
Architectural Design Recovery using Data Mining Techniques �

Kamran Sartipi1 Kostas Kontogiannis2 Farhad Mavaddat1

University of Waterloo
Dept. of Computer Science1 and,

Dept. of Electrical &
Computer Engineering2

Waterloo, ON. N2L 3G1
Canada

Abstract

This paper presents a technique for recovering the high
level design of legacy software systems according to user
defined architectural plans. Architectural plans are rep-
resented using a description language and specify system
components and their interfaces. Such descriptions are
viewed as queries that are applied on a large data base
which stores information extracted from the source code of
the subject legacy system. Data mining techniques and a
modified branch and bound search algorithm are used to
control the matching process, by which the query is satisfied
and query variables are instantiated. The matching process
allows the alternative results to be ranked according to data
mining associations and clustering techniques and, finally,
be presented to the user.

1 Introduction

Software maintenance constitutes a major part of the
software life-cycle. Most maintenance tasks require a de-
composition of the legacy system into modules and func-
tional units.

One approach to architectural design recovery is to par-
tition the legacy system using clustering, data-flow and
control-flow analysis techniques [16]. Another approach is
based on user defined constraints that need to be satisfied
[28], therefore, architectural recovery becomes a Constraint
Satisfaction Problem (CSP). We propose an alternative ap-
proach, where architectural design recovery is based on de-
sign descriptions that are provided by the user in the form
of queries. We call this formalism Architectural Query Lan-
guage (AQL).

�This work was funded by IBM Canada Ltd. Laboratory - Center for
AdvancedStudies (Toronto) and the National Research Council of Canada.

In the proposed approach, the architectural design re-
covery process consists of three phases. In the first phase,
the source code is represented at a higher level of abstrac-
tion using Abstract Syntax Trees and entity-relationship tu-
ples. In the second phase, the user defines queries in AQL
based on a hypothesis about the system’s assumed archi-
tecture (i.e., conceptual architecture). Finally in the third
phase, a pattern matching engine finds the closest match
between the query-based specification and a collection of
source code components, generating thus a concrete archi-
tecture [16] from the AQL query. In this sense, the AQL
query provides a description of the conceptual architecture
and the instantiated query provides the corresponding con-
crete architecture. The query allows us to obtain an opti-
mal arrangement of the functions, types, and variables in
the modules that conform to the user’s view of the concep-
tual architecture. The optimal arrangement is obtained with
respect to the evidences gathered from the source code us-
ing data mining and clustering techniques. The concrete
architecture that results from the matching process and the
user provided AQL query can be thought of as a form of
goal-directed clustering.

The proposed approach focuses on facilitating partial
matching, a situation that is frequent in practice and has
been addressed in a framework of uncertainty reasoning. It
differs from other approaches in the area of constraint satis-
faction [28], in the sense that the matching process is guided
by the properties of the subject system, as opposed to satis-
fying constraints. As a result, instantiating AQL query vari-
ables becomes a problem of maximizing similarity values
as opposed to satisfying constraints.

Considering the size of the search space for the pattern
matching engine when a large system is involved, the scal-
ability of the approach is a fundamental requirement. In
order to limit the search space and speed-up the matching

process, we use data mining techniques and a variation of
the branch and bound search algorithm. In general, we as-
sume that the user relies on the domain knowledge to com-
pose the queries.

2 Related work

The following approaches are related to our approach.
The Murphy’s reflexion model [22] allows the user to test
a high level conceptual model of the system against the ex-
isting high level relations between the system’s modules.
In our approach the user describes a high level conceptual
model of the system and the tool provides a decomposition
of the system into interacting modules. Some clustering
techniques also provide modularization of a software sys-
tem based on file interactions and partitioningmethods [21].
Specialized queries (recognizers) for extracting particular
properties from the source code are presented in [12, 15].
In [6] a tool for code segmentation and clustering using
dependency and data flow analysis is discussed. Holt [16]
presents a system for manipulating the source code abstrac-
tions and entity-relationship diagrams using Tarski algebra.
The system recovers aggregations and design abstractions
in large legacy systems. In [8] a clustering approach based
on data mining techniques is presented. Lague et. al present
a methodology for recovering the architecture of the layered
systems [19]. The methodology focuses on the examination
of interfaces between different system entities.

