should

be specified and illustrated in the new re-engineered

system (for example, faster performance). Violations

that need to be repaired are also identified in this phase.
Model analysis phase: refers to documenting and

understanding the architecture and the functionality of

the legacy system being re-engineered. In order to un-

derstand and to transform a legacy system, it is neces-

sary to capture its design, its architecture and the

relationships between different elements of its imple-

mentation. As a consequence, a preliminary model is

required in order to document the system and the ra-
tionale behind its design. This requires reverse engi-

neering the legacy system in order to extract design

information from its code.

Source code analysis phase: refers to the identifica-

tion of the parts of the code that are responsible for vi-

olations of requirements originally specified in the

system�s analysis phase. This task encompasses the de-

sign of methods and tools to inspect, measure, rank, and
visualize software structures. Detecting error prone code

that deviates from its initial requirement specifications

requires a way to measure where and by how much these

requirements are violated. Problem detection can be

based on a static analysis of the legacy system (i.e., an-

alyzing its source code or its design structure), but it can

also rely on a dynamic usage analysis of the system (i.e.,

an investigation of how programs behave at run-time).
Remediation phase: refers to the selection of a target

software structure that aims to repair a design or a

source code defect with respect to a target quality re-

quirement. Because legacy applications have been

evolved in such a way that classes, objects, and methods

may heavily depend on each other, a detected problem

may have to be decomposed into simpler subproblems.

Transformation phase: consists of physically trans-
forming software structures according to the reme-

diation strategies selected previously. This requires

methods and tools to manipulate and edit software

systems, re-organize and re-compile them automatically,

debug and check their consistency, and manage different

versions of the software system being re-engineered

(Tahvildari and Singh, 1999).

Evaluation phase: refers to the process of assessing the
new system as well as, establishing and integrating the

revised system throughout the corporate operating en-

vironment. This might involve the need for training and

possibly the need for adopting a new improved business

process model.

Such a re-engineering life-cycle yields a re-engineering

process as illustrated in Fig. 2. First, the source code is

represented as an Abstract Syntax Tree (Aho et al.,
1988). The tree is further decorated with annotations

that provide linkage, scope, and type information. Once

software artifacts have been understood, classified and

stored during the reverse engineering phase (Chikofsky
and CrossII, 1990), their behavior can be readily avail-

able to the system during the forward engineering phase.

Then, the forward engineering phase aims to produce a

new version of a legacy system that operates on the

target architecture and aims to address specific NFR

(i.e., maintainability or performance enhancements).

Finally, we use an iterative procedure to obtain the new

migrant source code by selecting and applying a trans-
formation which leads to performance or maintainabil-

ity enhancements. The transformation is selected from

the soft-goal interdependency graphs. The resulting

migrant system is then evaluated and the step is repeated

until the specific quality requirements are met (Tahvil-

dari and Kontogiannis, 2000, 2002; Tahvildari et al.,

2001).

4. Soft-goal interdependency graphs

To represent information about different software

qualities, their interdependencies, and the software

transformations that may affect them, we adopt the

NFR Framework proposed in (Chung et al., 2000). In

the NFR Framework, quality requirements are treated
as potentially conflicting or synergistic goals that need

be achieved, and are used to model and rationalize the

various design decisions to be taken during system/

software development. Accordingly, the NFR Frame-

work introduces the concept of soft-goals whose

achievement is judged by the sufficiency of contributions

from other (sub-) soft-goals. In this context, a soft-goal

interdependency graph is used to support the systematic
modeling of the design rationale.

For example, suppose a system developer has to de-

sign and produce source code that complies with an

initial set of quality requirements, such as ‘‘the system

should be modifiable’’ and ‘‘the system should have real-

time performance’’. In this process-oriented approach,

the developer explicitly represents each of these as a

soft-goal to be achieved during the design and devel-
opment process. Each soft-goal (e.g., Modifiability

Fig. 2. The block diagram of the quality-based re-engineering process.

L. Tahvildari et al. / The Journal of Systems and Software 66 (2003) 225–239 227



[system]) is associated with a type (Modifiability) and a

topic (System), along with other information such as

importance, satisficing status and time of creation.

