
Information Systems Frontiers 5:2, 149–160, 2003
C© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Migration of Multi-tier E-commerce Applications
to an Enterprise Java Environment

Terence C. Lau
Centre for Advanced Studies, IBM Canada Laboratory
E-mail: Lautc@ca.ibm.com

Jianguo Lu
Department of Computer Science, University of Windsor
E-mail: jlu@cs.uwindsor.ca

John Mylopoulos
Department of Computer Science, University of Toronto
E-mail: jm@cs.toronto.edu

Kostas Kontogiannis
Department of Electrical and Computer Engineering,
University of Waterloo
E-mail: kostas@swen.uwaterloo.ca

Abstract. As technology evolves, many organizations face the
problem of migrating legacy applications from one technology
base to another. We report on a case study involving the mi-
gration of legacy code into the IBM©R WebSphere©R Commerce
Suite product. Specifically, we focus on the problem of migrating
applications that use traditional database access techniques to
applications using the Enterprise JavaBean (EJB) programming
model. Our results include a practical methodology that
facilitates such migration, as well as a tool that supports this
methodology. The tool has been released on IBM’s alphaWorks
site.

Key Words. e-commerce, migration, database reengineering, En-
terprise JavaBean, SQL, Net.Data, JSP, relational-object map-
ping

1. Introduction

Multi-tier applications typically consist of a middle
tier of web servers, web browsers at the front end,
and database systems in the back end. Such applica-
tions have existed for years and many of them need
to be migrated to new technology platforms. This pa-
per describes our experience in migrating the IBM
e-commerce framework, a multi-tier application, to a
new framework that is based on Enterprise JavaBean

technology. In particular, we focus on the migration of
the presentation tier of the system using the relation-
ships established in other tiers of the systems. Our re-
sults include a practical methodology to support client
migration. In addition, we describe our experience in
building a Net.Data-to-JSP (Java Server Page) Helper
Tool that is currently being used by developers in mi-
grating e-commerce websites developed using IBM
WebSphere Commerce Suite, from earlier versions to
more recent ones. Unlike most research on software mi-
gration that focuses on monolithic systems, our work
addresses migration problems where both the source
and target systems involve multi-tier architectures that
use different programming languages.

The rest of the paper is organized as follows. We
first introduce in Section 2 background information
concerning the source and target platforms for our mi-
gration task. Section 3 describes the migration process
for the IBM Websphere Commerce Suite product. In
Section 4 we present an implemented migration tool,
while Section 5 introduces a generic migration model
from any legacy system to an EJB-based architecture.
Section 6 compares our work with related research, and
Section 7 offers conclusions and directions for further
research.

149

150 Lau et al.

2. Background

2.1. Enterprise JavaBean
EJB (Enterprise JavaBean) is a distributed compo-
nent framework that provides transaction, security and
persistence services in a distributed multi-tier envi-
ronment (IBM, 2001; iPlanet Application Server Mi-
gration Guide, 2000). The EJB framework separates
business logic from low-level details, so that develop-
ers can concentrate on a business solution. With the
growing popularity of the EJB framework, more and
more legacy systems (web-based or otherwise) are be-
ing transformed into an EJB architecture. Typically, a
legacy system includes a large number of SQL queries.
On the other hand, in an EJB-based architecture those
SQL queries are not used directly. Instead, the popular
model-view-control design pattern is adopted, where
queries are wrapped inside EJBs so data are accessed
through EJBs instead of SQL statements. A typical
EJB-based architecture is shown in Fig. 1.

At the center of the architecture is the EJB container
that manages a set of enterprise beans. The beans access
backend systems, typically relational databases. The
web container typically uses JSP to access the EJB,
transforms the JSP to HTML, and serves the HTML
to the browser. EJB client applications other than JSP,
such as Java applets or other systems, can also access
the enterprise beans.