In this work, we use the notion of Architecture Query
Language (AQL) which is a direct extension of Architec-
tural Description Languages (ADL) as discussed in: Unicon
[25], Rapide [20] and, ACME [13].

3 Architectural design recovery

We consider four fundamental views for software ar-
chitecture namely, structure, behavior, environment, and
domain-specific [2]. The notion of views has been discussed
extensively in the literature [18]. In a broad sense, views are
the result of applying separation of concerns on a design in
order to classify the related knowledge about the design into
more understandable and manageable forms.

In this paper we focus on the structural view of the archi-
tecture. The structural view covers all building blocks and
interconnections that statically describe the architecture of
a software system. It consists of static features1 and snap-
shot features2. In particular, given a legacy system which

1The “static” features are information that can be extracted by statically
analyzing the source program.

2The “snapshot” features are information that can be detected statically
by interrupting a running program and registering the program’s context
and state.

is represented as an unstructured or poorly structured col-
lection of files, functions, and data type declarations (due to
prolonged maintenance and evolution), we are interested in
obtaining a decomposition of the legacy system into a set of
structured modules.

We have developed a tool for structural recovery as well
as restructuring a legacy system using a query description
language (AQL). The matching process is an optimization
task in which the maximum value of a score function is
sought at every step of the process. We use data mining
and clustering techniques to evaluate the score function.

Within this context, a module is defined as a conceptual
and arbitrary large collection of consecutive source code
fragments with an aggregate name [14, 24].

A module (e.g., M) is considered to be a collection
of functions F, data types T , and variables V (includ-
ing both the target system entities and the library items)
that constitute a set of tuples of the form <Module
Relationship Entity>. We can represent these tu-
ples using the relations3 contain, import, and export that
constitute the whole architecture. In the above tuple,
Module is “module moduleName ”, Relationship is
contain, import, or export, and Entity is a typed name
that refers to a Function definition, Data type, or Global
variable.

More formally, let F ; T ; and V be the sets for all
functions, all data types, and all global variables, that
appear in a given legacy system or its associated library.
We consider a module as a triple M = hF; T; V i where:

F = ff j Function(f)4 ^

((hM; fi 2 contain _ hM; fi 2 export)

� 5 hM; fi 2 import)g � F ,

T = ft jDataType(t) ^

((hM; ti 2 contain _ hM; ti 2 export)

� hM; ti 2 import)g � T ,

V = fv j V ariable(v) ^

((hM; vi 2 contain _ hM; vi 2 export)

� hM; vi 2 import)g � V,

hM; ei 2 export) hM; ei 2 contain.

The semantics of the relations contain, import, and ex-
port are those presented in the standard Software Engineer-
ing literature [14]. A module contains functions, types, and
global variables, which can be exported to other modules or
(if not contained) can be imported from other modules.

3The term “relation” denotes to a set of pairs of elements.
4Function(f), DataType(t), and Variable(v) are predicates that recognize

the entity-type of an entity.
5� denotes the XOR logical operation.

Having defined the notion of a module, we can define
an architecture A to be a decomposition of a system into n
modules where, A = fmi = hFi; Ti; Vii j i 2 [1::n]g.

However, the collection of entities contained in the mod-
ules that constitute an architecture A may not cover all the
entities of the legacy system. This case occurs when some
entities can not be grouped into an identifiable module [8]
which leads us to the problem of orphan adoption discussed
in [26].

Within this research framework the issues to be ad-
dressed include:

� A schema for modeling a database that contains infor-
mation related to the system under analysis.

