The Journal of Systems and Software 100 (2015) 149-166

The Journal of

Contents lists available at ScienceDirect

stems and

& Software

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Extracting REST resource models from procedure-oriented service
interfaces

@ CrossMark

Michael Athanasopoulos *, Kostas Kontogiannis

School of Electrical and Computer Engineering, NTUA, Athens, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 5 February 2014

Received in revised form 12 August 2014
Accepted 20 October 2014

Available online 29 October 2014

During the past decade a number of procedure-oriented protocols and standards have emerged for mak-
ing service-offering systems available on the Web. The WS-« stack of protocols is the most prevalent
example. However, this procedure and message-oriented approach has not aligned with the true poten-
tial of the Web’s own architectural principles, such as the uniform identification and manipulation of
resources, caching, hypermedia, and layering. In this respect, Resource Oriented Architectures based on
the REST architectural style, have been proposed as a possible alternative to the operation-based view of
service offerings. To date, compiling a REST API for back-end procedure-oriented services is considered
as a manual process that requires as input specialized models, such as, service requirements and behav-
ioral models. In this paper, we propose a resource extraction method in which service descriptions are
analyzed, using natural language processing techniques and graph transformations, in order to yield a
collection of hierarchically organized elements forming REST resources that semantically correspond to
the functionality offered by the service. The proposed approach has been applied as a proof of concept
with positive results, for the extraction of resource models from a sizable number of procedure-oriented

Keywords:

REST

Software reengineering
Service oriented architectures

Web Service interfaces that have been obtained from an open service directory.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Service-oriented computing has attracted significant attention
as a paradigm for building interconnected software systems. In this
paradigm, services are typically modeled as a set of procedural
operations that encapsulate the offered functionality into distinct
software units. Among all the models and frameworks that have
been proposed for developing and integrating such software units,
the WS-« stack of protocols has emerged as the de-facto standard,
covering a wide spectrum of specification, deployment, and remote
access concerns (W3C, 2002; OASIS, 2010). It is of no surprise that
the WS-« stack of protocols not only received significant attention
since its inception but also, served as the predominant program-
ming paradigm for implementing, deploying and, orchestrating
services in distributed networked environments. However, these
protocols do not fully leverage the potential of the Web’s funda-
mental architectural principles, as they consider the Web mostly
as an infrastructure-level platform for global messaging, service
access and, use (Pautasso et al., 2008; Adamczyk et al., 2011).

* Corresponding author. Tel.: +30 2107722477.
E-mail address: athanm@softlab.ntua.gr (M. Athanasopoulos).

http://dx.doi.org/10.1016/j.jss.2014.10.038
0164-1212/© 2014 Elsevier Inc. All rights reserved.

At the same time, the Web’s global adoption and universally
accepted system-wide properties and architectural traits, led a
number of researchers and practitioners to look closer into the
Web Architecture model in order to examine whether useful
architectural abstractions could be identified, and whether these
abstractions could be reused in the domain of service-oriented
computing. The Representation State Transfer (REST) architectural
style (Fielding, 2000), contains the key principles and con-
cepts that were utilized for designing the WWW. In REST, the
key information abstraction is a resource, which corresponds to
any piece of information that can be named (Fielding, 2000). A
resource can be accessed and manipulated through a fixed set of
actions with well-defined and uniform semantics across all the
resources.

As the proliferation of service computing increases to new
platforms and devices, a key problem that emerges is provid-
ing different access paradigms to service capabilities. One such
paradigm is resource-orientation, and it is considered important
due to its architectural traits. The motivation behind the work
presented in this paper, is to provide to software engineers an
approach to assist them towards identifying the primary ele-
ments by which they can acquire a resource-oriented API, using
as input service specifications presented in a procedure-oriented
form.

dx.doi.org/10.1016/j.jss.2014.10.038
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.10.038&domain=pdf
mailto:athanm@softlab.ntua.gr
dx.doi.org/10.1016/j.jss.2014.10.038

150 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

1.1. Resource-orientation and procedure-orientation

In the software engineering community there is a long stand-
ing discussion on the traits and benefits of resource-orientation
and procedure-orientation as suitable architectural paradigms for
service computing. Even though there is no definite answer to
this discussion, and each architectural paradigm has its own mer-
its and uses, procedure-orientation is considered as the defacto
standard for service-oriented computing. However, it is recognised
that there is a wealth of applications, as well as client-side com-
ponents, that can benefit from a resource-oriented view of service
capabilities. In this respect, a number of recent studies (Guinard
et al., 2012; Pautasso et al., 2008; Pautasso and Wilde, 2009) indi-
cate that at the architecture level, resource-orientation and REST,
provide a significant capability towards addressing a number of
important service computing requirements such as, ease of under-
standing, implementation and invocation simplicity, extensibility
and, interoperability. It has also been argued that resource-oriented
service design assists on addressing interface complexity issues in
amore scalable way than the RPC interaction model (Vinoski, 2002;
Feng et al., 2009). This is achieved by substituting the specific and
separate intra-service protocols that RPC promotes, with REST’s
uniform interfaces. Additionally, when compared to procedure-
oriented service interfaces, RESTful interfaces demonstrate a higher
level of loose coupling as identified by examining various aspects of
service design (Pautasso and Wilde, 2009). Finally, services exposed
in a resource-oriented fashion can benefit from the properties
of RESTful architectures such as, intermediate caching and the
serendipitous and creative reuse of exposed resources, through the
utilization of standard protocols (e.g. HTTP) and open standards
(e.g. URI) (Vinoski, 2008).

Apart from architectural aspects of the procedure-orientation
vs. resource-orientation discussion in service design, there are also
considerations on the implementation level with regard to adopt-
ing one of the two paradigms. It has been argued (Vinoski, 2002)
that the RPC interaction model imposes interface complexity and
coupling, which contribute to the utilization of typically heavy-
weight platforms (e.g. WS-x stack implementations) in order to
support service realizations. However, to the fairness of RPC-based
platforms, these have been developed for, and tend to address, a
wealth of complex integration and life-cycle requirements (e.g.
security, transaction management), for which resource-oriented
frameworks currently provide limited solutions. On the other hand,
given their context, RESTful HTTP services are typically based on
open standards and can be implemented using standard Web tech-
nologies. In this respect, recent studies indicate that the time
performance and message size of RESTful Web services are bet-
ter than their SOAP and XML based counterparts (Markey and
Philip, 2013; Castillo etal., 2011). Furthermore, with respect to soft-
ware engineering practice, studies indicate that RESTful services
are more maintainable on the server side, than the corresponding
SOAP based services (de Oliveira et al., 2013), and RESTful HTTP
services are easier to compose than SOAP based services (Li et al.,
2012). Furthermore, new generation applications such as seman-
tic Web applications, and applications that utilize linked data can
benefit from having a RESTful API (Battle and Benson, 2008). Even
though, RPC-based service orientation has its own benefits and
traits for transaction-heavy systems, resource-orientation is gain-
ing significant attention for next-generation Web applications.

Based on the above, it comes as no surprise that the num-
ber of REST-like APIs is shown to increase (Jiang et al., 2012;
Leotta et al., 2012) even though these APIs are characterized by
a varying conformance to REST’s constraints (Renzel et al., 2012;
Maleshkova et al., 2010), ranging from HTTP-tunnelled RPC to fully
hypermedia-enabled RESTful interfaces. However, this increase
indicates a noticeable trend towards aiming for resource-oriented

exposure of service capabilities in addition to the procedure-
oriented approaches which still provide a predominant style for
Web APIs. In order to assess the level of maturity of an API with
regard to REST, models such as the Richardson Maturity Model
(Fowler, 2009) have been proposed.

1.2. Problem description and scope

In order to design a REST API, the first and fundamental step
is to devise a resource model. A resource model is composed of a
collection of entities, a classification of these entities into cate-
gories, such as containers, container elements, atomic elements, as
well as a collection of relationships between these entities. Nev-
ertheless, architects that opt for REST often face the challenge
that the RESTful interfaces they have to design, either address
functional requirements expressed in procedure-oriented terms,
or have to encapsulate existing procedure - oriented functionality.
In this respect, the problem of extracting RESTful resource mod-
els has been recently examined in the literature and a variety of
approaches have been proposed. Most approaches proposed so far,
rely on domain experts and on information models that are used
by architects to devise a REST API. Such information models take
the form of detailed requirements specifications, service behav-
ioral models and data schema specifications. More specifically, in
Laitkorpi et al. (2006) and Laitkorpi et al. (2009) a collection of
specialized UML models that abstract structural and behavioral
properties of service interfaces is used as input to compiling a
resource model and consequently generating a REST API. Simi-
larly in Liu et al. (2008) the input to compiling a resource model
takes the form of E-R diagrams, class diagrams, documentation and
requirements specifications. In Upadhyaya et al. (2011) language
ontologies are utilized as elements to drive the compilation of a
resource model while in Strauch and Schreier (2012) and Kennedy
et al. (2011) wizard-like processes, driven by the user, are used to
manually draft a resource model.

In this paper, we attempt to address this problem by proposing
aresource model identification method that is based on the analy-
sis of standard IDL service description models that are either readily
available, or are easy to create. A service description model spec-
ifies the signatures of the service operations such as their names,
parameters, and return types. For example, in the Web Services
domain a service description is denoted by a WSDL specification
file.

Here, we focus on services that follow the remote proce-
dure call interaction model and whose interfaces are specified
through WSDL documents which either explicitly use the RPC
binding style, or conform to procedure-oriented designs such as
the document/literal wrapped pattern (OASIS, 2010). Since WSDL
descriptions can specify various aspects of a service interface, the
proposed approach focuses on the portType element of a WSDL
document, where service operations are specified, and the corre-
sponding input and output message specifications (i.e. operation
parameters). The output of the resource extraction process is a
hierarchical model of resource types which captures the primary
informational entities that should be present in a RESTful API for
the service being analyzed. Each extracted resource type is asso-
ciated with one or more CRUD operations for which there is a
direct mapping to HTTP methods. However, it should be noted
that the resource models extracted by the approach presented in
this paper, do not address the rest of the concerns that a complete
REST API specification addresses, such as resource representations,
media types, hypermedia and caching. We have developed fur-
ther techniques that address certain of the above concerns and
can be combined with the resource extraction approach to provide
enriched API specifications. However, these aspects are out of the
scope of this paper.

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 151

In order for aresource extraction method to be of practical value
in a production environment, we consider three design require-
ments namely: (a) automation: require as little user involvement
as possible, (b) implementation-independence: do not require avail-
ability of source code, database schemas and generally anything
more than a machine readable description of the procedural inter-
face, and (c) efficiency: require that the processing time per service
should be low, and thus allow for the extraction process to be
incorporated in an interactive, human-driven software engineering
activity.

A resource extraction process that meets the above require-
ments can be useful in a number of practical contexts and scenarios.
Resource extraction is a primary aspect of a service interface
adaptation method. More specifically, in scenarios where reimple-
menting and maintaining existing functionality imposes significant
risks and costs, service interface adaptation is a viable solution so
that, alternative paradigms such as REST can be supported. Addi-
tionally, service interface adaptation is required in contexts where
service implementations are decoupled from service specification
and assembling, such as in the context of Service Component Archi-
tecture (SCA). In this respect, an SCA assembler may need to expose
an existing procedure-oriented service through a REST API for a
component, transparently to the implementation.

Furthermore, resource extraction, along with further extrac-
tion techniques (e.g. representation extraction), can used to
provide a head-start when migrating existing functionality to new
implementations. Even when the final implementation includes
extensions or refactorings of the exposed functionality, an auto-
matically generated resource-oriented view of the migrant system,
acquired early in migration process, can improve the overall pro-
ductivity (e.g. through allowing top-down development) as well
as provide insights to architects and developers as to the details of
the possible resource types to be considered. Finally, since resource
extraction provides a decomposition of the exposed functionality
of a service primarily through CRUD operations against informa-
tional entities, it can be used in the areas of service classification,
service discovery and composition where identifying the concep-
tual entities that underlie a service interface is a primary challenge.

The proposed approach utilizes Natural Language Processing
(NLP) techniques in order to analyze service description model ele-
ments, and yield intermediate models of terms, we refer to as Term
Models. These Term Models are gradually transformed using graph
analysis techniques and model transformations, in order to yield
a Core Conceptual Entities Model and ultimately a Resource Types
Model. Consequently, the Resource Types Model can be used by a
transformer to yield a WADL (Hadley, 2006) specification skele-
ton. This approach differs from existing methods as it requires only
service signatures as input, as opposed to specialized behavioral
and requirements service specification models.

