
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361 (DOI: 10.1002/smr.299)

Research

Improving design quality using
meta-pattern transformations:
a metric-based approach

Ladan Tahvildari∗,† and Kostas Kontogiannis

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

SUMMARY

Improving the design quality of large object-oriented systems during maintenance and evolution is
widely regarded as a high-priority objective. Furthermore, for such systems that are subject to frequent
modifications, detection and correction of design defects may easily become a very complex task that
is even not tractable for manual handling. Therefore, the use of automatic or semi-automatic detection
and correction techniques and tools can assist reengineering activities. This paper proposes a framework
whereby object-oriented metrics can be used as indicators for automatically detecting situations for
particular transformations to be applied in order to improve specific design quality characteristics.
The process is based both on modeling the dependencies between design qualities and source code features,
and on analyzing the impact that various transformations have on software metrics that quantify the design
qualities being improved. Copyright c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: software reengineering; object-oriented metrics; program transformation; design flaws;
non-functional requirements

1. INTRODUCTION

It has been widely argued both in research and industry that design defects cause systems to exhibit
low maintainability, low reuse, high complexity and faulty behavior. Specifically, for object-oriented
(OO) legacy systems which have been subjected to frequent modifications, detection and correction of
such design flaws may become a complex task.

∗Correspondence to: Ladan Tahvildari, Department of Electrical and Computer Engineering, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
†E-mail: ltahvild@uwaterloo.ca

Contract/grant sponsor: Natural Sciences and Engineering Research Council (NSERC) of Canada
Contract/grant sponsor: IBM Canada Ltd. Laboratory, Toronto - Center for Advanced Studies (CAS)

Received 7 June 2003
Copyright c© 2004 John Wiley & Sons, Ltd. Revised 29 October 2003

Accepted 16 February 2004

332 L. TAHVILDARI AND K. KONTOGIANNIS

Our previous work on improving the quality of OO legacy systems includes: (i) using metrics for
quality estimation [1,2]; and (ii) proposing a software transformation framework that is based on soft-
goal dependency graphs to enhance quality [3,4]. Both aspects have mostly been treated independently
from each other. A natural extension to these efforts is to analyze the interaction of particular
transformations and metrics in a systematic manner in order to suggest the use of transformations that
may be helpful in improving quality as estimated by various metrics. In this paper, we first present a
catalogue of OO software metrics that are related to OO design properties and to potential design flaws.
Then, we present a framework of transformations that aims to improve error-prone design properties
and to assist in enhancing specific qualities of a software system.

This paper is organized as follows. Section 2 proposes a classification of OO design flaws which is
a step towards discovering recurring detection and correction methods. Section 3 discusses a quality-
driven framework for software engineering, while Section 4 presents how meta-pattern transformations
as design motifs can be modeled in soft-goal interdependency graphs (SIGs). Section 5 presents the
proposed reengineering strategy using OO metrics to detect and correct design flaws, while Section 6
classifies a selection of OO metrics which are of the interest for this research. Section 7 discusses the
impact of specific transformations on software features and metrics, while Section 8 proposes a model
for a SIG representation. Section 9 presents a transformation selection and application algorithm.
Section 10 discusses the architectural design and implementation issues for building the quality-
driven object oriented reengineering (QDR) framework as a prototype which offers an interactive and
incremental environment for improving the quality of an OO system based on the proposed approach.
Section 11 presents a set of case studies related to the proposed classification and an application
scenario of such case studies is further elaborated. Section 12 discusses the related work to this research
and, finally, Section 13 provides the conclusion and insights of future work.

2. A CLASSIFICATION OF OO DESIGN FLAWS

In this section, we propose a classification of OO design flaws which is a step towards discovering
recurring software design detection and correction methods.

Design properties are tangible concepts that can be directly assessed by examining the internal and
external structure, relationships, and functionality of the system components, attributes, methods, and
classes. An evaluation of the class definition and its external relationships (inheritance type) with other
classes, as well as the examination of its internal components, attributes, and methods, can be used to
reveal significant information that objectively captures the structural and functional characteristics of
a class and its elements.

Overall, the design of a system could deteriorate for several reasons. Even though a class may have
been designed taking into account all the principles of OO design (i.e., encapsulation, information
hiding, data abstraction) in its initial stages of development it may lose its integrity due to: (i) extensive
maintenance due to the addition of methods/data members; (ii) addition of excessive functionalities as
a base class trying to accomplish too much for its derived classes; (iii) designs that aim to handle too
many different situations, grouping what should be several different derived classes into a single class;
(iv) excessive numbers of relationships and associations with other classes.

By introducing a classification of design flaws, we aim to discover generic detection and correction
methods and ease the assessment of new reengineering techniques and tools. Sorting and classifying

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 333

Figure 1. Design flaws classification.

design flaws is a complex task because of the multiple points of view that can be considered.
We propose the following classification as it can be inferred from the related literature [5–10].
Such a design flaw classification can distinguish among: (i) design flaws involving the internal
structure of a class; (ii) design flaws involving interactions among classes; and (iii) design flaws
relating to the application semantics. We consider these three categories because they represent three
distinct levels of abstraction and thus rely on different detection and correction techniques.

However, these three categories are not orthogonal and several design flaws do not fit simply into a
single category. We can define four additional categories as depicted in Figure 1, which pertain to the
intersections of the three major categories. A finer-grain classification of the design flaws is presented
below.

• Structural flaws (SF): this category includes any design flaws related to the internal structure
of a class. It embodies stylish and syntactic flaws, which are design defects in the structure of
the class and its members. For example, methods with too many invocations are error-prone and
difficult to maintain or extend [11].

• Architectural flaws (AF): this category encloses any design flaws related to the external structure
of the classes (their public interface) and their relationships. All design flaws in the application
architecture belong to this category. For example, mixing different algorithms within a single
data structure is an architectural flaw. The reason for this is that the algorithms overweigh the
data structure and any data structure extension is not easy because it requires modification every
time a new algorithm is considered [12].

• Behavioral flaws (BF): this category encompasses all the design flaws related to the application
semantics. For example, the ‘The Year 2000 Problem’ (due to the storage of years on only two
digits) is a typical behavioral design flaw. Another example of behavioral design flaws concerns
changes in the operating environment of a system.

• Intersection of SF and AF (SA): this category includes design flaws related to both the internal
and external structures of the classes. There are some internal design flaws for which corrections

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

334 L. TAHVILDARI AND K. KONTOGIANNIS

imply changes to the application architecture. For example, duplicated code among classes
reveals a need to change the architecture to factor out the duplicated code. Also, there are some
architectural design flaws involving changes to the internal structures of the classes. An example
is the use of the Composite Pattern [12], where a specialized object may create a meaningful
new object where we can attach domain specific behavior.

• Intersection of SF and BF (SB): this category pertains to design flaws involving both the
semantics of the class and its internal structure. There are some defects in the behavior of the
class which in order to be corrected require changing their structure and behavior.

• Intersection of AF and BF (AB): this category pertains to design flaws related to both architecture
and behavior of the classes. There is a set of design flaws related to the application architecture
which in order to be corrected requires changing the semantics of the classes involved.
For example, a ‘God’ class [9] is a sign of a bad architecture that for its improvement requires
changing the semantic of at least the ‘God’ class. Also, there are some design flaws in the
behavior of classes which in order to be corrected need recursive changes in their architecture.

• Intersection of SF, AF, and BF (SAB): the last category includes the set of all the design flaws
pertaining to the structure, semantics, and the architecture of the application.

Based on our proposed classification, it is possible to distinguish among design flaws relative
to any combination of syntactic, structural, semantic, or architectural defects. These categories also
allow differentiation among design flaws that stem from one category and imply changes in another.
For example, duplicate code across classes is detected in internal structures (SF) of the classes, but
resulting flaws appear in both internal structures (SF) and their architecture (AF). Moreover, the
concern for improving the quality of the OO design of legacy systems is related to applying the changes
which preserve the behavior of the system. Since we focus this research on SF, AF, and the intersections
between them that can cause decreasing design quality, we exclude from this work pure behavioral
flaws that may occur in an OO application.

3. QDR FRAMEWORK

It is widely accepted that the reengineering of legacy systems has become a major concern in
today’s software industry. Traditionally, most reengineering efforts were focused on systems written in
traditional programming languages such as Fortran, COBOL, and C [13–17]. Unfortunately, none of
such efforts embeds to the reengineering process quality requirements for the migrant system as a goal.
In this context, we proposed a quality-driven reengineering (QDR) framework [2] which allows for
specific quality requirements for the migrant system to be modeled as a collection of soft-goal graphs,
and for the selection of the transformational steps that need to be applied at the source code level of
the legacy system being reengineered.