As these high-level requirements may denote different

concepts to different people, the developer needs to first

clarify their meanings. This is done through an iterative
process of soft-goal refinement which may involve do-

main experts. Consequently, the developer may refine

Modifiability [System] into three offspring soft-goals:

Modifiability [Algorithm], Modifiability [Data Repre-

sentation], and Modifiability [Function]. This refine-

ment is based on topic, since it is the topic (System) that

is being refined, while the soft-goal type (Modifiability)

is unchanged. This step may be justified by referring to
the work by Garlan and Shaw (1993) who consider

changes in processing algorithm and changes in data

representation, and to Garlan and Kaiser (Garlan et al.,

1992) who extend the consideration with enhancement

to system function. Similarly, the developer refines

Performance [System], this time based on its type, into

Space Performance [System] and Time Performance

[System] (Nixon, 1993) as shown in Fig. 3 where a small
‘‘arc’’ between edges denotes an AND contribution,

meaning that in order to satisfy the parent soft-goal, all

of its offsprings need to be satisficed.

At this point, let us assume that the developer is in-

terested in a new design that can contribute positively to

the soft-goal Modifiability [Data Representation], and

considers the use of an ‘‘Abstract Data Type’’ style as

discussed by Parnas (Parnas, 1972) and Garlan (Garlan
and Shaw, 1993). It means that the components can

communicate with each other by means of explicit in-

vocation of procedures as defined by component inter-

faces. The developer may discover sooner or later that

the positive contribution of the ‘‘Abstract Data Type’’

towards modifiable data representation has been made

at the expense of another soft-goal, namely the time

performance soft-goal. Fig. 4 illustrates an example of
the positive contribution made by the abstract data type

solution towards Modifiability by means of a ‘‘þ’’ and

the negative contribution towards Performance by

means of a ‘‘)’’ contribution link.

The developer may also want to consider other al-

ternatives in order to better satisfice the stated soft-

goals.
The developer may discover that a ‘‘Shared Data’’

style typically would not degrade system response time,

at least when compared to the Abstract Data Type, and

more importantly perhaps it is quite favorable with re-

spect to space requirements. This discovery draws on

work by Parnas (1972) and by Garlan (Garlan and

Shaw, 1993) where the basic components (modules)

communicate with each other by means of shared stor-
age. Not unlike the Abstract Data Type, the Shared

Data architecture has very negative ‘‘– –’’ (Chung et al.,

2000) impact on modifiability of data representation.

Fig. 4 illustrates both NFR steps along with the various

contributions that each alternative makes towards the

refined soft-goals.

The NFR Framework is one significant step towards

making the relationships between quality requirements
and design decisions explicit. The framework uses NFR

in order to support architectural design and to model

the impact of design alternatives. Given a quality con-

straint for a re-engineering problem, one can look up the

soft-goal interdependency graph for that quality, and

examine how it relates to other soft-goals, and what are

additional transformations that may affect the desired

quality positively or negatively. Transformations are
also represented as soft-goals which are fulfilled when

they are included in the re-engineering process.

5. Architectural level transformations

For this research work, we are particularly interested

to investigate design patterns and their relationships as a

means to restructure an object-oriented legacy system so

that the new system conforms with specific design pat-

terns and meets specific NFR criteria. For achieving thisFig. 3. A soft-goal interdependency graph.

Fig. 4. Contributions of the shared data and abstract data type in soft-

goal graph.
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goal, we need to develop a list of specific design patterns

and refactoring operations (Fowler, 1999) that can be

used to enhance specific software qualities during re-

engineering namely, performance and maintainability

enhancements for the new migrant system. Performance

is a vital quality factor in real-time, transaction-based,
or interactive systems. Since without good performance,

such systems would be practically unusable. Similarly,

maintainability enhancement is another important re-

quirement for a re-engineered system and can be par-

tially achieved by the use of design patterns.

Fig. 5 provides an overview on how the design pat-

tern approach is related to the proposed quality-driven

re-engineering process. As Fig. 5 depicts, the compo-
nents or source code features that can be directly ex-

tracted from the object-oriented legacy system, provide

important information for guiding the developers to

detect and apply candidate transformations that yield

design patterns that may improve the quality of the

target system. In a nutshell, we can relate the re-engi-

neering model presented in Section 3 schematically as in

Fig. 5. Specifically, (i) requirements analysis identifies
specific re-engineering goals, (ii) model analysis aims for

the understanding of the system�s design and architec-

ture, (iii) source code analysis aims for the understanding

of a system�s implementation through Extracted Com-

ponents and Features, (iv) remediation specification ex-

amines the particular problem through Refactoring

Operations and selects the optimal transformation for

the system, (v) transformation applies transformation
rules in order to re-engineer a system in a way that

complies with specific quality criteria, and (vi) evaluation

process assesses whether the transformation has ad-

dressed the specific requirements set that Metric Anal-

ysis can do this job.