The rest of the paper is organized as follows: Section 2 provides
an introduction to the basic concepts of REST, outlines the pro-
posed approach, and provides a small service that will be used as
a running example to better illustrate the steps of the proposed
approach. Section 3 presents the steps of the proposed resource
extraction process and the corresponding techniques. Section4
presents a case study of applying the approach for evaluation pur-
poses to the Amazon'’s Simple Storage Service (S3), a widely used
service the functionality of which is specified and offered both by a
procedure-oriented and by a resource-oriented interface. Section 5
presents accuracy and performance evaluations through a series
of experiments conducted on collections of procedure-oriented
Web Services included in a public service directory on the Web, as
well as, a productivity impact assessment analysis, conducted in an
industrial software engineering environment. Also, Section 5 exa-
mines threats to validity and identifies limitations of the approach.
Section 6 discusses prior work in the areas related to the design

of REST APIs and the adaptation of procedure-oriented services to
RESTful designs. Finally, Section 7 concludes the paper and provides
pointers for future research.

2. Background and process outline
2.1. Resource-oriented and REST architectures

REST is an architectural style proposed by Fielding (2000). REST
is defined as a co-ordinated set of the following architectural con-
straints: Client-Server, Stateless, Cache, Uniform Interface, Layered
System, and the optional Code-on-Demand.

The first three constraints are also prevalent to the Web since its
early architecture, while the next three were defined and applied as
the Web’s architecture evolved. The Uniform Interface constraint in
particular, is regarded as a central feature in REST and it is composed
of four sub-constraints, namely (a) identification of resources, (b)
manipulation of resources through representations, (c) self-descriptive
messages and (d) hypermedia as the engine of application state
(HATEOAS). Through further analysis of the sub-constraints a set
of twelve design criteria can be identified to facilitate the real-
ization of RESTful designs, as discussed in Athanasopoulos et al.
(2011). In this context, REST resources are defined as primary data
elements representing abstractions of information that capture dis-
tinct semantics. In RESTful Web services, HTTP is typically utilized
as the communication protocol, along with the URI standard that
serves as a universal mechanism to express resource identifiers.
More specifically, the HTTP’s methods (e.g. POST, GET, PUT, DELETE)
are utilized to manipulate resources (e.g. create, retrieve, update,
delete) and HTTP URIs are used to identify and locate informational
resources.

2.2. RESTful services at a glance

Fig. 1 provides an example of abookstore service offered through
both a procedure-oriented and a resource-oriented API. The left
hand side of the picture depicts the use of a procedural service
API of a bookstore service where a customer is able to search a
catalog, create an order, add and remove items from the order
and, submit an order. In the procedure-oriented paradigm, ser-
vices are invoked by name using appropriate parameters. On the
right hand side of Fig. 1, the same scenario is illustrated, but at
this time is based on a resource-oriented architecture. In such
a context, instead of services, there are resources such as, book-
store, catalog, orders collection, order item and order status. These
resources are manipulated using standard HTTP operations such
as, GET, PUT, POST and DELETE. For example to access a bookstore,
a GET request is issued on the /bookstore URI. This HTTP request
returns, along with a 200 OK code, the representation of the book-
store resource which contains hypermedia elements that link to
the catalog and orders resources through respective URIs (/book-
store/catalog and /bookstore/orders) and link relations. Similarly, in
order to create a new order item resource, a POST request can be
issued from the client to the server pertaining to the orders col-
lection resource. The result of this HTTP request is a 201 Created
code along with the representation of the newly created order
resource identified by the URI /bookstore/orders/1/ and contain-
ing links to the order items collection resource (orderltems) and
the order status resource (orderStatus). Similarly, in order to add
an item in the newly created order, a POST request is issued on
the /bookstore/orders/1/items (orderltems resource), and in order
to update the status of the bookstore order, a PUT request can
be issued to the orderStatus resource, referenced by the /book-
store/orders/1/status/ URIL As it can be seen from the example, the
use of a resource model is a fundamental step for using REST

152 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166
Bookstore ® Bookstore
sen"ce sew‘c
T T
! searchCatalog(*Kazantzakis",...) i ' GET /bookstore ! T
r ie] : 200 OK =: <calalog uri="/bookstore/catalog" rel="catalog™/>
i \ ! | <orders uri="/bookstore/orders” rel="orders">
e L L L L SR 4 Koo < |
! ! : T </bookstore>
i createNewOrder("customer123",...) i i GET /book /catalog/?query E 9
1 i . <order> <item uri="7bookstore/cataloglitem/12345"
] L] i 200 OK ! rel="item"> ... </item>
\ H w‘s‘l;:z:g::‘::d>wswme”23<l Ié.. __________________________ _,' <item uri="bookstore/cataloglitem/67891*
 Eisle stk ettt 4 ' | rel="item®> ... <fitem>
! ! \,
' 1 <lorder> 1 H
1 1 </catalog>
| addlitemToOrder("0671202324",...) ! T POST /bookstore/orders i
+ » ! - » <order>
H 1 <catalogld>/bookstorelcatalog/item/ 2|01 Created, Location: hllp:l/...lbookslorelordersl? = . 3
'ﬁ ___________________________ _: 12345</catalogld> “~- —-_—— e <nl_e.ms uri= Ibo:)kslorelordersllmems
' 1 <quantity>1</quantity> ' \x._l rel="orderltems” /> .
: : H oa H <if>taw: ug:a {bookslorg/ord;}rglllstalus
" . <lorderltem> POST /bookstore/orders/1/items i rel="orderStatus">pending</status>
! additemToOrder(*0684825546", ...) J forderltem: \,\ | s
' "1 201 Created, Location: http://.../book 1/items/1
' H <orderitem> . s
e et 4 <catalogld>/bookstore/catalogfitem! R ' o 12345¢/
\ H 67891</catalogld> : T catalogle>
]] <quantity>2</quantity> <quantity>1</quantity>
! removeltemFromOrder("0671202324",...) ! K\ POST fbookstore/order/1fitems i
<lorderltem> » i="7book rel="order”
E :E 201 Created, Location: hitp/...b Ttoms/2 <order uri="/bookstore/orders/1” rel="order" />
___________________________ J it J
<« 1 ! ~—— <orderltem>
i H : H 7891</
i . 3 . ' | DELETE fbookstore/orders/1fitems/1 | catalogld>
! submitOrder("12345%) ! E :i <quantty>2</quantity>
r ”l N e
: : :$ ________ 30_4_ -o Sonient i <order uni="/bookstore/orders/1" rel="order" />
:(_ ___________________________ H R mERSESSES S SSSSRE RS SSansSs 1 <lorderitem>
1 1
il 1
[submitted H\ PUT /bookstoreforders/1/status !
' 200 OK il
Rommmmmmmmm s g i
i
submitted
‘ : 1 = -

Fig. 1. Bookstore example: WS-x and RESTful alternatives.

and exposing a service using a REST APIL. Other issues include, the
determination of hypermedia controls and link relations, which is
outside the scope of the resource extraction phase and the focus of
this paper.

extraction process that is decomposed into five basic steps, with
respective models being produced. These steps are outlined below.

Step 1: Signature Models generation: Signature Models are
introduced as means to represent procedure-oriented service inter-
faces in a normalized form, decoupling thus the analysis process
from the specific IDL used for describing a service. This step aims
to make the proposed approach applicable to other IDLs, beyond
WSDL.

Step 2: Operation Terms Models and Service Terms Models genera-
tion: Once the Signature Models have been created, a collection of
natural language processing techniques, and information extrac-
tion algorithms are utilized to (a) identify important service
operation name terms, (b) characterize the identified terms based

2.3. Running example

In order to better illustrate the resource extraction process that
we propose in this paper, we employ a running example of a sim-
plified, yet realistic, service interface of an ordering management
system (SimpleOMS). In a nutshell, SimpleOMS contains opera-
tions that can be used to search a catalog for items to purchase
(searchCatalog), create and manage orders (createOrder, getOrder,
removeOrder, submitOrder), add and remove items to these orders
(addOrderitem, removeOrderltem), retrieve the user’s submitted
orders (getSubmittedOrders), and pay orders (checkout). Also, Sim-
pleOMS supports independent shipping of order items (e.g. as
soon as they become available, or sent by different manufactur-

Table 1
Running example: service operation signatures.

. . . . R Operation Input Output
ers). Therefore, using the service, a user can retrieve both an item'’s -
shipping status (getOrderltemShippingStatus), as well as the order’s createOrder auth:Auth, order:Order result:string

hippi hole (i ifvi hether it has b getOrder auth:Auth, result:Order
shipping status asawhole (i.e. specifying w ether it as been par- orderld:string
tially or fully shipped) (getOrderShippingStatus). All 11 SimpleOMS removeOrder auth:Auth, -
operations along with their signatures are listed in Table 1. orderld:string
submitOrder auth:Auth, -
;P : orderld:string
2.4. Resource extraction process outline 2ddOrderltem auth:Auth, result:string
item:Orderltem
The resource extraction process, is a multi-step process that removeOrderltem auth:Auth, result:string

orderld:string,
itemld:string
auth:Auth,
orderld:string

takes as input a set of elements included in a machine-readable
interface description of the service (e.g. a WSDL document), and

. . . getOrder ShippingStatus
produces a model of potential resource types along with contain-

result: ShippingStatus

ment relationships between these types. The proposed approach is checkout auth:Auth, -
based on Model-Driven Engineering (MDE) principles, and includes orderld:string,

steps that gradually transform and abstract, service interface payment:Payment
description models fed as input, to resource models, produced as searchCatalog auth:Auth, result:

p N put, P query:string ArrayOfCatalogltem
output. The resulting model denotes not only the resource types getSubmittedOrders auth:Auth result: ArrayOfOrder
but also, a hierarchy of these types, which when combined with getOrderltem auth:Auth, result: ShippingStatus
action semantics (e.g. HTTP methods) can serve as RESTful service ShippingStatus orderld:string,

interaction points. Fig. 2 depicts a high-level view of the resource

itemld:string

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 153

Operation Terms
Model Generation

Signature Model
Generation

Service Terms
Model Generation

Core Conceptual Entities
Model Generation

Resource Types
Model Generation

Operation Intention
Normalization

Fig. 2. High-level view of the resource extraction process.

on their role in each service operation and, (c) identify relations
between the terms as a first step of creating term hierarchies.

This step aims to transform low-abstraction Signature Mod-
els that describe the interface of a service, to higher-abstraction
Operation Terms Model (OTM) that contain typed terms and
relationships, representing high-level views of each operation’s
semantics, as these can be identified by the name of the opera-
tion. Information derived from each Operation Terms Model for a
given service is then combined in order to produce a single, amal-
gamated and more abstract service-level model, which we refer to
as the Service Terms Model (STM).

Steps 3 and 4: Core Conceptual Entities Model generation and
operation intention normalization: The generated Operation Terms
Models and the corresponding amalgamated Service Terms Model
are then utilized to (a) construct a model we refer to as Core Con-
ceptual Entities (CCEs) and, (b) to identify dependencies between
these entities. The CCEs represent the fundamental resource ele-
ments of the target REST interface. Similarly, the dependencies
between Core Conceptual Entities reflect hierarchical relationships
between resources elements. In this respect, the Core Concep-
tual Entities and their relationships provide the structure for the
output resource model. In addition to CCE model generation, in
Step 4, service operations are also classified into a set of nor-
malized intention categories using information from the respective

an appropriate Signature Model loader is provided for it. Signature
Models have a simple metamodel where each service signature (s;)
has a name (s; .name) which is equal to the operation name, a set of
input (s;.input) parameters and a set of output (s; . output) param-
eters. A parameter (p) has a name (p.name), a type (p.type) and
a multiplicity indication (p.multiplicity). Also, a parameter’s type
can be simple (i.e. a primitive type) or composite (a structure of
simple or complex types). Finally, parameters may also be tagged
either as application data or metadata (p . class), based on whether
they represent information that is directly used for delivering the
functionality provided by the operation (e.g. orderld in getOrder
operation listed in Table 1) or, they represent information that
is not directly used by the operation (e.g. authentication tokens,
timestamps). This information is used in the resource extraction for
the evaluation of heuristic rules. Since typical service IDLs such as
WSDL do not provide information for the parameters of the service
operations, a TF-IDF (Salton et al., 1975) categorization score is com-
puted, in which parameters play the role of terms and signatures
play the role of documents. More specifically, for each parameter p
of every signature s;, for all operation signatures S, the categoriza-
tion score is computed by the Cps ;¢ function as follows:

Cor—is(D, 8i» S) = pf(p, si) x isf(p, si, S)

where parameter frequency (pf) is defined as:

2, (p e s;.input Us;.output) A (substring(p.name, s;.name))

pf(p7 Si) = 17
0,

Signature Model and Operation Terms Model. The normalized
intention categories denote whether a procedure-oriented service
can be classified into one of the following categories: Constructor,
Destructor, Accessor, Mutator, Query, Investigator and, Process. This
classification is important for associating resource identifiers with
HTTP verbs (e.g. POST, GET, PUT, DELETE).

Step 5: Resource Types Model Generation: The extracted CCEs and
information on their associated operations is used to populate a
Resource Types Model (RTM). The generated RTM is the final product
of the resource extraction process.

In the following sections, we present each step of the process in
detail.