To represent information about different software qualities, their interdependencies, and the software
transformations that may affect them, we adopt the non-functional requirement (NFR) framework
proposed in [18]. In the NFR framework, quality requirements are treated as potentially conflicting
or synergistic goals to be achieved, and are used to guide and rationalize the various design decisions
taken during system/software development. A soft-goal interdependency graph is used to support the
systematic, goal-oriented process of associating design decisions with software qualities. According to

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 335

Figure 2. Maintainability soft-goal graph decomposition.

the framework, software qualities are represented as soft-goals, i.e., goals that can be partially achieved.
The leaves of the soft-goal interdependency graph represent design decisions which fulfill or contribute
positively/negatively to the soft-goals above them. Given a quality constraint for a reengineering
problem, one can look up the soft-goal interdependency graph for that quality, and examine how it
relates to other soft-goals and what are the additional design decisions or software transformations that
may affect the desired quality positively or negatively.

The reengineering process in the QDR framework includes these steps. First, the source code is
represented as an Abstract Syntax Tree (AST) [19]. The tree is further decorated using a linker, with
annotations that provide linkage, scope, and type information. In a nutshell, once software artifacts have
been understood, classified and stored during the reverse engineering phase, their behavior can be made
readily available to the system during the forward engineering phase. Then, the forward engineering
phase aims to produce a new version of an OO legacy system that operates on the target architecture
and aims to address specific non-functional requirements (i.e., maintainability enhancements). Finally,
we use an iterative procedure to obtain the new migrant source code by selecting and applying a
transformation which leads to maintainability enhancements. The transformation is selected from
the soft-goal interdependency graphs. The resulting migrant system is then evaluated and the step
is repeated until the target quality requirements are met.

Figure 2 shows a sample soft-goal interdependency graph for maintainability. This graph represents
and models a set of software attributes that relate to software maintainability. The graph was compiled
after a thorough review of the literature [19–21]. In Figure 2, AND relations are represented with a

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

336 L. TAHVILDARI AND K. KONTOGIANNIS

Figure 3. Maintainability soft-goal graph with meta-pattern transformations.

single arc, and OR relations with a double arc. While NFR soft-goal nodes as illustrated in Figure 2
provide specific interpretation of what the initial NFR of Maintainability is, they do not yet provide a
means for guiding the transformation process and actually achieving the desired quality.

4. META-PATTERN TRANSFORMATIONS AS DESIGN MOTIFS

At some point during the reengineering process, when the non-functional requirements have been
sufficiently refined, one must be able to identify, apply, and evaluate reengineering and software
transformation actions for achieving these requirements (that are modeled as soft-goals). In this
respect, we propose to associate meta-pattern transformations [4,23] with the soft-goal graphs as
shown in Figure 3. The meta-pattern transformations illustrated in Figure 3 for maintainability are
the design motifs that occur frequently; in this way it is similar to design patterns, but these are
lower-level constructs [24]. We call these associations operationalizations of the NFR soft-goals [18].
Operationalizing soft-goals are drawn as shaded circles and are just another type of soft-goal graph
node.

The proposed meta-pattern transformations [23,4] provide guidelines to operationalize a soft-goal
dependency graph (i.e., for maintainability) as shown in Figure 3. While interested readers can
refer to [23,4] for each transformation which comprises a precondition, an algorithmic description,
a postcondition, and its impact on quality, Table I provides a brief summary of these meta-pattern
transformations.

In this context, satisfying soft-goals yields a positive or negative contribution towards parent soft-
goals in terms of AND, OR, +, ++, or −, −− relations. Our aim is to assist the developer in improving

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 337

Table I. Meta-pattern transformations as design motifs.

Meta-pattern transformation Description

ABSTRACTION (ABS) This transformation aims to add an interface to a class. This enables
another class to take a more abstract view of the first class by accessing
it via the newly added interface.

EXTENSION (EXT) This transformation aims to construct an abstract class from an existing
class and to create an extends relationship between the two classes. It is
related to the ABSTRACTION transformation, but rather than building
a completely abstract interface from the class, it builds an abstract class
where only certain specified methods are declared abstractly.

MOVEMENT (MOV) This transformation aims to move parts of an existing class to a
component class, and to set up a delegation relationship from the
existing class to its component.

ENCAPSULATION (ENC) This transformation aims to be applied when one class creates
instances of another, and it is required to weaken the association
between the two classes by packaging the object creation statements
into dedicated methods.

BUILDRELATION (BRL) This transformation is appropriate when one class (C1) uses, or has
knowledge of, another class (C2), and the relationship between the
classes to operate in a more abstract fashion via an interface is
required.

WRAPPER (WRP) This transformation aims to wrap an existing receiver class with
another class, in such a way that all requests to an object of the wrapper
class are passed to the receiver object it wraps, and similarly any results
of such requests are passed back by the wrapper.

the quality of a system during reengineering by providing guidance as to which transformations are
the best to apply. For example, let us consider the challenge of achieving ‘High Cohesion’ for a
module in order to satisfy ‘High Maintainability’ as the top-level target goal (Figure 3). One possible
alternative is to use the ABSTRACTION meta-pattern transformation as shown in Figure 3. In this
case, ABSTRACTION is a development technique or operationalization that can be implemented.
It is a candidate for the task of meeting the high cohesion NFR as a positive positive contribution (++).
This is contrasted with ‘High Cohesion’, which is still a software quality attribute, i.e., a non-functional
requirement. In this respect, we say that the ABSTRACTION transformation operationalizes high
cohesion. We also say that the high cohesion NFR is operationalized by the ABSTRACTION
transformation.

5. ROLE OF DESIGN FLAWS IN THE QDR FRAMEWORK

It is widely accepted that the design of a large system deteriorates with each evolution cycle.
Consequently, we aim to devise a framework whereby such design flaws introduced during software
evolution could be identified and corrected.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

338 L. TAHVILDARI AND K. KONTOGIANNIS

Figure 4. Reengineering strategy for design flaws.

Figure 4 illustrates the proposed reengineering strategy using OO metrics in order to evaluate and
assess the impact that transformations have on soft-goals. As is known, an object model has several
levels of representation, including application level, subsystem level, class level, and function level [25].
While design flaws can occur at any level, our focus here is on class level deterioration. Improving
deteriorated classes is one major step to keeping OO legacy systems operational. After extracting an
object model at the class level through reverse engineering, the proposed strategy is depicted in Figure 4
and employs the following steps.

• Step 1: to select, measure, and record the specific OO metrics in order to detect classes for which
quality has deteriorated. While there are several reasons that a design may lose quality over
time, here the focus is on detecting the classes that have high complexity and high coupling.
For detecting such classes, there is a need to have a classification of OO metrics which relate
to different categories of design quality and source code features. In Section 6, we propose and
discuss a useful catalogue of such metrics.

• Step 2: to reengineer detected design flaws using proper transformations. For correcting such
design flaws through software transformations, we need to study the impact that specific
transformations have on specific metrics. In Section 7, we discuss the impact of the proposed
software transformation framework on the selected OO metrics. Based on the preconditions for
each transformation and the source code features, we identify all possible transformations that
can be applied at any given point of the transformation process.

• Step 3: to re-apply and record the same object-oriented metrics to the reengineered classes and
finally compare the recorded results to evaluate design and source code improvement as well as
compliance with the desired requirements. Once the transformation is determined and applied, it
is necessary to verify that a transformation contributes towards the desired target qualities.

One way to detect design flaws at the class level is to identify violations of a ‘good’ OO software
design by performing source code analysis. Even though there is no consensus of what constitutes
a good design, some general guidelines and principles have been proposed in the literature [9].
While there are several reasons that a class may lose quality over time, here the focus is on the

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 339

Figure 5. Key classes in an OO legacy system.

classes that have high coupling and low cohesion. These characteristics often result in the loss of
abstraction and encapsulation. In particular, they are those highly-coupled classes that often loose
cohesion during the course of development. Based on this assumption, two fundamental quality design
heuristics are proposed to detect design flaws at the class level and are elaborated further in the
following sections.

5.1. Key classes heuristic (KCH)

A proper way to detect design flaws at the class level is to identify which classes implement the key
concepts of the system. Usually, the most important concepts of a system are implemented by very few
key classes [26] which can be characterized by the specific properties. These classes, which we refer
to as key classes, manage many other classes or use them in order to implement their functionality.
The key classes are tightly coupled with other parts of the system. Additionally, they tend to be rather
complex, since they implement much of the legacy system’s functionality.

Identifying these classes is a starting point in the proposed framework to detect potential design
flaws and to correct them properly based on the proposed software transformation framework. Figure 5
illustrates such an analysis. The classes of the OO legacy system are placed into a coordinate system
according to their complexity and coupling measurements. Classes that are complex and tightly coupled
with the rest of the system fall into the upper-right corner and are good candidates for these key classes.
Mathematically, we can combine two or more metrics by computing the distance d of a class from the
origin of the coordinate system. If x̄ denotes the complexity metrics vector value of a class c, and ȳ its
coupling metrics vector value, we compute the combined value dc as:

dc(x̄, ȳ) = max(dc(x, y)), ∀x ∈ x̄, y ∈ ȳ (1)

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

340 L. TAHVILDARI AND K. KONTOGIANNIS

where dc(x, y) = √
x2 + y2. In some cases, if the metrics use a very different scale, some

normalization might be required and we can then use the following formula instead:

dc(x, y) =
√(

x

xmax

)2

+
(

y

ymax

)2

(2)

This combined value allows for class comparison. Classes with higher values for d are better
candidates to be considered as key classes of the system than classes with lower values for d . The value
of d provides a good means to identify the key classes of the system that may represent design flaws
which need to be taken care of.

