
Schema Independent Reduction of Streaming
Log Data

Theodoros Kalamatianos and Kostas Kontogiannis

National Technical University of Athens
Dept. of Electrical and Computer Engineering

Athens, 15780, Greece
thkala@softlab.ntua.gr, kkontog@softlab.ntua.gr

Abstract. Large software systems comprise of different and tightly in-
terconnected components. Such systems utilize heterogeneous monitoring
infrastructures which produce log data at high rates from various sources
and in diverse formats. The sheer volume of this data makes almost im-
possible the real- or near real-time processing of these system logs. In
this paper, we present a log schema independent approach that allows for
the real time reduction of logged data based on a set of filtering criteria.
The approach utilizes a similarity measure between features of the in-
coming events and a set of filtering features we refer to as beacons. The
similarity measure is based on information theory principles and uses
caching techniques so that infinite log data streams and log data schema
alterations can be handled. The approach has been applied successfully
on the KDD-99 intrusion detection benchmark data set.

Keywords: software engineering · log analysis · log filtering · informa-
tion theory

1 Introduction

Large software systems consist of many interconnected components. The opera-
tion of such systems is usually monitored by specialized applications that emit a
wealth of information in the form of event logs. In this context, a challenging task
is to understand in a tractable manner what operations are performed by the
system at any given time, in order not only to understand how the system oper-
ates, but also to identify situations where the system is performing unscheduled
or unexpected tasks. To date, most dynamic analysis approaches are applied off-
line, but for most practical applications a real-time on-line analysis is preferred.
However, the sheer volume of the emitted logged data makes such an on-line
analysis non tractable. The objective is thus to devise log filtering techniques
that allow for the selective reduction of logged data according to specific filter-
ing criteria. The filtering criteria can be set by the administrators and relate to
specific hypotheses or analyses that need to be tested or performed.

In this paper we propose an on-line, schema independent approach that is
based on information theory principles to calculate log event similarity with

the purpose of analyzing and appropriately grouping streaming events that are
emitted by a system’s monitoring infrastructure. The technique consists of three
main steps. In the first step, which can be performed off-line, a collection of
significant log features or ”beacons” are selected by the user or by an automated
process (e.g. a data mining process), as being significant to a use case or to a
possible type of system incident. Such beacon features may be unsuccessful login
attempts to a particular server, a warning for a failed transaction, transaction
requests arriving at a high frequency from a group of servers, or a performance
degradation alert. Beacon features are then used to generate user defined beacon
events. In the second step of the process, event similarity values are computed
between the beacon events and the incoming events in the log data set. The
similarity scores are computed by comparing attribute values that are weighted
by an information content coefficient. For example, if an attribute value is con-
stant across all logged events, then this attribute value should not be considered
as important for the computation of an overall similarity between two events.
The result of the second step is an overall similarity value for each event with
the beacon event set as a whole. In the third step of the process, a threshold is
selected and events that exhibit an aggregated similarity value with the beacon
set that is above the threshold value, are considered as a cohesive collection of
events that correspond to a use case or an incident.

The proposed approach has three notable advantages over existing dynamic
analysis approaches. First, it is schema independent and it is, therefore, readily
available for collections of logged data that are emitted by different monitoring
components and not conforming to the same schema or format. This eliminates
the need for event schema merging or mapping, a process that is often too com-
putationally expensive to be performed for on-line analysis. Second, the proposed
approach does not require a training data set, a requirement for most approaches
that are based on machine-learning techniques. Rather, the proposed approach is
based on the on-line adaptive re-calculation of an information content coefficient
for each attribute value, allowing thus the similarity score to be automatically
adapted as the system evolves or its operational profile changes. Finally, it can be
applied to streaming log data, permitting real time analysis, in contrast to most
log analysis techniques that analyze stored logged data in an off-line manner.

This paper is organized as follows: Section 2 presents related work. Section 3
presents the event model. Section 4 discusses the event similarity measure and
the selection of the filtered output. Section 5 presents implementation consider-
ations, Section 6 presents experimental results, while Sections 7 and 8 provide
related discussion and conclude the paper.