In (Gamma et al., 1995), a catalogue of design patterns

is presented. The catalogue not only lists a description of

patterns but also presents how these patterns are related.

Furthermore, the catalogue presents a classification of all

design patterns according to two criteria: jurisdiction

(class, object, compound) (Gamma et al., 1993) and
characterization (creational, structural, behavioral)

(Gamma et al., 1995). However, these relationships in

(Gamma et al., 1995) are described informally and each

relationship appears to be different in its formalization

from the other ones. We propose a classification scheme

(Fig. 6) of the standard design patterns (Gamma et al.,

1995) in a way that we believe it can assist software

maintainers to better assess the impact of these design
patterns when applied to object-oriented software re-

structuring (Tahvildari and Kontogiannis, 2002). This

scheme is based on three primary relationships between

patterns such as: (i) a pattern uses another pattern, (ii) a

pattern refines another pattern, (iii) a pattern conflicts

with another pattern. The proposed classification also

describes three secondary relationships between patterns

such as: (i) a pattern is similar to another one, (ii) two
patterns combine to solve a single problem, (iii) a pattern

requires the solution of another pattern. We also show

how these secondary relationships can be expressed in

terms of the primary relationships (Tahvildari and

Kontogiannis, 2002). These classifications motivate us to

update the catalogue and organize the design patterns

into two layers representing different abstraction levels as

depicted in Fig. 6. Based on such a classification and
layered catalogue, we will consider a number of design

patterns transformations at the architectural level that

will be discussed in the form of criteria selection in Sec-

tion 6.2. Moreover, we will evaluate their impact on

performance and maintainability on the migrant code.

Fig. 5. Role of design patterns in software re-engineering.
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5.1. Maintainability soft-goals

Maintainability is defined as the quality of a software

system that relates with the ease of adding new func-

tionality (i.e. perfective maintenance), porting the system

from one platform to another (i.e. adaptive mainte-

nance), or fixing errors (i.e. corrective maintenance).

Maintainability can be evaluated by the system revision

history and source code measurements. Maintainability

as a re-engineering requirement is quite broad and ab-

stract. Various research teams have determined numer-

ous attributes and characteristics of software systems

that relate to maintainability. To effectively model how

software attributes and characteristics relate to main-
tainability, we must provide a comprehensive and for-

mal classification framework. Such a framework can be

defined in terms of a semantic net of NFR that we call

‘‘soft-goals’’.

As described in Section 4, the leafs of the soft-goal

interdependency graph represent transformations which

fulfill or contribute positively/negatively to soft-goals

above them. In this context, Fig. 7 shows portions of a
soft-goal interdependency graph. This graph attempts to

represent and organize a comprehensive set of software

attributes that relate to software maintainability and

was compiled after a thorough review of the literature

(Garlan et al., 1992; Parnas, 1972). In Fig. 7, AND re-

lations are represented with a single arc, and OR rela-

tions with a double arc. It is important to note that in

this work we only describe soft-goals relevant to the
source code and the architecture of the target system. It

is also possible to identify maintainability-related soft-

goals that do not depend directly on source code and

system architecture properties. However, identifying

such soft-goals would require knowledge about specific

environmental factors (such as management and process

modeling issues) and are outside the scope of the work

presented here.

In this context, we have classified the maintainability

NFR soft-goal graph into two major areas namely, at-
tributes that relate to source code quality (Oman and

Hagemeister, 1994), and attributes that relate to the

documentation quality. We argue that both source code

and documentation quality soft-goals must be satisfied

for a system to have high maintainability. This is re-

ferred to as an AND contribution of the offspring soft-

goals towards their parent soft-goal, and is shown by

grouping the interdependency lines with an arc. The
source code quality soft-goal can be further decomposed

into three sub-soft-goals namely, high control structure

quality, high information structure quality, and high

code typography, naming and commenting quality

(Oman and Hagemeister, 1994). This decomposition is

shown in Fig. 7, and also an AND contribution, i.e. all

three sub-soft-goals must be satisfied to achieve the high

source code quality soft-goal. The rest of the decom-
positions are also illustrated in Fig. 7.