3. Resource extraction
3.1. Signature Models

Signature Models are introduced as a mechanism through which
service descriptions can be represented in a normalized way by
abstracting any specific syntax or structure details of the original
interface description language that is used as input. In this paper,
we use WSDL as input to generate a corresponding normalized
Signature Model. However any other IDL that exposes single ser-
vices as collections of operations could be easily supported, once

(p € s;.input U s;.output) A (—substring(p.name, s;.name)) (1)

otherwise.

and inverse signature frequency (isf) is computed by:
IS|
I{si € S : pf(p, s;) > 0}

Using a threshold Ty_;, a parameter p in a signature s; can be
categorized as follows:

isf(p, i, S) =log,

applicationdata, Cyp_iss(D, S;, S) > Tpp_isf

p-class =

metadata, Pps_ise(D, $i» S) < Tpp_isf
A zero value for Cyr_is(p, si, S) indicates that the parameter p
appears in all operation signatures (i.e. it cannot be considered spe-
cific to an operation) and therefore it can be assumed that it is a
metadata parameter. However, in order to also categorize as meta-
data very frequent parameters that may not be present as input
or output parameters in a limited subset of all operation signa-
tures, a positive value Ty, close to 0, can be used as threshold.
For the experiments presented in Section 5, Tys_jsr was set to 0.2. For
instance, in SimpleOMS, the orderld input parameter of the getOrder
operation (Table 1)is tagged as application data since Cyy_;sf(orderld,
getOrder, S) = 0.65, while the auth input parameter of the same
operation is tagged as metadata since Cyy_j;{(auth, getOrder, S) = 0.
The construction of a Signature Model for a WSDL-based inter-
face consists of two steps: (a) loading, and (b) refinement. During
the loading step, the WSDL document is processed and a first
version of Signature Models is created through direct mappings

154 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

[B Intent | B Concept | [B Qtljalifier |[B Selector |
|] []

| B Affection | |E Specification| [Qualification| | E Selection |
{] []]

T

B Relationship

Fig. 3. Operation Terms Model metamodel elements.

between WSDL portType definitions denoting service operations
and, Signature Model elements. During the refinement step, the
Signature Models are updated based on whether the interface
being adapted follows a particular style (e.g. RPC, Document), pat-
tern (e.g. document/literal wrapped pattern), profile (e.g. WSI-BP
OASIS, 2010) or, other conventions. For example, for interfaces
that follow the document/literal wrapped-document pattern,
“unwrapping” of request/response structures takes place in order
to model the actual signature of the operation more accurately. In
any case, Signature Models are merely abstractions to decouple the
resource extraction process from the service description language
used. In this respect, Signature Models do not affect the core steps
and logic of the extraction process itself. These core steps and logic
will be discussed in more detail in the following sections.

3.2. Operation Terms Models and Service Terms Models

Signature Models provide a normalized way of represent-
ing a procedure-oriented interface. However, resource extraction
requires a modeling mechanism that could denote service seman-
tics, as collections of terms, that reflect granular information as to
what the meaning of an operation is. In this respect, we introduce a
set of modeling elements, we refer to as term types and relationships
types. Terms are substrings or concepts that can be automatically
extracted by analyzing an operation name and parameters, using
NLP techniques. The models capturing this information are referred
to as Operation Terms Model (OTM) and Service Terms Model
(STM). Operation Terms Models aim on capturing information on
a single operation’s functionality semantics. The proposed Opera-
tion Terms Model metamodel contains four term types and, four
relationship types. Fig. 3 depicts the OTM metamodel (i.e. term
types and term relationship), Tables 2 and 3 provide descriptions
of the metamodel terms and relationships along with examples
from SimpleOMS, while Fig. 4 depicts an instance of an OTM for the
operation getOrderltemShippingStatus. Similarly, the Service Terms
Model is defined as a labeled multigraph that amalgamates in one
single model all the OTM information denoted for each operation

Table 2
OTM term types.
Term Description Examples
Intent Denotes the intention of the addOrderltem:
interaction. Typically, the Intent is a Intent(add)
verbal part of the operation name. getSubmittedOrders:
Intent(get)
Concept Denotes an element or an attribute getSubmittedOrders:
with significant informational content Concept(orders)
for the logic the operation implements.
Qualifier Configures or augments the semantic getSubmittedOrders:
qualities of Concepts. Qualifier(submitted)
Selector Mediates for a projection action getSubmittedOrders

between two Concepts (filtering,
selection, etc.).

ByDate: Selector(by)

Operation Terms Model:
Operation: getOrderItemShippingStatus
Parsing/splitting: get order item shipping status
Intent: get(VB)
Concepts: order(NN), item(NN),
shipping(NN), status(ININ)
Relationships:
- Affection: get AFFECTS status
- Specifications:
order SPECIFIES item
item SPECIFIES shipping
shipping SPECIEIES status

Fig. 4. Example Operation Terms Model.

of the service. The STM contains nodes that map to operation-level
terms with weighted annotations representing types and weighted
edges that map to relationship types. The primary role of a Service
Terms Model is to serve as a means for moving from terms and
relationships, to service entities and dependencies. An example
Service Terms Model for the SimpleOMS service is depicted in Fig. 5.

The generation of the OTMs and STM is discussed below in more
detail.

3.2.1. Operation Terms Model generation

(A) Tokenization: We focus our analysis on service operation
names which are treated as identifiers with significant informa-
tional content. In a procedure-oriented service interface, operation
names offer semantically rich information as to functionality pro-
vided by the operation. In other words, operation names are usually
defined in a way that they can provide a short answer as to what the
operation does. Typically, a tokenization task requires that one or
more delimitation rules be applied to a sequence of characters (e.g.
whitespace, punctuation, etc. applied in natural language texts).
Such tokenization accuracy may be further improved by compu-
tational linguistics techniques that group more than one token
together so that they can be treated as single tokens (for instance
treating “Los” and “Angeles” as one token “Los Angeles”). These
techniques are usually referred to as collocation extraction tech-
niques (Manning and Schutze, 1999). A more general but closely
related problem in software engineering is that of identifier split-
ting and expansion (Madani et al., 2010; Corazza et al., 2012). By
reviewing related literature (Erl, 2008; Brown, 2012) and docu-
ments related to guidelines and recommended practices in service
operation naming (National Cancer Institute, 2009; Rodriguez et al.,
2011; Bean, 2009) and by examining a large number of service
descriptions for recurring patterns, we compiled a list of fre-
quently used operation name construction patterns. Consequently,

submit
orders _,
% QUALIFIES.(1)

submitted

create AFFECTS (1)

AFFECTS (1) TS-PLURAL (RFFECTS (1) T

TeMOVEFFECTS (1)~ order <-AFFECTS 1)~ get

AFFECTS (1)
AFFECTS (1BPECIFIESSEBCIFIES (LAFFECTS (2)
AFFECTS, (1)

checkout search

ItSMECIFIES (1) (shipping status

Fig. 5. Service Terms Model graph of SimpleOMS. Weights represent the total num-
ber of occurrences of a relation between two entities, from all OTMs for the service.

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 155

Table 3
OTM relationship types.

Relationship Description

Examples

Affection (Intent) affects (Concept)
Specification (Concept) specifies (Concept)

Qualification (Qualifier) qualifies (Concept)
of a Concept by a Qualifier.
Selection (Concept) selects (Concept)
Selector.

Binds the Intent of an operation to one of the Concepts, indicating
upon which Concept the intention of the interaction is applied.

It can be defined between two Concepts where the Concept specifying
narrows the type spectrum of the Concept specified.

Indicates a configuration or an augmentation of the semantic qualities

Indicates a projection action between two Concepts defined by a

getSubmittedOrders: get (Intent) affects orders
(Concept)

addOrderItem: order (Concept) specifies item
(Concept)

getSubmittedOrders: submitted (Qualifier)
qualifies orders (Concept)

getSubmittedOrders ByDate: date (Concept)
selects orders (Concept)

we evaluated each pattern’s frequency by processing a set of 867
services containing 12,918 operations, (please see Section 5.1 for
more information about the dataset), in order to assess its rela-
tive significance, and our findings indicated that upper Camel Case
(e.g. GetOrders) and lower Camel Case (e.g. getOrders) patterns, are
the most widely adopted naming paradigms (77.7% of the cases).
Mixed Camel Case with Uppercase (e.g. getClosestATMs)is also a fre-
quent pattern (13.4%) even if the respective delimitation rules are
more complex. Another frequent pattern is explicit delimitation
(e.g. get_submitted_orders) (9.3%), presented mostly as underscore-
based or dot-based operation name delimitation. Finally, detection
of prefixes and suffixes could be also useful, to better split about
1% of operation names. Presumably, combinations of the above
patterns are often used in constructing operation names.

Utilizing the acquired empirical knowledge obtained by the
above analysis of operation name construction patterns, we
developed a tokenization algorithm, that operates in two steps:
(a) identify patterns an operation name conforms to (e.g.
dot/underscore-based explicit delimitation, prefix/suffix existence,
upper/lower/mixed Camel Case), and (b) perform the tokeniza-
tion according to pattern-specific delimitation heuristics. The
algorithm is applied in a recursive manner until no further
pattern is identified, with explicit delimitation patterns being
examined and tokenized first. For instance, for the operation
CreditCard_getExpirationDate the algorithm first identifies that the
operation name follows the (underscore-based) explicit delimita-
tion pattern and splits the operation name into two parts as defined
by the delimitation character. Then, patternidentificationis applied
again for each part. The upper Camel Case pattern is identified
for the first part, and the lower Camel Case for the second part.
Camel Case delimitation rules are applied to each part and tokens
are acquired which do not follow any patterns and therefore the
algorithm terminates.

We evaluated the accuracy of the tokenization algorithm using
a simple random sampling method on the initial dataset of 12,918
operation names and for sample size n = 388 the tokenization accu-
racy was evaluated to 96.64%. The tokenization error, evaluated
to 3.36%, is attributed to the following factors: (a) problematic
input; for instance operation GetUnAuthorized is tokenized as get,
un, authorized, (b) pattern absence; for instance, operation names
additemtolist follows neither the explicit delimitation nor any
case-related pattern, (c) pattern misidentification; for instance,
operation getATMbyLocation is identified as mixed lower Camel
Case with Uppercase and it is tokenized as get, at, mby, location.

Getting back to our running example, all operations contained
SimpleOMS were tokenized through the lower Camel Case rule.

(B) Grammatical tagging: The tokens acquired through the
tokenization algorithm are sequences of characters without any
metadata attached for denoting the role of each token in a sequence
of tokens (i.e. a service or operation name). A lightweight and
effective way to achieve this is to utilize Part-Of-Speech (POS) or,
grammatical tagging (Voutilainen, 2003).

POS tagging provides information on a term’s grammatical
usage in a sentence. For example, POS tagging indicates whether

a term is used as a finite verb, a gerund, a noun, a preposition, a
conjunction, and so on. In our approach, we utilize POS taggers
to grammatically annotate tokens and then translate the assigned
tag sequences into OTMs. Specifically, each sequence of operation
name tokens is submitted to a tagger as a natural language sen-
tence and the tagger annotates the tokens using the Penn Treebank
Il (PTB) tag set Bies et al., 1995. Additionally, in order to achieve
a high quality POS tagging, we combined the tagging results of
different POS tagging tools and namely, OpenNLP, Lingpipe and
Stanford POS taggers, into one single result, through simple meta
POS tagging techniques. Specifically, the meta POS tagging is per-
formed by applying majority voting or the Basic Ensemble Method
(BES) (Perrone and Cooper, 1992; Rokach, 2010) in two levels. First,
on a per tagger basis, tag sequences using all available models for
English - that is, two for OpenNLP, three for Lingpipe, and 4 for
Stanford - are fused by majority voting. The three resulting POS
tag sequences, one corresponding to each tool, are fused again
by majority voting, so that a single sequence of tags is acquired.
Our experimentation indicated that the above meta POS tagging
technique provides higher overall accuracy when compared to any
single tagger result which was evaluated to 11.46% on average.

The usage of POS tagging is an efficient alternative to incor-
porating machine learning techniques directly in the extraction
process, which would require a domain-specific training process
and respective datasets. Also, there is a wide collection of trained
NLP-based models available, for a variety of languages, which
makes the approach more flexible and language-agnostic.