� A formalism for representing an abstract architectural
design in the form of queries.

� A tractable grouping methodology (based on data min-
ing) that reveals strong associations between elements
of the software system stored in the database. The
strength of the associations is used as a mechanism to
drive the pattern matching process.

� An approximate pattern matching engine that allows a
legacy system to be decomposed based on the given
user defined queries (patterns).

� An efficient method of presenting the results to the
user.

The above topics will be discussed in more details in the
following sections.

3.1 Data mining

Data mining or Knowledge Discovery in Databases
(KDD), refers to a collection of algorithms for discovering
interesting and non-trivial relationships among data in large
databases [10]. Most data mining algorithms are based on
the concept of database transactions6 and their items that
correspond to market baskets. In our approach, each trans-
action is a function definition Ft from the software system
under analysis, and the transaction items are the system
functions, data types, and global variables (Figure 1) that
are called or used in any form by Ft. A more detailed dis-
cussion on data mining concepts is presented in the follow-
ing section. A transaction contains different kinds of items.
In this context, the quantity of items of the same kind in a
transaction is not considered. Interesting relationships may
be discovered, using data mining, among groups of items

6The notion of a transaction in the data mining context emphasizes on
the containment properties, which is different from the notion of a transac-
tion in distributed systems domain which emphasizes on the communica-
tion properties.

F6
F7
T3
T6
V4

F4F2
F5
F7
F9
T2
V4

F1
F2
F5
F7
T3

F2
F3
V2
V3

F1
F2
F7
F9
T1
T3

F1 F2 F3 F4 F5

frequent 3-itemsets

(support = 3)

Database transactions (Functions)

F1

F2 F7 T3

F5F3
Supporting
functions

Figure 1. An application of the “database
transaction” notion in Reverse Engineering
domain. The functions F1, F3, and F5 all call
or use the functions F2, F7, and data type T3.

in transactions (association rules) [4], among sequences of
groups of items in transactions (sequential patterns) [5], or
among the time of occurances of transactions (time-series
clustering) [3].

3.2 Frequent itemsets

Interesting properties of data in a database, namely as-
sociation rules, are extracted from frequent itemsets. A k-
itemset is a set with cardinality k > 0. A frequent itemset
is an itemset whose elements are contained in every mem-
ber of a group of supporting transactions (i.e., supporting
functions, Figure 1). The cardinality of this group of trans-
actions is greater than a user-defined threshold called min-
support. The frequent itemsets are generated by the Apriori
algorithm [4]. In Reverse Engineering domain the exam-
ple entities are file, function, and data type, and the exam-
ple relationships are fetch, store, define, and call. Figure
2 demonstrates how the containment relationship between
a transaction (basket) and its items in data mining domain
can be extended to the relationship between a container and
a set of item-operation in Reverse Engineering domain. An
item-operation is a collection of an entity and the operation
on that entity. This collection can be treated as an item in a
transaction. The first example of the table is interpreted as:
a function (file) consists of a set of call-to-function (-file).

Based on the above discussion, we can consider that a
function (as a transaction) consist-of “call-to-function F-
xx”, “use-variable V-xx”, and “use-type T-xx” (as items of
the transaction). The use relationship is interpreted as fetch-
ing or storing to a global variable, or data type inside a
function. A collection of frequent i-itemsets (i 2 f1::kg)

of

of

of

m
in

in
g

D
at

a

file / function

file / function

file / function

file

a container

Entity

file / function

a transaction

consists

Relation

consists

consists

send to / receive from

write to / read from

call to

use (read / write)

import / export

pipes

files / types / vars

files / functions

sockets

functions / types / vars

en
g

in
ee

ri
n

g
R

ev
er

se

item-operation

item

Entity

Figure 2. The conversion of various relation-
ships in Reverse Engineering paradigm into
the containment relationship of a database
transaction.

along with the container functions (transactions) are gener-
ated and stored to be further processed.

