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ABSTRACT
Embedded systems provide means for enhancing the functionality delivered
by small-sized electronic devices such as hand-held computers and cellular
phones. Java is a programming language which incorporates a number of
features that are useful for developing such embedded systems. However,
the size and the complexity of the Java language and its libraries have
slowed its adoption for embedded systems, due to the processing power
and storage space limitations. A common approach to address storage space
limitations is for the vendor to o�er special versions of the libraries with
reduced functionality and size to meet the constraints of embedded systems.
However, such an approach will severely limit the type of applications that
can be deployed. This paper presents a technique that is used for selecting,
on an as needed basis, the subset of library entities that is exactly required
for a given Java application to run. This subset can then be down-loaded
to the device for execution on an as needed basis. The advantage of this
approach is that the developer can use arbitrary libraries, instead of being
restricted to those which have been adapted for embedded systems by the
vendors. A prototype system, that builds library subsets on per application
basis, has been built and tested on several mid-size Java applications with
encouraging results.

Keywords Java, embedded systems, library extraction, application extrac-
tion, static dependency graph, call graph construction

1 Introduction

Embedded systems are now an important part of modern programming ac-
tivities, and will by all estimations become more so in the next few years.
It has been estimated that the market of embedded PC, and \soft" PC
devices will exceed US $1 billion by the year 2001 [Lee98]. Examples of
such embedded systems include hand-held terminals, cellular phones with

�This is an expanded and revised version of a paper with the same title that
appeared in Proceedings of the 3rd IEEE Conference on Software Maintenance
and Re-engineering (CSMR'99, Amsterdam), edited by Paolo Nesi and Chris
Verhoef [RK99].
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Internet and World-Wide-Web capabilities, and other industrial or house-
hold control devices. However, due to limitations on size, processing power
and, storage capabilities, embedded systems pose a number of additional
requirements on software application development.
JavaTM was originally developed for consumer electronics devices. How-

ever, it has evolved over the recent years, more as a programming language
for workstations and mainframes than a language for embedded systems.
This is partly due to the features of the language which are inherently
diÆcult to implement in embedded systems. These features include multi-
threading and, the overall size of the standard Java class libraries (JDK).
For example, JDK 1.1 is about 10MB in size, and has grown signi�cantly
with the version 1.2 release [RKK98].
Current commercial e�orts to re-target Java to embedded systems, such

as Sun's Java 2 Micro Edition and KVM and IBM's VisualAge Micro Edi-
tion, usually de�ne restricted subsets of the Java libraries for use on em-
bedded systems. De�ning restricted library subsets in this a priori fashion
limits the functionality available to application developers and is in
exible.
In this paper an alternate solution to de�ning subsets of a class library

is proposed. The main idea is to determine, on an as needed basis, which
parts of a library are required for each given application, instead of a priori
limiting the capabilities of the language by excluding whole portions of the
library. Thus, the basic idea is to identify and extract the subset of the
libraries that is needed for the speci�c application. The motivation is based
on the observation that applications that use the entirety of a class library
are rare. In most cases only a portion of the library is required for any
given application.
The proposed solution is more 
exible than one that limits the language

features by excluding a priori a large number of standard Java libraries. The
proposed technique allows application programmers to use the functional-
ity they deem necessary from arbitrary libraries. The tool presented here
extracts the code needed to run an application from a set of standard JDK
libraries and is based on the analysis of the dependencies between a given
application and its supporting libraries. The dependencies are revealed by
parsing the Java byte-code and building an entity-relationship dependency
graph. The relations are drawn from a Java domain model developed for
this purpose, and are discussed later in the paper. Once a dependency
graph has been built, the selection of the required library subset is based
on traversing the graph and extracting only the nodes that correspond to a
library entity that are accessible by the given application. Java byte-code
(class �les) are used to build the dependency graph which the analysis pre-
sented here is based on. Experimental results show that constructing and
traversing the dependency graph are both fast and scalable operations.
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Organization

This paper is organized in eight sections. The �rst section (this one) is
the introduction, and the second section provides an overview of important
features of the Java programming language as well as other related work.
The most important related work is that on call graph construction for
programs written in object-oriented languages.
Section three gives a detailed discussion of how we model dependencies

in Java applications, including such distinctively object-oriented features as
`inheritance' and `polymorphism' (and these are why the previous discus-
sion on call graph construction is important). The fourth section identi�es
three di�erent kinds of subsets according to the linking strategy used by
the target virtual machine. Following that, the �fth section describes the
process of extracting a subset from a library.
The seventh section presents some experimental results on medium size

Java applications that make use of fairly large libraries. Section eight dis-
cusses some scenarios in which this technology may be useful, including
embedded systems, distributed systems, native code compilers, and library
re-factoring. Finally, section eight provides a summary of the work and
concludes the paper.