(C) Classification of Terms and Relationships: The next step is
to classify each POS tagged term into one of the four term types,
and establish relations between these terms, obtained from the
domain model illustrated in Fig. 3. For each operation name (i.e.
tokens sequence), the sequence of grammatical tags is processed
by a set of pattern-based rules to construct one term per token. The
patterns are defined by the position of each tag in the sequence.
Table 4 provides the list of OTM term generation patterns and
corresponding examples. Then, a second set of rules is applied to
generate relationships between the terms. Table 5 provides the set

Table 4

OTM terms generation examples.
Category Description Example
Only nouns Assumed “get” as Intent ItemInfo: Intent(get)
Single verb Verb becomes Intent getOrder: Intent(get)

Multiple verbs

Leading verb becomes
Intent

runPackageBuild:
Intent(run)

Noun Noun is mapped to Concept removeOrder:
Concept(Order)
Unclassified Unclassified becomes createDMC: Concept(DMC)
Concept
Adjective Adjective becomes getTopSongs:
Qualifier Qualifier(Top)
Participle Participle becomes getSubmittedOrders:
Qualifier Qualifier(Submitted)
Selector Preposition becomes getSubmittedOrders

Selector

ByDate: Selector(By)

156 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

Table 5
OTM relationships generation example.
Pattern Relationship Example
[%]C1 Ca[] Concept C; specifies removeOrderltem: Order
Concept C; specifies Item
[*]QCT*] Qualifier Q qualifies getTopSongs: Top qualifies
Concept C Songs
[\ SIC[S] Intent [affects Concept C getOrdersByDate: get
affects Orders
[*]C1S[*]Ca[*] Concept C; selects Concept getOrdersByLocation:

G Location selects Orders

of OTM relationship generation rules. For example, as illustrated
in Table 5, if a Concept term C; directly precedes another Con-
cept term C5, then a Specification relationship is created emanating
from the first term C; and leading to the second term C,. Similarly,
Fig. 4 depicts an OTM instance for the SimpleOMS operation name
getOrderltemShippingStatus.

3.2.2. Service Terms Model generation

The first version of OTMs is utilized to construct a correspond-
ing STM. This is achieved by merging the individual OTM models to
an aggregate, service-level model. Specifically, STM is a multigraph
that is composed of nodes that represent OTM terms, and edges
that represent relationships between these terms. The STM nodes
are annotated with weighted tags in the form of (term type : # of
term type occurrences) denoting (a) the corresponding term types
of the node and (b) the number of occurrences of the each type. For
example, in Fig. 5 which depicts the generated STM for SimpleOMS,
the term order is annotated (not shown) as {(Concept: 8)}, mean-
ing that there are 8 occurrences of this term, tagged as Concept,
in all OTMs for this service. Similarly, every relationship between
two terms in the STM is also annotated with the number of occur-
rences of this relationship for the same terms, in all the OTMs for the
given service. For example, in Fig. 5, the Specification relationship
between the order and item terms is annotated with frequency 3,
indicating that the relationship originates from three OTMs, and
specifically from the OTMs generated for the addOrderltem, the
removeOrderiltem, and the getOrderltemShippingStatus operations.
Using these occurrence counters, frequencies can be calculated and
used by a refinement process that improves the accuracy of the
created OTMs and STMs, as discussed in the next section. Finally,
during STM generation an extra type of relationship named Has-
Plural is added, which connects nodes that represent the same
concept in singular and plural formats.

3.2.3. Operation Terms Model refinement

The refinement step is necessary because OTMs are generated
without considering the global picture of all operations contain-
ing a term, while the generated STM should provide an overall
and consistent view of all terms and relationships by allowing the
reassignment of the initial classification of terms, by applying a
feedback loop. In particular, the refinement step analyzes the anno-
tations in the STM, and reassigns types to the OTM model terms. For
instance, assuming that the term order appears in 8 OTMs, and that
it has been classified initially as Concept in the 7 out of the 8 OTMs,
then the feedback loop by examining the STM could reclassify the
term order as Concept in the one outlier operation, yielding thus a
revised OTM for this operation where order is now classified only
as Concept. This reclassification is based on a refinement algorithm
that takes into account both frequency thresholds and, the feasi-
bility of the reclassification in the examined OTM. The refinement
process terminates when no further refinements are required or,
the maximum number of iterations is met. More specifically, during
arefinement loop, we apply the following criteria in order to select
a subset of the OTMs collection as refinement candidates. More

specifically an OTM is selected when: (a) STM annotations indicate
that the OTM’s Intent term is not classified as an Intent term in
more than the 1/3 of the OTMs that it exists in, (b) STM annotations
indicate that less than the 50% of an OTM'’s terms are classified
in accordance to the majority of the classifications of the terms.
For instance, supposing that the addOrderltem operation’s terms
are classified as add: Intent, order: Qualifier and Item: Selector and
that the SimpleOMS STM annotations are add: (Concept: 7), order:
(Concept : 7), (Qualifier: 1), item: (Concept : 2), (Selector : 1), then the
OTM would be selected for refinement since 2 out of its 3 terms
are not classified in accordance to the majority of the classifica-
tions as indicated by STM annotations of the respective STM nodes.
Once candidate OTMs are selected, the following refinement strat-
egy is applied. First all OTM terms are examined as potential Intent
terms and based on the relative Intent frequency computed from
the respective STM nodes’ annotations the best one is selected as
Intent. Second, once the intent is selected and possibly reclassi-
fied, all terms are aligned to the majority of the classifications for
each term based on the STM annotations and their relationships
are reclassified accordingly. Finally, the feasibility of the refine-
ment is examined based on structural consistency criteria (e.g. an
OTM cannot contain more than one Intent terms). Our experimen-
tation indicates that the OTMs-STM refinement loop contributes
an improvement of 7.83% to the accuracy of the generated terms
models. Specifically, we evaluated the correctness of the gener-
ated individual operation models by comparing the accuracy of
the generated OTMs before and after applying the STM refinement
feedback loop. In this respect, in order to evaluate the refinement
technique a proportional-to-size (PPS) sampling method was cho-
sen, to account for the merging of OTMs into a service-level model.
For a population of 470 services and after regarding as size the
number of the operations each service contains, we followed a
systematic approach in computing a sample of 370 operations (con-
fidence level 95%, confidence interval 5%). For the examined sample,
the accuracy without the feedback loop was 80.54%, while the accu-
racy of the produced term models when the process incorporated
the feedback loop, was increased to 88.37%.

3.2.4. STM graph reduction

After the Operation Terms Model refinement loop converges and
the corresponding Service Terms Model is generated, the process
continues by applying a graph-processing algorithm that merges
nodes together, looking for patterns in node and edge annotations,
so that the intended meaning of terms as potential resource enti-
ties could be better extracted. More specifically, when node A in a
STM is classified as a Concept and it Specifies a node B which is also
classified as a Concept, and B is not Specified by any other node, and
at the same time, node A does not have any other outgoing rela-
tionships, then A and B are merged together. For example, even if
shipping and status may constitute valid terms in the context of the
SimpleOMS interface, they should be considered together for bet-
ter representing semantically meaningful concepts for the service’s
capabilities.

The new node retains all the incoming and outgoing edges to the
rest of the STM’s nodes. Fig. 5 depicts the STM graph for SimpleOMS
after the node-merging step. The nodes shipping and status match
the merging conditions mentioned above and they are collapsed
into a single node (i.e. shipping status).

3.3. Operation intention normalization

Assignificant issue addressed in this step is the determination of
what the general intention of a client invoking an operation is. This
is done by categorizing each operation into a predefined collection
of intention categories: Constructor, Destructor, Accessor, Mutator,
Query, Investigator or, Process (i.e. not categorized in any of the

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 157

above categories). These categories are used to indicate interaction
intention semantics. Thus, in this step of the resource extraction
process we aim to define a mapping between an operation (e.g.
getOrderShippingStatus) to one of these categories (e.g. Accessor).

The normalization technique is based on information from
the operation’s signature (input and output parameters) as
modeled through its Signature Model, the corresponding OTM,
and, pre-compiled associations between specific Intent terms and
normalization categories. For example, an operation cannot be cat-
egorized as Accessor if it returns no output in the Signature Model,
or get indicates access and remove indicates destruction. The pre-
compiled associations were computed using the corpus of 12,918
service operations by constructing the respective OTMs and obtain-
ing the 150 most frequent Intent terms. These 150 Intent terms
accounted for the 90.55% of all operations and they were manu-
ally assigned to Intention categories excluding the Process category
since an operation is assigned to the Process category when it can-
not be categorized to any of the rest. Then, using WordNet (Miller,
1995) the initial sets of Intent representatives were further enriched
by aggregating verb hypernym synonym sets of the Intent repre-
sentatives. Specifically, for each Intent representative hypernym
synonym sets whose intersection with the set of representatives
was non-empty were selected and examined in order to be added
to the representatives set.

The normalization technique provides increased accuracy with
minimal computational overhead. We examined the results of the
operation intention normalization by following a simple random
sampling method on a corpus of 12,918 operations, evaluating
accuracy to 88.02%. The primary contribution of the information
acquired through intention normalization in the resource extrac-
tion process is in defining and evaluating resource type generation
heuristics as it will be discussed in Section 3.5.

3.4. Core conceptual entities extraction

Although the terms contained in Operation Terms Models and
Service Terms Models provide the required vocabulary to denote
resources, they reside on a lower abstraction layer than the
intended REST API resources. This distinction between terms and
resources is sometimes difficult to identify; however, it is a sig-
nificant aspect of the resource extraction process and leads to the
introduction of an intermediate layer, that of Conceptual Entities.
A way to illustrate the aforementioned distinction is by consid-
ering the fact that the cardinality between terms and resources
can be one-to-many, since the number of entities that stem from a
term depends on the context in which each term is used. For exam-
ple, in SimpleOMS STM (Fig. 5) although the term shipping status
appears only once, both orders and order items have shipping sta-
tuses, which are two semantically distinct pieces of information
and should therefore relate to two distinct resource types. Addi-
tionally, since resources are regarded as interconnected elements,
either structurally or by the means of hypermedia, an important
aspect of the resource extraction process is to identify a hierar-
chy among them. More specifically, resource extraction focuses on
one of the most significant and common relationships between
resources, which is the existential dependency. Aresource R; is exis-
tentially dependent to a resource R; when it cannot exist without
resource R; already existing. Such dependencies are not present in
STMs; however they should exist in a resource types’ model.

For the reasons discussed above, we introduce the intermedi-
ate hierarchical model of Core Conceptual Entities (CCEs) based on
which, the final resource types’ model will be rendered. The CCE
model is defined as a labeled directed acyclic graph (DAG) each
node of which has a mandatory label element that maps to a STM
term. Furthermore a CCE node can be a parent of one or more
CCE nodes through directed dependency edges. CCEs are identified

Rule 1

affects
3'1 *.

Selects nodes that do

Notation Rule 2

STM node of term n,
having primary type z,
participating in
operation category c

y exists
> STM edge of type y

affects

Nintent
process

Selects intent nodes
normalized as process
not affect other terms | | that affect other nodes

Aconcept bconcepl
* *

Selects nodes (primary type: concept) that
participate in “has plural” relationships, either as
plural or as singular term

not exists Rule 3

y
P STM edge of type y

has plural

STM edge cardinalities:

* any
i.* itoany

Fig. 6. CCE element selection rules. The rules are applied on the STM multigraph to
select important conceptual elements.

by dependency paths from source nodes (i.e. nodes with zero in-
degree) and each path defines a distinct entity. Finally, CCE nodes
are characterized by a set of metadata that are computed based
on the features of the underlying terms in the STM. For example, a
CCE originating from a term that has an incoming Has-Plural rela-
tionship is tagged as plural. Other such metadata are singular and
filter.

The extraction of CCEs is composed of two steps: element selec-
tion and dependency resolution. The element selection step specifies
the subset of STM graph nodes that will be used as the corre-
sponding CCE nodes. The dependency resolution step produces a
dependency relation between the selected nodes. Element selec-
tion is performed by combining certain service-agnostic rules that
operate on the Service Terms Model. Dependency resolution is per-
formed by mapping STM relationships to CCE node dependencies
and algorithmically resolving ambiguity. Both the element selec-
tion rules and dependency resolution algorithm are service and
application-independent.

Fig. 6 presents the set of selection rules used. For example, Rule
1 in Fig. 6, specifies that a STM node will be selected as a CCE node,
ifits primary type - that is, the term type with maximum frequency
for the node - is not a Selector and does not have an Affects relation-
ship with any other STM node. Similarly Rule 2 indicates that a STM
node will be selected as a CCE node, if its primary type is Intent, the
corresponding operation intention is categorized a Process and it
has an outgoing Affection relationship with one or more other STM
nodes.

Once CCE nodes have been selected from STM nodes, a depend-
ency resolution algorithm provides a hierarchical structure among
the CCE nodes. Algorithm 3.1 outlines this process. In lines 1-8 each
relationship between the selected STM elements is translated to a
dependency between the corresponding CCE graph nodes. Then,
the graph consisting of the selected elements and their dependen-
cies is examined for non-trivial strongly connected components.
A strongly connected component in a directed graph is a sub-
graph in which every node is reachable from every other node.
More specifically, the stronglyConnectedComponents function iden-
tifies all strongly connected components of the graph defined by
N and D using Tarjan’s algorithm (Tarjan, 1972), and collects all
non-trivial ones in the SCC collection. If the SCC collection is not
empty (|SCC>0]), the following resolution strategy is applied. First,
for each identified component and for each pair of inverse depend-
encies it may contain, the one with lower frequency is removed
(lines 10-15). The particular subgraph is checked again for strong
connectivity, and provided that it remains strongly connected, an
iterative process of dependency removal is applied (lines 16-21).
In each iteration, the dependency that occurs most frequently in
the component’s cyclic paths is removed. The goal of the algorithm

158 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

Fig. 7. Core Conceptual Entities Model for SimpleOMS.

is to remove as few dependencies as possible, respecting at the
same time the following empirical prioritization of dependency
significance: (a) in case of directly conflicting dependencies (i.e.
dependencies between two nodes with inverse direction) the least
frequent dependency will be removed as the least significant one,
(b) in case of indirect dependency cycles (i.e. strongly connected
components), the higher the number of cyclic paths a dependency
participates in, the less significant the dependency is regarded and
therefore it will be removed with higher priority. The extracted
CCE model for the SimpleOMS is depicted in Fig. 7 containing 9 CCE
nodes.