5.2. One class–one concept heuristic (OC2H)

A very basic principle in object-oriented software engineering is that a class should implement one
single concept of the application domain. Some violations of this principle can be detected by using
the assumptions: (i) that a class that implements more than one concept probably has low cohesion
measurements, since these concepts can be implemented separately; and (ii) that a class that by itself
does not implement one concept (the implementation of the concept is distributed among many classes)
is probably tightly coupled to other classes.

Therefore, by collecting cohesion and coupling values of an OO legacy system, possible violations
of the principle ‘one class–one concept’ can be found. These classes tend to have either low cohesion
values or high coupling values. The classes that have very low cohesion values can often be split [27].
Sometimes this leads to a more flexible design, since the two separate classes are easier to understand
and are more reusable. Low cohesion values also indicate deteriorated classes. These classes are not
implementing a self-contained object from the application domain, they just group methods together,
acting as a module.

6. OO METRICS SUITE

Each of the design flaws identified in Section 2 and each of the quality rules for detecting these flaws
represent an attribute or characteristic of a design. These characteristics are sufficiently well defined
to be objectively assessed by using one or more OO metrics. Metrics can be particularly suitable
to assess whether the OO legacy system adheres to design principles or contains violations of these
principles.

In this section, we select OO metrics that will be used to assess OO system qualities in our quality-
driven reengineering framework. In order to make a selection, we first need to establish a set of
criteria that should guide the selection process. Establishing these criteria requires consideration and
identification of which of the metrics can be successfully used in order to assess the improvement of the
quality of the migrant system and to collect proper transformations based on the source code features.
In this respect, we focus on two criteria: (i) the theoretical evaluation of the definition of the metric;
and (ii) the aspects of design flaws that we plan to detect and correct.

The proposed selection of the OO metrics is classified according to four major metrics
categories [28]: complexity metrics, coupling metrics, cohesion metrics, and inheritance metrics.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 341

While Table II illustrates these metrics along with their relation to soft-goal nodes, we further describe
them in a more detail as follows.

• Complexity metrics: we consider these metrics because they may provide indications about
the level of complexity for a given class. One of the well-established metrics to measure the
complexity of a class is WMC (weighted methods per class) which measures the complexity of a
class by adding up the complexities of the methods defined in that class [29,30]. A special case
of WMC (which is very simple to compute) is NOM (number of methods) as well as the RFC
(response set for a class) metric [29], which measures the complexity of a class by counting
the number of methods defined in that class [31]. Such metrics measure the attributes of the
objects in the class and express the potential communication between the class that is measured
with other classes, i.e., how many methods local to the class and methods from other classes
can be potentially invoked by invoking methods from the class. Complexity measurements
for methods are usually given by code complexity metrics like lack of cohesion (LOC) or the
McCabe Cyclomatic complexity [32]. The class definition entropy (CDE) [33] metric identifies
complex classes in an OO system. Classes with higher values of CDE can be expected to have a
complex implementation and a more-than-average number of errors and changes. Obviously,
complexity metrics play an important role when reengineering software systems, as classes
with high complexity measurements are difficult to understand and consequently difficult to
change.

• Coupling metrics: another important aspect when dealing with an OO legacy system is the
coupling level between classes. A class is coupled to another class, if it depends on that
class, for example by accessing the variables of that class, or by invoking methods from
that class. Classes that are tightly coupled cannot be seen as isolated parts of the system.
Understanding or modifying them requires that other parts of the system must be inspected as
well. Conversely, if other parts of a system change, classes with high coupling measurements
are more likely to be affected by these changes. Additionally, classes with high coupling tend
to play key roles in the system, making them an appropriate starting point when trying to
understand an unfamiliar object-oriented legacy system. Analyzing the viewpoints suggested for
the different coupling metrics, one is able to reason on the level of reuse and maintainability
of a class. Specifically, DAC (data abstract coupling) measures coupling between classes
that results from attribute declarations [33–35]. DAC counts the number of abstract data
types defined in a class. Essentially, a class is an abstract data type, therefore DAC reflects
the number of declarations of complex attributes (i.e., attributes that have another class of
the system as a type). CDBC (change dependency between classes) is another interesting
metric that directly addresses an important aspect in reengineering; that is, maintenance
effort.

• Cohesion metrics: the cohesion of a class describes how closely the entities of a class (such
as attributes and methods) are related. Often, cohesion is measured by establishing relationships
between methods of the class in the case where the same instance variables are accessed. A useful
metric measuring this property is TCC (tight class cohesion) [34,35,37,38], which measures
the cohesion of a class as the relative number of directly connected methods, where methods
are considered to be connected when they use at least one common instance variable. In the
literature, several formulas have been introduced to compute LOC [29,31,36]. For this paper, we

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

342 L. TAHVILDARI AND K. KONTOGIANNIS

adopt the definition in [31] which measures dissimilarity among all the methods of a class except
the inherited methods, but including overloaded methods. The LCOM value denotes the number
of pairs of methods without shared instance variables, minus the number of pairs which do share
instance variables.

• Inheritance metrics: this category of metrics attempts to provide indicators on the quality of the
class hierarchy of an OO legacy system. A useful metric measuring this property is DIT (depth of
inheritance) [29]. Basili et al. [39] argued in their report that the information that they obtained
from this metric was useful in reasoning about the quality of the class. The number of children
(NOC) [36] represents the number of immediate subclasses subordinated to a class in the class
hierarchy. The greater the number of children, the greater the reuse, since inheritance is a form
of reuse. An immediate conclusion is that the classes with a greater number of children have to
provide more services in different contexts, and thus they should be more flexible. An assumption
that can be made is that such classes will introduce more complexity in the design.

The objective of associating metrics and soft-goals as illustrated in Table II is to identify a small
set of metrics which contain sufficient information to allow an evaluation of source code features and
changes pertaining to design properties during the application of software transformations.

7. IMPACT OF APPLYING META-PATTERN TRANSFORMATIONS ON METRICS

Once a source code fragment is selected as a candidate for reengineering using the OO metrics
presented above, the next step is to propose possible transformations that improve the quality of the
program while preserving its behavior. The suggested thresholds of what range of values contributes
a good or bad design with respect to each metric are based on proposed ranges of values presented
in [39,40]. In this respect, we establish a cause-to-effect relationship between some combinations of
metrics and a poor design quality. Therefore, the problem to address is what transformations and code
changes should be applied to improve the corresponding metrics and, therefore, the corresponding
system quality. An intuitive solution is to identify which transformation (or a set of transformations)
positively affects the value of a particular metric (or a set of metrics) that releases to the specific
qualities being improved. To respond to such a question, we need to consider two steps: (i) propose
a catalogue of transformations as a predefined set of transformations that can be applied both at the
internal and external structures of the classes; and (ii) analyze the impact of each transformation on the
predefined set of metrics.

In this context, there is a synergy between design heuristics and design patterns. Design heuristics
can highlight a problem in one facet of a design, while patterns can provide the solutions. In this
work, the proposed transformations alter the design with the purpose of improving a specific quality
of the system while preserving its behavior. These transformations modify the structure of a program,
which possibly modifies the values of the metrics related with the quality being improved in a positive
way. As we are interested in class-level metrics, we study the metric variations for all classes involved
in a transformation. The possible impact of applying each transformation on metrics for the classes
involved is shown in Table III. Note that ‘+’ means that there is a positive impact, ‘−’ means that there
is a negative impact, and ‘NI’ means that there is no impact.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 343

Table II. Selected object-oriented metrics and their relationships with soft-goals.

Metric
name Category Definition Soft-goal nodes

CDBC
[35]

Coupling CDBC determines the potential amount of follow-up
work to be done in a client class (CC) when the server
class (SC) is being modified defined as CDBC(CC,
SC) = min(n,A) where A = ∑m1

implement=1 αi + (1 −
k)

∑m2
interface=1 αi .

Low control flow coupling,
high encapsulation, high con-
trol flow consistency

CDE
[33]

Complexity CDE computes a decimal number to indicate a
class definition complexity based on the usage and
frequency of different name strings in a class and
defined as CDE = − ∑n1

i=1(fi/N1) log(fi/N1).

Low control flow complexity,
high cohesion, high encapsu-
lation

DAC
[36]

Coupling DAC measures the coupling complexity caused by
ADTs.

Low data coupling, high data
consistency, high encapsula-
tion

DIT
[36]

Inheritance
and
Coupling

DIT represents the length of the tree from that class to
the root of the inheritance tree.

High module reuse, high en-
capsulation, high modularity

LCOM
[31]

Cohesion Consider a class C, its set M of m methods
M1, . . . ,Mm, and its set A of a data members
A1, . . . , Aa accessed by M . Let µ(Ak) be the
number of methods that access data attribute Ak
where 1 ≤ k ≤ a. Then, LCOM(C(M,A)) =
[((1/a)

∑a
j=1 µ(Aj)) − m]/1 − m.