The enterprise beans in the middle tier function as
wrappers over various systems, most notably relational
database systems. There are two kinds of enterprise
beans: entity and session beans. Roughly speaking, ses-
sion beans represent activities, while entity beans rep-
resent entities of the application. An entity bean is a

Fig. 1. EJB architecture.

persistent object stored in a storage system such as a
database system. In a simple scenario, one bean corre-
sponds to a row in a table. The selection of certain rows
of the table corresponds to the selection of a group of
beans satisfying a given condition. Beans are selected
by using a finder method that contains an embedded
SQL statement. We are interested in entity beans.

By using EJBs, web designers no longer need to
learn the details of database structure. In addition,
changes in the backend database are shielded by the
beans, making the maintenance of Java Server Pages
easier.

2.2. Java Server Pages
Java Server Pages (JSPs) enable Enterprise Java appli-
cations to create dynamic content for browser-based
clients. JSPs constitute a presentation-centric method
for developing servlets, i.e., Java programs that are ex-
ecuted by a web server and have their output directed
to a client browser. JSPs support a reusable compo-
nent model based on JavaBean components and custom
actions.

Using JavaBean components web page designers
can focus on presentation while application developers
can develop specific components to process and return
data to be used in a page. JavaBean components can
also be used elsewhere in the application, as they are
reusable and portable.

2.3. Net.Commerce and WebSphere
Commerce Suite
IBM WebSphere Commerce Suite and its earlier ver-
sions, Net.Commerce (Lau et al., http://alphaworks.
ibm.com/tech/netdatatojsp) are platforms for building

Migration of Multi-tier E-commerce Applications to Enterprise Java Environment 151

e-commerce applications. WebSphere Commerce
Suite supports functionalities ranging from prod-
uct catalogue browsing and payment processing, to
product promotion and auction. Starting in 1995,
Net.Commerce went through five major revisions, was
renamed WebSphere Commerce Suite, and more re-
cently WebSphere Commerce. In November 2000, the
WebSphere Commerce Suite offered a number of en-
hancements over Net.Commerce, affecting its database
schema as well as its programming model. The en-
hancements emphasize clear programming structure
and conformance with the EJB model. Since that time,
existing WCS customers who want to transition to
newer versions of WebSphere Commerce Suite need
the help of tools as well as methodological guidance
to migrate their legacy e-commerce applications to the
target environment.

2.3.1. The IBM Net.Commerce and WebSphere
Commerce Suite Version 4 programming model.
The early versions of Net.Commerce and WebSphere
Commerce Suite are based on a programming model
built on C++ and use commands, tasks and overrid-
able functions. Commands are C++ components ser-
vicing major functions, such as placing an order. Tasks
represent sub-units of work within a command, such as
checking inventory or calculating the price for an order.
Overridable functions are the C++ components that
actually perform the work of the tasks. Customers usu-
ally introduce their own business logic by replacing the
overridable functions provided by WebSphere Com-
merce Suite with their own. When results and responses
are presented to users, Net.Data©R macros are invoked
to access the backend database, retrieve the appropriate
information, and then present it on Web pages.

2.3.2. The IBM WebSphere Commerce Suite
Version 5.1 programming model. Table 1 highlights
the differences between the two e-commerce systems.
For the presentation language, the old system uses

Table 1. WebSphere Commerce Suite (WCS) programming models:
Now and before

Before (WCS V4.1
and prior) Now (WCS V5.1)

Presentation language Net.Data JSP
Business logic SQL EJB
Programming language C++ Java
Programming model No clear MVC MVC

Net.Data, while the new one uses Java Server Pages
(JSP), a widely accepted standard for dynamic web
pages. For the business logic, the old system uses SQL,
in many cases directly embedded in C++ programs
and Net.Data scripts, while the new system uses EJB.
For the programming language, C++ is used in the old
system, and Java in the new. As for the programming
model, the old system intertwined many things in the
same place and does not have a clear separation be-
tween the view, model, and control of the system. The
new system adopts the popular Model-View-Control
(MVC) design pattern by using EJB.

3. Migration Process

3.1. The migration tasks
The transition of Net.Commerce and earlier versions of
WebSphere Commerce Suite to WebSphere Commerce
Suite Version 5.1 consists of three major processes as
illustrated in Fig. 2.