5.2. Performance soft-goals

Similar to maintainability, performance-related re-

quirements and their interdependencies are represented

in terms of a soft-goal interdependency graph. In Fig. 8,

the high performance soft-goal is AND decomposed into
time performance, and space performance (Nixon,

1993). The time performance soft-goal is OR decom-

posed into low response time and high throughput. The

rest of the performance-related decompositions are il-

Fig. 6. Arrangement of design pattern catalogue in layers.
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lustrated in Fig. 8 which only shows a small portion of

the graphs that have been compiled through a review of

the literature (Garlan and Shaw, 1993; Nixon, 1993).

5.3. Measuring the impact of transformations on software

qualities

For maintainability measurements, we focus on
source code features that relate both to the re-engi-

neered and the original source code. In particular, we

adopt the lines of code (LOC), the Halstead suite of

metrics (Halstead, 1977), and the McCabe�s cyclomatic

complexity metric (McCabe, 1976) whose objective is to

determine the number of paths through a program that

must be tested to ensure complete coverage and to

measure the difficulty of understanding a program.

These metrics have been found to correlate highly with

the difficulty to maintain a system and provide the basic

information for computing maintainability indices
(Coleman et al., 1995; Lowther, 1993; Oman and

Hagemeister, 1994). In order to determine the main-

tainability of the migrant code with respect to the

 

Fig. 7. Maintainability soft-goal decomposition.

Fig. 8. Performance soft-goal decomposition.
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maintainability of the original code, we calculate the

software maintainability index (SMI) computed in three

different ways as follows:

(1) The first one, named SMI A, is a single metric model

based on Halstead�s efforts (Halstead, 1977), and has
been proposed in (Oman and Hagemeister, 1994)

SMI Method A ¼ 125� 10 logðave� EÞ
(2) The second one, named SMI B, is a four-metric

model based on Halstead�s efforts (Halstead, 1977),

McCabe�s V ðGÞ (McCabe, 1976), LOC, and CMT

(number of CoMmenT lines per module), and has

been proposed in (Lowther, 1993)

SMI Method B ¼ 171� 5:44 lnðave� EÞ � 0:23avg

� V ðG0Þ � 16:2 lnðavg� LOCÞ
þ 50 sinðsqrtð2:46 ðavg
� CMT=avg� LOCÞÞÞ

(3) The last one, named SMI C, is a four-metric model

based on Halstead�s effort (Halstead, 1977), McC-

abe�s V ðGÞ (McCabe, 1976), LOC, and CMT (num-

ber of CoMmenT lines per module), and has been
proposed in (Coleman et al., 1995).

SMI Method C ¼ 171� 3:42 lnðave� EÞ � 0:23avg

� V ðG0Þ � 16:2 lnðavg� LOCÞ
þ 0:99avg� CMT

Similarly, the performance analysis is based on the

following two measurements:

(1) time: which returns total execution time used by the
program itself, as well as the system on behalf of the

program,

(2) Dhrystone Benchmark: which generates a number

that can serve as a comparison measure on how op-

timizations applied by the compiler relate to the sys-

tem�s performance (Weicker, 1984). In this context,

the highest the number, the more an optimization

may affect positively system performance.

6. Empirical evaluation

In this section, we apply the proposed quality-driven

re-engineering framework on two medium-size systems.

First, two case studies will be described and then the

collected results are presented and discussed.
Our experiments were carried on a SUN Ultra 10

(440MHZ, 256M memory, 512 swap disk) in a single

user mode. We use Rigi (M}uuller et al., 1993) for ex-

tracting facts from the source code in order to provide a

high-level view of the systems. We also use the Together/

C++ UML Editor (1999) to provide an interface to the

source code generated by the Object-Orientation Mi-

gration Tool (Patil, 1999). The main reason of using

Together is that it supports UML editing and the

changes in the object model are tracked back in the
source code. Finally, for collecting software metrics, we

use the Datrix Tool (Datrix Metric Reference Manual,

Version 4.1, 2000).