3.3 Database for matching process

We use the Refine7 re-engineering tool [23] to parse
the target system and populate an object-oriented database
with the facts that are extracted from the target sys-
tem. Using the Refine environment, we build a database
containing tables that correspond to the relations (tu-
ples) of the form: <function calls function>,
<function uses type>, and <function uses
variable>. Data mining and clustering techniques [9,
17, 27] are applied on this database to extract strong associ-
ations between the entities. The data mining Apriori algo-
rithm reveals the existing association among entities in the
form of frequent itemsets. In a frequent k-itemset, k can be
viewed as the strength of the association among every pair
of items in the collection of the itemset and its supporting
functions. A high strength of association among a group of
system entities indicates high cohesion among those enti-
ties and qualifies them as candidates to be put in the same
module. A sample of the frequent itemsets is shown below:

1 <[V-3 T-42 T-44 T-58] [F-83 F-176 F-646 F-647] 4>
2 <[V-3 T-43 T-44 T-58] [F-83 F-647] 2>
3 <[V-3 F-478 F-649 F-719] [F-647 F-648] 2>
4 <[V-4 T-41 T-42 T-44] [F-83 F-647 F-648] 3>
5 <[V-30 F-552 F-553 F-567] [F-547 F-548] 2>

Each line is a record in the database consisting of an
itemset (left), followed by the transactions (baskets), and
the itemset support (i.e., the number of transactions). The
target system’s entities have been encoded into an identifi-
cation letter (e.g. V for variable, T for type, F for function),

7Refine is a trademark of Reasoning Systems Inc.

func: calls func / uses type / uses var

item (func, type, var) in a basket

basket (func) of items

Figure 3. A bi-partite sub-graph representa-
tion of the frequent itemsets produced by the
Apriori algorithm.

and an id-number that uniquely identifies an entity. For ex-
ample, the first line of the sample data above is interpreted
as: each of the functions F-83, F-176, F-646, and F-647
uses all variable and data-types denoted by V-3, T-42, T-44,
and T-58. These records are part of the frequent 4-itemsets
(i.e., 4 items in an itemset).

Figure 3 illustrates a bi-partite sub-graph representation
of the frequent itemsets. Three complete bi-partite sub-
graphs are shown inside the dashed boxes. These sub-
graphs signify the high cohesion among the group of in-
volving functions. Therefore, it is promising to assume each
sub-graph as a potential skeleton of a module.

3.4 The role of data mining in the recovery process

In this section, we elaborate on the significance of the
data mining technique Apriori in our approach:

� The frequent itemsets, discussed in the previous sec-
tion, are used to generate a collection of entities that
can be considered as the candidates to be contained
in a module, given a seed for that module. We call
this collection a domain. To generate a domain, we
collect all those entities that co-exist with an entity s
(we call it main-seed s) in any single frequent itemset,
along with the entity’s highest association value with
the main-seed s. The domain of s is denoted by D(s).
Below, the set of entities in D(s) (without the associa-
tion values) are defined:

D(s) = fd j 8k 2 [1::jF j]; fd; sg � (Fk:I [Fk:T)g

where, F is the whole collection of frequent itemsets,
Fk is a single itemset record, and I and T are the item-
set and its supporting transactions. For example, if the

whole frequent itemsets F in the system are those 5
records that we presented above, then the domain of
function F-83 is as follows:

D(F-83):
{<V-3 4> <T-42 4> <T-44 4> <T-58 4>
<F-176 4> <F-646 4> <F-647 4> <V-4 3>
<T-41 3> <F-648 3> <T-43 2>}

The collected domains are the basis for grouping the
entities into modules.

� In a pre-processing phase, a domain analysis algorithm
examines the association values of the entities in the
domain of each potential main-seed in order to come
up with the best candidate domain for the variables
of each module in the query. The matching process
then uses the suggested domain for each module as its
search space to instantiate the query variables for that
module.