High cohesion, high data
consistency, low I/O com-
plexity, high modularity, high
module reuse

LD
[35]

Coupling LD is determined by relating the amount of data
local to the class to the total amount of data
used by the that class and is defined as: LD =
(
∑n

i=1 |Li |)/(
∑n

i=1 |Ti |).

Low data coupling, high data
consistency, high encapsula-
tion

NOC
[36]

Inheritance
and
Coupling

NOC represents the number of immediate subclasses
subordinated to a class in the class hierarchy.

High module reuse, high en-
capsulation, high modularity

NOM
[36]

Complexity
and
Coupling

Since the local methods in a class constitute the
interface increment of the class, NOM serves the best
as an interface metric and is defined as the number of
local methods in a class.

Low I/O complexity, high
cohesion, high modularity

RFC
[29]

Complexity
and
Coupling

The response set for a class (RS) is a set of methods
that can be potentially executed in response to a
message received by an object of that class and is
defined as RFC = |RS|.

Low control flow coupling,
low control flow complexity,
low I/O complexity, high
control flow consistency

TCC
[37]

Cohesion Let NP(C) to be the total number of pairs of abstract
methods in AC(C) and NDC(C) to be the number of
directed connection in AC(C), then TCC is defined as:
TCC(C) = NDC(C)/NP(C).

High cohesion, high modu-
larity, high module reuse

WMC
[29]

Complexity Consider a class C1 with methods M1, . . . ,Mn, and
c1, . . . , cn are the static complexity of the methods,
then WMC = ∑n

i=1 ci .

Low control flow complex-
ity, high control flow consis-
tency, low I/O complexity

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

344 L. TAHVILDARI AND K. KONTOGIANNIS

Table III. Impact of the transformations on the OO metrics suite.

Metric name

Transformation CDBC CDE DAC DIT LCOM LD NOC NOM RFC TCC WMC

ABSTRACTION + + + NI + + NI + + + −
EXTENSION + + − + + − + + NI + NI
MOVEMENT − NI NI + + NI + + − + NI
ENCAPSULATION + + + + − + + NI NI NI NI
BUILDRELATION + + NI NI − NI NI − + NI +
WRAPPER + + NI NI − NI NI − NI + −

8. A MODEL FOR A SIG REPRESENTATION

Each SIG for a NFR can be considered as a directed graph (digraph) D represented as a set R of
a 3-tuple elements 〈N,E,L〉. The set of nodes or vertices is called the vertex-set of D, denoted by
N = V (D), and are divided into NFR soft-goal nodes and transformation operationalization nodes.
There is also a special node called the entry node. E is a set of edges or arcs which is a list of ordered
pairs of the nodes. The list of arcs is called the arc-list of D, denoted by E = A(D). If ni and nj are
vertices, then an arc of the form ninj is said to be directed from ni to nj , or to join ni to nj . In this
case, node nj is said to be a successor of node ni and node ni is said to be a parent of node nj . Finally,
L is a labeling of N × E which assigns to each node a node of D, and to each edge a rule which will
be elaborated further.

As illustrated in Figure 3 for the decomposition of SIGs, the development of the graph proceeds
by repeatedly refining parent soft-goals into offspring soft-goals. In such refinements, the offspring
can contribute fully or partially, and positively or negatively, towards satisfying the goals denoted by
the parent goal node. The contribution operators are AND, OR, +, ++, −, −−. For our purposes, the
arcs of the directed graph for each SIG are labeled by these operators. A SIG is given by the start
node called s, representing the top-level requirement state, and the above rules associate goals (parent
nodes) and sub-goals (children nodes). It is convenient to model the above rules in terms of contribution
operators.

The first two contribution operators, AND and OR, relate a group of offspring to a parent. To keep
track of the information regarding these two contribution operators, we build an adjacency matrix,
namely the soft-goal adjacency matrix (SAM). Let n1 and n2 be vertices of a SIG. If n1 and n2 are
joined by an arc e with either an AND or OR contribution operator, then n1 and n2 are said to be
adjacent with the defined rule. If the arc e is directed from n1 to n2, then the arc e is said to be incident
from n1 and incident to n2. Let D to be a SIG in digraph notation, with n vertices or soft-goal nodes,
N = {d1, d2, . . . , dn}. The simplest graph representation model uses an n × n matrix SAM of &’s, |’s,
and 0’s given by

SAMi,j =

& when AND(di, {dj })
| when OR(di, {dj })
0 otherwise

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 345

that is, the (i, j)th element of the matrix is not equal to 0 only if di −→ dj is an edge in D with a
contribution operator.

As mentioned before, there are two types of nodes in a SIG, namely NFR soft-goal nodes and
transformation operationalization nodes. In practice, a transformation node is considered for the
purpose of implementing a subset of the NFR soft-goals. Thus, each NFR soft-goal is associated with
a set of transformations according to what features of the source code a transformation affects, and
according to the soft-goal nodes involved. The NFR soft-goal allocation is not necessarily one-to-
one—that is, a single soft-goal may be associated to more than one transformation.

More formally, let n1 to be a soft-goal node and n2 a transformation or operationalization node.
If n1 and n2 are joined by an arc e with any of the ++, +, − or −− contribution operators, then n1
and n2 are said to be adjacent with the defined rule. The arc e which is directed from n2 to n1 is said to
be incident from n2 and incident to n1. Let S to be a set nodes, S = {s1, s2, . . . , sn}, representing soft-
goals and T is a of set operationalization nodes, T = {t1, t2, . . . , tm}, representing transformations.
The simplest impact representation scheme uses an m × n matrix TIM (transformation impact matrix)
of ++’s, +’s, −−’s, −’s and 0’s given by:

TIMi,j =

++ when (ti, sj ,++)

+ when (ti, sj ,+)

− when (ti, sj ,−)

−− when (ti, sj ,−−)

0 otherwise

that is, the (i, j)th element of the matrix is not equal to 0 only if ti −→ sj is an edge in D with a
contribution operator.

As discussed above, the building process of a goal graph can be divided into two steps. First, the
initial goal will be split into sub-goals. Rules based on contribution operators can be applied to each
of these sub-soft-goals independently. The result of these applications can also be split and so on until
there is no further splitting possible based on the existing information. This step creates a SAM. Second,
we can generate a TIM based on soft-goals, transformations and their relationships.

9. A TRANSFORMATION SELECTION ALGORITHM

Based on the discussion in Section 5, the algorithm shown in Figure 6 summarizes the detection and
correction activities as implemented by our proposed reengineering framework.

Consider, AC to be a set of classes in an object model extracted from an OO legacy system. We need
to calculate the metrics values from the predefined catalogue and apply quality heuristics rules to detect
design flaws and deteriorated classes in the legacy system being analyzed.

In this process, the first step is to apply the key classes (KCH) rule (line 4 in Figure 6) by using
both complexity and coupling metrics. A very-high-level quality goal for a software system could be
maintainability, thus coupling measurements should not be high in order to ensure that changes to the
system do not trigger changes throughout the system. Here, for the purpose of simplicity, we consider
only DAC as a coupling related metric. Therefore, monitoring DAC values can be promising. When a

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

346 L. TAHVILDARI AND K. KONTOGIANNIS

Selection Algorithm. SGE(AC,SAM,T IM,MC) =
Input:

AC: A set of classes in an object-oriented legacy system.
SAM: Soft-Goal Adjacency Matrix.
T IM: Transformation Impact Matrix.
MC: Object-Oriented Metrics Suite.

Output:
AC: Modified the set of classes after applying meta-pattern transformations.

Variables:
COHi : Cohesion Metrics Vector for class i.
COU i : Coupling Metrics Vector for class i.

Method:
1. for each class C in AC do begin
2. COHC = NIL; COUC = NIL;
3. calculate the metrics values from MC;

/* Detect design flaws based on metric value by applying the evaluating rules */
4. append(COUC , DAC); /* apply KCH Rule */
5. append(COHC , RFC); /* apply OC2H Rule */
6. /* Other coupling/cohesion evaluation rules using metrics from MC can also be applied here */
7. if C is a deteriorated class based on dC(COUC , COHC) then begin
8. select a set of potential transformations {Ti} that can correct design flaws using T IM and SAM;
9. apply the transformations Tj ⊂ Ti that corresponds to the context of C because of its features;

10. end-if
11. end-for

Figure 6. Description of the transformation selection algorithm.

significant number of classes evolves to higher DAC measurements, some refactoring operations [11]
or meta-pattern transformations [23,4] of the system could be appropriate for reducing coupling.

Moreover, good OO design styles usually require that classes have high cohesion, since they should
encapsulate concepts that belong together. Classes with low cohesion often represent violations to a
flexible, extensible or a reusable design. All of these are issues that must be dealt with during the
OO reengineering process. Therefore, by applying cohesion metrics like TCC and coupling metrics
like DAC and RFC to the OO legacy system, possible violations of the principle OC2H rule (line 5
in Figure 6) can be found. These classes tend to have either low TCC values or high DAC and RFC
values.