� Migrating software stacks: The software stacks in-
clude the system and application software packaged
with WebSphere Commerce Suite Version 5.1 that
provide basic system functions and third-party ap-
plication functions. They also include the operating
system, the database system, the web server, the se-
curity system and the like.

� Migrating WebSphere Commerce Suite infrastruc-
ture: The WebSphere Commerce Suite infrastructure
consists of the basic components shipped with the
product. Customers build their specific solutions on
this infrastructure. The infrastructure includes tools
for building a Web site based on WebSphere Com-
merce Suite, runtime infrastructure, the WebSphere
Commerce Suite database schema, the WebSphere
Commerce Suite class library and object entities.

� Migrating customer assets: Customer assets include
those accumulated, populated, customized, or ex-
tended by customers in their commerce sites. These
assets may be database data, pages designed specif-
ically for the Web site, database schema extensions,
and new or customized business logic in commands
and overridable functions.

The rest of the paper focuses on the migration of cus-
tomer assets. In particular, the transition to WebSphere
Commerce Suite Version 5.1 involves the conversion
of the following major assets:

152 Lau et al.

Fig. 2. Migration processes.

� Data is migrated to the WebSphere Commerce Suite
Version 5.1 database format and schema, and ac-
cessed using the new object models of EJB and data
beans.

� Net.Data macros are replaced by JSP. The SQL in
Net.Data macros are replaced with JSP calls to Web-
Sphere Commerce Suite Version 5.1 data or business
EJB. Business logic within a Net.Data macro should
be moved into a command to isolate the view from
the model.

� Business logic is converted from C++ to Java com-
mands. Overridable functions are replaced by EJB
task commands. Major C++ commands are replaced
by EJB controller commands.

In the following we discuss the migration of Net.Data
macros to JSP.

3.2. The migration process
Our process consists of two main phases: i.e., reverse
engineering and forward engineering.

In the reverse engineering process the following
mappings are established:

(1) Schema-to-Schema Mapping (SSM): Relational
database schema, mapping data from the source
to the target system.

(2) Command to Command Mapping (CCM): We de-
fine a command as a component of the source sys-
tem that accomplishes a particular task and has a
comparable counterpart in the target system, such
as addUser command.

(3) Entity to Relation Mapping (ERM): The relation-
ship between the target system EJB Object (entity
beans) and database relation information.

(4) Component to Entity Mapping (CEM): This is the
mapping between the target system JavaBean com-
ponents and Enterprise bean relations.

Taking the result of reverse engineering as input,
the forward engineering process proceeds as shown in
Fig. 3.

Fig. 4 depicts in detail the various data sources and
processes involved in our migration system. We now
explain the purpose and relationships between various
elements of the system.

Migration of Multi-tier E-commerce Applications to Enterprise Java Environment 153

Fig. 3. Forward engineering process.

Fig. 4. System diagram.

154 Lau et al.

Prior to the first use of the tool the target appli-
cation source code is analysed. The Object-DB anal-
yser (Item C) extracts information from the target ap-
plication to determine relations between Entity Beans
and the underlying database. This is accomplished by
parsing WCS source code from the target application
and needs only to be run once provided the underlying
source remains static. In general, there is an Entity Bean
for each table in the database that provides read/write
access to data elements and performs selection opera-
tions on the data. We call this relationship the Primary
relationship between the table and the associated En-
tity Bean. A secondary relationship exists if the Entity
Bean uses data from other tables in any selection meth-
ods. All of the finder methods of the entity beans are
also recorded.

We then examine the client JavaBean Components
to determine their usage of entity beans (Item D)
and any containment relationships that exist between
the JavaBean Components. This process is also run
once and needs only to be re-run when the underlying
JavaBean code changes.