� The association value of each entity in a domain can be
used as an input to a closeness-score valuation function
(please see section 5.2) for selecting the best n entities
to be contained in a given module (where n is deter-
mined by the number of variables in the query part that
corresponds to the module).

Therefore, a module is built around a core entity, i.e, the
main-seed, of that module, and data mining provides a re-
stricted and highly associated domain of values for the vari-
ables in that module, as well as a criterion for grouping the
entities in that module.

4 A system level query language

In this section we present an overview of the Architec-
tural Query Language (AQL) which is used for describing
(not specifying) the conceptual architecture of a legacy sys-
tem. The AQL allows for:

� decomposing the program representation into modules
with inter-/intra-module relationships,

� representing alternative design views (i.e. structural or
behavioral), and

� abstracting away the target system’s syntactical and
implementation variations.

The syntax of AQL encourages a structured description of
the architecture for a part or the whole system. A typical
AQL query is illustrated below:

BEGIN-AQL
MODULE: M1

MAIN-SEED: func initialize()

IMPORTS:
FUNCTIONS: func $IF(0..2), func ?F1
TYPES: type $IT(0..1)
VARIABLES: var $IV(0..1)

EXPORTS:
FUNCTIONS: func $EF(0..2), func ?F2()
TYPES: type $ET(0..2), type ?T1
VARIABLES: var $EV(0..1)

CONTAINS:
FUNCTIONS: func $CF(2..16),

func initialize()
TYPES: type $CT(1..5)
VARIABLES: var $CV(0..8)

END-ENTITY

MODULE: M2
MAIN-SEED: func deal_card()
IMPORTS:

FUNCTIONS: func $IF(0..2), func ?F2()
TYPES: type $IT(0..2), type ?T1
VARIABLES: var $IV(0..1)

EXPORTS:
FUNCTIONS: func $EF(0..2), func ?F1
TYPES: type $ET(0..2)
VARIABLES: var $EV(0..1)

CONTAINS:
FUNCTIONS: func $CF(6..10),

func deal_card(),
func hit_player_hand_1(),
func hit_player_hand_2()

TYPES: type $CT(0..2)
VARIABLES: var $CV(0..2)

END AQL

The prefixes “$” and “?” represent a multiple-valued
and a single-valued placeholders, respectively. For exam-
ple $CF(6..10) denotes a multi-valued placeholder that can
be instantiated by minimum 6 and maximum 10 functions
that are contained in a module 8.

Single-valued placeholders, with the same name in dif-
ferent parts of a query, can only be instantiated with a sin-
gle entity. The matching process provides a substitution �,
which binds these AQL placeholders with actual entities of
the legacy system. When all placeholders in the query have
been instantiated, i.e., bound to values (even by a NULL
binding), a concrete system architecture is generated (as
opposed to the abstract architecture defined by the AQL
query).

5 Search and control

In traditional approaches to program understanding, a
top-level control mechanism selects the program parts to
be compared against the given pattern in query. In re-
cent approaches to Reverse Engineering, the user-input is
an important factor in guiding the whole recovery process
[22, 11, 1, 7]. For this work, we use the branch and bound
search algorithm for the matching process. This AI search

8We adopt a naming convention for the AQL variables, e.g., CF de-
notes to contains functions.

Complete

B
B

:
M

o
d

u
le

 1
B

B
:

M
o

d
u

le
 3

B
B

:
M

o
d

u
le

 2

2

3
4

1

path path
Incomplete

BB: branch-and-bound search tree

Depth
Root

Figure 4. Three branch and bound search
trees for instantiation of a three-module ar-
chitecture described in an AQL query.

technique is known to perform well in large search spaces
since it explores the search tree based on the knowledge
from the system.