2 Related Work

Dynamic program analysis has been extensively used to understand the behavior
of software systems. Bruegge et al. [1] proposed a framework to support dynamic
analysis by source code instrumentation of systems written in C/C++. Männistö
et al. [2] proposed the tool SCED, for modeling dynamic properties of object

oriented systems. Both tools require access to the source code, which might not
always be the case.

In the area of data set filtering, in [3] two different data filtering and noise
reduction techniques are discussed. The first is based on multiple-partitioning
filtering while the second is based on iterative partitioning filtering. In [4] a
technique that allows for the discovery of processes by analyzing event logs is
proposed, while in [5] a log analysis technique has been used to evaluate the
evolution of business models by comparing known model templates to actual
models. In [6] a domain independent approach is proposed for log reduction. The
main difference between the proposed approach and the one presented in [6] is
that the approach discussed here uses information theory for event similarity
calculation and that it can be applied in streaming log data.

In the field of log analysis by event feature reduction, [7] discusses a tech-
nique using Latent Semantic Indexing for log reduction and filtering so that root
cause analysis can be tractable for systems emitting large volumes of log data.
In [8] a technique to identify event features important for dynamic analysis and,
in particular, intrusion detection is presented. The reduced feature sets allow for
more tractable analysis to be performed. Compared to our approach, the work
in [8] is fine tuned for intrusion detection and aims to reduce features as opposed
to events. In [9] the Enhanced Support Vector Decision Function technique is
used for selecting important features in log entries to support intrusion detection
analysis. In [10] a technique based on the maximization of conditional informa-
tion and weak dependence is proposed for the selection of important features in
data collections. In [11] an information theoretic approach that selects an opti-
mal set of attributes by removing irrelevant and redundant features is presented.
Similarly, in [12] a hybrid approach for feature selection based on information
theory as well as filter and wrapper models is presented. In [13] a two phase
approach for network intrusion detection that is based on feature reduction and
reasoning using fuzzy clustering and the Dempster-Shafer theory is proposed.

Overall, the main differences of our work with the related work presented
in this section are that our approach is domain and schema independent and it
does not require training data sets. Furthermore, it can be applied on real-time
streaming data, thus allowing for on-line analysis.

3 Event modelling

3.1 Static event model

Each event ei of the input stream E = {e1, e2, . . . eNE
} is defined as a set of pairs

that consist of an attribute aj ∈ A and its associated value vj,i. More specifically,
each event ei in the input stream is defined as:

ei = {< aj , vj,i >: 1 ≤ i ≤ |E|, 1 ≤ j ≤ |A|} (1)

where A = {a1, a2, . . . aNA
} is the set of all attributes aj appearing in the events

of the input stream. If an event ei does not have an attribute aj we simply
consider the value for this particular attribute to be NULL. This notation can

be used to represent any acyclic tree-like structure, such as those commonly
generated by system utilities (e.g. XML, JSON), while it can be easily stored in
a database, such as MongoDB.

It should be noted that this approach is particularly effective when used with
structured data, with its precision increasing as the detail of the representation
increases. While free-form attribute string values can still be used as input to
the low-level primitive value distance metric calculation, several approaches have
been proposed (e.g [14], [15]) to extract schema information from log files.

3.2 Stream model

The implicit insertion of NULL values allows each attribute aj to be defined as
a stream Saj

of its values vj,i: Saj
= {vj,1, vj,2, . . . vj,NE

}. Therefore the event
stream can be viewed as a collection of discrete time series, one for each attribute,
that are evolving in parallel.

The proposed approach is most effective when each attribute is an indepen-
dent variable with no correlation to other attributes. Redundant information in
the input stream may skew the results of the process by incorrectly emphasizing
certain values, while reducing the perceived importance of others. The problem
of normalizing redundant information streams has been studied extensively. For
example, several feature selection techniques have been proposed (e.g. [10], [8])
and can be used as a pre-processing stage to remove redundant features.