Algorithm 3.1 (CCE dependency resolution algorithm).

Require T: STM nodes, E: STM edges, N: selected CCE nodes

1: D« ¢ # empty dependencies set #

2: forallec Edo

3: if type(e) € {Has — Plural, Selects, Affects} then

4: D < DU {(stmToCCENodeMap(e . from), stmToCCENodeMap(e . to))}
5: else

6: D < DU {(stmToCCENodeMap(e . to), stmToCCENodeMap(e . from))}
7: end if

8: end for

9: while|SCC = stronglyConnectedComponents(N, D)| >0 do

10: for all s e SCCdo

11: for all d;, d; e Dy do

12: if d;.from=d; .to and d; . to =d; . from then

13: Dg < Ds \ {argmin(d; . frequency, d; . frequency)}

14: end if

15: end for

16: while s is strongly connected do

17: P < s.cyclicPaths # a path is a set of dependencies #

18: I« ﬂ Dy, ¥ p € P # intersection of dependencies in paths #
19: Ds < Ds\{iel:max(peP:iep)}

20: D' < D'UD;

21: end while

22: D<D

23: end for

24: end while

25: return DAG(N, D)

3.5. Resource types model

3.5.1. Modeling

The final step in the resource extraction processis the generation
of a Resource Types Model (RTM). The nature of a Web resource and
the question of what it represents, has been the subject of discus-
sion and debate in the Web architecture community (Berners-Lee,
2009). However, there are research efforts related to REST-based
service systems that attempt to formalize several aspects of RESTful
service systems using metamodeling frameworks (Selonen, 2011;
Schreier, 2011). Similarly to these approaches, we regard resources
as stateful informational elements that capture distinct semantics
and we introduce a simple, application-neutral hierarchical meta-
model for resource types. A diagrammatic view of the proposed
RTM metamodel is presented in Fig. 8. Specifically, in the pro-
posed Resource Types metamodel, an abstract ResourceType class
may have at most one resource as its owner, and it may own a

0.*

I E ResourceModel l H ResourceType Sibfetources
l—l’; = identifierTemplate 0.1
? owningResource

I [I |

B ContainerElement || E Container || E AtomicElement E QueryElement
7 idTemplate T name T name = parameterTemplate

Fig. 8. Resource types’ metamodel.

set of resources. Also, ResourceType attributes include a resource
identifier template that identifies resource type classes.

The resource identifier template is composed of resource identi-
fier fragments, which are either statically or dynamically (indicated
with brackets — please see examples below) instantiated at run
time. We define four concrete resource types, all of which stem
from the abstract ResourceType class. These resource types are
the following: A Container denotes a collection of resources of
the same kind and may be statically named. For example, /orders
represents a collection of order resources. A ContainerElement
denotes multiple resources of the same kind that belong to the
same Container resource, and that they have an identification
attribute that serve as a distinctive feature among each other. For
example, a [orders/{order.id} resource type represents resources
that are elements of an orders’ collection or, in other words,
individual order resources. AtomicElements denote resources that
represent statically-named informative entities or prefixed inter-
action points. For example, [orders/{order.id}/it shipping-status
represents the shipping status of an order resource which is also
a resource. An AtomicElement may be also used to represent high-
order processes attached to owner resources, or in other words
manipulation actions that go beyond the fixed set of actions that the
utilized communication protocol (e.g. HTTP) provides. For example,
Jvms| {vm.id}[reboot can be used to represent a resource-oriented
interaction point for managing the reboot capability of a virtual
machine resource. Finally, a QueryElement denotes resources that
are selections, projections and generally, parameterized views of
other resources based on combinations of parameters. For exam-
ple, Jorders/{ ? status, date} is a resource type that denotes a view
on the collection of orders, having a particular status and creation
date.

Furthermore, there are two resource type relationships defined
in the resource types metamodel, whose semantics escalate to the
resource instances: (a) is owner of which denotes an direct existen-
tial dependency between two resources types, and (b) is container
of which denotes a containment relationship between a Container
resource type and a respective ContainerElement.

3.5.2. Comparison to existing models

The metamodel proposed in Schreier (2011) includes a broad
collection of resource types. Even though there are several com-
mon concepts (e.g. ListResourceType as presented in Schreier (2011)
and Container resource type in our RTM metamodel), several of the
resource types in Schreier (2011) capture aspects that pertain to
the higher-level semantics of the provided functionality, the speci-
fied parameters as well as their values (e.g. ProjectionResourceType
or FilterResourceType). Such a detailed metamodel would proba-
bly require further information (e.g. runtime data) as input for the
extraction process. Additionally, being an attempt to model and
formalize concepts around REST, the granularity level of resource
types in Schreier (2011) is probably finer than the one required for
the resource extraction process. Closer to the granularity level of
our metamodel is the resource model profile proposed in Selonen
(2011) which was developed independently. Also, many of the
resource types defined in Selonen (2011) are similar to our RTM
metamodel with regard to their semantics. Nevertheless, there are

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 159

several differences that pertain to both the metamodeling defini-
tions as well as to further constraints defined in the context of the
resource model profile. For example, in Selonen (2011) Container
resources do not have Property subresources. Another difference is
that the QueryElement semantics are broader than the Projection
resource type. Furthermore, in Selonen (2011) there is no support
for resource types modeling high-level actions. Finally, another
differentiating factor with regard to constraints is that Projection
resources can be addressed to only by the GET method, whereas the
RTM metamodel regards QueryElement resources as full life-cycle
resources (e.g. they may be deleted).

Along with WADL and WSDL 2.0 which were the first to be pro-
posed for describing REST APIs, during the last few years, several
more formats have emerged (e.g. Swagger, ioDocs, RAML, API-
Blueprint), and are usually supported by tooling, as well as, are
surrounded by active communities. Most of these specifications are
proposed as means of providing out-of-band metadata for an API's
resources, available methods and representations and therefore,
they have underlying metamodels for capturing resource-oriented
interfaces. It should be noted though, that dependence on out-
of-band information may lead to deviation from REST’s Uniform
Interface constraint. Based on the fact that the approach presented
in this paper is focused on the extraction of resources models, the
target model of the extraction should be specified by a metamodel
that focuses on types of resources and on key structural relation-
ships between resources that can be used to organize them. In this
respect, abstracting away from implementation concerns and cou-
pling the approach to specific technologies, we chose to introduce a
simple and generic resource types metamodel as a modeling mech-
anism that fits better to the scope of the resource extraction process.
Nevertheless, the generated RTMs can be used to generate skele-
ton views of other formats, as it is demonstrated in Section4 by
generating WADL specifications.

3.5.3. Generation technique

The generation of the resource types model is based on the
CCE models and on supplementary information from the Signature
Models and term models (OTM and STM). The resource types model
(RTM) generation algorithm first associates each operation to a CCE,
and theniterates over the CCEs collection. For each CCE, one or more
resource types are created depending on the evaluation of gen-
eration heuristics that take into account the entity’s context and
the associated operations. The algorithm enforces the hierarchical
structure of the CCE model through resource type dependencies
using the two types of relationships discussed above (is owner of,
is container of). The association between CCEs and operations is
done by correlating Operation Terms Models to each CCE node and
its context. Then, for each CCE, the related operations are examined
with regard to their Signature Model and their normalized inten-
tion category. Information about an associated operation’s input
and output parameters, as well as, the metadata collected for the
CCE (e.g. a plural tag) are examined to determine the resource type
or types of the RTM metamodel that will be populated. The list of
generation rule heuristics used is provided in Table 6 and illustrated
as simplified GROOVE (Rensink, 2004) rules.

Fig. 9 presents the RTM that was automatically generated for
the SimpleOMS service. In the CCE model (Fig. 7), the orders CCE
node is tagged as plural and the orders — order CCE is tagged as
singular. This pattern leads to creating a Container resource type
(Jorders) and a ContainerElement resource type (/orders/{order.id})
associated by an is container of relationship, based on the first rule
in Table 6. In the case of order items however there is no “items”
(plural) CCE node, even if a similar Container-ContainerElement
pair should be generated. However, the second rule of Table 6 is
matched for the orders — order — item CCE, which takes into
account that the CCE is associated with the operation addOrderltem

Table 6
Resource types model generation rules.
Rule | Description | Rule
Rule 1: | A CCE tagged as
C/CE plural and its cor- CCEntity CCEntity
. . - plural owns singular
pair 1 responding singular
CCE are mapped to (Container}- <ortaner o Comaimergioment]
a Container - Con-
tainerElement pair.
Rule 2: | A CCE associated to
C/CE an operation normal- associated
pair 2 ized as Constructor ontainer-of{ ContainerElement
is expanded to a
C/CE pair.
Rule 3: | A CCE associated
: . CCEntity I Parameter
C/CE to an operation nor L'_Fre ate B
pair 3 malized as Acces- assodiated identifier
sor whose input in- includes
cludes an identifica- haslnpul
tion parameter for
the CCE is expanded - —
to a C/CE pair.
Rule 4: | A CCE tagged as fil-
Query | ter is mapped to a “S)i '
Element | Query resource type.
’ P
Rule 5: | Al CCEs un-
Atomic | matched by the
Element | previous rules.

which is normalized as Constructor. This fact leads to the creation
of a Container-ContainerElement pair for the item CCE node
(Jorders/{order.id}/item and [orders/{order.id}[item[{item.id}).
Another interesting case is the shipping status CCE node. There
are two paths leading to it on the DAG, therefore two CCEs are
identified, specifically orders — order — shipping status and
orders — order — item — shipping status. The first CCE is related
to getOrderShippingStatus operation but no generation heuristic is
matched. Therefore an AtomicElement resource type is created,
subordinate to [orders/{order.id} (Rule 5). The second CCE leads
also to the creation of an AtomicElement. However, when placing
the new resource type in the RTM hierarchy there are two resource
types that it could be related to, namely [orders/{order.id}[item
and /orders/{order.id}/item/{item.id}. In this case, the generation
algorithm examines whether there are operations related to the
CCE (e.g. getOrderitemShippingStatus) which require as input a
parameter that indicates an identification element for items and
relates the new resource type with the respective ContainerEle-
ment - as in our case - or, alternatively, with the respective
Container.

< orders| |4 catalog| |<> checkout

< submitted <> {order.id}

<> shipping status| |< item < submit

< {item.id} <> shipping status

Fig. 9. Extracted resource types model for SimpleOMS service.

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

QUALIFIESTT)
my

160
Operation Tokens POS tags Category
CreateBucket create bucket VB NN Constructor
DeleteBucket delete bucket VB NN Destructor
GetObjectAccessControlPolicy|get object access control policy |[VB NN NN NN NN|Accessor
GetBucketAccessControlPolicy{get bucket access control policy|VB NN NN NN NN|Accessor
SetObjectAccessControlPolicy |set object access control policy VB NN NN NN NN|M:
SetBucketAccessControlPolicy|set bucket access control policy{VB NN NN NN NN|Mutator
GetObject |get object VB NN Accessor
GetObjectExtended get object ded VB NN JJ Accessor
PutObject put object VBN NN Mutator
PutObjectinline put object inline VB NN NN Mutator
DeleteObject delete object VB NN Destructor
ListBucket list bucket VB NN Accessor
ListAllMyBuckets [tist all my buckets VB DT PRPS NNS _[Accessor
GetBucketLoggingStatus I_K_et bucket logging status VB NN NNNN [Accessor
SetBucketloggingStatus set bucket logging status VB NN NN NN Mutator
CopyObject |copy object VB NN Constructor

@

all

\\ list

QUALIFXES (1)
\w

N\

inling

AFFECTS. (1)
AFFECTFS (1) put

SPECIFIES (1)

AFFECTS (1) et

. Buckets Celete
AFFECTST1) AFFECTA(1)

HAS_PLURAL (1) = el

L object

Q 6.
bucket U'\UHtNgﬁenﬂsd

* SPECIFIES (2) SPECIFIES (2)
- access control policy N\
AFFEGTS (1) SPECIFIES (2)— . arrects fJECTS (1)
AFFECTSTR)
AFFECTS (2)
Ereate) $¥ecre.)