6.1. Case studies

We have applied the quality-driven re-engineering

framework described in Section 3 on the following two
medium-size software systems. As discussed in Section

3, we adopt an incremental and iterative re-engineering

process that is driven by the soft-goal interdependency

graphs presented in Section 4. During each step, we

select a transformation, we apply it to the code, and then

obtain measurements related to its impact towards in-

creasing the maintainability and performance for the

new system.

6.1.1. WELTAB Election Tabulation System

This system was built in the late 1970s to support the

collection, reporting, and certification of election results

by city and county clerks� offices in the State of Michi-

gan (WELTAB Election Tabulation System, 1980). It

was originally written in an extended version of Fortran

on IBM and Amdahl mainframes under the University
of Michigan�s MTS operating system. At various times

through the 1980s, it was run on Comshare�s Com-

manderII time sharing service on a Xerox Sigma ma-

chine, and on IBM 4331 and IPL (IBM 4341 clone)

machines under VM/CMS. Each move caused inevitable

modifications in the evolution of the code. Later,

WELTAB was converted to C and run on PCs under

MS/DOS (non-GUI, pre-Windows). Modifications were
often made in such a way that some sections were re-

written entirely, while most still show signs of their

Fortran origin. The result is a system of C programs and

command/data files. WELTAB III that has 4.5 KLOC

source code and 189 KLOC samples which include 35

batch files, 26 header files, 39 source code files, and the

rest are data files which provides 190 files in total. The

Object-Orientation Migration Tool (Patil, 1999) has
been applied to WELTABIII in order to migrate the

original C source code to new object-oriented C++ code.

The object model for this system is depicted in Fig. 9.

6.1.2. The GNU AVL library

The second system is a public domain library written

in C for sparse arrays, AVL, Splay Trees, and Binary

Search Trees (GNU AVL Libraries, 1999). The library
also includes code for implementing single and double

linked lists. The original system was organized around C
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structs and an elaborate collection of macros for im-

plementing tree traversals, and simulating polymorphic
behavior for inserting, deleting and tree re-balancing

operations. The library consists of a set of core modules

that implement basic constructs. These include lists and

binary trees. Other, slightly more complex constructs are

built on top of the basic ones. These includes sparse

arrays and data caches. The system is composed of 8.4

KLOC of C code, distributed in six source files and three

library files. The GNU AVL has been migrated in a
previous project to C++ (Patil, 1999) and its object

model is depicted in Fig. 10.

6.2. Selection criteria for architectural transformations

First for the restructuring transformations, we have

considered a ‘‘Primitive Structural’’ design pattern

namely, the Composite design pattern which is the most
popular one as it is used by four other design patterns

and is refined by three other design patterns as shown in

Fig. 6. The Composite pattern describes how to build a

class hierarchy that is made up of different kinds of

objects. In this category, another design pattern for re-

architecting a software system into subsystems and

helping minimize the communication and data flow

dependencies between subsystems is the Facade design
pattern. This pattern shields clients from the subsystem

components, thereby reducing the number of objects

that clients deal with and making the subsystems easier

to use and maintain.

Second, we have considered ‘‘Complex’’ design pat-

terns that can be built on top of the Composite design
pattern. As far as the Behavioral patterns are concerned,

we consider two of them namely, Iterator and Visitor.

The Iterator pattern allows to access an aggregate ob-

ject�s contents without exposing its internal representa-

tion. The pattern also supports multiple traversals of

aggregate objects. Providing a uniform interface for

traversing different aggregate structures is another rea-

son to use this pattern that supports polymorphic iter-
ation. On the other hand, the Visitor pattern helps

making the migrant system more maintainable because a

new operation over an object structure can be modified

simply only by adding a new visitor class.

Third, we have considered Creational patterns as they

are concerned with the class instantiation process. They

become more important as systems evolve to depend

more on object composition than class inheritance. As
that happens, emphasis shifts away from hard-coding a

fixed set of behaviors toward defining a smaller set of

fundamental behaviors. This set of fundamental be-

haviors can be composed to produce more complex

ones. There are two common ways to parameterize a

system by the classes of objects it creates. One way is to

subclass the class that invokes the appropriate con-

structors. This corresponds to using the Factory Method

patterns. The other way to parameterize a system relies

more on object composition. Specifically, the pattern

allows for the definition of a class that supports con-

structors that can be parameterized. This is a key aspect

Fig. 9. Object model of WELTABIII.
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of Abstract Factory patterns which involve creating a

new ‘‘factory object’’ whose responsibility is to generate

product objects by invoking their corresponding con-

structors.