4 Event analysis and filtering

4.1 Beacon event set compilation

The first phase of the proposed process involves the compilation of a cohesive
beacon event set B = {b1, b2, . . . bNB

} that serves as the filtering criterion. These
events can be selected directly from the input stream or can be drafted by the
operator, as a collection of pseudo-events, by combining features and values
that the operator considers important or of interest. The system requires no
information on the actual selection process, which allows the use of opaque third-
party utilities.

4.2 Similarity computation

In order to compute a similarity measure of each event in the input stream with
the beacon set, we propose a three stage process. The results of each stage are
fed to the next one, creating a hierarchical process that is described bellow.

Stage 1 The first stage involves the dynamic determination of the importance
that an attribute or a value carries in the evaluation of a final overall similarity
measure. For example, an attribute for which its value is constant throughout

the input stream does not carry any significant information content for the com-
putation, while attribute values that vary may carry higher information content.
This allows a low-level similarity metric for primitive values (e.g. strings), typi-
cally described as dist : E ×E ×A → R, to be used as the basis of an event-level
similarity measure.

More specifically, the proposed approach attempts to determine which at-
tributes and attribute values offer the best event selectivity with regard to a
specific beacon set. For this purpose, a statistical similarity measure based on
information theory is introduced. Each attribute aj is considered an independent
discrete random variable with an alphabet Vj of NVj

possible symbols (values).
According to information theory, the entropy H of an independent variable

X is a measure of the average information content of each sample of X. Likewise,
the information content I is a metric of the importance of a variable as a whole.
If X is a discrete time series of N samples with an alphabet of n symbols and a
probability mass function of p(X), we have:

H(X) = E(−logrp(X)) = −
n∑

i=1

p(xi)logrp(xi) (2)

I(X) = −
N∑
i=1

logrp(xi) = N ·H (3)

The probability p(xi) of a symbol is equal to its relative frequency within
the time series. Specializing formula 3 using the individual attribute value fre-
quencies, it is therefore possible to compute the information content of a specific
attribute value vj,i, as well as that of a discrete attribute aj as a whole:

I(vj,i) = −nj,i · logr
nj,i

NE
(4)

I(aj) = −
NVj∑
i=1

(nj,i · logr
nj,i

NE
) (5)

The selectivity offered by each event attribute is in direct relation to the in-
formation content of the equivalent time series. Conceptually, highly repetitive
attributes, such as domain-specific constants, have a limited use as distinguish-
ing features between events, but they also exhibit a relatively low entropy that
can be used to reduce their participation in the event comparison process. Fur-
thermore, attributes with extreme diversity, e.g. unique identifiers, tend to skew
the similarity metric, since they have a high information content despite being
of limited value for determining similarity. To offset this issue, the information
content I(vj,i) contributed by each specific attribute value is taken into account
in relation to the information content I(aj) of that particular attribute as a
whole. This leads to the following definition of the information content fractions
IF (aj) and IF (vj,i) for an attribute and an attribute value respectively:

IF (aj) =
I(aj)∑NA

j I(aj)
(6)

IF (vj,i) =
I(vj,i)

I(aj)
(7)

The information content fraction is a dimensionless quantity in the [0, 1] range.
Using it as a coefficient lessens the impact of attribute values with low overall
contribution. This is especially effective for attributes with high diversity: a large
number of discrete values means that each specific value has a minuscule contri-
bution to the overall information content on its own. The resulting IF fraction
will be relatively low, reducing the skew normally caused by high-diversity at-
tributes. Using this principle, a similarity metric SVi,b,j can be defined for the
attribute aj values of input event ei and beacon event b as follows:

SVi,b,j = IF (vj,b) · IF (vj,i) · dist(i, b, j) (8)

Stage 2 At the second stage we compute a weight Waj
for each attribute aj in

the input stream E . This attribute-specific weight is affected by the information
content of the attribute and the particular contribution of its specific values in
the beacon event set. This enhances the effect of less frequent values that are
common within the beacon event set and may, therefore, be a distinguishing
feature for the selection process.