- copy
logging status AFFEGTS-(3 Jget

(b)

< (object.d)

+ logging status | [+ access control policy] [* Inline] [¢ access control policy] [* extended]

@

Fig. 10. Resource extraction for Amazon S3: (a) service operations with respective tokens, POS tags and intent normalization, (b) Service Terms Model, (c) CCEs model, (d)

automatically generated RTM.

4. Case study: Amazon S3

As a demonstration of the proposed approach we present a case
study by applying the resource extraction process to Amazon’s Sim-
ple Storage Service (S3) which is a real life online cloud based data
storage service. Amazon S3 offers a dual interface (i.e. a procedure-
oriented and a resource-oriented interface) which allows us to
better assess the extracted resource model compared to a real
life one. For our analysis, we used the latest S3 WSDL document
(2006-03-01), which is composed of 16 operations as depicted in
Fig. 10(a).

4.1. Signature and terms models

Once the Signature Models for S3 operations are created, the tok-
enization algorithm is applied to each operation in order to split the
operation’s name into tokens. Next, the tokens get annotated with
POS tags utilizing meta POS tagging by combining tag sets obtained
from three POS taggers namely, OpenNLP, Lingpipe and Stanford
POS. Consequently, for each operation, an OTM model is created
containing terms and relationships. The tokenization and POS tag-
ging results for the complete set of S3’s operations are presented
in Fig. 10(a). In parallel to the above the tool normalizes the oper-
ations’ intentions yielding the results presented in Fig. 10(a) (last
column). Subsequently, the 16 OTMs are merged and processed into
an aggregate STM depicted in Fig. 10(b).

4.2. CCEs and resource type model

The next step is to move from terms to significant, for the service,
conceptual entities. This is performed through the extraction of a
Core Conceptual Entities Model. The extracted CCE model for the
Amazon S3, is presented in Fig. 10(c). The model of CCEs is then
used in conjunction with resource type generation heuristics, to
construct the RTM for the service as depicted in Fig. 10(d). Finally,
Fig. 11 presents a WADL skeleton automatically generated from the
extracted RTM.

4.3. User involvement and evaluation

Presented with this output, the user may either accept it as is,
or modify it. For example, in the automatically extracted Resource
Types Model for Amazon S3 there is an owner relationship that can
be added between the /buckets/{bucket.id} ContainerElement and
the /object Container since, according to the service documenta-
tion, each bucket may contain one or more objects. The automatic
techniques were not able to extract this relationship which can
be added explicitly by the user. Also, two of the resource types
that were extracted (/buckets/all and /buckets/my), can be omitted
because they cannot be used to map any procedure-oriented inter-
action, nor do they have any subordinate resource types that could
be used for that purpose; therefore, they can be removed. In sum-
mary, for this service 9 out of the 11 extracted resource types were
correct (0.818 precision), and all 9 expected resource types were
identified (1.0 recall). Finally, RTM;,;;, an ontology-based similarity
measure which will be presented in the next section, was evalu-
ated to 0.636. Amazon S3 provides a well-defined, content-oriented
interface which is a good candidate for illustration purposes. How-
ever, a generalized assessment of the proposed approach, for a
wide collection of services, is discussed in the following sec-
tion.

5. Evaluation

In this section, we present results from evaluation experiments
we conducted in order to assess the accuracy of the obtained
results, and the performance of the extraction process using ser-
vices from the ProgrammableWeb open service directory. Our
evaluation experiments focus in four areas. The corresponding
results are discussed in the following sub sections. More specif-
ically, the first area of evaluation deals with the accuracy of the
intermediate steps of the resource extraction process as presented
in the previous sections. The results are depicted in Table 7. The
second area deals with the quality of the extracted resource mod-
els, as these were compared with models created by experts. For
this purpose, we have obtained a sample of 70 services that has

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 161

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:Application xmlns="http://wadl.dev.java.net/2009/02" xmlns:ns2="http://wadl.dev.java.net/2009/02/"
xmlns:xs="http://www.w3.0rqg/2001/XMLSchema">
<grammars>
<include href="RTMM.xsd"/>
</grarmars>
<resources>
<resource type="Container" path="/buckets/">
<method name="POST">

<request>
<doc title="Normalization for "CreateBucket": back-end operation"/>
</request>
</method>
<method name="GET">...</method>
</xesouxce>

<resource type="ContainerElement" path="/buckets/{bucket.id}/">
<param name="bucket.id" style="template" type="xs:string"/>
<method name="DELETE">
<request>
<doc title="Normalization for ":;DeleteBucket": back-end operation"/>
</request>
</method>

</resource>

<resource type="AtomicElement" path="/buckets/{bucket.id}/logging-status/">...</resource>
<resource type="AtomicElement" path="/buckets/{bucket.id}/access-control-policy/">...</resource>
<resource type="Container" path="/buckets/{bucket.id}/object/">...</xresource>

<resource type="ContainerElement" path="/buckets/{bucket.id}/object/{object.id}/">...</rescurce>

</resources>
</ns2:Application>

Fig. 11. WADL skeleton generated from the extracted Amazon S3 RTM.

800
09 700
08 RTM Similarity
07 RT Recall €00
06 RT Precision g S00 — Total
0s - £ - SMt
- RT F-measure -;400 - - Mt
o4 T e RTM Similarity E 500 :":‘Z'::';t
0.3
-.---- RTRecall 566 — ..RTMt
0.2
—-— RT Precision
o1 ——— RT F-measure 100
0
1] 10 20 30 40 50 60 0 200
Service size (number of operations) Service size (operations number)
Fig. 12. Evaluation of accuracy vs. service size. Fig. 13. Performance evaluation: resource extraction time.
Table 8
Experiments results: accuracy evaluation.
70 services sample Avg Min Max SD
served as input for. the compilation of 70 Res.ource Types Mod- Rt 0796 0375 1 0186
els by experts, which models then were considered as a golden RTprecision 0.785 0.409 1 0.191
standard for analysis purposes. The evaluation treated the process RTF_ measure 0.777 0.442 1 0.167
as an information retrieval problem and measured recall, preci- RTMjim 0.697 0.313 1 0.187
sion, F-measure, and ontological similarity between the resource Table o
model obtained by the process and the model drafted by the avle s R
N A K Evaluation of productivity impact.
experts. The results are depicted in Table 8 and Fig. 12. The
third area deals with the productivity enhancement by using Service R R (s) Ce G (s) le Ie
the extraction process versus manually drafting a comparable #1 9 142.1 36 568.5 75.0% 75.0%
resource model. The results are depicted in Table 9. The fourth #2 13 340.5 30 736.3 56.7% 53.8%
: : - #3 2 8.5 12 50.8 83.3% 83.3%
area deals with the time performance of the different steps of
h f . £ . e Th I depicted #4 6 56.5 15 98.2 60.0% 42.4%
F e process as a unctl'on of service size. The resu ts are .eplcte #5 12 11438 20 191.0 40.0% 3992
in Fig. 13. The following sections discuss these results in more
. Avg 63.0% 58.9%
detail.
Table 7
Evaluation of intermediate extraction steps.
Step Dataset Sampling method Sample size Accuracy
Tokenization 12918 op. Simple random 388 96.6%
Operation Terms Models generation 12918 op. from 867 serv. PPS & systematic 370 80.54%, 88.37% (feedback)

Intention normalization 12918 op. Simple random 388 88.02%

162 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

5.1. Experiments design and data set

Most of the approaches discussed in the related work Section 6,
require either information beyond a machine readable definition
of an interface, or require significant user involvement in the
resource discovery process. Furthermore, to our knowledge there
are no standard datasets available for resource extraction to be
used for a comparative assessment of the proposed approach. In
this respect, we have opted for a dataset acquired through the
ProgrammableWeb service directory by selecting SOAP-based ser-
vices with valid procedure-oriented WSDL interface descriptions.
Data collection was performed using a tool that was built for this
purpose. The tool used the directory’s API to collect entries for
SOAP-based Web Services and retained the ones that included
WSDL URIs in their descriptions. Then, the collected URIs were used
to retrieve WSDL documents, each of which was validated before
being added to the dataset. In this way, 867 valid WSDL documents
containing 12,918 operations were collected and they were used
for conducting evaluation experiments. The list of the 867 WSDL
URIs as well as further datasets used in the evaluation phases are
available online.!

5.2. Accuracy of intermediate extraction steps

The first set of evaluation studies relates to the accuracy of the
individual steps of the process. The results for this evaluation are
depicted in Table 7. More specifically, by using applicable sampling
methods for each step (Simple Random, PPS, Systematic), groups
of operations were selected from a total of 12,918 operations. The
results of each step of the automated process were evaluated by
experts, as to how close they were on artifacts that could manually
craft themselves. The results indicate that the intermediate models
are of high accuracy, with values ranging from 88% to 96.6%.

5.3. Accuracy of resource extraction process

The evaluation of the accuracy of the obtained resource model
was performed using a sample of 70 randomly selected WSDL
documents out of the initial set of collected WSDLs, excluding
single-operation services. The average service size for the set of
selected services was 11.73 operations per service (min: 2, max:
52, SD: 11.2), and it included services from several domains such
as e-commerce, cloud hosting, image processing, telecommuni-
cations, investments to name a few. Every selected service was
examined by two software engineers working independently, who
built respective Resource Types Models. The two manually built
RTMs for each service, were comparatively examined and merged
into a final model. The experts that participated in creating the
dataset had significant experience with the REST architectural style
and RESTful HTTP services. Due to limited expert person power in
our disposal, we limited the size of services interfaces to manually
analyze and process to a total of 70 service interfaces. Nevertheless,
a larger dataset could further improve the statistical significance of
the obtained results.

Since the proposed approach is an extraction process, we have
evaluated measures related to precision, recall and F-measure
for the extracted resource types, reporting average, minimum,
maximum and standard deviation values. Additionally, viewing a
Resource Types Model as an ontology of resources, the measure of
minimum weight maximum graph matching distance (MWMGM)
(David and Euzenat, 2008) defined for ontology distances, was
utilized for measuring extraction correctness when computed

T http://www.softlab.ntua.gr/~athanm/resourceExtraction

between the extracted models and the manually built ones. The
MWMGM distance is defined as a distance measure based on a dis-
similarity function § between ontological entities, which in RTMs’
case are the resource types. Specifically, we define RTM similarity
RTMg i, : E x S— [0, 1] as an evaluation measure for resource extrac-
tion techniques, where E is the set of extracted RTMs and S the set
of manually created RTMs, computed as follows:

n
Amwmgm(€;, S;)

RTMjpy = 1 — Zf

1
where n is the sample size, e; € E, s; € S and Apwmgm is the MWMGM
distance of a pair of RTMs. The dissimilarity function § : e; x s; — [0,
1] used for RTM;,,, is based on the Levenshtein distance between
resource type identifier templates, taking into account identi-
fier fragments. Also, the minimum weight maximum matching M
can be computed utilizing the Hungarian algorithm (Kuhn, 1955),
extended in order to deal with n x m cost matrices. RTM;,,, not only
evaluates the level of matching between individual resource types
but also takes into account the organization of RTMs, providing thus
a reliable accuracy assessment.

5.3.1. Recall, precision, F-measure, similarity

The section discusses results related to the accuracy of the pro-
duced Resource Types Model. More specifically, we evaluated the
resource type precision (RTpyrecision), Tesource type recall (RTyecqn),
resource type F-measure (RTg_megsure)» and Resource Types Model
similarity (RTM;,,) between the automatically extracted models,
and the manually crafted ones for a sample of 70 services and
by computing average, min, max and standard deviation values.
Table 8 depicts the results obtained from experiments by com-
paring the outcome obtained by the automated process and the
manually crafted models by experts for the sample services. In
summary, the average RT,..q; Was evaluated to 0.796, the aver-
age RTyrecision Was 0.785, the average RTr_measure Was evaluated to
0.777 and the average RTM;,, was 0.697. Given the diversity of
the randomly selected service definitions and the complexity of
the task, the accuracy of the proposed approach is considered very
positive. Another observation of our analysis is that, as service size
increases the values of all accuracy metrics decrease (Fig. 12). How-
ever, RT,qqq; decrease with a lower rate than the rest measures. This
is related to the fact that since as more operations in a service are
analyzed, more terms and relationships are added to the STM graph.
On the one hand, RT,; is primarily dependent to the CCE selec-
tion step whose performance is rather stable. On the other hand, as
more relationships are added to the STM, more dependencies are
created between CCEs, which may lead to the creation of imprecise
resource type hierarchies. These redundant hierarchies however
are usually easy to identify and the user can trim the RTM without
significant effort. Finally, it is noted that RTMj;,;,, which takes into
account the hierarchical aspect of the Resource Types Models has
consistently significant values and it can be used to demonstrate
how the level of accuracy for the resource extraction process varies
over service size.