2 Background and Related Work

2.1 Java Features

The Java language [GJS96] is designed to execute on the Java Virtual
Machine [LY97], an abstract computer model that executes code contained
in Java class �les. These class �les may be generated from source languages
other than Java (such as Ada or Ei�el, etc.).
The Java Virtual Machine is a simple stack based computer model with

no registers and a one-byte instruction set. There are less than two hundred
opcodes currently de�ned in the machines instruction set [LY97].
The class �le is similar to object �les created by traditional compilers in

the sense that it contains symbolic references to all external code, and is
not bound with that code. In Java, binding occurs in the virtual machine
at run-time.
Each class �le contains information about the class, such as the compiler

version that created it, the super-classes of the de�ned class, and all literal
constants and references to external code. The class �le also contains the
�elds and methods declared by the class; �elds and methods declared in
super-classes are stored in the �le for the super-class, unless overridden.
Java code (source code and byte-code) is organized into \packages". A

Java package is essentially a directory where the code is kept. Classes in
the same package have \friend" status with each other. There is a stan-
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dard naming convention for packages which ensures that code from dif-
ferent organizations will not have naming con
icts. The fully quali�ed
name of a class is its proper name prepended with its package name (e.g.
java.lang.Object).
The Java import statement has di�erent semantics from the C include

statement which are important to highlight in the context of this work.
The import statement is a syntactic device to allow the programmer to
reference classes in other packages by their proper names instead of fully
quali�ed names: it does not imply \friend" status, nor does it a�ect the
byte-code representation in any way.
Types in Java are organized into two main categories: primitive and

reference. The primitive types include things such as int and float. The
reference types are further sub-divided into arrays and ClassOrInterfaces,
which in turn are divided into classes and interfaces. The Java notion
of `interface' is a special kind of abstract class that has slightly di�erent
typing rules associated with it than regular classes do (to allow for `multiple
inheritance'). This organization is depicted in �gure 1. Programmer's may
only de�ne ClassOrInterface types, and so these are generally of primary
interest. Understanding the subtleties of how the type system is organized
is crucial for constructing accurate dependency graphs of Java programs.

Array

Reference

Class

ClassOrInterface

Interface

Type

Primitive

FIGURE 1. Organization of the Java Type System

Bruce Eckel's book Thinking In Java provides a clear and in-depth dis-
cussion of the Java programming language [Eck98] with comparisons to C
and C++. Other articles on the Java virtual machine and class �le format,
can be found at the Java World website (www.javaworld.com) [Ven96a,
Ven96b, Ven96c]. Moreover, both the Java Language Speci�cation [GJS96]
and the Java Virtual Machine Speci�cation [LY97] provide a detailed view
of Java's features.
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2.2 Trends

Over the past year a growing demand for `information appliances' such as
3Com's PalmPilot is observed. By some estimates, the market for these
devices is expected to grow to US $ 4.2 billion by the end of 2002, when it
will surpass the demand for home PCs [Lee98] [Ham98]. It can be expected
that a large proportion of these will be networked in some way, and that
they will also be running Java.
The spin-o� and the demand for embedded systems using Java has also

grown to a point that standards initiatives have been formed. In [Wor]
a Compact HTML for Small Information Appliances has been proposed.
On the same trend the Handheld Device Markup Language Speci�cation
standard has been proposed in [Wor97].

2.3 Bytecode Compression

Compressing byte code is an area of work that is complimentary to this,
and that has received a fair amount of attention in recent years.
Ernst et al [EEF+97] draw a distinction between compressed code for-

mats that can be directly interpreted and those that are intended pri-
marily for eÆcient transmission (`wire' formats). Most work in Java byte-
code compression has focused on wire formats, such as CLAZZ, JAZZ,
and Pugh [Pug99]. CLAZZ [Cor94, HC98] explores the application of stan-
dard compression techniques, including ZIP, to particular sections of the
Java class �le. The results reported in [Cor94, BHV98] show that CLAZZ
achieves compression that is up to 25% better than ZIP alone. JAZZ [BHV98]
also uses standard compression techniques (in a slightly di�erent fashion
than CLAZZ), but focuses on JAR �les instead of individual class �les.
Pugh has explored a number of compression techniques and is able to pro-
duce better results than JAZZ [Pug99]. These so-called `wire' formats are
acceptable for systems where the target machine has enough memory and
processing power to decompress the code. However, this is often not the
case for embedded systems with limited resources.
There has also been some work on directly interpretable formats (i.e.

that do not need decompression) targeted speci�cally at embedded sys-
tems. Rayside et al [RMH99] propose a new structure for the class �le that
reduces the overall size by 25% and does not require decompression. Their
study focuses on the constant pool (symbol table), but also examines more
eÆcient encodings for the opcodes. There is another study [CSCM00] that
focuses solely on compressing Java opcodes for embedded systems, but it
disregards the constant pool.
Both of these approaches to byte-code compression can be complimen-

tary to this work: the focus of this work is to identify and extract a subset
of a library; the focus of the compression work is to represent that subset
in a more compact fashion.
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2.4 Bytecode Packaging

In the past, tools similar to the one that we have developed have been
referred to as `packagers' (especially within the Smalltalk community).
IBM Research has independently produced a tool named JAX (Java

Application Extractor) [TLSS99] that is similar to ours, although their's
performs some more exotic transformations such as class hierarchy spe-
cialization [TS97] and class hierarchy slicing [TCFR96], in addition to the
subset extraction. The IBM VisualAgeTM Micro Edition integrated devel-
opment environment also includes a `SmartLinker' tool with similar func-
tionality [IBMb].
Sun Microsystems produces two tools that are also related to our work:

JavaFilter and JavaCodeCompact [Sun]. JavaFilter is closest to our work;
JavaCodeCompact translates Java to C that is targetted for embedded
systems. There has also been some collaborative research between Sun and
Stanford in this area, focusing on dynamically typed languages [Age95].
The Secure Internet Programming Group at Princeton University [Sec98]

has developed another tool called JavaFilter (not related to Sun's JavaFil-
ter) which can be used for preventing applets that originate from a re-
stricted site to be executed in a web-browser.