For example, classes that have very low TCC values, can often be split [11]. Sometimes this leads to
a more flexible design, since the two separate classes are easier to understand and are more reusable.
Low TCC measurements may indicate classes that have not been designed in an OO way. These classes
are not implementing a self-contained object from the application domain, they just group methods
together, acting as a module. If a class exhibits low method cohesion, it indicates that the design of the
class has probably been partitioned incorrectly. In this case, the design could be improved if the class
is split into more classes with individual higher cohesion values. The LCOM metrics help to identify
and assess such design flaws.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 347

10. A PROTOTYPE FOR THE QDR FRAMEWORK

As part of this work, the proposed QDR approach has been implemented in a prototype which
offers an interactive and incremental environment for improving the quality of an OO system.
The current version of the QDR framework prototype consists of 6000 lines of code written in Java.
The architectural design of this prototype consists of a number of components with simple interfaces
and with a pipe and filter architectural style. Each component (filter) processes its input data in the
form of a file (pipe) and stores the results in another file for the next component. Figure 7 illustrates
the architecture of this prototype with its components which are elaborated further.

10.1. Pre-process components

These components are composed of two phases which are described as follows.

• Parsing phase: program representation plays an important role in building tools that facilitate
software analysis and software maintenance. One of the most popular representations is the
AST [19]. We have used Ret4J [41] for building ASTs as a program representation scheme.
Ret4J defines a language model in terms of a Java language DTD and automatically annotates
source code with XML tags. The benefit of using XML in this context is that the corresponding
tree conforms with the language domain model as defined in the corresponding language DTD.
The advantage of this method is that the complete document exists in memory and can be
easily processed and manipulated. The disadvantage is that working with large XML documents
imposes a large memory requirement. This phase has been depicted (C1) on the left-hand side
of Figure 7.

• Metric extractor phase: metrics are not indications of bugs, but high metric numbers often
indicate how complex, fragile or sensitive to regressions a class may be. Classes or methods
with high metric values may be good candidates for refactoring and software transformations.
It is therefore useful for us to monitor metrics and investigate those metrics which seem out
of line. Datrix [42], which is a tool for software evaluation and a trademark of Bell Canada,
helps us in this respect. This phase is done in two stages. First, direct class metrics (37 in total)
are extracted from the source code using Datrix Metric Analyzer. Second, the selected indirect
metrics which were discussed in Section 6 can be computed based on the first step running
some written scripts, as a part of the prototype, which is the most attractive feature of Shell
Programming. This phase, including the two steps, has been depicted (C2), on the right-hand
side of Figure 7.

10.2. Analysis components

The major tasks of the prototype are performed by three analysis components as shown in the middle
part of Figure 7 (C3). After parsing the source code and extracting the selected metrics, it is time
to improve the quality of the parsed OO system. An object model has several levels of representation,
including application level, subsystem level, class level, and function level [25]. While design flaws can
occur at any level, our focus here is on class level deterioration. While there are several reasons for a
design to lose quality over time, here the focus is on detecting the key classes, using Key Class Detector,
that have high complexity and high coupling, and low cohesion. On the other hand, the reengineering

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

348 L. TAHVILDARI AND K. KONTOGIANNIS

Figure 7. The architectural design of the prototype for the QDR framework.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 349

Figure 8. A snapshot of the QDR framework.

activities need to be performed on specific non-functional requirements that are represented as a list
of desired soft-goals (DSGs). The Soft-Goal Evaluation component builds a search graph of potential
transformations based on: (i) SAM, which was discussed in Section 8; (ii) TIM, which was discussed in
Section 8; and (iii) the list of DSGs. The evaluation algorithm was elaborated on in Section 9. The final
step in this phase (C3) is responsible for identifying the set of all solution graphs for selecting source-
code improving meta-pattern transformations. Based on the preconditions for each transformation and
the source code features, we identify all possible transformations that can be applied at any given point
of the transformation process. A snapshot of the QDR framework is depicted in Figure 8.

10.3. Post-process components

Once the meta-pattern transformations are determined and applied, it is necessary to verify that they
contribute towards the desired target qualities. The last step of the implemented prototype as shown in
Figure 7 (C4), takes care of these requirements. The code Generator component uses XML2Java from
Ret4J [41] to convert back XML representation of an OO metric to the reengineered classes and finally

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

350 L. TAHVILDARI AND K. KONTOGIANNIS

Table IV. Source code statistics of the case study software systems.

System name Source code (lines) Number of files Number of classes

NetBeans JavaDoc 14 400 101 98
JESS 21 600 112 72
Eclipse Ant 34 800 178 100
Eclipse JDTCore 147 600 741 258

compare the recorded results to evaluate design and source code improvement as well as compliance
with the desired requirements which can be computed using the described metric extractor component.

11. CASE STUDIES

To illustrate the approach proposed in this paper, we present a set of cases studies. The experiments
are performed on four open-source software systems. Table IV presents the source code related
characteristics of the experimentation suite. The experiments for each system involve the following.

(1) Java Expert System Shell [43], which is a rule engine and scripting environment written entirely
in Sun’s Java language by Ernest Friedman-Hill at Sandia National Laboratories. JESS was
originally inspired by the CLIPS expert system shell, but has grown into a complete, distinct,
dynamic environment of its own. Using JESS, one can build Java applets and applications that
have the capacity to pertain inferences using a knowledge base in the form of declarative rules
and facts. The core JESS language is still compatible with CLIPS, in that many Jess scripts are
valid CLIPS scripts and vice-versa. Like CLIPS, JESS uses the Rete algorithm [44] to process
rules, a very efficient mechanism for solving the difficult many-to-many matching problem.

(2) NetBeans JavaDoc [45], which supports the JavaDoc standard for Java documentation—both
viewing it and generating it. JavaDoc is the Java programming language’s tool for generating API
documentation. The NetBeans IDE [46] is a development environment—a tool for programmers
to write, compile, debug and deploy programs. It is written in Java, but can support any
programming language. It is a free product with no restrictions on how it can be used. NetBeans
JavaDoc gives the developers a solid documentation tool when working with code that the IDE
lets us integrate API documentation for the code we are working on into the IDE itself. Jar files
of classes imported by NetBeans JavaDoc are tools.jar and netbeans-support.jar.

(3) The Eclipse Ant Package [47], which provides support for running the Apache Ant [48] build
tool in the platform. Apache Ant is a Java-based build tool. In theory, it is like Make, but
without Make’s wrinkles. Ant is different. Instead of a model that it is extended with shell-
based commands, Ant is extended using Java classes. Instead of writing shell commands, the
configuration files are XML-based, calling out a target tree where various tasks get executed.
Each task is run by an object that implements a particular task interface. The Eclipse Ant Package
defines a number of task and data types and various infrastructure pieces which make Ant easier

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 351

Table V. Some time and space statistics of the case study software systems.

Source AST Parsing Stored Extracting
code XML time metrics metrics time

System name (lines) (MB) (min:sec) (KB) (s)

NetBeans JavaDoc 14 400 35.9 4:45 619.7 72
JESS 21 600 43.1 5:25 739.3 98
Eclipse Ant 34 800 58.4 8:37 765.8 173
Eclipse JDTCore 147 600 402.2 40:14 2528.4 258

and more powerful. Jar files of classes imported by Eclipse Ant are j2ee.jar, jakarta-org-2.0.5.jar
and log4j-core.jar.

(4) The Eclipse JDTCore Package [49], where the Java model is the set of classes that model the
objects associated with creating, editing and building a Java program. This package contains
the Java model classes which implement Java-specific behavior for source code and further
decompose Java resources into model elements. Jar files of classes imported by Eclipse JDTCore
are ant.jar, jakarta-ant-1.4.1-optional.jar, resources.jar, runtime.jar and xerces.jar.

As discussed in Section 10, for detecting design flaws, and performing proper transformations of
any kind, the Java source code and/or the Java class file must be parsed. The Re-engineering Tool Kit
for Java parses the source code (JavaML) and generates XML documents that are easier to read and
work with. Also, for collecting software metrics, we use the Datrix tool [42]. Our experiments were
carried on a SUN Ultra 10 440 Mhz, 256 MB memory, 512 swap disk.

11.1. Time and space complexity

In this section, we evaluate the time and space complexity of quality-driven reengineering technique
as a function of source-code size. In Table V, we have summarized the results collected from Java
source codes in the pre-process phase. We can see that the output file which is based on the JavaML
representation [41] is much larger than the input file which is a plain Java source file. A closer
examination of the Java grammar used [50] provides a good explanation of this. In the DTD for
JavaML [50,41], we observe that expressions are nested in such a way, that every kind of expression
is described in terms of other expressions. This means that to represent a unary expression, there is a
need to store many levels of other expressions in the XML file.