5.3.2. Computational performance and scalability

Computational performance evaluation was based on applying
the resource extraction approach to the full set of the 867 services
(12,918 operations). Computational performance and scalability
was examined through measuring the resource extraction time
(REX;) and its decomposition into Signature Model construction
time (SM;), term models generation time (TM;), STM refactoring
time (STM;), CCE extraction time (CCE;), and RTM generation time
(RTM;) are evaluated with regard to service size. The prototype
run on a 2-core CPU 2.8 GHz, 4 GB RAM workstation. Fig. 13 illus-
trates the moving average of resource extraction time required,

http://www.softlab.ntua.gr/~athanm/resourceExtraction

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 163

along with its decomposition into SM;, TM;, STM;, CCE;, and RTM;
as described above. The process, without any particular optimiza-
tion, runs in less than a second for each service, for the majority
of services, scaling almost linearly compared to service size. Also,
most time is spent in the generation of OTMs and STM (Term Mod-
els) that includes the time spent for getting the POS tag sequences
from the tagging tools. Therefore, it can be said that the process is
lightweight enough to be easily integrated in a real-time, interac-
tive process.

5.4. Refinement vs. construction: impact on productivity

As discussed above, once the RTM is generated the user can
review and refine the model in order to make sure that it truly
reflects the examined service interface. In order to assess the use-
fulness of the approach in the context of an enterprise production
environment, we invited a software architect and his team of soft-
ware engineers to apply the proposed resource extraction approach
to a set of procedure-oriented Web Services. The resource extrac-
tion prototype was used to analyze five services and apply the
resource extraction process. Once each resource types model was
extracted, the engineer driving the process examined and revised
it, so that it reflected his mental model of the service. During this
refinement process the RTM editor captured and logged the cre-
ations, deletions and modifications of model elements, along with a
timestamp associated to each action. Using the RTM editor logs and
the user-refined RTM models we performed an evaluation analy-
sis to compare the effort and time required to refine each model
(Re and Ry, respectively) against an estimation of the effort and
the time that would be required to build the revised model from
scratch (Ce and C¢). Re is equal to the number of creation, deletion
and modification actions during the user’s refinement session. R;
is equal to the total time required for the refinement session in
seconds. For computing C, we used the strictest possible estima-
tion by considering the minimum number of actions required to
build the refined model from scratch which is equal to number
of creation actions for all nodes and relationships contained in the
refined model. C; was computed in a similar way through multiply-
ing the average time required for creation and modification actions
during the refinement with Ce. It should be noted that during the
creation of a resource model from scratch, it is typical for a user to
add model elements that he/she then removes or modifies, before
reaching the final desired model. Nevertheless, C. and C; measures
reflect the best possible scenario for the manual RTM creation case,
assuming that no such corrections are required and minimizing
thus the respective values.

Using Re, R;, Co and C; we can now compute effort
impact I, and time impact I; as: lo=(1—(Re/Ce)) x 100% and
Ir=(1—(R¢/Ct)) x 100%. Impact values reflect the percentage of
effort and time that is avoided (positive values denote benefit)
or added (negative values denote overhead) by utilizing the pro-
posed extraction technique and then refining the extracted models
instead of going through manual construction from scratch. Table 9
presents the results of the experiments for assessing productiv-
ity impact. In a nutshell, using the prototype the practitioners’
team was able to acquire resource models for their procedure-
oriented services with 63% less actions on average and in 58.9%
less time than what would be required through a manual pro-
cess.

5.5. Threats to validity and approach limitations

Focusing on the accuracy evaluation study we identify the fol-
lowing threats to validity.

Internal validity: As described in Section 5, due to the lack of
available datasets that could be used as golden standards in order

to evaluate the accuracy of the approach, we resorted to invit-
ing expert engineers to manually create RTM models for the 70
randomly selected procedural service interfaces. Nevertheless, the
expert engineers who created the RTM models were not the original
designers of the service interfaces, and most of the times, they had
no prior knowledge of the interfaces they analyzed. Furthermore,
only a subset of the examined interfaces provided documentation
and for those services that documentation was available, it varied
in size and quality. In this respect, a threat is the extent to which
the engineers who created the standard models managed to com-
prehend the initial service interfaces and translate them to correct
resource-oriented representations.

External validity: Web services published by different service
providers are diverse with regard to naming conventions. This is
because no central authority governs and enforces horizontally
such design decisions; at the same time, interoperability specifi-
cations do not generally regard such concerns inside their scope.
Additionally, it is a common practice to have service interfaces
descriptions be generated in a bottom-up fashion. In these cases,
tools assist developers in exposing service implementations by
automatically generating artifacts such as service interface descrip-
tions. Therefore, the naming and structural patterns followed in
service interfaces generated in bottom-up fashion are affected by
the implementation of the service, as well as by the tools that
are used to generate the interface specifications. The proposed
approach attempts to address the diversity problem by separat-
ing different concerns of the resource extraction challenge into
distinct, well-defined steps. In each step, certain techniques and
rules are proposed which, as examined in Section5 provide pos-
itive results with regard to accuracy as well as performance. In
this respect, the proposed techniques are designed against diverse
contexts and attempt to render as accurate models as possible
based on the primary assumptions of consistent, human read-
able and understandable naming conventions across the service
interface specification. Nevertheless, a diverse environment is not
always the case. For instance, there may be cases of highly cus-
tomized or poorly designed service interfaces which will have to
rely on external artifacts, or even on human explanation to convey
the semantics of the interface elements. In this respect, in con-
texts like the ones described above the accuracy of the approach
is expected to be lower, unless at least tokenization and term
model generation steps are adapted to the specific environment.
Whether such adaptation effort is justifiable depends on the extend
of the number and the volume of services to be analyzed, which
can range from a single service to whole repositories of hun-
dred of services. For larger repositories an automated extraction
approach such as the one presented in this paper may be prefer-
able.

Additionally, being a multistep process there are possible fail-
ure scenarios for each step. We present certain such indicative
scenarios below along with applicable remediation practices that
can be followed:

e Wrong tokenization has direct impacts to OTM and STM gener-
ation. Wrong tokens are typically unknown words for the POS
taggers and therefore, the accuracy of the POS tag sequence may
be affected. Typical cases of wrong tokenization are discussed in
Section 3.2. Nevertheless, based on the experiments conducted,
the tokenization error is low and even when wrong tokenization
occurs, it affects only a subset of the terms, leading to a reduced
accuracy but not to complete failure of the overall process.

e The limited grammatical and terminological scope of operation
names as well as the morpho-syntactic ambiguity that is known to
inherently affect POS tagging, may lead to imperfect OTM mod-
els, even if the tokenization step was accurate. The problem is
partially addressed by utilizing the meta POS tagging technique

164 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

as described in Section 3.2, where different taggers are utilized to
combing POS tagging results through majority voting data fusion.
Furthermore, the OTMs-STM refinement loop also discussed
in Section3.2 ensures increased accuracy of OTM generation
and consequently of STM generation. Experiments indicated an
accuracy improvement of 7.83% attributed to the refinement
loop.

RTM generation errors can be attributed primarily to operation
intention normalization error and parameter tagging error. Such
errors can result in an imperfect RTM model and more specifi-
cally, in RTM models that have inaccurate hierarchies or missing
resources. However, being the last step of the process, the user
can examine the result and directly remediate the error of this
step.

Finally, the approach is extensible so that new heuristics can
be incrementally added if needed to any step in order to improve
accuracy.

6. Related work

The challenges and issues related to the extraction of resource
models and the compilation of REST APIs from procedure-
oriented services have recently attracted the attention of both
academics and practitioners (Athanasopoulos and Kontogiannis,
2010; Kennedy et al., 2011; Laitkorpi et al., 2006, 2009; Liu et al.,
2008; Upadhyaya et al., 2011; Strauch and Schreier, 2012). More
specifically, in Laitkorpi et al. (2006) a UML-based approach to
abstract legacy APIs into a canonical interface model that can be
used to expose REST-like resources is introduced. The method
proposed in Laitkorpi et al. (2006) requires a set of UML mod-
els that describe in detail the structural as well as, behavioral
aspects of the interface. The UML models required, go beyond typ-
ical IDL-based interface descriptions, they are not usually available
in practice, and they would require considerable effort to build.
A subsequent work presented in Laitkorpi et al. (2009), describes
a model-driven process for gradually transforming procedure-
oriented specification models (e.g. a Sequence Diagram of top-level
components) to resource-oriented interfaces. However, signifi-
cant user involvement is assumed since the user has to manually
translate the procedure-oriented specifications to an information
model that is subsequently used to generate the resource model.
Our approach attempts to automate the information extraction
challenge involved in resource extraction, limiting significantly
user involvement. Another approach is presented in Liu et al.
(2008), where the authors propose a process for reengineering
legacy systems to REST. The approach begins by analyzing the
source code of the system. Also, it requires analysis of other
artifacts such as ER models, class diagrams as well as, require-
ments and documentation models. Our approach, on the contrary,
is implementation-agnostic and does not assume availability or
access to the implementation of the service. Migrating SOAP-based
services to REST-based services is discussed in Upadhyaya et al.
(2011). Focusing on the resource extraction process, the approach
in Upadhyaya et al. (2011) grounds its analysis on segmenting
the operations signatures set into clusters. Consequently, words
included in the operations of each cluster are processed utilizing
WordNet’s hyperonym-hyponym relationships and heuristics to
form resource identifiers. Our approach does not require the use
of language ontologies such as WordNet to correlate terms and
furthermore, relationships between terms stemming from service
descriptions can be arbitrary and do not require a hypernym-
hyponym structure. Also, in Upadhyaya et al. (2011) the clusters
formation is dependent to the existence of multiple operations
related to a term, implying thus a CRUD-oriented interface design.

Such an assumption may not hold in many service descrip-
tions in practical scenarios. Finally, several other approaches that
engage the user in a wizard-like extraction process have also been
proposed Kennedy et al. (2011), Voutilainen (2003). The major
difference of Kennedy et al. (2011), Voutilainen (2003) from our
approach is that they are driven by, and require user input at each
step.

In our previous work Athanasopoulos and Kontogiannis (2010),
we presented a technique for identifying resources from legacy
service descriptions, through structurally analyzing operation sig-
natures. More specifically, in Athanasopoulos and Kontogiannis
(2010) input and output message structures were analyzed in order
to extract template resource identifiers. This analysis required the
use of metadata that were assumed available by the user, pertaining
to the semantic classification of WSDL elements (e.g. a parameter
classified as a Container). The approach presented here differs from
Athanasopoulos and Kontogiannis (2010) as (a) it does not assume
such metadata information be available, (b) it relies solely to WSDL
specifications to extract models of resource types and finally, (c)
it examines services operation signatures for identifying resources
beyond their structural level.

Finally, in Kopecky et al. (2008) and Sheth et al. (2007) the
challenge of bridging the semantic distance between RESTful ser-
vices and procedure-oriented designs is examined from a different
angle. Specifically, hRESTS proposed in Kopecky et al. (2008) is a
microformat specification that can be used to identify REST inter-
action points as operations with input/output parameters, while
the specification can take the form of annotations embedded to
interface descriptions. SA-REST (Sheth et al., 2007) extends hRESTS
through further annotations which allow for the specification of
service facets (e.g. supported data formats, language bindings, etc.).
Even though theses approaches may seem to take the opposite
direction, that is identifying operations through resource-oriented
functionality decompositions, if desired they can be used com-
plementary to a resource extraction approach. More specifically,
hRESTS and SA-REST can be used to annotate the results of a
resource extraction process with information that traces back to
the procedure-oriented interface so that associations between the
extracted information and the input information are explicitly pro-
vided.

7. Conclusion and future directions

The extraction of a resource model and the compilation of REST
APIs from procedure-oriented services has been considered as a
task that involves significant manual effort and specialized input
artifacts. In this paper, we proposed an approach that utilizes infor-
mation extraction techniques and model transformations in order
to automate to a large extent the resource extraction process. Due
to the heuristic nature of the transformations used, we attempted
to objectively evaluate the extraction results using both typical
Information Retrieval metrics as well, as a formal similarity mea-
sure between automatically and manually obtained results based
on the minimum weighted maximum graph matching ontology
distance.

The proposed approach is an improvement compared to exist-
ing approaches as it does not require initial models to be crafted
by the users, and provides a tractable process for extracting hier-
archical models of resource types that can be used for generating
a REST API. We have applied this approach to a large collection
of real-life services obtained from the ProgrammableWeb open
repository with positive results. Nevertheless, this work opens
new possibilities for future research directions. More specifically,
future research can proceed in three main directions. The first
direction deals with enhancing the performance and accuracy of

M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166 165

the resource extraction process. In this respect, machine learn-
ing techniques, rather than POS tagging translation rules can be
investigated in order to extract domain-specific operation models
and assess whether these machine learning techniques perform
better than the current approach. Another possibility is to inves-
tigate the analysis of informal information such as external or
internal documentation of the service IDL. The second direction
pertains to extensions of the overall framework by investigating
techniques that allow for the attachment of hypermedia relations
to the extracted resource types models. These hypermedia relations
can then be used from a runtime to drive the interaction between
aclient and a server utilizing the extracted REST resources. Finally,
the third direction is to investigate techniques by which such an IDL
analysis can be leveraged in other contexts beyond resource extrac-
tion. A possible approach is to analyze IDL service specifications
in order to extract collections of meaningful terms and concepts
that can be further used to group or cluster collections of semanti-
cally similar services in an organization that has a large and diverse
portfolio of services.