During initialisation of the migration tool all rel-
evant migration information is read into the system.
The Database Schema Mapper (Item A) process ac-
cepts as input the source-to-target database schema
mapping relationship as specified in a configuration
file. This relationship states what target database ta-
ble/column(s) map to what target database/column.
The process generates an internal structure represent-
ing this mapping relationship. The relationship be-
tween the source database tables and target database
tables can be 1-to-1, 1-to-many, or many-to-1.

The Source-to-Target Relationship Synthesizer
(Item E) integrates migration information so that given
a table from the source application, it is possible to
determine all possible JavaBean components from the
target application that could have access to similar data
in the target system.

After initialisation, the tool accepts as input a source
file and extracts all the SQL statements contained in
the file. The SQL Analyser (Item F) extracts the col-
umn(s) and tables used in a particular SQL statement.
The following example illustrates the recommendation
process.

Given the following SQL statement:

SELECT A, B, G, H
FROM X, Y
WHERE X.A = Y.G

The SQL Translator translates the query into

SELECT A', B', G', H'

FROM X', Y', Z'

WHERE X'.A' = Y'.G'

Suppose that from the database schema mapping
SSM we have mappings such as:

(source table) X -> X' (target tables)
(source table) Y -> Y', Z' (target tables)

Now we compare the translated query with the
queries inside entity beans. Using ERM as below

X', Y', Z' (Target system table)
-> X_EntityBean,

Y_EntityBean,
Z_EntityBean,

we can deduce that X_EntityBean, Y_EntityBean,
and Z EntityBean are relevant.

We then determine the set of JavaBean components
that use these entity beans based on the following
CEM:

X_EntityBean, Y_EntityBean, Z_EntityBean
-> A_JavaBean,

B_JavaBean

The number of entity beans that a particular
JavaBean component uses is treated as criterion to rank
the recommendations. The logic behind this ranking
is that the more data coverage a component has, the
better the chances that it will have a combination of
methods that will return data similar to the data re-
trieved from the SQL statement.

The set of ranked JavaBean components is passed
on to the Recommendation Generator (Item H) that
produces the output to the user in the form of a report
or to a GUI.

4. Net.Data-to-JSP Migration Helper Tool

We have developed a tool to aid the migration
of Net.Data macro files used in client e-commerce
projects to JSPs. The tool was developed following the
architecture and processing model outlined in the pre-
vious section.

The process of converting a commerce site using
Net.Data macros to a site using JSP templates is by
no means an automated task. There are many design
decisions and code conversions to be carried out by the

Migration of Multi-tier E-commerce Applications to Enterprise Java Environment 155

developers responsible for the migration (particularly
when developing business logic components). Thus,
the Net.Data Migration Helper Tool is a reference tool
that helps the development team plan their Net.Data
migration and gives them guidance on where to begin.
The tool can be used at two points in the migration
process:

(1) When the migration planners are trying to deter-
mine how much work needs to be done on each
file in order to create a project schedule for migra-
tion. The tool gives a high level view of how many
functions each Net.Data file has, and how many
standard and customised tables are involved.

(2) When the developer is working on creating a par-
ticular JSP template to replace a Net.Data file. The
tool acts as a reference for the mapping between
Net.Commerce Version 4 and WebSphere Com-
merce Suite Version 5 tables, for the functions in
the file and recommended beans that should be used
to perform the same function in a JSP.

4.1. Net.Data scripting language
IBM’s Net.Data product enables developers to cre-
ate dynamic web pages using data from relational
databases and other back-end systems. Net.Data is a
script language that enables a developer to specify the
layout of Web pages, calls functions that are defined by
macro, and defines variables and functions.

Net.Data macros contain two parts: the declaration
part and the presentation part. Fig. 5 illustrates the
structure of a Net.Data macro.

Fig. 5. Net.Data language.

The function block is what we are more inter-
ested in. A common function block has the following
layout:

%function (dtw_odbc) name () {
SELECT distinct safname, samname,

salname, shrfnbr, satitle
FROM shopper, shaddr
WHERE sashnbr = shrfnbr and

shlogid = '$ (SESSION_ID)' and
sanick = '$(SESSION_ID)'

%REPORT{
%ROW{
<center>
HTML formatting information for

rows returned from the SELECT statement
</center>

%}
%}

%}

The SQL statements that we analyse are generally
found in the function blocks of a macro.