2.5 Call Graph's for Object-Oriented Languages

Devising cost-eÆcient algorithms for constructing an object-oriented pro-
gram's call graph from a static analysis of the source code has been an
active area of research for the last few years. This research is usually car-
ried out in the context of compiler optimization, as many conventional
optimizations such as in-lining cannot be performed without a call graph.
A good discussion of the problem is given by Grove et al in [GDDC97]. In
this section we will explain three of the most common approaches to solving
this problem by constructing the call graph for foo() (all code examples
are written in a Java-like syntax).

static void foo(Shape s) {

s.draw();

}

The target of the invocation s.draw() depends on the actual type of the
object that is bound to the formal parameter s each time foo() is executed.
The declared type is Shape, but the actual type may be any sub-type of
Shape. Furthermore, the actual type may `inherit' the implementation from
the implementing type, which may be any super-type of the actual type
(including super-types of the declared type). Suppose foo() is written with
reference to the following code:

abstract class Shape {
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abstract void draw();

}

class Circle extends Shape {

void draw() { printf("circle");}

}

class Triangle extends Shape {

void draw() { printf("triangle");}

}

class Rectangle extends Shape {

void draw() { printf("rectangle");}

}

class Square extends Rectangle {}

Naive

A simple and inaccurate solution to this problem is to assume that the
actual and implementing types are the same as the declared type. In the
terms of this example, to assume that because s is declared to be a Shape,
s.draw() always resolves to Shape.draw(). This is the result recorded
in the byte-code by every Java compiler, and the one used in the static
analysis of regular function calls in procedural languages.
The bene�ts of this solution are that it requires no extra analysis, is suf-

�cient for the purposes of a non-optimizing compiler, and is very simple.
However, its accuracy leaves something to be desired. In the given example
Shape.draw() is abstract, and so the s.draw() invocation could not ac-
tually branch there: there is no code to branch to. This is a somewhat less
than desirable solution for re-engineering tasks that require a reasonably
accurate call graph, such as automatic clustering.

Class Hierarchy Analysis

Class Hierarchy Analysis (CHA) [DGC95, DMM96] is a whole program
analysis that determines the actual and implementing types for each method
invocation based on the type structure of the program. The whole program
is not always available for analysis, due to features such as re
ection and
remote method invocation. However, for many practical reverse engineering
tasks it is suÆcient to analyze the code that is available for analysis (this
may not be conservative enough for the purposes of compiler optimization).
In the above example, Class Hierarchy Analysis would construct three

invocation arcs from s.draw(), to Circle.draw(), Triangle.draw(), and
Rectangle.draw(). CHA would not produce an invocation arc to Shape.-
draw(), as it is abstract. This result is a signi�cant improvement over the
naive approach, which produced only one arc that could not possibly be
traversed during execution.
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Class Hierarchy Analysis is 
ow and context insensitive, and conse-
quently is eÆcient in both time and space.

Rapid Type Analysis

Rapid Type Analysis (RTA) [Bac97, BS96] uses extra information from the
program to eliminate spurious invocation arcs from the graph produced by
CHA. This extra information is the set of instantiated (used) types: clearly
Triangle.draw() can never be invoked if Triangle is never used in the
program. This analysis is particularly e�ective when a program is only
using a small portion of a large library, which is often the case in Java.
RTA begins at all program entry points and traverses over the program,

building the call graph and the set of instantiated types as it goes. Consider
the following main() as an entry point for the example program:

static void main(String[] args) {

foo( new Square() );

}

Now it can be seen that the only sub-type of Shape instantiated in the
program is Square, and so this must be the actual type of s in foo().
Note, however, that the implementing type is Rectangle: that is, Square
`inherits' the implementation of draw() from Rectangle.
Like CHA, RTA is 
ow and context insensitive, and consequently is ef-

�cient in both space and time. Again like CHA, RTA also requires the
whole program for analysis. However, RTA is more sensitive to the use of
re
ection: the analyst must inform the algorithm if re
ection is used to in-
stantiate any class, otherwise the algorithm may incorrectly eliminate some
arcs from the call graph. CHA is not as sensitive to the use of re
ection,
as long as the whole program is available for analysis.

Summary

In summary, for this example, the naive approach produces a single impos-
sible arc, CHA produces three possible arcs, and RTA narrows these three
down to a single target. Most studies have shown that RTA is a signi�cant
improvement over CHA, often resolving more than 80% of the polymorphic
invocations to a single target [BS96, PMS98, Ray01]. Furthermore, RTA is
an extremely fast analysis: in our experience it can usually be computed in
a matter of seconds, even for very large programs. RTA does require the
results of CHA, which can usually be computed in a minute or two. Both
of these analyses combined take less than 10% of the time required to parse
the program's bytecode.
RTA is implemented in the Jax [TLSS99] and Toad [PMS98] tools from

IBM Research, both available on the IBM alphaWorks website [IBMa], as
well as the front end of the IBM VisualAge C++ compiler [Kar98]. For this
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study we used JPack, which is a research version of the jport tool, which
was originally developed as a part of IBM VisualAge for Java, Enterprise
Toolkit 390. We have used this research tool in a previous studies on impact
analysis [RKK98] and automatic clustering [RRHK00].
Rapid Type Analysis is currently considered to be the best practical

algorithm for call graph construction in object-oriented languages because
it produces good results very inexpensively. There are a number of groups
researching algorithms that produce better results than RTA for similar
cost (e.g. [SHR+00, TP00]).