Waj = I(aj) ·
∏
b∈B

IF (vj,b) (9)

Stage 3 The final stage contains the evaluation of a similarity measure between
two events and leverages that measure to compare each input stream event with
the beacon set as a whole.

Lin [16] offers a formal definition of the concept of similarity, based on three
basic intuitive tenets: (a) the more commonality two objects share, the more
similar they are; (b) the more differences two objects have, the less similar they
are and; (c) two identical objects should always reach the maximum similarity.

Using a weighted mean to leverage the per-attribute similarity values from the
previous stages to an event-level metric SEi,b satisfies all three basic conditions.
Additionally, it allows the attribute-level weights which are not bounded to form
a bounded metric with the same range as the primitive correlation metrics:

SEi,b =

∑NA

j=1(Waj
· SVi,b,j)∑NA

j=1 Waj

(10)

The final computation involves the determination of an overall similarity SBi

of an input event with the beacon set as a whole. To procure a similarity metric
between a single event and an event set using a metric defined between single
events, it becomes necessary to reexamine the three basic principles mentioned
above. More specifically, the requirement for a maximum similarity result on
identical inputs is no longer satisfiable since sets and single items are not directly
comparable. Our prototype implementation uses an arithmetic mean, averaging
the similarities calculated for the input event with each beacon event:

SBi = E(SEi,b) =

∑
b∈B SEi,b

NB
(11)

4.3 Filtered event group selection

Conceptually, for the reduced event set we aim to select those events with the
highest similarity values. Providing a threshold for that selection, however, is
not trivial. Real-time streams are unbounded with regard to space and impose
certain latency constraints, while the amount of information that is known a
priori is limited. Therefore an adaptive threshold selection method should be
used for the last phase of the process.

In our approach, the resulting event group is computed using a dynamic
threshold, which is determined by detecting significant gaps in the distribution
of similarity values. More specifically, a sketch of the cumulative distribution
function (CDF) of the similarity values is formed in constant space and time, and
is updated and examined periodically as the input stream is processed. Using a
rough derivative computation it is possible to detect plateaus in the CDF, which
typically separate similarity value clusters. A heuristic algorithm is then used to
select an appropriate threshold, by taking into account the distances between the
highest valued clusters, their size and their position within the similarity value
range. Similar techniques based on sub-linear data sketches have been used for
approximate percentile determination on real time streams ([17], [18]).

5 Design and implementation considerations

5.1 Adaptivity of the proposed approach

Adaptivity to schema changes The prototype implementation is completely
domain agnostic, with no a priory knowledge of the domain or the event schema.
As such, it operates on the inherent assumption that only part of the actual
schema has been considered at any given time. An incoming event may contain
a number of previously unseen attributes that expand the existing view of the
schema of the monitored domain. Each new attribute is essentially treated as a
time series that only contained null values until its time of emergence.

However, for most event domains and monitoring systems it is reasonable
to assume a fixed number of attributes. Therefore, the set of attributes that are
known to the system at runtime will gradually converge towards a constant set,
with few or no new additions after a sufficient amount of time.

Information content aging Typical statistical algorithms are generally tar-
geted at data sets and not well suited for streaming input:

1. Common set-based metrics exhibit a form of inertia as the number of recorded
data points increases. New data has a decreasing effect as time passes, grad-
ually reducing the adaptability of the system to zero.

2. Cumulative metrics, e.g. the mean and standard deviation, suffer from nu-
merical range and precision issues when implemented trivially on a computer.

To avoid these issues, the proposed system makes use of algorithms that devalue
older data points with the passage of time. Daneshgaran et al. [19] provide an
information theoretic definition of aging, while Cormode et al. ([20]) describe a
generic exponential decay model for aggregate metrics.

Our prototype implementation synchronizes using input events as a time
reference and ignores any other perception of time. As a result, the decay model
used for the aging process, is a simple step-wise decay model. For each cycle, the
information content currently recorded for all attributes and attribute values is
multiplied by a positive decay coefficient no greater than 1:

Iaged,t+1 = decay · It + (It+1 − It) (12)

The decay coefficient should be selected with regard to the monitored system,
most notably its event rate and other temporal characteristics. Typical values
for the decay coefficient during experimentation were in the [0.95, 1) range.