4.2. Objective of the tool and rationale
Because of the significant differences between
Net.Data and JSP, and the fact that customers might
want to make functional changes during the migration,
the objective of the tool is not to perform complete au-
tomatic conversion of one Net.Data macro to one JSP.
Rather, it is a helper tool. Although the conversion pro-
cess requires human involvement, the tool significantly
reduces the total effort required of developers. A good
list of recommendation can save a significant amount
of effort and time during the first part of the conversion
process.

The rationale for this approach is two-fold:
First, from an implementation feasibility point of

view, automatically translating from Net.Data to Java
is extremely difficult. Net.Data macros and JSPs are
very different in form and implementation. It is not
easy to predict the mapping from an SQL statement in
a Net.Data macro to a particular data bean. Allowing
the users to participate in the mapping makes the tool
much more useful.

Secondly, because of the many enhancements in
WebSphere Commerce Suite Version 5 that customers
want to take advantage of, they will very likely
prefer not to perform an automated translation of
the Net.Data. The database schema includes exten-
sive enhancements from Net.Commerce Version 4 to

156 Lau et al.

WebSphere Commerce Suite Version 5, as well as im-
proved function and design of some major components.
It is neither practical nor useful to capture and fix this
information in one shot, because customers are likely
to customize the product and need to modify the infor-
mation themselves. A more practical approach is to let
the helper tool provide a more general recommenda-
tion initially, and allow users to add their own wisdom
to build up the tool’s knowledge.

This approach also paves the way for a potentially
powerful function, namely a learning capability. As
customers use the tool and indicate their choices, the in-
formation is captured so that more specific recommen-
dations can be made in future uses. Customers usually
have collections of similar Net.Data macros. After a
lead developer trains the tool for one macro, it can then
give out very useful recommendations for the rest of
the collection to other developers. Similarly, this tool
can be used to capture the experience of one customer
situation so that it can be re-used to deal with similar
situations. The learning capability is not included in
the first release of the tool.

4.3. Tool features
The features of the tool are of two categories. (a) In the
reverse engineering process it extricates the relation-
ships between the data beans, access beans, and entity
beans. Also, it establishes the connection between the
database and the enterprise beans. (b) In the forward
engineering process, it performs SQL translation and
recommends to the user Data beans are the JavaBean
components (data beans) to use. In order to fully un-
derstand how to use the particular data bean and to con-
firm that it is the right object for the task the tool pro-
vides a link to the JavaDoc documentation of the data
bean.

4.3.1. Reverse engineering features

Schema mapper. This feature helps the user to cap-
ture custom database schema mapping between the
Net.Commerce Version 4 and WebSphere Commerce
Suite Version 5 systems. Users first prepare an XML file
specifying the database relationship between the two
versions of WebSphere Commerce Suite. This XML
file is placed in the configuration directory of the tool
and used later on for database and bean analysis, map-
ping, and recommendation.

Source code crawler. The source code crawler col-
lects the data bean and access bean information from

the EJB source code in the system and generates an
XML file containing such information for subsequent
recommendation.

SQL collector and extractor. The SQL collector
parses Net.Data macro files provided by the user, ex-
tracts the SQL statements in an interactive manner, and
generates an XML file containing the SQL information
for subsequent analysis and processing. The SQL ex-
tractor has a similar function to the SQL collector, but
works in a batch mode.

4.3.2. Forward engineering features

Bean recommendation. Fig. 6 is a screen-shot of the
base recommendation tool.

The left pane is a full editor into which the Net.Data
macro loads. The tool enables the user to cycle through
each of the SQL statements found in the macro. The
right pane shows the table and column mapping infor-
mation and the recommended set of data beans of the
active SQL statement.

The tool can produce a report for the loaded
Net.Data macro that lists all the SQL statements in
the macro, the function it came from, and the rec-
ommended data beans and their related access beans.
When the database schema of WebSphere Commerce
Suite is modified by the customer, the tool can also deal
with the customised tables used in the SQL statements.