3 Program Representation (Domain Model)

In order to conduct our research and implement the tools discussed in this
paper, we �rst had to be able to represent the source code at a higher level
of abstraction. For this work we have chosen the Rigi Standard Form (RSF)
which allows for entity-relationship tuples to be de�ned in a straightforward
way. RSF tuples are of the form <class defines method> or <method

stores field>. The tuples are emitted from a custom made byte-code
parser. The relations used conform with a domain model.
We have constructed a domain model for Java byte-code in the object-

oriented data model: it has entities, relations and attributes; some entities
may be generalizations of other entities. Our domain model is illustrated
by a number of UML class diagrams, which are described in overview here:

3.1 Entities and Attributes

Figure 2 shows the di�erent types of entities, their attributes, and the sub-
typing relations between them. There are categories of entities to represent
types, �elds, methods, packages, and polymorphic method invocations (dis-
cussed in more detail below).

Polymorphic Choice Vertices

We use a polymorphic choice vertex to represent polymorphic method invo-
cations, similar to the one presented in [LJH96]. An important distinction
between this work and the work in [LJH96] is that their slicing work is 
ow
sensitive, while this work is 
ow in-sensitive (similar to [Bac97, BS96]).
This form of representation improves the eÆciency of our analysis. Each

polymorphic choice vertex may represent an arbitrarily large number of pro-
gram statements that all have the same static invocation target. Instead
of analyzing every single invocation we only have to analyze the polymor-
phic choice vertices. Note that this eÆciency is gained at the expense of

ow-sensitivity.
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FIGURE 2. Entities and Attributes

Our domain model contains three types of polymorphic choice vertices,
to represent the three types of dynamic dispatch that occur in Java: In-
vokeVirtual, InvokeInterface and InvokeSuper. InvokeVirtual
is the normal case for most method invocations. Methods may also be in-
voked directly using the invokestatic opcode, which does not require a
polymorphic choice vertex.

Structural and Representational Entities

Katz [Kat90] makes a distinction between structural and representational
entities. Entities such as packages are structural: they contain other enti-
ties (classes or interfaces). Entities such as �elds are representational: they
represent the system under examination.
We consider that ClassOrInterfaces are both structural and representa-
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tional entities, as they serve the dual roles of structuring the �elds and
methods in the program and representing part of the program in them-
selves. Given this representational facet, we consider that the interface of a
ClassOrInterface is not the aggregate of the �elds and methods it declares
(since this would be considering ClassOrInterfaces as only structural enti-
ties). For our model, the interface of a ClassOrInterface is de�ned in terms
of its type (Class or Interface), access modi�ers, and so on. For example,
certain arcs such as instanceof and checkcast may terminate at Clas-
sOrInterface nodes, and in these cases the interface of the ClassOrInterface
itself is important and the �elds and methods it declares are not.

Signatures

Our domain model de�nes the signatures of various entities as follows:

ClassOrInterface the fully quali�ed name (i.e. including the Package
name).

Field Signature of the ClassOrInterface that declares it appended with
its proper name and the Signature of its type.

Method Signature of the ClassOrInterface that declares it appended with
its proper name and the Signatures of its parameters and return type.

Note that is important that method signatures include parameter types
due to overloading. Also note that it is important to include the return
type in the method signature, even though the language speci�cation does
not allow overloading on return type, most VM implementations do and
this is exploited by some experimental Java compilers that support generic
types (and is likely to become an explicit part of the speci�cation in the
future).

3.2 Declaration Arcs

Figure 3 shows arcs that represent the declaration statements in the byte-
code. Essentially, classes declare �elds and various types of methods.

3.3 Containment Arcs

Figure 4 shows the `containment' arcs, which are generally inverses of the
declaration arcs. For example, a �eld is contained by the class that de-
clares it. Having explicit inverses is important for the traversal algorithm:
it enables associating di�erent mapping functions with each direction.
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FIGURE 3. Declaration Arcs
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3.4 Language Arcs

Figure 5 shows other structural arcs from the Java language that are neither
declarative arcs nor containment arcs. Some examples are arcs for sub-
typing and method parameters.

Modeling Sub-typing

As discussed in the previous section, Java supports only single `inheritance'
via the extends keyword. Java supports multiple interface `inheritance'
via the implements keyword. In this way, Java eliminates the ambiguity
present in C++ when it is not always apparent which method implementa-
tion should be used when multiple super-types are present. Only one body
for any method can be `inherited', as the extends keywords supports only
single `inheritance'. These facts eliminate ambiguity from the static analy-
sis of polymorphic method invocations in Java that may be present in other
languages, such as C++.
It is worth noting that in the Java Language Speci�cation an Interface

is said to extend one or more other Interfaces. In the bytecode, this is
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encoded as the implements relationship. In the bytecode, all Interfaces
extend java.lang.Object. It is our opinion that the bytecode encoding
of these relationships is more sensible, and these are the ones used in our
domain model and algorithms.
In summary the model conforms with the following speci�cation:

� Every class extends exactly one other class;
java.lang.Object by default.