5.2 Space complexity and object replacement algorithms

Since real-time systems have no known limit for the length of the input stream,
their space complexity should be constant, or at most sub-linear, with respect to
the size of the input. For this reason, it is necessary to approximate the operation
of the similarity determination algorithm in a space-efficient manner. From the
mathematical formulas at its foundation it is clear that the values with the least
impact are those with the lowest contribution of information content. Therefore,
a potential approximation involves limiting the volume of retained metadata by
eliminating the entries that correspond to low-impact values.

Taking the effects of the aging process into account, one can intuitively iden-
tify the low-impact values as those that (a) are infrequent or (b) have not ap-
peared recently in the input stream. Selecting items based on frequency and
recency is essentially the purpose of object replacement algorithms, more com-
monly known as caching algorithms. The main intent of a caching subsystem is to
use a pre-determined amount of space to store results of past requests, replacing
old or infrequent entries when necessary. Therefore, we can use such replacement
algorithms to provide a hard limit for the space usage of the proposed system.

For our prototype implementation, we selected the Adaptive Replacement
Cache [21] algorithm, due to its simplicity and overall performance. It provides
a good balance between recency and frequency, while also being resistant to
pathological behaviors and able to adapt to its input. Moreover, it has excel-
lent runtime performance and does not need external tuning that would require
domain-specific knowledge.

5.3 Runtime performance

In order to ensure the scalability of the system for monitoring large infrastruc-
tures, several approaches to parallelization are available:

– Attribute-level parallelization, where each processor handles a subset of the
attributes within each event, based on the assumption that each attribute is
a completely independent time series.

– Beacon-level parallelization, where the comparison of an input event with
each beacon event is handled by a separate processor.

– Event level parallelization, where the input events are distributed to a large
number of processing nodes using an appropriate load-balancing scheduler.

These methods are generally orthogonal and can therefore be employed si-
multaneously if necessary. The prototype implementation, supports the first two
methods and is able to achieve a sustainable throughput of several thousand
events per second, when making full use of a 4-processor personal computer.

6 System evaluation

For the evaluation of the proposed algorithm we used a data set generated within
the scope of a competition that was held in conjunction with KDD99, the Fifth
International Conference on Knowledge Discovery and Data Mining. The KDD99
data set [22] is a derivative of the DARPA Intrusion Detection Evaluation 1999
data set. As such, KDD99 events represent traffic within a computer network,
while specific security breaches are attempted. The data set features about 4.8
million events and 41 distinct attributes, of both continuous and discrete types.
In addition, the KDD99 data set contains embedded classification data for each
event, which can serve as a reference for the evaluation of the quality metrics
of any selection method. This alleviates the need for domain-specific tools or
manual intervention for the creation of the golden standard against which our
system will be evaluated.

The prototype implementation was written in the Java programming lan-
guage and tested extensively in streaming mode. For each experiment, the used
beacon events were selected randomly from a specific attack type, with the rest
of the events that belong to the same attack type being the expected result.

6.1 Similarity metric evaluation

To evaluate the quality of the similarity metric, it is necessary to examine its
selectivity between matching and non-matching events. Intuitively, an acceptable
metric would provide results with clear separation between potential matches
and the rest of the input, allowing the selection of the matching results by
means of a simple similarity threshold. Ideally, the separating space would also
not contain any noise in the form of infrequent errant values, although their
effect on the overall accuracy of the system would be negligible and they could
be filtered-out relatively easily using a variety of methods.

Fig.1 illustrates the aforementioned similarity gap for the events from a small
range of the input stream. The plotted values were produced using a beacon set
of 20 events that match the neptune attack type from the KDD99 data set. The

 0

 10

 20

 30

 40

 50

 60

4810000 4815000 4820000 4825000 4830000

S
im

ila
ri
ty

Events

Fig. 1. Similarity values for a part of the input stream with two clusters of potential
matches

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty

Similarity (%)

Fig. 2. Cumulative distribution function for the produced similarity values

input set contains two event clusters of the same type in this particular range, in
the subranges [4810961− 4817099] and [4827760− 4827959]. The corresponding
similarity values rise from a baseline of about 5− 10% to values in the 40− 60%
range, with virtually no noise in the range from approximately 20% to 40%, thus
being in complete accordance with the golden standard.