In terms of time requirements, in Figure 9 we also show the relationship between system size, AST
XML size, and parsing time. Overall, the parsing of Java source files is reasonable, even when large
systems are considered as seen in the last row in Table V. In the last two columns of Table V, we
have summarized the results collected for metrics in terms of time and space. First, direct class metrics
(37 in total) are extracted from the source code using the Datrix Metric Analyzer [42]. Second, the
selected indirected metrics which were discussed in Section 6 can be computed based on the first step
running some written scripts.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

352 L. TAHVILDARI AND K. KONTOGIANNIS

0 50 100 150
0

100

200

300

400

500

S
iz

e
of

 A
S

T
 X

M
L

(M
B

)

Size of Source Code (KLOC)

Size

0 50 100 150
0

500

1000

1500

2000

2500

P
ar

si
ng

 T
im

e
(s

ec
)

Time

Figure 9. Graph of parsing time and size results for the case studies.

From Table V, we can see that the space for metrics is based on the input files which are plain Java
source files. In terms of time requirements, in Figure 10 we also show the relationship between system
size, size of stored metrics, and time for extracting the metrics. Overall, the time for extracting the
metrics from Java source files is very fast, even when very large systems are considered as seen in the
last row in Table V.

11.2. Impact of applied transformations on soft-goals

In this section, we summarize the collected results from case studies after applying the transformations
and discuss their impacts on soft-goal nodes. In Table VI, we have summarized the results collected
from case studies after applying the transformations to the OO metrics suite which are proper indicators
for maintainability.

Good OO design recommends that classes be as lightly coupled as possible, so high CDBC [35],
DAC [36], and LD [35] metric values may indicate poor design. Experimental results for the
‘ABSTRACTIONS’ transformation indicates an improvement for low coupling by its positive impacts
on CDBC [35] at the level of 12% on average, on DAC [36] at the level of 10% on average, and on
LD [35] at the level of 18% on average, as shown in Figure 11. Similarly, this transformation allows
for performance enhancement as well, because it enables a class to take a more abstract view of the
other class by accessing it via the added interface.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 353

0 50 100 150
500

1000

1500

2000

2500

3000

S
iz

e
of

 S
to

re
d

M
et

ric
si

 (
K

B
)

Size of Source Code (KLOC)

Size

0 50 100 150
50

100

150

200

250

300

E
xt

ra
ct

ig
 M

et
ric

s
T

im
e

(s
ec

)

Time

Figure 10. Graph of extracting metrics time and size results for the case studies.

Table VI. Impact of applied meta-pattern transformations on the OO metric suite for the case studies.

Metric name (%difference)
Transfor-

System mation CDBC CDE DAC DIT LCOM LD NOC NOM RFC TCC WMC

JavaDoc ABS 12.1 2.9 7.2 0 19.2 3.1 0.01 17.4 5.9 1.03 −9.07
JESS 9.7 2.1 3.6 0.02 11.4 24.7 0 3.6 2.6 5.7 −11.4
JavaDoc EXT 9.1 17.5 −5.3 7.9 13.2 −9.8 3.4 5.8 0 6.7 0.01
JESS 12.4 7.6 −2.9 8.8 8.3 −5.5 12.5 4.8 0.01 18.3 0.03
JavaDoc MOV −11.4 0 0.01 2.6 11.3 0.02 1.1 6.9 −4.7 10.5 0.01
Ant −8.3 0.04 0 8.2 17.6 0 1.1 4.1 −3.1 13.7 0.02
JavaDoc ENC 5.4 23.7 1.8 15.4 −3.2 6.4 3.7 0 0.02 0 0.01
JESS 19.6 17.8 5.3 5.7 −10.6 1.1 13.9 0.07 0.03 0.01 0.02
JESS BRL 25.6 3.6 0.02 0.04 −28.6 0 0.03 −7.8 7.8 0 15.8
JESS WRP 33.2 42.9 0.02 0.05 −9.5 0.03 0 −14.1 0 17.4 −9.9
JDTCore 20.3 17.6 0 0.02 −17.4 0 0.02 −13.4 0.02 6.8 17.1

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

354 L. TAHVILDARI AND K. KONTOGIANNIS

CDBC CDE DAC DIT LCOM LD NOC NOM RFC TCC WMC
20

10

0

10

20

30

40

Object Oriented Metrics Suite

P
er

ce
nt

ag
e

of
 C

ha
ng

es
 (

%
di

ff)

Abstraction
Extension
Movement
Encapsulation
BuildRelation
Wrapper

Figure 11. Impact of applying primitive transformations on maintainability.

High CDE [33] and NOM [36] metric values may indicate unnecessary complexity. Experimental
results for the ‘EXTENSION’ transformation indicates an improvement for complexity by its positive
impact on CDE [33] at the level of 15% on average, and on NOM [36] at the level of 7% on average,
as shown in Figure 11.

Classes with many superclasses, yielding high DIT [29] and NOC [36] metric values, have their
behavior scattered in many places, requiring more effort to maintain. This is the hidden cost of
subclassing, often overlooked in OO designs. Experimental results for the ‘ENCAPSULATION’
transformation show an improvement for inheritance by its positive impact on these metric values
at the level of 8% on average, as shown in Figure 11.

The cohesion of a class describes how closely the entities of a class (such as attributes and methods)
are related. Often, cohesion is measured by establishing relationships between methods of the class
in the case where the same instance variables are accessed. TCC [37] and LCOM [31] are proper
indicators for this non-functional requirement. Experimental results for the ‘MOVEMENT’ meta-
pattern transformation shows an improvement for cohesion by its positive impact on TCC at the level
of 12% on average and on LCOM [31] at the level of 15% on average.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 355

Figure 12. Part of the object model of the Java Expert System Shell (JESS).

11.3. Discussion on the proposed metric-based approach evaluation

In this section, one of the case studies is analyzed in more detail. Using the transformations described
in Section 4, we have collected experimental results in order to evaluate the impact of particular
implemented transformations. The results and the impact on maintainability by applying selected meta-
pattern transformations for the case studies are illustrated in Figure 11.

We consider JESS. Three classes were detected by the assessment strategy as a deteriorated
design from the maintainability point of view according to the OC2H rule. These three classes are
called Deffacts, Deffunction and Defglobal. Deffacts is a public class which extends Java.lang.Object
and implements java.io.Serializable. This part of the JESS system is depicted as a UML diagram
in Figure 12. The Rete class is also the reasoning engine and executes the built Rete network,
and coordinates many other activities. This is also a public class that extends java.lang.Object and
implements java.io.Serializable.

One can create deffact objects and add them to a Rete engine using Rete.addDeffacts(). Deffunction
is a public class which extends java.lang.Object and implements Userfunction and java.io.Serializable.
One can create such objects and add them to a Rete engine using Rete.addUserfunction. Defglobal
is a public class which extends java.lang.Object and implements java.io.Serializable. One can create
Defglobals type objects and add them to a Rete engine using Rete.addDefglobal.

The values for the OO metrics suite of these classes are given in Table VII. To avoid the KCH rule
applying for each of the three classes, we have to increase the value of TCC, to decrease the value of
DAC and to decrease the value of RFC. As Figure 12 shows, the Rete class make use of the Visitable
interface that has been implemented in three different implementation classes, namely Deffacts,
Deffunction and Defglobal. The weakness of this structure becomes apparent if the programmer wants

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

356 L. TAHVILDARI AND K. KONTOGIANNIS

Table VII. Object-oriented metrics for three classes of JESS.

Metrics Deffacts Deffunction Defglobal

CDE 3.794 3.374 2.321
DAC 0 2 1
LCOM 9 5 5
NOM 9 9 5
RFC 30 15 24
TCC 11.3 25.7 34.6
WMC 16 30 50

Figure 13. The same part of JESS after applying the ‘WRAPPER’ meta-pattern transformation.

to extend the interface in some way. Then, for each existing implementation class, a new class will
have to be added.

After applying the SGE algorithm as discussed in Section 9, the three potential meta-pattern
transformations are proposed to correct such design flaws.

The first candidate is a ‘WRAPPER’ meta-pattern transformation which enables the Visitable
interface to be extended separately from its implementation. This transformation can create an abstract
class for the three classes. As these three classes have common methods (such as accept, getDocString),
the RFC and DAC do not change, which is sufficient to avoid the application of the WRAPPER meta-
pattern transformation. This transformation is appropriate according to the context of the application.

In considering the WRAPPER meta-pattern transformation, it is clear that the theme of delegation is
involved. A new wrapper class is to be added between the existing Rete class and the implementation
classes. The effect of applying the WRAPPER transformation is depicted as a UML diagram in
Figure 13. The duty of this class is to delegate all the requests it receives from the client (Rete) to
the appropriate implementation object.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 357

As illustrated in Figure 13, the WRAPPER meta-pattern transformation is used to ‘wrap’ an existing
receiver class with another class, in such a way that all requests to an object of the wrapper class are
passed to the receiver object it wraps, and similarly any results of such requests are passed back by
the wrapper object. This requires that all existing instantiations of the receiver class be also wrapped
with an instantiation of the wrapper class itself. The overall effect of this meta-pattern transformation
is to add a certain flexibility to the relationship between a client object and the receiver object it uses
by increasing the value of TCC and decreasing the values of LCOM and NOM. All communication
now goes via the wrapper object (WrapperVisitable), which means that run-time replacement of the
receiver object classes becomes possible without the client object (Rete) being aware of the change.
Experimental results confirm such maintainability improvement in terms of reducing the complexity
and coupling measurement as shown in Table VI. A Similar situation was detected and applied for
the Eclipse JDTCore as shown in Table VI. Both of these systems could be improved further by the
application of Bridge design pattern transformation.