� A class may implement zero or more interfaces.

� Every interface extends java.lang.Object.

� An interface may implement zero or more other interfaces.

� Every array extends java.lang.Object.

3.5 Opcode Arcs

Figure 6 shows arcs that are generated from speci�c program statements
(or opcodes in byte-code parlance). The invokespecial opcode is resolved
to three distinct cases; this is important, because only one of these three
cases uses dynamic dispatch (InvokeSuper). These arcs are generated
from a 
ow-insensitive analysis, and duplicate arcs are eliminated (arcs
are considered identical if they have the same source, target and type).

3.6 Class Hierarchy Analysis (CHA) Arcs

Figure 7 shows arcs that are computed by our graph construction algo-
rithms, which are essentially Class Hierarchy Analysis (CHA) [DGC95,
DMM96] algorithms adapted for the peculiarities of Java.
The polymorphic choice vertices are connected to method vertices by a

whole program static analysis of the system (Class Hierarchy Analysis). If
the method represented by the method vertex is abstract, a Signature arc
is created; otherwise an Implementation arc is created from the polymor-
phic choice vertex to the method vertex. While computing these edges, we
also compute (at no additional cost) an InheritedMethodImplementa-

tion arc. This arc connects a class vertex to a method body declared in
some super-class, and is used when traversing for subsets.
InvokeVirtual and InvokeInterface from our perspective, signify

di�erent ways in which the sub-type structure of the program should be
traversed looking for methods.

3.7 InvokeSuper

While relatively rare, InvokeSuper requires special attention for two rea-
sons: First, it is one of three cases of the invokespecial opcode, and so
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is not obvious (almost all opcodes have only a single case). The other two
cases are InvokeConstructor and InvokePrivate. Second, the javac
compiler must be second-guessed to make an accurate analysis.
The InvokeSuper case is `semi-polymorphic': it can always be stati-

cally resolved to a single target at link time, but because of the demands of
Release-to-Release Binary Compatibility [GJS96], this single target may not
be the one named at compile time. In other words, the super-class struc-
ture may have changed between the time when the sub-class was compiled
and when it was linked. Moreover, the compiler does not name the imme-
diate super-class but, rather, the �rst super-class in which the method is
implemented.
Having said all that, the InvokeSuper situation does not occur fre-

quently in practice.

3.8 De�nition of Application and Library

In our model, only use arcs may cross the boundary from the application to
the library. In other words, the application cannot de�ne any components in
the library and the library cannot de�ne any components in the application.
The use arcs include all of the language and opcode arcs; the de�nition arcs
are the union of the declaration and containment arcs.
It is perhaps important to note that it is possible for the library to `use'

parts of the application due to polymorphism: a method signature may be
de�ned in the library, invoked elsewhere in the library, but only actually im-
plemented in the application. In this case an `implementation' arc would be
generated from the polymorphic choice vertex representing the invocation
to the actual method in the application. This is the way that `call-backs'
must be implemented in Java, and is fairly common programming practice.

4 Java System Subsets

We de�ne three library subsets (in increasing order of size) for a Java
software system: a) space optimized, b) partially space optimized, and c)
reduced (being the largest). Each of these is discussed in turn, below, with
respect to the following \HelloWorld" example program. Experimental re-
sults are discussed in x6.

public class HelloWorld {

public static void main(String[] args) {

PrintStream p = System.out;

p.println("Hello World!");

}

}
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4.1 Space Optimized Subset

The space optimized subset (herein the optimized subset) is composed of
every class, �eld and method required for every possible execution path that
originates in the application (`execution paths' includes event sequences
generated by exception handling). This usually requires class �les in the
library to be modi�ed by removing �elds and methods that are not used
by any execution path in the application. Since all execution paths in the
optimized system originate in the application, the optimized subset is self
contained.
The optimized subset is the subset that is actually loaded and resolved

by a virtual machine that uses \lazy" resolution [LY97], with the additional
constraint that every possible execution path originating in the application
is exercised. The virtual machine that Sun distributes with the JDK uses
\lazy" resolution. The optimized subset will also work in a virtual machine
that uses \static" resolution.
In the HelloWorld example, System.out is obviously required, but Sys-

tem.in is not. Building the optimized subset would require removing the
in �eld from the System class. This saves a signi�cant amount of space,
because the input functionality of the JDK is not used. In other words,
the transitive closure of components required by the in �eld is large and
unnecessary for this application.

4.2 Partial Space Optimized Subset

The partially space optimized subset (herein the partially optimized subset)
is composed of all class �les in the optimized subset, but without any mod-
i�cation. The partially optimized subset will work inside a virtual machine
that uses \lazy" resolution, but may not work inside a virtual machine that
uses \static" resolution.
In the case of HelloWorld, the System class would be included without

modi�cation, but none of the code that implements the input functionality
would be included. A virtual machine that uses \static" resolution may
complain that the code to implement System.in is not present.
Both the optimized subset and the partially optimized subset analyze

the system using �elds and methods as the atomic units. The partially
optimized subset contains execution paths that will not work since it is
not self contained. However, all execution paths that originate from the
application will still work.