Fig.2 depicts a plot of the cumulative distribution function (CDF) of the
similarity for the same scenario, calculated over a range of 1, 000, 000 events.
The CDF of the similarity essentially provides the ratio of rejected events for
each possible selection threshold. Sharp rises in the CDF indicate the existence of

Table 1. Experiment results - Beacon set size effect

Test # of # of correct # of retrieved Precision Recall Reduction

beacons events events (%) (%) (%)

neptune 5 203941 203941 100.000 99.573 79.606

neptune 10 203947 203941 99.997 99.573 79.605

neptune 20 205087 204023 99.481 99.613 79.491

back 5 1999 1941 97.099 96.953 99.800

back 10 2070 1941 93.768 96.953 99.793

back 20 2045 1941 94.914 96.953 99.796

teardrop 5 993 198 19.940 99.497 99.900

teardrop 10 196 196 100.000 98.492 99.980

teardrop 20 203 196 96.552 98.492 99.980

a tight cluster around the same value, while a plateau is caused by the lack of any
data points in the corresponding range. In Fig.2 a gap in the similarity values,
indicated by a plateau in the CDF plot for similarities in the approximate range
of 31− 63%, separates the matching events from the rest of the input stream. A
rather conservative threshold selection of e.g. 35% would preserve roughly 20%
of the input stream, which is congruent with the ratio of neptune-type events in
the same range.

Both figures illustrate the potential usability of the proposed similarity metric
as a distinguishing criterion for event selection purposes. In addition, the sig-
nificant similarity value difference between matching and non-matching events
allows the use of simpler algorithms in the final selection stage, by limiting the
need for complex noise-reduction techniques.

6.2 Quality of results

An accepted technique of assessing an information retrieval process is the mea-
surement of precision and recall values. For our system, recall is more important
than precision, since recall is critical for ensuring that the technique does not
discard matching events, especially in a streaming environment where the re-
covery of such events might not be possible. However, precision still remains an
important quality, since it relates to the reduction effected upon the size of the
input, which is the final purpose of the proposed system.

For the evaluation process, the prototype implementation was subjected to
a series of experiments, a subset of which is presented in table 1. Table 1 con-
tains results from experiments performed over a range of 1, 000, 000 events for
three different event types and for a variable beacon event set size. The selected
scenarios cover a significant event frequency range, with neptune-type events
comprising about 20% of the input, while back and teardrop events correspond
to 0.2% and 0.02% respectively. Despite this variation, the system reliably man-
ages to retrieve over 95% of the requested events, with a precision that typically
lies in the range of 90 − 95%. The system is able to produce acceptable results

Table 2. Experimental results - Effect of noise in the beacon set

Test Beacon # of retrieved # of correct Precision Recall Reduction

noise (%) events events (%) (%) (%)

neptune 10 204027 204021 99.997 99.612 79.597

neptune 20 204810 204021 99.615 99.612 79.519

neptune 30 204027 204021 99.997 99.612 79.597

neptune 40 205260 204798 99.775 99.992 79.474

neptune 50 206266 204733 99.257 99.960 79.373

back 10 2070 1941 93.768 96.953 99.793

back 20 5433 1941 35.726 96.953 99.457

back 30 44540 1929 4.331 96.354 95.546

back 40 77757 1904 2.449 95.105 92.224

back 50 497826 1985 0.399 99.151 50.217

teardrop 10 389445 199 0.051 100.000 61.056

teardrop 20 497395 199 0.040 100.000 50.261

teardrop 30 497395 199 0.040 100.000 50.261

teardrop 40 497395 199 0.040 100.000 50.261

teardrop 50 497395 199 0.040 100.000 50.261

with as low as 5 beacon events, which makes it usable by human operators with-
out the aid of additional tools. Varying the size of the beacon event set, does not
generally appear to have a consistently significant effect, although in most cases
we observed that larger sets resulted in a slightly higher amount of noise. The
teardrop event type, however, is a notable exception, due to the relatively lim-
ited cohesion and higher diversity that characterizes its members. As a result,
a larger beacon event set is required to allow the system to reliably establish
which features characterize the teardrop events, as evidenced by the low pre-
cision calculated for the 5-event beacon set. In addition the small size of the
teardrop event set aggravates the effects of any factor that negatively affects the
precision of the system.