As an example, when a Net.Data page is loaded into
the tool, the macro is parsed to extract all the SQL
statements. After that, the SQL statement is parsed and
relevant information is extracted, such as columns and
tables that are used. A typical sequence of activities by
a user is as follows, with reference to panes [A] to [F]
in Fig. 6:

1. Select the SQL statement in the Net.Data macro as
depicted in the top-left pane [A] of Fig. 6.

2. Note the Version 4 to Version 5 table correspondence
in pane [B] of same figure.

3. Note the Version 4 to Version 5 column correspon-
dence in pane [C].

4. Open the recommendation pane and note the related
data beans in pane [D].

5. Go through the list selecting data beans of interest
in [D], and note the detailed information of related
data beans in pane [E].

6. Using the information in pane [F], compare against
getter methods in pane [E] to narrow down the data
bean selection.

Migration of Multi-tier E-commerce Applications to Enterprise Java Environment 157

Fig. 6. Tool window view.

After going through the above steps, the possible out-
put JSP code corresponding to the name() function in
Net.Data file in the database schema mapper, as de-
duced from the JavaBeans Hierarchy and information
analyser and the source-target relationship synthesizer,
might be:

......
<jsp:useBean id = "addressbook"
class = "com.ibm.commerce.user.beans.Address
BookDataBean" scope = "page"/>
<%com.ibm.commerce.beans.DataBeanManager.
activate (addressbook, request); %>

</jsp:useBean>
<!-- HTML content -->
......
<center>
<h1> Shopping Cart for
<% = addressbook.getTitle() %>
<% = addressbook.getFirstName() %>

<% = addressbook.getMiddleName() %>
<% = addressbook.getLastName() %></h1>
......

SQL translator. The SQL translator parses SQL state-
ments from a Net.Commerce Version 4 system, maps
out the corresponding WebSphere Commerce Suite
Version 5 database information based on the Version 4
to Version 5 database mapping information in the tool,
and constructs corresponding WebSphere Commerce
Suite Version 5 SQL statements.

4.4. Tool deployment
This tool was first released in June 2001 on IBM’s
alphaWorks©R Web site (Lau et al., http://alphaworks.
ibm.com/tech/netdatatojsp). The primary target audi-
ence at that time was members of the WebSphere Com-
merce Suite Service Teams embarking on migration
projects, for project planning and code development.

158 Lau et al.

The database schema mapping is from WebSphere
Commerce Suite Version 4.1 to the new Version 5.1
schema.

5. A Generic EJB Migration Model

Based on our experiment for the migration of Web-
sphere Commerce Suite, we identified a generic mi-
gration model and the research challenges in moving
from the multi-tier applications to EJB-based architec-
tures other than IBM products. When reengineering
such applications, we will face two challenges that are
depicted in Fig. 7:

� When the enterprise beans are already provided, how
to translate the queries embedded in the legacy code
to the equivalent EJB client code?

� When the enterprise beans are not provided, how
can we produce the beans, especially the finders and
the queries inside finders consistently with existing
legacy queries?

We propose to use SQL-EJB mediator to solve the first
problem, and use view selection to solve the second.
In general these two tasks are not performed indepen-
dently. The reengineering is an iterative process with in-
tervention from EJB designers. In a typical scenario the
EJB designer defines some entity beans first, then uses
the SQL-EJB mediator to locate legacy SQL queries
that cannot be reproduced using the enterprise beans.
Those queries are then used as the basis for EJB gen-
eration. By using the EJB generator, enterprise beans

Fig. 7. EJB migration problems.

and the finder methods are recommended for the de-
signer to choose. The selected beans are added into the
existing system and we can iterate this process, run the
SQL-EJB mediator once again.

As for the EJB generation from a set of queries
and their schema, there are two approaches. One is
the black-box reengineering. In this approach, the SQL
statements are not analysed. Instead, they are directly
copied into the methods of enterprise beans. This kind
of reengineering requires generating some scaffold-
ing code for the method so that it can access the
database. In general, this approach will use session
beans.