4.3 Space Reduced Subset

The space reduced subset (herein the reduced subset) is composed of all
unmodi�ed class �les required by a virtual machine which uses \static"
resolution to execute the system. The reduced subset calculation views the
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class �le as the atomic unit, as opposed to the �eld and method used in
the optimized subsets.
All execution paths in the reduced system will work, including those that

do not originate in the application. Therefore, the reduced subset is also
self contained.
For the HelloWorld example, the reduced subset will include the System

class unmodi�ed, as well as all of the code necessary to implement in the
input functionality (i.e. InputStream, etc.). An execution path that origi-
nates elsewhere in the JDK and uses System.in will work, although it is
known that it cannot be exercised (by HelloWorld).

5 Extraction Process

The extraction process has two main steps: a) identify the subset of the
library(ies) required for the given application, and b) extract the subset
from the library. The input to this process is the byte-code for the sys-
tem (application and library), a text �le to specify the entry point of the
application, and a switch to indicate which subset is to be extracted.
The subset is identi�ed by �rst constructing a static dependency graph of

the system according to the domain model speci�ed above. The transitive
closure of all elements required by the program entry point are identi�ed
by traversing this graph. The list of required components is then passed to
the extractor.
The extractor is a fairly simple tool for the reduced and partially op-

timized subsets: it merely copies class �les from the library to the target
destination. The extraction tool for the optimized subset is signi�cantly
more complicated, and here we have only calculated an estimate of the
space savings such a tool would generate. The optimized subset extraction
tool must modify class �les in order to remove unnecessary �elds and meth-
ods, as well as re-pack the ConstantPool (symbol table) and remove debug
information.
DiÆculty may arise in the identi�cation process if the program has exe-

cution entry points that cannot be identi�ed through a static dependency
analysis. This can occur when the byte-code interacts with `native' code
written in a language such as C, or through advanced usage of re
ection.
These problems can easily be worked around by specifying these extra entry
points in the same text �le that speci�es the main entry point.

6 Experimental Results

In this section, we present the results of experiments obtained by applying
the proposed system to three Java applications. These results indicate that
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the majority of the JDK is not required for most applications, and that
this technique is scalable.

6.1 Description of Experiments

The experiments were conducted on an IBM desktop computer with a
200Mhz Pentium processor and 64MB RAM using the JDK 1.1.5 for Win-
dows 95. The tool which implements this technique is written in Java and
runs inside the Java Virtual Machine. All extracted subsets were tested by
executing the applications to ensure that they were still functional. The
space savings between the partially optimized subset and the optimized
subset is a minimal estimate: it is the space actually consumed by each
method and �eld, it does not take into account the space that will be saved
in the ConstantPool by removing these �elds and methods.
A summary of the space savings results are contained in Table 1.1 |

Table 1.4. The Library Size column illustrates the original size of the li-
brary bytecode. The Relative Improvement column indicates the percent
space reduction with respect to the previous subset (row). The reduced
relative percent improvement is measured against the original size, and the
optimized relative percent improvement is measured against the partially
optimized result. The Absolute Improvement indicates space reduction with
respect to the original library size.

HelloWorld

The �rst experiment involved a small application that requires only a small
part of the JDK library. A simple HelloWorld program, as illustrated in
Table 1.1, does not require most of the JDK in order to execute: the reduced
subset contains 178 �les (535K), and the partially optimized subset contains
122 �les (381K). The predicted optimized subset removes 979 �elds and
methods from the partially optimized subset and saves a further 53K. The
reduced subset was identi�ed in 760ms, and the optimized subset in 1100ms.
The results are illustrated in Table 1.1.
This experiment indicated that the initializeSystem()method in the

HelloWorld Library Relative Absolute
JDK subsets Size Improvement Improvement

space savings results (KB) (%) (%)

Original 8693 0 0

Reduced 535 93.1 93.1

Partially Optimized 381 28.7 95.6

Optimized 328 14.0 96.2

TABLE 1.1. JDK subsets space savings for HelloWorld.
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java.lang.System class is executed by the native code in the VM when
it is started up. It also showed that the java.lang.ThreadDeath class is
referenced by the native code and required for execution.

JPack

The second experiment was conducted on the tool that performs the subset
identi�cation (JPack), as it is written completely in Java. The characteris-
tics of this tool are similar to other tools: it reads input �les, performs some
processing, and writes the results to other �les. The tool runs in a single
thread and does not use any graphics. The reduced subset for this tool is
comprised of 189 �les (550K), which is just barely larger than the reduced
subset for HelloWorld. The partially optimized subset was 142 �les (414K).
The predicted optimized subset is 974 �elds and methods smaller than the
partially optimized subset, for a further savings of 53K. The reduced sub-
set was identi�ed in 1380ms, and the optimized subset was identi�ed in
5760ms. The results are illustrated in Table 1.2.
This experiment showed that the various character sets used by the

JDK are referenced re
ectively. The most common, ISO8859, is contained
in the classes sun.io.CharToByte8859 1 and sun.io.ByteToChar8859 1.
The sun.io package contains classes for every character set supported by
the base JDK.

JPack Library Relative Absolute
JDK subsets Size Improvement Improvement

space savings results (KB) (%) (%)

Original Version 8693 0 0

Reduced Version 550 93.6 93.6

Partially Optimized 414 24.7 95.3

Optimized 361 12.8 96.2

TABLE 1.2. JDK subsets space savings for JPack.