6.3 Stability assessment

To assess the stability of the system we considered its behavior with respect to
the presence of random noise in the beacon event set. The evaluation is particu-
larly important, since in real-life cases it is not always possible to define a beacon
event set with absolute precision. Table 2 illustrates the experimental results of
randomly selected noisy events in the beacon set. Low amounts (e.g. 10%) of
noise do not generally have a significant impact, while higher amounts may have
a negative effect on precision with the recall being mostly unaffected. On the
other hand, event types with limited cohesion, such as the teardrop type, are far
more susceptible to the negative effects of noise, since the beacon events feature
a certain amount of noise themselves. It should be noted that these comments
are only valid in the case of random noise. The effects of cohesive erroneous

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

T
im

e
 (

s
e
c
o
n
d
s
)

Events

Threads: 1
Threads: 4

Fig. 3. Processing time versus input size for a variable number of worker threads

events in the beacon set are more severe, with the system generally selecting
events that match either the requested or the erroneous event set.

6.4 Runtime performance

The runtime performance of the prototype implementation was evaluated from
several aspects, in order to assess the feasibility of its deployment in production
environments. On a mid-range personal computer with four processor cores, the
throughput of the system was macroscopically stable and typically well in excess
of 5, 000 events/second, with 10, 000 events/second being attainable for smaller
beacon event sets. The use of multiple worker threads provided a notable perfor-
mance increase, as seen in Fig.3, although the prototype had not been adequately
optimized for multiple processors. Last, the system had quite reasonable mem-
ory requirements, being able to process the KDD99 data set with less than 96
MB of heap memory available to the Java VM.

7 Discussion

The proposed approach is mainly intended as an efficient schema-independent
initial-approach analysis tool. As such, several assumptions were made which
can potentially create situations where the system will misbehave:

Each attribute is examined in isolation: The potential usefulness of combi-
nations of attribute values is not examined. Addressing this issue in a domain-
agnostic manner requires the use of adaptive methods to avoid the introduction
of operations with exponential complexity in relation to the combination size.

The system examines each event independently: No temporal relationships
are established between events or attribute values. In general the detection of

systematic transitions is considered to be beyond the scope of this system, for
complexity and performance reasons.

The information content determination algorithm does not take value proxim-
ity into account: In some cases it makes sense to consider as equivalent attribute
values which happen to be in close numerical or lexicographical proximity.

However, the event selection approach presented in this paper is more flexible
than rule-based filters, as it does not require any domain knowledge and can
adapt to the input stream.

8 Conclusion

In order for on-line tractable analysis of log data streams to be performed, we
should first devise techniques that allow for the selective reduction of the volume
of the data that needs to be considered for each analysis. In this paper, we have
presented an approach that allows for the on-line selection of logged events that
are highly cohesive with respect to a particular feature set. The feature set is
used to compile a set of user defined events we refer to as beacon event set.
The proposed approach is based on information theory to compute a similarity
measure between incoming events and the beacon set, and is schema indepen-
dent. The result is a highly reduced collection of incoming events that are highly
related to specific system behavior. Results obtained from the KDD99 bench-
mark data set indicate that the approach can tractably reduce the size of events
that need be considered with respect to some important system activity such
as intrusion attempts, while maintaining high recall and precision levels. Possi-
ble future work includes the extension of the approach to handle combinations
of attributes for computing event similarity, the incorporation of an attribute
reduction pre-processing phase so that further performance enhancements can
be possible, and the investigation of techniques for adaptive threshold selection.
This work has been supported by CA Labs and CA Technologies UK.