Acknowledgements

This work is supported by IBM Canada CAS Research under the
Research Fellowship Project no. 754.

References

Adamczyk, P., Smith, P.H., Johnson, R.E., Hafiz, M., 2011. Rest and web services: in
theory and in practice. In: REST: From Research to Practice. Springer, New York,
pp. 35-57.

Athanasopoulos, M., Kontogiannis, K.,2010. Identification of rest-like resources from
legacy service descriptions. In: 2010 17th Working Conference on Reverse Engi-
neering (WCRE), IEEE, pp. 215-219.

Athanasopoulos, M., Kontogiannis, K., Brealey, C., 2011. Towards an interpretation
framework for assessing interface uniformity in rest. In: Proceedings of the 2nd
Intl Workshop on RESTful Design, ACM, pp. 47-50.

Battle, R., Benson, E., 2008. Bridging the semantic web and web 2.0 with represen-
tational state transfer (rest). Web Semant.: Sci. Serv. Agents World Wide Web 6
(1),61-69.

Bean, J., 2009. SOA and Web Services Interface Design: Principles, Techniques, and
Standards. Morgan Kaufmann, Burlington.

Berners-Lee, T., August, 2009. A Short History of ‘Resource’ in Web Architecture.
http://www.w3.org/Designlssues/TermResource.html

Bies, A, Ferguson, M., Katz, K., MacIntyre, R., Tredinnick, V., Kim, G., Marcinkiewicz,
M.A,, Schasberger, B., 1995. Bracketing guidelines for treebank II style penn
treebank project. University of Pennsylvania.

Brown, P.C., 2012. Architecting Composite Applications and Services with TIBCO.
Addison-Wesley Professional, New Jersey.

Castillo, P.A., Bernier,].L., Arenas, M.G., Guerdon,] J.M., Garcia-Sanchez, P.,2011. Soap
vs rest: comparing a master-slave GA implementation, CoRR abs/1105.4978.

Corazza, A., Di Martino, S., Maggio, V., 2012. Linsen: an efficient approach to split
identifiers and expand abbreviations. In: 2012 28th IEEE Intl. Conference on
Software Maintenance (ICSM), IEEE, pp. 233-242.

David, J., Euzenat, J., 2008. Comparison between ontology distances (preliminary
results). In: The Semantic Web-ISWC 2008, Springer, pp. 245-260.

de Oliveira, R.R., Sanchez, V., Vinicius, R., Estrella,].C., Pontin de Mattos Fortes, R.,
Brusamolin, V., 2013. Comparative evaluation of the maintainability of restful
and soap-wsdl web services. In: 2013 IEEE 7th International Symposium on
the Maintenance and Evolution of Service-oriented and Cloud-based Systems
(MESOCA), IEEE, pp. 40-49.

Erl, T., 2008. SOA Design Patterns. Pearson Education, Boston.

Feng, X., Shen, J., Fan, Y., 2009. Rest: an alternative to RPC for web services architec-
ture. In: First International Conference on Future Information Networks. ICFIN,
2009, IEEE, pp. 7-10.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-based Software
Architectures (Ph.D. thesis). University of California.

Fowler, M., 2009. Richardson Maturity Model: Steps Toward the Glory of Rest.
http://martinfowler.com/articles/richardsonMaturityModel.html

Guinard, D., lon, L, Mayer, S., 2012. In search of an internet of things service archi-
tecture: REST or WS-*? a developers perspective. In: Mobile and Ubiquitous
Systems: Computing, Networking, and Services. Springer, pp. 326-337.

Hadley, M.J., 2006. Web Application Description Language (WADL), Technical
Report.

Jiang, W,, Lee, D., Hu, S., 2012. Large-scale longitudinal analysis of soap-based and
restful web services. In: 2012 IEEE 19th International Conference on Web Ser-
vices (ICWS), IEEE, pp. 218-225.

Kennedy, S., Stewart, R., Jacob, P., Molloy, O., 2011. Storhm: a protocol adapter for
mapping soap based web services to restful http format. Electron. Commer. Res.
11 (3), 245-269.

Kopecky, J., Gomadam, K., Vitvar, T., 2008. hrests: an html microformat for
describing restful web services. In: IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology. WI-IAT'08, Vol. 1, IEEE,
pp. 619-625.

Kuhn, HW., 1955. The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2 (1-2), 83-97.

Laitkorpi, M., Koskinen,]J., Systa, T., 2006. A UML-based approach for abstracting
application interfaces to rest-like services. In: 13th Working Conference on
Reverse Engineering. WCRE'06, IEEE, pp. 134-146.

Laitkorpi, M., Selonen, P., Systa, T., 2009. Towards a model-driven process for design-
ing restful web services. In: IEEE International Conference on Web Services.
ICWS 2009, IEEE, pp. 173-180.

Leotta, M., Ricca, F., Ribaudo, M., Reggio, G., Astesiano, E., Vernazza, T., 2012. SOA
adoption in the Italian industry. In: Proceedings of the 2012 Intl. Conference on
Software Engineering, IEEE Press, pp. 1441-1442.

Li, Z,, O'Brien, L., Zhang, H., 2012. Circumstantial-evidence-based effort judgement
for web service composition-based SOA implementations. Int. J. Space-based
Situat. Comput. 2 (1), 31-44.

Liu,Y.,Wang, Q.,Zhuang, M., Zhu, Y.,2008. Reengineering legacy systems with restful
web service. In: 32nd Annual IEEE Intl. Computer Software and Applications.
COMPSAC'08 IEEE, pp. 785-790.

Madani, N., Guerrouj, L., Di Penta, M., Gueheneuc, Y., Antoniol, G., 2010. Recognizing
words from source code identifiers using speech recognition techniques. In:
2010 14th European Conference on Software Maintenance and Reengineering
(CSMR), IEEE, pp. 68-77.

Maleshkova, M., Pedrinaci, C., Domingue,]., 2010. Investigating web apis on the
world wide web. In: 2010 IEEE 8th European Conference on Web Services
(ECOWS), IEEE, pp. 107-114.

Manning, C.D., Schutze, H., 1999. Foundations of Statistical Natural Language
Processing, vol. 999. MIT Press, Boston.

Markey, C.G., Philip, 2013. A performance analysis of WS-« (soap) & RESTful Web
services for implementing service and resource orientated architectures. In:
The 12th Information Technology and Telecommunications (IT&T) Conference,
Athlone IT.

Miller, G.A., 1995. Wordnet: a lexical database for English. Commun. ACM 38 (11),
39-41.

U.N. National Cancer Institute, 2009. Service and Capability Naming Standards Doc-
ument. https://wiki.nci.nih.gov/display/SAIF/CBIT+SAIF+Wiki

OASIS, 2010. The oasis ws-i. http://www.oasis-ws-i.org/

Pautasso, C., Wilde, E., 2009. Why is the web loosely coupled? A multi-faceted metric
for service design. In: Proceedings of the 18th international conference on World
wide web, ACM, pp. 911-920.

Pautasso, C., Zimmermann, O., Leymann, F., 2008. Restful web services vs.
big’'web services: making the right architectural decision. In: Proceedings
of the 17th international conference on World Wide Web, ACM,
pp. 805-814.

Perrone, M.P., Cooper, L.N., 1992. When Networks Disagree: Ensemble Methods for
Hybrid Neural Networks, Tech. Rep., DTIC Document.

Rensink, A., 2004. The groove simulator: a tool for state space generation. In:
Applications of Graph Transformations with Industrial Relevance, Springer, pp.
479-485.

Renzel, D., Schlebusch, P., Klamma, R., 2012. Today’s top “restful” services and why
they are not restful. In: Web Information Systems Engineering - WISE 2012,
Springer, pp. 354-367.

Rodriguez, .M., Crasso, M., Mateos, C., Zunino, A., Campo, M., 2011. The easysoc
project: arich catalog of best practices for developing web service applications.
CLEI Electron. J. 14 (3), 2-2.

Rokach, L., 2010. Pattern Classification Using Ensemble Methods, vol.75. World Sci-
entific, Singapore.

Salton, G., Wong, A., Yang, C.-S., 1975. A vector space model for automatic indexing.
Commun. ACM 18 (11), 613-620.

Schreier, S., 2011. Modeling restful applications. In: Proceedings of the Second Inter-
national Workshop on RESTful Design, ACM, pp. 15-21.

Selonen, P., 2011. From requirements to a restful web service: engineering content
oriented web services with rest. In: REST: From Research to Practice. Springer,
New York, pp. 259-278.

Sheth, A.P., Gomadam, K., Lathem, J., 2007. Sa-rest: semantically interoperable
and easier-to-use services and mashups. IEEE Internet Computing. 11 (6),
91-94.

Strauch, J., Schreier, S., 2012. Restify: from RPCs to RESTful HTTP design. In:
Proceedings of the Third International Workshop on RESTful Design, ACM, pp.
11-18.

Tarjan, R., 1972. Depth-first search and linear graph algorithms. SIAM]J. Comput. 1
(2), 146-160.

Upadhyaya, B., Zou, Y., Xiao, H., Ng,]., Lau, A., 2011. Migration of soap-based services
torestful services. In: 2011 13th IEEE International Symposium on Web Systems
Evolution (WSE), IEEE, pp. 105-114.

Vinoski, S., 2002. Putting the “web” into web services. web services interaction
models. 2, Internet Computing. IEEE 6 (4), 90-92.

Vinoski, S., 2008. Serendipitous reuse, Internet computing. IEEE 12 (1), 84-87.

Voutilainen, A., 2003. Part-of-speech Tagging, The Oxford Handbook of Computa-
tional Linguistics., pp. 219-232.

WS3C, 2002. Web Services Activity. http://www.w3.org/2002/ws/

http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0025
http://www.w3.org/DesignIssues/TermResource.html
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0075
http://martinfowler.com/articles/richardsonMaturityModel.html
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0160
https://wiki.nci.nih.gov/display/SAIF/CBIIT+SAIF+Wiki
http://www.oasis-ws-i.org/
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0215
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0220
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0225
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0230
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0235
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0240
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0245
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0255
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://refhub.elsevier.com/S0164-1212(14)00236-2/sbref0260
http://www.w3.org/2002/ws/

166 M. Athanasopoulos, K. Kontogiannis / The Journal of Systems and Software 100 (2015) 149-166

Michael Athanasopoulos graduated from the School of Electrical and Computer
Engineering at National Technical University of Athens, Greece, where he is cur-
rently a Ph.D candidate. Michael has worked as a software engineer in the
banking sector for several years and he has significant experience with enterprise
service systems. His research interests include service-oriented computing, soft-
ware architectural styles and architectural evolution. Currently, he is working on
his dissertation on architectural adaptation of SOAs to resource-oriented architec-
tures. Michael held a Ph.D. Fellowship Student at Center of Advanced Studies, IBM
Canada.

Kostas Kontogiannis holds a B.Sc. from the University of Patras, Greece, a M.Sc. from
the Katholieke Universiteit Leuven, Belgium and a Ph.D. from McGill University,
Canada. He is an Associate Professor at the School of Electrical and Computer
Engineering at NTUA, Greece. Previously, he was an Associate Professor at the
Department of Electrical and Computer Engineering at the University of Waterloo,
Canada. Kostas is a Faculty Fellow at the IBM CAS Research. His current research
interests focus on the design and development of tools for software reenginee-
ring software transformations, dynamic analysis, and legacy software migration to
service computing platforms.

	Extracting REST resource models from procedure-oriented service interfaces
	1 Introduction
	1.1 Resource-orientation and procedure-orientation
	1.2 Problem description and scope

	2 Background and process outline
	2.1 Resource-oriented and REST architectures
	2.2 RESTful services at a glance
	2.3 Running example
	2.4 Resource extraction process outline

	3 Resource extraction
	3.1 Signature Models
	3.2 Operation Terms Models and Service Terms Models
	3.2.1 Operation Terms Model generation
	3.2.2 Service Terms Model generation
	3.2.3 Operation Terms Model refinement
	3.2.4 STM graph reduction

	3.3 Operation intention normalization
	3.4 Core conceptual entities extraction
	3.5 Resource types model
	3.5.1 Modeling
	3.5.2 Comparison to existing models
	3.5.3 Generation technique

	4 Case study: Amazon S3
	4.1 Signature and terms models
	4.2 CCEs and resource type model
	4.3 User involvement and evaluation

	5 Evaluation
	5.1 Experiments design and data set
	5.2 Accuracy of intermediate extraction steps
	5.3 Accuracy of resource extraction process
	5.3.1 Recall, precision, F-measure, similarity
	5.3.2 Computational performance and scalability

	5.4 Refinement vs. construction: impact on productivity
	5.5 Threats to validity and approach limitations

	6 Related work
	7 Conclusion and future directions
	Acknowledgements
	References