6.3. Discussions on architectural transformation experi-

ments

Using the transformations described in Section 6.2,

we have collected experimental results in order to eval-

uate the impact of particular transformations. Table 1,

summarizes experimental results obtained by comparing

the performance of the original system and the re-engi-
neered system before the application of any performance

transformations. The results are obtained by earlier

transformations that allowed for the migration of the

original WELTAB system to C++ (Patil, 1999). Using

these earlier transformations, the new C++ versions of

the subject systems were on average 54% slower that the

original system implemented in C. The observed per-

formance degradation is largely due to the frequent in-

vocation of object constructors, the elimination of the

macros in the original code, and the consequent intro-

duction of class hierarchies and run-time resolves poly-

morphic methods. Similarly, the Dhrystone number

indicates that the migration to an object-oriented plat-
form allows the compiler to perform better optimiza-

tions that may relate to higher performance (positive

increase in the Dhrystone number). Along the same

trend are the maintainability measurements that indicate

that the new C++ systems are more maintainable than

the original C systems.

Having presented these initial benchmarks, we sum-

marize the experimental results obtained by applying
some of the design pattern transformations presented in

this paper and discussed in detail in Section 5. The re-

sults and the impact on performance and maintainabil-

ity by applying selected design patterns are illustrated in

Table 2. Moreover, Figs. 9–11 depict our target systems

before and after applying those design pattern trans-

formations. Detail discussions and interpretations of the

results are included in the following subsections.

Fig. 10. Object model of AVL GNU library.

Table 1

Extracted simple object model after migration from C to C++

System Perf. time (% diff) Perf. Dhrystone (% diff) SMI Method A (% diff) SMI Method B (% diff) SMI Method C (% diff)

AVL )84.14 7.75 1.46 26.69 13.39

WELTAB )24.14 2.49 4.43 12.84 9.35
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6.3.1. Structural patterns

The Composite pattern describes how to build a class

hierarchy that is made up of two kinds of objects:

primitives and composites. It means that the key to the

Composite pattern is an abstract class that represents

both primitives and their containers. This pattern is

found to improve maintainability because it allows for

component sharing. Experimental results indicate a
maintainability improvement at the level of 6% on av-

erage as shown in Table 2. Similarly, this pattern allows

for performance enhancement as well, because it allows

for explicit superclass references and simplifies compo-

nent interfaces. Our experimental results confirm this

result for an average performance increase of 5%.

In this context, the Facade design pattern is another

design pattern for re-architecting a software system into

subsystems and helping minimize the communication

and data flow dependencies between subsystems. This

pattern shields the subsystem components from the cli-

ents, thereby reducing the number of objects that clients

deal with and consequently making subsystems such

easier to use and maintain. For giving an example,
consider Fig. 10 that describes the AVL system after

simple object model extraction (without considering any

design patterns) in comparison with the Fig. 11 that

describes the same system after the selected design pat-

terns have been applied. In the AVL system, there are

different lists such as a single link list (‘‘ubi_slList’’ class)

Fig. 11. Object model of AVL with design patterns.

Table 2

Impact of architectural level transformations on maintainability and performance

System Pattern name Perf. time (% diff) Perf. Dhrystone

(% diff)

SMI Method A

(% diff)

SMI Method B

(% diff)

SMI Method C

(% diff)

AVL/WELTAB Abstract Factory )6.48 7.82 )4.78 )7.22 )2.09
AVL/WELTAB Composite 5.35 0.55 11.53 5.24 2.69

AVL/WELTAB Facade 11.14 6.12 9.82 8.14 3.91

AVL/WELTAB Factory Method 7.04 7.50 )1.94 )3.70 )1.19
AVL/WELTAB Iterator )4.44 4.78 8.96 12.72 0.72

AVL/WELTAB Visitor 4.08 4.87 7.44 5.81 0.88
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and a double link lists (‘‘ubi_dlList’’ class) as shown in

Fig. 10. Structuring this part of system into subsystems

helps to reduce its complexity. For achieving this goal,

we can introduce a facade object that provides a single

simplified interface to the more general facilities of the

link lists. ‘‘ListNode’’ class in Fig. 11 provides a higher
level interface that can shield clients from these classes

and acts as a Facade. Results in Table 2 indicate an

average maintainability increase of the caliber of 7.5%.