On the other hand, the white-box reengineering ap-
proach is much more complicated. This will require
the generation of entity beans and the rewriting of
the queries into object interface. Several queries may
be combined into one method in one entity bean, or
one query may be split into several methods in differ-
ent beans, or as illustrated in Fig. 8. This is a good
long-term solution offering a clean object-oriented
architecture.

Currently the EJB client code in JSP is not automat-
ically generated. We are using query-rewriting tech-
niques to translate the SQLs to fragments of EJB client
code. Furthermore, in a more general situation when
EJB architecture is not available yet, the EJB architec-
ture and the finder methods as well as the SQLs inside
the finder methos will be generated.

6. Related Work

There are several tools and methodologies for migrat-
ing EJB applications from one platform to another
(iPlanet Application Server Migration Guide, 2000;
Tech Metrix Research, 2000). These tools generally tar-
get migration tasks where the source system is already
using EJB technologies and are therefore addressing a
simpler problem than that addressed here. Moreover,
our work takes into account specific requirements dic-
tated by the WebSphere Commerce Suite.

In addition, there are tools for mapping database ap-
plications to EJB architecture (Takagiwa et al., 2001).
However, these focus on the problem of mapping
schemata to Enterprise JavaBeans, instead of migrating
SQL code. Besides, the mappings supported by these
tools are typically either straightforward or have to be
performed manually. Such tools are most effective for
the problem of object-relational mappings.

Migration of Multi-tier E-commerce Applications to Enterprise Java Environment 159

Fig. 8. White-box reengineering.

In database reverse engineering and schema map-
ping (Jahnke, Schafer, and Zundorf, 1996), a popular
approach is to map a relational schema to an object
schema directly. This paper addresses three additional
aspects. First, we map the relational schema to another
relational schema. Second, we extract and enrich the
schema mapping from the hand-coded schema map-
ping data provided by IBM that are recoded in XSL
format. Finally, we use the schema mapping to trans-
late legacy SQL queries.

7. Conclusions and Future Work

We have presented a practical methodology fort the mi-
gration of multi-tier applications that access databases
at the backend to ones using the EJB programming
model. The methodology is supported by a tool devel-
oped for the IBM WebSphere Commerce Suite. The
tool has been implemented and is being used by devel-
opers working on migration tasks. This work has also
identified a number of areas that we believe are fruitful
for further investigation:

Firstly, the recommendation ranking technique is
rather simple in the current release of the tool and we
believe that it can be improved. We are investigating
how the following changes to the Recommendation En-
gine will improve the quality of the recommendations:

(1) Use the column usage information as a basis for
doing data coverage analysis.

(2) Analyse the containment relationships that hold be-
tween data beans and the inheritance relationships
between data and access beans, to see if these rela-

tionships relate to actual usage of the beans; if so,
modify the ranking scheme to account for this.

(3) Retain user experience from previous migration ef-
forts to aid developers encountering similar tasks
in different migration projects.

Secondly, the tool can help programmers interactively
produce the JSP code, and especially the EJB client
code in JSP. We are currently working on the following
tasks:
� The generation of EJB client code using query rewrit-

ing technology based on existing EJB framework
(Lu, 2002);

� The generation of entity beans and session beans
from the legacy database systems when they do not
exist (Lu, 2002);

� The translation from Net.Data to JSP code, especially
the HTML part.

Acknowledgments

We would like to thank the anonymous reviewers for
their detailed comments. In developing the migration
process and the Helper Tool, we had valuable help and
input from Erik Hedges, Emily Xing, members of the E-
Commerce Development Team and E-Commerce En-
gagement Team within the IBM Canada Laboratory.

The University of Toronto and Waterloo teams are
grateful to the Canadian Consortium for Software Engi-
neering Research (CSER), the IRIS Network of Centres
of Excellence, and the Natural Sciences and Engineer-
ing Research Council of Canada for financial support
of this research.