CDF Editor

The third experiment involved the CDF Editor which is a sample applica-
tion that ships with IBM's XML4J XML parser[IBMc]. CDF Editor is a
GUI application for editing and viewing Channel De�nition Format (CDF)
�les. This application was selected for two reasons: it uses two libraries
(JDK and XML4J), and it indicates the overhead required to use XML
and a GUI in an application.
The reduced subset requires 413 �les from the JDK (1,035K) and 107

�les from XML4J (264K). The partially optimized subset requires 368 �les
from the JDK (967K) and 90 �les from XML4J (222K). The predicted
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optimized subset does not require 2,575 �elds and methods from the JDK
(143K), nor does it require 390 �elds and methods from XML4J (16K).
Therefore, the approximate di�erence in size between the reduced subset
and the optimized subset is 269K, approximately 20%. The results are
illustrated in Table 1.3, and in Table 1.4.
The reduced subset was identi�ed in 2580ms, and the optimized subset

was identi�ed in 4060ms.
This experiment indicated that a number of classes in java.text.re-

sources are referenced either re
ectively in the JDK or by the VM na-
tive code. Namely, LocaleData, LocaleElements, DateFormatZoneData,
and the LocaleElements and DateFormatZoneData for one's particular
geographic region. It is also useful to include NoClassDefFoundError and
ClassNotFound Exception in the extracted JDK so that the VM can signal
errors about missing code correctly.
The Abstract Window Toolkit (AWT) portion of the JDK also requires

code that is referenced re
ectively or through the VM native code. The
class java.awt.Event is needed, as is the initProperties method of the
java.awt.Toolkit class. The AWT is implemented di�erently behind the
scenes for each platform, and this code is identi�ed through the system
property awt.toolkit. For the Windows version of the JDK the implemen-
tation requires the WToolkit and WGraphics classes in sun.awt.windows.
The font.properties �le also identi�es sun.awt.windows.CharToByte-
WingDings and sun.awt.CharToByteSymbol. The layout manager of the

CDFEditor Library Relative Absolute
JDK subsets Size Improvement Improvement

space savings results (KB) (%) (%)

Original 8693 0 0

Reduced 1035 88.0 88.0

Partially Optimized 967 6.5 88.8

Optimized 824 12.8 96.2

TABLE 1.3. JDK subsets space savings for CDFEditor.

CDFEditor Library Relative Absolute
XML4J subsets Size Improvement Improvement

space savings results (KB) (%) (%)

Original 391 0 0

Reduced 264 32.4 32.4

Partially Optimized 222 15.9 43.2

Optimized 206 7.2 47.3

TABLE 1.4. XML4J subsets space savings for CDFEditor.
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AWT requires Container.layout() and LayoutManager in java.awt.

6.2 Space Analysis

The reduced subset for the JDK showed an average of a 90.8% space savings
over the original libraries (93.1%, 93.6%, and 88.0%; Tables 1.1, Table 1.2,
and 1.3 respectively). The reason for this is evident when one examines
the composition of the JDK: over two thirds of the library is consumed
by international character sets and development tools, which are not used
by most applications. The 32.4% (Table 1.4) improvement in the XML4J
portion of the CDF Editor experiment is probably more typical of a regular
library.
The partially optimized subsets showed an average 20.0% (28.7%, 24.7%,

and 6.5%; Tables 1.1, 1.2, and 1.3, respectively) improvement over the
reduced subsets. The optimized subsets showed an average improvement
of 13.2% (14.0%, 12.8%, 12.8%; Tables 1.1, 1.2, and 1.3, respectively) over
the partially optimized subsets. The optimized subsets show an average
of almost 31% improvement over the reduced subsets (not shown in the
table).
The optimized subset of the XML4J library indicated an approximately

47% improvement over the original library (Table 1.4). In other words,
the CDF Editor uses about half the functionality available in the XML4J
library. This result demonstrates the usefulness of this approach in allowing
the developer to use arbitrary libraries without wasting storage space.
The JDK contains about 120 character sets, with an average size of

approximately 40KB. However, almost all of these are either less than 20KB
or greater than 100KB; the largest is almost 300KB. So, the optimized
subset for an international HelloWorld may (in the very worst case) almost
double in size. In many cases the growth will be less than 10% though.

6.3 Time Analysis

In each experiment it can be seen that the optimized subset is more diÆcult
(time consuming) to identify than the reduced subset. This di�erence is to
be expected, as the optimized subset deals with the system at a greater
resolution. Results for the time analysis are shown in Table 1.5. Note that
analysis time is the time required for the graph traversal, and does not
include the time to parse the bytecode or write the output.
It is interesting to note that the reduced subset for JPack was identi�ed

almost as quickly as that for HelloWorld, but that the optimized subset
was the longest computation. With respect to the reduced subset it can
be seen that JPack does not use much more of the JDK than HelloWorld
does, so the results are consistent. However, an interesting observation, is
that the optimized subset takes longer to compute for our tool than for the
CDF Editor (note that the code for the CDF Editor and XML4J are twice
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as many �les and bytes as that for JPack). This observation is explained by
the fact that the extra time is caused by the deep inheritance hierarchies
present in JPack. This is an indication that, the running of the selection
process is dominated by the complexity of the sub-type hierarchies in a
given application.