This pattern also promotes a weak coupling between

subsystems and its clients which reducing compilation

dependencies and providing of almost 11.4% better

performance on average. Table 2 summarizes all these

results with respect to performance and maintainability
enhancements.

6.3.2. Behavioral patterns

For this part, we have used the Iterator pattern to

access an aggregate object�s contents without exposing

its internal representation. The pattern also supports

multiple traversals of aggregate objects. Providing a

uniform interface for traversing different aggregate
structures is another reason to use this pattern that

supports polymorphic iteration.

One proper example of this pattern can be the

‘‘Cache’’ class in AVL system in Fig. 11. An aggregate

object such as a ‘‘cache’’ can provide a way to access its

elements (e.g., ‘‘ubi_cacheRoot’’ and ‘‘ubi_cacheEntry’’)

without exposing its internal structure. This may result

to a system that is more maintainable because of the
simplification of the aggregate interface. Our experi-

mental results indicate an average increase of the

maintainability at the level of 7%. However, the pattern

reduces the performance by almost 4% because of more

than one traversal can be pending on an aggregate ob-

ject.

Moreover, we used the Visitor pattern whenever we

want to perform operations on objects that compose
containers. ‘‘Visitors’’ make it easy to add operations

that can be applied in an iterative way and depend on

the components of complex objects. A new operation

over an object structure can be added by simply adding

a new visitor class. This pattern helps making the system

more maintainable. Our results show such an average

improvement of 4.5% for all of the maintainability in-

dices. ‘‘Visitors’’ help on applying operations to objects
that do not have a common parent class. This has as a

result a reduction to the traversal time and therefore it

may be considered as a heuristic that improves perfor-

mance as illustrated in Table 2.

6.3.3. Creational patterns

There are two common ways to parameterize a sys-

tem in terms of the classes of objects it creates. One way
is to subclass the class that invokes the appropriate

constructors. This corresponds to using the factory

method pattern. Our experimental results indicate an

average of 2.5% decrease of maintainability by applying

the creational design patterns as shown in Table 2.

Meanwhile, the application of these patterns is shown to

provide better performance at the range of almost 7.04%

on average. On the other hand, the factory method
pattern can make a design more customizable. Often,

industrial software system designs start by using the

factory method and evolve towards other creational

patterns as the designer discovers the points where more

flexibility is required.

An alternative way to parameterize a system relies

mostly on object composition. Specifically, this category

of transformations allows for the definition of a class
that supports constructors that can be parameterized.

This is a key aspect of abstract factory patterns which

involve creating a new ‘‘factory object’’ whose respon-

sibility is to create product objects by invoking their

corresponding constructors. Comparisons between Figs.

9 and 12 clarify the existence of this ‘‘factory object’’.

Fig. 9 depicts the object model obtained without con-

sidering any design patterns (simple object model ex-
traction), while Fig. 12 illustrates the same system after

applying the selected design patterns.

For example, consider the ‘‘REPORT’’ class in Fig. 9

that aims to support multiple printed reports. Different

reports have different appearances and headers for

printing. To be portable across different report style

sheets, an application should not be hard-coded for a

particular report. We can solve this problem by defining
an abstract ‘‘ReportGen’’ class that declares an interface

for creating each kind of reports as shown in Fig. 12.

This class acts as an Abstract Factory pattern. Our re-

sults indicate that the Abstract Factory pattern reduces

the performance by almost 7%, possibly due to the dy-

namic nature of selecting an invoking the proper con-

structors. A design that uses the Abstract Factory

pattern is even more customizable than those that use
the Factory Method pattern. However, the incorporation

of this pattern has been shown to decrease maintain-

ability by an average of almost 4.5%. This is a typical

case of conflicts in the NFR soft-goal interdependency

graph (customizability vs. performance and maintain-

ability) as illustrated in Table 2.