160 Lau et al.

IBM, WebSphere, Net.Commerce, Net.Data, and
alphaWorks are trademarks of International Business
Machines Corporation in the United States, other coun-
tries, or both. Java and all Java-based trademarks
and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other
countries, or both. Other company, product, and ser-
vice names may be trademarks or service marks of
others.

This paper represents the views of the authors rather
than IBM.

References

Behm A, Geppert A, Dittrich KR. On the migration of relational
schemas and data to object-oriented database systems. In: Pro-
ceedings of the 5th International Conference on Re-Technologies
for Information Systems, Austria, 1997.

Bergamaschi S, Garuti, A, Sartori C, Venuta A. The object wrapper:
An object oriented interface for relational databases. Euromicro
1997.

Brown K. Handling N-ary relationships in VisualAge for Java.
www.ibm.com/vadd, Aug. 2000.

IBM, IBM Net.Data Reference. Version 7, http://www4.ibm.com/
software/data/net.data/, June 2001.

IBM, IBM WebSphere Commerce Suite, Programmers Guide.
Version 5.1 Second Edition. http://www4.ibm.com/software/
webservers, March 2001.

In2J, Automated Tool for Migrating Oracle Pl/SQL into Java,
www.in2j.com, Apr. 2001, Iplanet.

iPlanet Application Server Migration Guide. Version 6.0. http://docs.
iplanet.com/docs/manuals/ias/60/migrate/http:///, May 2000.

Jahnke J, Schafer W, Zundorf A. A design environment for
migrating relational to object oriented database systems. In:
Proceedings of the International Conference on Software
Maintenance, pp. 163–170. IEEE Computer Society Press,
1996.

Kassem N. and the Enterprise Team. Designing Enterprise Applica-
tion with the Java 2 Platform, Enterprise Edition. Sun Microsys-
tems, http://java.sun.com, Oct. 3, 2000.

Lau T, Lu J, Mylopoulos J, Hedges E, Kontogiannis K, Xing
E, Crowley M. Net.Data to JSP helper. IBM alphaWorks,
http://alphaworks.ibm.com/tech/netdatatojsp.

Lu J. Reengineering database applications to EJB based architecture.
In: CAiSE∗02, 14th Conference on Advanced Information Systems
Engineering. Toronto, May 27–31, 2002.

Miller RJ, Haas LM, Hernández M. Schema mapping as query dis-
covery. In: Proceedings of the Twenty-Sixth International Con-
ference on Very Large Data Bases (VLDB). Cairo, Egypt, Sept.
2000.

Moving from IBM WebSphere 3 to BEA WebLogic Server 5.1. Tech-
Metrix Research, Sept. 2000.

Ramanathan C. Providing object-oriented access to existing rela-
tional databases, PhD dissertation, Mississippi State University,
1997.

Sun Microsystems, Enterprise JavaBeans 2.0 Specification.,
http://java.sun.com/products/ejb/2.0.html, 2001.

Vermeer MWW, Apers PMG. Reverse engineering of relational
database applications. In: Proceedings of the Fourteenth Inter-
national Conference on Object-Oriented and Entity Relationship
Modeling (ER’95), Dec. 1995.

Takagiwa O. et al. Programming with VisualAge for Java
Version 3.5. IBM RedBooks, www.ibm.com/redbooks, April
2001.

Yan L, Miller RJ, Haas LM, Fagin R. Data-driven understanding and
refinement of schema mappings. SIGMOD May 2001.

Dr. Terence C. Lau is a senior research associate at the
Centre for Advanced Studies, IBM Toronto Laboratory,
IBM Canada, and an adjunct associate professor at the
Department of Electrical and Computer Engineering,
University of Waterloo.

Dr. Jianguo Lu is an associate professor at the Depart-
ment of Computer Science, University of Windsor.

Dr. John Mylopoulos is a professor at the Department
of Computer Science, University of Toronto.

Dr. Kostas Kontogiannis is an associate professor at the
Department of Electrical and Computer Engineering,
University of Waterloo.