References

1. B. Bruegge, T. Gottschalk, and B. Luo, “A framework for dynamic program ana-
lyzers,” in SIGPLAN Notices, vol. 28, no. 10. ACM, 1993, pp. 65–82.

2. K. Koskimies, T. Männistö, T. Systä, and J. Tuomi, “SCED: a tool for dynamic
modelling of object systems,” University of Tampere, Dept. of Computer Science,
Report A-1996, vol. 4, p. 199, 1996.

3. T. M. Khoshgoftaar and P. Rebours, “Improving software quality prediction by
noise filtering techniques,” Journal of Computer Science and Technology, vol. 22,
no. 3, pp. 387–396, 2007.

4. S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and B. Baesens, “Pro-
cess discovery in event logs: An application in the telecom industry,” Applied Soft
Computing, vol. 11, no. 2, pp. 1697–1710, 2011.

5. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models from work-
flow logs,” Advances in Database TechnologyEDBT’98, pp. 467–483, 1998.

6. T. Kalamatianos, K. Kontogiannis, and P. Matthews, “Domain independent event
analysis for log data reduction,” in IEEE Conference on Computers, Software and
Applications. IEEE, 2012, pp. 225–232.

7. H. Zawawy, K. Kontogiannis, and J. Mylopoulos, “Log filtering and interpretation
for root cause analysis,” in Software Maintenance, IEEE International Conference
on, 2010, pp. 1–5.

8. G. Zargar and P. Kabiri, “Identification of effective network features for probing at-
tack detection,” in Networked Digital Technologies, First International Conference
on, 2009, pp. 392–397.

9. S. Zaman and F. Karray, “Features selection for intrusion detection systems based
on support vector machines,” in 6th Consumer Communications and Networking
Conference. IEEE, 2009, pp. 1–8.

10. F. Fleuret, “Fast binary feature selection with conditional mutual information,”
The Journal of Machine Learning Research, vol. 5, pp. 1531–1555, 2004.

11. M. Last, A. Kandel, and O. Maimon, “Information-theoretic algorithm for feature
selection,” Pattern Recognition Letters, vol. 22, p. 799, 2001.

12. M. Sebban and R. Nock, “A hybrid filter/wrapper approach of feature selection
using information theory,” Pattern Recognition, vol. 35, no. 4, pp. 835–846, 2002.

13. T. S. Chou, K. K. Yen, and J. Luo, “Network intrusion detection design using
feature selection of soft computing paradigms,” International Journal of computa-
tional intelligence, vol. 4, no. 3, pp. 196–208, 2008.

14. W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale
system problems by mining console logs,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, pp. 117–132.

15. M. Nagappan and M. A. Vouk, “Abstracting log lines to log event types for mining
software system logs,” in Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE, 2010, pp. 114–117.

16. D. Lin, “An information-theoretic definition of similarity,” in 15th international
conference on Machine Learning, vol. 1, 1998, p. 296.

17. Q. Zhang and W. Wang, “A fast algorithm for approximate quantiles in high
speed data streams,” in 19th International Conference on Scientific and Statistical
Database Management. IEEE, 2007, p. 29.

18. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Space-and time-
efficient deterministic algorithms for biased quantiles over data streams,” in Pro-
ceedings of the 25th ACM SIGMOD, 2006, pp. 263–272.

19. F. Daneshgaran and M. Mondin, “Information aging,” in Information Theory.
Proceedings., IEEE International Symposium on, 1997, p. 38.

20. G. Cormode, S. Tirthapura, and B. Xu, “Time-decayed correlated aggregates over
data streams,” Statistical Analysis and Data Mining, vol. 2, no. 5-6, pp. 294–310,
2009.

21. N. Megiddo and D. Modha, “ARC: a self-tuning, low overhead replacement cache,”
in Proceedings of the 2nd USENIX Conference on File and Storage Technologies,
2003, pp. 115–130.

22. “The Knowledge Discovery & Data Mining Cup 1999 Data.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