7. Related work

Software quality has been recognized to be an im-

portant topic since the early days of software engineer-

ing. Over the last 30 years, a number of researchers and

practitioners alike have examined how systems achieve

software quality requirements. Boehm in (Boehm et al.,

1978) classified a number of software attributes such as
flexibility, integrity, performance, maintainability, and

so on. The International Organization for Standard-

236 L. Tahvildari et al. / The Journal of Systems and Software 66 (2003) 225–239



ization (ISO9126) introduced taxonomies of quality at-

tributes (International Organization for Standardization

(ISO), 1996) which divide quality into six characteristics

namely: functionality, reliability, usability, efficiency,

maintainability and portability. Complementary to the

product-oriented approaches, the NFR Framework

(Chung et al., 2000) takes a process-oriented approach to
dealing with quality requirements. The NFR Frame-

work is one significant step in making the relationships

between quality requirements and design decisions ex-

plicit. The framework uses NFR to drive design to

support architectural design level and to deal with the

changes.

The recent interest on software architecture and de-

sign patterns have refocused attention on how these
software qualities can be achieved (Klein et al., 1999;

Kazman et al., 2000). Bergey has analyzed the rela-

tionship between software architecture and quality at-

tributes (Bergey et al., 2000). Work conducted at the

Software Engineering Institute (SEI) in Attribute-Based

Architecture Style (ABAS) (Klein et al., 1999) was the

first attempt to document the relationship between ar-

chitecture and quality attributes. By codifying mecha-
nisms, architects can identify the choices necessary to

achieve quality attribute goals. This, in turn, will set a

foundation for further software architectural design and

analysis (Kazman et al., 2000).

As the re-engineering of legacy systems has become a

major concern in today�s software industry, most re-

engineering efforts were focussed towards the analysis

and migration of systems written in traditional pro-

gramming languages such as Fortran, COBOL, and C

(Baxter, 1990; Kontogiannis et al., 1998; Sneed, 1992).

Unfortunately, none of them provides a re-engineering
process that relates to the non-functional or quality re-

quirement for the target system. The problem of coping

with NFR during re-engineering has been experimen-

tally tackled by developing a number of tools that met

particular quality requirements. In (Finnigan et al.,

1997), a tool-set has been developed that assists on the

migration of PL/IX legacy code to C++ while main-

taining comparable time performance. (Patil, 1999) de-
scribes a re-engineering tool that supports the

transformation of C code to C++ code that is consistent

with object-oriented programming principles. In both

cases, the approach was experimental. First, a tool has

been developed to perform the re-engineering task, then

a trial-and-error strategy was used to select a particular

set of transformations which ensured that the re-engi-

neered code satisfied given quality constraints.
However, not much effort has been invested for sys-

tematically documenting quality attributes as a guide for

the software re-engineering process at the architectural

level. In this context, we believe that the proposed

Fig. 12. Object model of WELTABIII with design patterns.
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re-engineering framework allows for specific quality re-

quirements for the migrant system to be modeled as a

collection of soft-goal graphs and for the selection of the

transformational steps that need to be applied at the

architectural (design) level of the legacy system being re-

engineered.

8. Conclusions and future work

In this paper, we have presented a quality-driven
framework for software re-engineering at the architec-

tural level. The framework uses desirable qualities for

the re-engineered code to define and guide the re-engi-

neering process. The framework offers a workbench

where re-engineering activities do not occur in a vac-

uum, but can be evaluated and fine-tuned in order to

address specific quality requirements for the target sys-

tem.
Specifically, the proposed framework addresses issues

related to: (i) the design and development of a collection

of comprehensive soft-goal interdependency graphs as

they pertain to software qualities, such as performance

and maintainability of large legacy systems, at the ar-

chitecture level; (ii) the development of a comprehensive

catalogue of transformations as these have been mod-

eled in the soft-goal interdependency graphs and can be
applied at the architecture level of a legacy system to

address specific re-engineering objectives; (iii) the design

and development of an analysis methodology that al-

lows for the identification of error prone architectural

design and source code programmatic patterns that can

be ‘‘repaired’’ according to the transformational steps

identified by the soft-goal graphs; (iv) the design and

development of a prototype system that assists the re-
engineering process and pertains to enhancements of the

performance and maintainability of the migrant system.

Currently, we are working on extensions of the

framework that allow for the estimation of the impact a

transformation on maintainability and performance of a

software system. We also aim to investigate algorithmic

processes that can be used to automate the selection and

application of transformations given a specific re-engi-
neering scenario.
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