The second candidate can be the application of the EXTENSION meta-pattern transformation for
these three classes in JESS, which proposes the creation of a set of specialized subclasses for each
class. The three classes Deffacts, Deffunction and Defglobal are small and are already pretty much
specialized, so this transformation and its corresponding path can be omitted.

Finally, the third candidate is the application of the ABSTRACTION meta-pattern transformation
for these three classes of the JESS system. This cannot be performed because of a violation of the
preconditions based on the source-code features for this part of system.

In this context, this work presents a metric-based approach to guide the choice of useful
transformations. In the current experiments, the compiled catalogue of OO metrics and the proposed
transformation framework allowed us to detect design flaws in a system and improve its design quality
through applicable meta-pattern transformations.

12. RELATED WORK

Related work spans across several research areas, particularly OO reengineering and OO quality
estimation. Basili et al. [39] and Briand et al. [40] showed that most of the metrics proposed by
Chidamber and Kemerer [29] are useful to predict the fault-proneness of classes during the design
phase of OO systems. In the same context, Li and Henry [36] showed that maintenance effort could be
predicted from combinations of metrics collected from the source code of OO components.

The reengineering of OO software using transformations to improve its quality has been
addressed by several researchers. Some techniques involving the decomposition of class hierarchy
transformations in smaller modifications are proposed by Casais [51] and Opdyke [27]. In [51], a set
of primitive update operations that can be used to decompose class modifications are enumerated.
The completeness and correctness issues are presented, but not formally addressed. Similar work has
been conducted by Opdyke [27]. He introduced the notion of behavior-preserving transformations
named refactorings. A set of low-level refactorings is used to decompose high-level refactorings
without introducing new errors into the system and modifying the program behavior. Preservation
of the program behavior for each low-level refactoring is guaranteed when some preconditions are
verified. A tool called The Refactoring Browser [52] was created using these transformations in the
SmallTalk environment. Recently, Tokuda and Batory [53] indicated that programs can automatically

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

358 L. TAHVILDARI AND K. KONTOGIANNIS

be reengineered using design patterns. In this work, the authors proposed transformations that can
implement some design patterns. Most of the efforts in this research direction are concentrated on the
definition of transformations and their implementation.

Several authors have addressed the particular problem of class hierarchy design and maintenance.
In their work, transformations are typically used to abstract common behavior into new classes. Work in
the context of the Demeter System has addressed the design of class hierarchies using an optimization
process [7]. The objective function used in the optimization process is a global class hierarchy metric
that measures the overall complexity of the class hierarchy. This work is therefore a first step in using
metrics to guide the choice of useful transformations. Godin and Mili [54] proposed the use of concept
(Galois) lattices and derived structures as formal frameworks for dealing with class hierarchy design or
reengineering that guarantee maximal factorization of the common properties including polymorphism.
The GURU tool [8] deals with the refactoring of methods and class hierarchy in an integrated manner.

More recently, some techniques have been developed with the specific goal of identifying
restructuring opportunities. Kang and Bieman [55] sketched an approach to address the restructuring
of the programs in a procedural paradigm. Their restructuring operations are applied to two design-
level models in the form of graphs, namely the input–output dependence graph (IODG) and module
interconnection graph (MIG), and decisions are guided by objective criteria. Simon et al. [56] presented
a generic approach to generate visualizations supporting the developer to identify candidates for only
four refactorings: move method, move attribute, extract class, and in-line class based on a metrical
distance measure between two entities which supports the measurement of cohesion. Tourwé and
Mens [57] tackled a similar problem by using logic meta programming (LMP) as a technique to
support state-of-the-art software development. The main difference between our metric-based approach
and their logic-based approach is that metrics are subject to interpretation whereas their detection
technique is strict. The approaches are thus clearly complementary, since some bad smells are subject
to interpretation as well, whereas others are more strict.

13. CONCLUSIONS

This paper presented a reengineering process model and a transformation framework. The process
model focuses on the specification of soft-goal requirements for the target migrant system and a list of
software transformations that have a positive impact on such requirements.

The reengineering framework focuses on the identification of error-prone code using metrics and the
selection of the appropriate transformations that have the potential to enhance the target qualities and
requirements for the new system. Specifically, we have investigated the use of OO metrics for detecting
potential design flaws and for suggesting potentially useful transformations for correcting them.

Initial experiments with this reengineering strategy have demonstrated the feasibility of the approach
and its usefulness. Also, the experiments indicate that the approach can help a designer or programmer
to repair or maintain a software system in an incremental and localized way by suggesting proper
software transformations. Furthermore, this strategy can be used to prevent loss of maintainability
during evolution altogether or restore it through reengineering.

A direction for future work is to investigate the use of metrics with context and domain specific
information. This may enable us to refine the selection of appropriate transformations by eliminating
those that are not relevant or do not contribute towards the selected qualities being improved.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 359

ACKNOWLEDGEMENTS

This work was funded by IBM Toronto Laboratory—Center for Advanced Studies (CAS), and by the Natural
Sciences and Engineering Research Council (NSERC) of Canada. The authors wish to thank the anonymous
reviewers whose constructive criticism and feedback helped to improve this manuscript.

REFERENCES

1. Tahvildari L, Gregory R, Kontogiannis K. An approach for measuring software evolution using source code features.
Proceedings IEEE Asia-Pacific Software Engineering (APSEC), Aoyama M, Poo DCC (eds.). IEEE Computer Society
Press: Los Alamitos CA, 1999; 10–17.

2. Tahvildari L, Kontogiannis K, Mylopoulos J. Quality-driven software reengineering. Journal of Systems and Software,
Special Issue on: Software Architecture—Engineering Quality Attributes 2003; 66(3):225–239.

3. Tahvildari L, Kontogiannis K. On the role of design patterns in quality-driven reengineering. Proceedings 6th European
Conference on Software Maintenance and Reengineering (CSMR’02), Gyimothy T (ed.). IEEE Computer Society:
Los Alamitos CA, 2002; 230–240.

4. Tahvildari L, Kontogiannis K. A software transformation framework for quality-driven object-oriented reengineering.
Proceedings International Conference on Software Maintenance (ICSM 2002), Antoniol G, Baxter I (eds.). IEEE Computer
Society: Los Alamitos CA, 2002; 596–605.

5. Brown W, Malveau R, McCormick H III, Mowbray T. Anti-Patterns: Refactoring Software, Architectures, and Projects in
Crisis. Wiley: Chichester, 1998.

6. Ciupke O. Automatic detection of design problems in object-oriented reengineering. Proceedings IEEE Technology of
Object-Oriented Languages and Systems (TOOLS), Firesmith D (ed.). IEEE Computer Society Press: Los Alamitos CA,
1999; 18–32.

7. Lieberherr KJ, Bergstein P, Silva-Lepe I. From objects to classes: Algorithms for optimal object-oriented design. IEEE
Journal of Software Engineering 1991; 6(4):205–228.

8. Moore I. Automatic inheritance hierarchy restructuring and method refactoring. Proceedings of the ACM 11th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Coplien J (ed.). ACM
Press: New York, 1996; 235–250.

9. Riel AJ. Object-Oriented Design Heuristics. Addison-Wesley: Reading MA, 1998.
10. Woods SG, Quilici AE, Yang Q. Constraint-Based Design Recovery for Software Re-engineering. Kluwer: Boston MA,

1998.
11. Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Reading MA, 1999.
12. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley: Reading MA, 1995.
13. Baxter I, Pidgeon C. Software change through design maintenance. Proceedings International Conference on Software

Maintenance, Harrold MJ, Visaggio G (eds.). IEEE Computer Society Press: Los Alamitos CA, 1997; 250–259.
14. Finnigan PJ, Holt RC, Kalas I, Kerr S, Kontogiannis K, Müller HA, Mylopoulos J, Perelgut SG, Stanley M, Wong K.