Measurement HelloWorld JPack CDFEditor

# Graph Nodes 25,283 27,884 29,618

# Graph Arcs 174,729 190,421 203,626

Analysis Time
for Reduced (ms) 760 1,380 2,580

Analysis Time
for Optimized (ms) 1,100 5,760 4,060

TABLE 1.5. Analysis times compared to graph size.

7 Usage Scenarios

To illustrate the use of the system we provide four possible usage scenarios:

7.1 Embedded Systems

In this scenario, a software developer builds an application and then uses
the tool to \trim" the libraries used by his or her application. If the subset
is still too big for the constraints of the device that the system will be used
in, the developer may modify the application and re-compute the subset
until it meets the embedded system's requirements.
The optimized subset is the most useful for embedded systems because

it is often known exactly what will be executed. The directly interpretable
byte-code compression schemes discussed earlier ([RMH99, CSCM00]) would
compliment the approach proposed here.

7.2 Distributed Systems

In this scenario the application and library subset is extracted and delivered
to the end user \just in time" by a dedicated server. This server could
keep track of the code that the client had previously downloaded and send
only the delta. The partially optimized subset is useful here because the
class �les are not broken up: there is a balance between the con�guration
management diÆculty and the amount of code transmitted.
This kind of application distribution can also be used to ensure that

each client has the correct library version for the application in question.
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FIGURE 8. Distributed Systems Usage Architecture

All con�guration management is done centrally; the clients merely request
and execute applications.
The whole usage model is depicted in �gure 8. In �gure 8, the Client

Device (CD) (i.e. a handheld computer, mobile phone, microPC) has only
the core components of a JVM and is networked (wired or wireless) with
a Byte Code Provider (BCP) that is composed of a Web Server, a Byte
Code Analysis Server (BCAS) and a Gateway. The Byte Code Provider is
running on a remote site and communicates with the Client Device through
a Wireless Application (WAP) Gateway or the standard http protocol. All
client requests are forwarded to the Internet domain by the Gateway. Once
byte-code is send to the Client Device by an Internet Web server it is �rst
passed by the Byte Code Analysis Server module that selects only the
speci�c libraries required for the given downloaded application to run. The
necessary libraries along with the application code are forwarded to the
Gateway module that sends the only the absolutely necessary minimal size
byte-code to the Client Device.
This scenario is applicable to web enabled cellular phones, palm-top

devices or corporate intranets. Some of these systems may have the re-
sources to decompress byte-code in a `wire' format (e.g. [Cor94, BHV98,
Pug99]), whereas others may be limited to directly interpretable formats
(e.g. [RMH99, CSCM00]).

7.3 Native Code Compilers

The third usage scenario is related to the use compilers which translate
byte-code to `native' code for a particular platform. For example, using the
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system discussed in this paper, library vendors can decide how to split their
DLLs. In this case, the vendor would put all of the most commonly used
code in the main DLL so that most applications would not have to load
the entire library. The partially optimized subset is particularly important
for this usage because the class �les cannot be modi�ed.
Alternatively, stand-alone EXEs may be created which do not depend

on library DLLs. This is useful when distributing the application to those
who may not have the appropriate library DLLs or runtime. The optimized
subset would be used for this.
The IBM VisualAge C++ compiler front-end performs something similar

to this [Kar98], and we have conducted some experimental work with the
High Performance Java S/390 Group at the IBM Toronto Laboratory along
these lines.

7.4 Library Re-factoring

The utility of this tool is predicated on library design with low coupling.
If the library has extremely high coupling then it will not be possible to
extract only a subset of it.
This tool can be used by the library vendor to identify poor coupling,

which can be removed when the library is re-factored. Reports from ap-
plication developers on the subsets that are being extracted for their ap-
plications can give the library vendors greater insight into how their code
is being used. This information could be generated automatically if the
application server discussed above were employed.
All three of the subsets presented here are useful for this task, and insight

can be gained by comparing the results from each one.

8 Conclusion

This paper discussed a system that allows for the identi�cation and ex-
traction of software library subsets which are storage space optimized for
a given application.
The selection is based on a dependency graph that is created for each ap-

plication from the byte-code representation. A precise and accurate domain
model (schema) has been presented for these graphs. Nodes in the graph
correspond to application and library entities, and arcs correspond to de-
pendencies between those entities. These dependencies may be divided into
those computed by simply parsing the byte-code and those computed with
class hierarchy analysis [DGC95, DMM96]. The dependencies computed
with class hierarchy analysis are further re�ned with rapid type analy-
sis [Bac97, BS96]. Both class hierarchy analysis and rapid type analysis
are 
ow and context insensitive, and hence fairly fast to compute.
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A library subset contains only those nodes that correspond to library
entities and on which a given application depends (transitively). The sub-
set is built by traversing the application/library dependency graph and
by collecting the library nodes that can be reached during the traversal.
Experimental results demonstrate that this traversal can be computed in
a matter of seconds, even on graphs with tens of thousands of nodes and
hundreds of thousands of arcs.
Three library subsets of interest have been identi�ed in this paper. They

are, in order of increasing size: the optimized, partially optimized and re-
duced subsets. These subsets have been de�ned in terms of the linking
procedure used by the target virtual machine. The utility of these subsets
for embedded systems, distributed systems and native code compilers has
been discussed.
The selection algorithm is eÆcient and can be applied to large applica-

tions. Experimental results indicate that this system is scalable both with
respect to time and space constraints, and can be a viable alternative to a
priori library subsets.
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