The software bookshelf. IBM Systems Journal 1997; 36(4):564–593.
15. Miller HW. Re-engineering Legacy Software Systems. Digital Press: Boston MA, 1998.
16. Patil P. Migration of procedural systems to object oriented architectures. Master’s Thesis, University of Waterloo, Waterloo,

Ontario, Canada, 1999.
17. Sneed H, Nyary E. Down-sizing large application programs. Journal of Software Maintenance: Research and Practice

1994; 6(5):105–116.
18. Chung LK, Nixon BA, Yu E, Mylopoulos J. Non-Functional Requirements in Software Engineering. Kluwer: Norwell MA,

2000.
19. Aho AV, Sethi R, Ullman J. Compilers: Principles, Techniques, and Tools. Addison-Wesley: Reading MA, 1988.
20. Garlan D, Kaiser GE, Notkin D. Using tool abstraction to compose system. IEEE Computer 1992; 25(6):30–38.
21. Oman P, Hagemeister J. Constructing and testing of polynomials predicting software maintainability. The Journal of

Systems and Software 1994; 24(3):251–266.
22. Parnas DL. On the criteria to be used in decomposing systems into modules. Communications of the ACM 1972;

15(12):1053–1058.
23. Tahvildari L. Quality-driven object-oriented reengineering framework. Doctoral dissertation, University of Waterloo,

Waterloo, Ontario, Canada, 2003.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

360 L. TAHVILDARI AND K. KONTOGIANNIS

24. Pree W. Meta patterns—a means for capturing the essentials of reusable object-oriented design. Proceedings of the
European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science, vol. 821),
Tokoro M, Pareschi R (eds.). Springer: Heidelberg, 1994; 150–162.

25. Braude EJ. Software Engineering: An Object-Oriented Perspective. Addison-Wesley: Reading MA, 2001.
26. Bauer M. Analyzing software systems using combinations of metric. Proceedings of the ECOOP Workshop on Experiences

in Object-Oriented Re-Engineering (Lecture Notes in Computer Science, vol. 1743), Moreira A, Demeyer S (eds.).
Springer: Heidelberg, 1999; 170–171.

27. Opdyke W. Refactoring object-oriented framework. Doctoral dissertation, University of Illinois, 1992.
28. Tahvildari L, Singh A. Categorization of object-oriented software metrics. Proceedings IEEE Canadian Conference on

Electrical and Computer Engineering, El-Hawary ME (ed.). IEEE Service Center: Piscataway NJ, 2000; 235–239.
29. Chidamber SR, Kemerer CF. A metrics suite for object-oriented design. IEEE Transactions on Software Engineering 1994;

20(6):476–493.
30. Etzkorn LH, Bansiya J, Davis C. Design and code complexity metrics for OO classes. Journal of Object Oriented

Programming 1999; 12(1):35–40.
31. Henderson-Sellers B. Object-Oriented Metrics: Measures of Complexity. Prentice Hall: Englewood Cliffs NJ, 1996.
32. McCabe T. A complexity measure. IEEE Transactions on Software Engineering 1976; 2(4):308–320.
33. Bansiya J, Davis C, Etzkorn L. An entropy-based complexity measure for object-oriented designs. Theory and Practice of

Object Systems 1999; 5(2):111–118.
34. Hitz M, Montazeri B. Chidamber and Kemerer’s metrics suits: A measurement theory perspective. IEEE Transactions on

Software Engineering 1996; 22(4):267–271.
35. Hitz M, Montazeri B. Measuring coupling in object-oriented systems. Object Currents 1996; 1(4):124–136.
36. Li W, Henry S. Object-oriented metrics that predict maintainability. Journal of Systems and Software 1994;

23(2):111–122.
37. Bieman JM, Kang BK. Cohesion and reuse in an object-oriented system. Proceedings of the ACM SIGSOFT Symposium

for Software Reusability, ACM SIGSOFT Software Engineering Notes, Samadzadeh MH, Zand MK (eds.). ACM Press:
New York, 1995; 259–262.

38. Etzkorn LH, Davis C, Li W. A practical look at the lack of cohesion in methods metric. Journal of Object Oriented
Programming 1998; 11(5):27–34.

39. Basili VR, Briand LC, Melo WL. A validation of object-oriented design metrics as quality indicators. IEEE Transactions
of Software Engineering 1996; 22(10):751–761.

40. Briand LC, Morasca S, Basili VR. Defining and validating measures of object-based high-level design. IEEE Transactions
of Software Engineering 1999; 25(5):722–743.

41. Reengineering Tool for Java (RET4J). http://www.alphaworks.ibm.com/tech/ret4j [November 2001].
42. Datrix Metric Reference Manual, Version 4.1. http://www.iro.umontreal.ca/labs/gelo/datrix [August 2000].
43. Java Expert System Shell (JESS). http://herzberg.ca.sandia.gov/jess/ [November 2003].
44. Forgy CL. Rete: A fast algorithm for the many pattern/many objects match problem. Artificial Intelligence 1982;

19(1):17–37.
45. NetBeans JavaDoc. http://javadoc.netbeans.org/ [February 2004].
46. NetBeans IDE. http://www.netbeans.org/ [February 2004].
47. Eclipse Ant Package. http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ant.core/ [June 2002].
48. Apache Ant. http://ant.apache.org/ [February 2004].
49. Eclipse JDT Core Package.

http://www.eclipse.org/documentation/html/plugins/api/org/eclipse/jdt/core/package-summary.html [June 2002].
50. Mamas E. Design and implementation of an integrated software maintenance environment. Master’s Thesis, University of

Waterloo, Waterloo, Ontario, Canada, 2000.
51. Casais E. An incremental class reorganization approach. Proceedings of the European Conference on Object-Oriented

Programming (ECOOP) (Lecture Notes in Computer Science, vol. 162), Madsen L (ed.). Springer: Heidelberg, 1992;
114–132.

52. Roberts D, Brant J, Johnson R. A refactoring tools for SmallTalk. Theory and Practice of Object Systems 1997;
3(4):253–263.

53. Tokuda L, Batory D. Evolving object-oriented designs with refactorings. Proceedings IEEE 14th International Conference
on Automated Software Engineering (ASE’99), Hall RJ (ed.). IEEE Computer Society Press: Los Alamitos CA, 1999;
174–181.

54. Godin R, Mili H. Building and maintaining analysis-level class hierarchies using galois lattice. Proceedings of the ACM
8th Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Paepcke A
(ed.). ACM Press: New York, 1993; 394–410.

55. Kang BK, Bieman JM. A quantitative framework for software restructuring. Journal of Software Maintenance: Research
and Practice 1999; 11(4):245–284.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

IMPROVING DESIGN QUALITY USING META-PATTERN TRANSFORMATIONS 361

56. Simon F, Steinbrückner F, Lewerentz C. Metric based refactoring. Proceedings 5th European Conference on Software
Maintenance and Reengineering (CSMR’01), Sousa P, Ebert J (eds.). IEEE Computer Society Press: Los Alamitos CA,
2001; 30–38.

57. Tourwé T, Mens T. Identifying refactoring opportunities using logic meta programming. Proceedings 7th European
Conference on Software Maintenance and Reengineering (CSMR’03), van den Brand M, Gyimothy T (eds.). IEEE
Computer Society Press: Los Alamitos CA, 2003; 91–100.

AUTHORS’ BIOGRAPHIES

Ladan Tahvildari is an Assistant Professor in the Department of Electrical and Computer
Engineering at the University of Waterloo, Canada. She received her BSc degree (with
Honors) in the area of Software Engineering from Iran University of Science and
Technology at the Department of Computer Engineering in 1991. Having worked in
industry for six years, she returned to school and received her MASc and PhD from the
University of Waterloo in 1999 and 2003, respectively. Her research interests include
software engineering, software evolution, reverse engineering, quality-based software
reengineering, and software architecture. She is the Program Co-Chair for STEP 2004
and the Workshop Chair for WCRE 2004. She was the Publicity Chair for WCRE 2003.

Kostas Kontogiannis is an Associate Professor in the Department of Electrical and
Computer Engineering at the University of Waterloo, Canada. He is also a Visiting
Scientist with the Centre for Advanced Studies at the IBM Toronto Laboratory.
He received his PhD degree from McGill University in 1996. Together with his research
group, he investigates technologies to migrate legacy software to object-oriented and
network-centric platforms. His specific topics of interest include techniques and tools
for source code representation, quality preserving source code transformations, and
techniques for the integration of Web services. He was the recipient of the 2002 IBM
University Partnership Program Award. He was the General Chair for STEP 2003, and the
Program Co-Chair for IWPC 2001.

Copyright c© 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; 16:331–361

	1 INTRODUCTION
	2 A CLASSIFICATION OF OO DESIGN FLAWS
	3 QDR FRAMEWORK
	4 META-PATTERN TRANSFORMATIONS AS DESIGN MOTIFS
	5 ROLE OF DESIGN FLAWS IN THE QDR FRAMEWORK
	5.1 Key classes heuristic (KCH)
	5.2 One class--one concept heuristic (OC2H)

	6 OO METRICS SUITE
	7 IMPACT OF APPLYING META-PATTERN TRANSFORMATIONS ON METRICS
	8 A MODEL FOR A SIG REPRESENTATION
	9 A TRANSFORMATION SELECTION ALGORITHM
	10 A PROTOTYPE FOR THE QDR FRAMEWORK
	10.1 Pre-process components
	10.2 Analysis components
	10.3 Post-process components

	11 CASE STUDIES
	11.1 Time and space complexity
	11.2 Impact of applied transformations on soft-goals
	11.3 Discussion on the proposed metric-based approach evaluation

	12 RELATED WORK
	13 CONCLUSIONS