5.1 Branch and bound

In a branch and bound algorithm a search tree with in-
complete paths is built. At each step the algorithm ex-
pands an incomplete path with the highest score among all
other incomplete paths. Upon expansion, new incomplete
paths are generated and added to the previous ones. The
procedure continues until a complete path which is an op-
timal solution is found. A valuation function allocates a
score to each node of the branch and bound search tree to
guide the search process. This general approach in most
cases restricts the search space to a small subset of all tree
paths, preventing the exponential complexity inherent to the
searching problems.

More formally, given an AQL query Q containing a
set of placeholders $X(1::n) = f?X1; ?X2; :::?Xng, the
objective is to provide a substitution9

� = f?X1=value1,
?X2=value2, ... ?Xn=valueng that binds AQL query
placeholders with actual source code entities. An internal
node Ni in the search tree T is associated with a set of
bindings Bi = f?X1=val1; ::?Xi=valig for those query
placeholders instantiated so far. A leaf node Nl is associ-
ated with a set of bindingsBl = f?X1=val1; ::::?Xn=valng

that provide values for all placeholders appearing in the
query. The bindings Bi and Bl are known as incomplete
path and complete path, respectively. In this context, a

9The case of multi-valued placeholder can be easily generalized to
single-valued placeholders.

Module 2 Module 3Module 1 Module 4

sorted

sorted

Module 2 Module 3 Module 4Module 1

Incomplete tree paths

Architecture solution

Candidate solutions (complete tree paths)

Solution to previous modules Current module

Figure 5. An implementation view of separate
branch and bound search algorithms for in-
cremental recovery of the modules.

search space is defined by all values that provide a possible
binding to the query placeholders.

Properties of the search engine

The main-seed s of a module M is the first entity that
instantiates a placeholder ?ph inside a module. This entity
determines the root of the corresponding search tree. The
domain of s (i.e. D(s)) determines all potential entities that
can be put in the module M. At each step of the branch and
bound search, the number of paths that expand the incom-
plete path to an internal node Ni is equal to jD(s)j � d,
where jD(s)j is the domain size of s and d is the depth of
node Ni. The max size of the module M (determined by the
multi-valued placeholders) and the quality of the collected
entities, determine the end of the search for each module. A
score history, containing the evaluated scores at each depth
of the search tree for each module, is maintained which re-
flects the quality of a recovered module.

Figure 4 demonstrates a sequence of branch and bound
search trees that incrementally instantiate a concrete archi-
tecture consisting of three modules. A thick line from the
root of the first tree to a leaf of the last tree represents an op-
timal architectural solution. In a macroscopic view, the ar-
chitectural pattern of an AQL query is a graph of modules,
connected via import/export links. A sequence of branch
and bound searches provides solutions for individual mod-
ules and incrementally builds the concrete architecture. A
link is a shared entity among two or more modules that is
bound to a link placeholder (e.g., ?V1 or ?CFi in the IM-
PORTS/EXPORTS parts of the linked modules.

In the restructuring phase, at every node of a search tree
all single-valued placeholders between the current and pre-

vious modules are examined for instantiation. The entities
at each node, if are not used for single-valued link instantia-
tions, are kept in a pool of entities to be used for future link
instantiations. To ensure the correctness of this method, we
always maintain the whole incomplete architecture consis-
tent with respect to the bound links and the modules’ seeds
(i.e., main-seed and the other user-defined entities in the
modules). By a consistent architecture, we mean that each
architectural entity must be contained in only one module,
and the shared entities must be correctly resolved.

The overall search control process uses a back track-
ing mechanism to allow alternative solutions for previous
modules to be generated, should the solution for the current
module fail to produce an architectural solution. In Figure
4 the paths in solid trees have been examined by the branch
and bound search algorithm and some solutions have been
found, whereas the dashed trees provide alternative solu-
tions in backtracking phases.

In order to reduce the chance of being trapped in a local
optimal solution, a number of complete paths (solutions)
are collected for each module (candidate solutions), and the
best candidate solution is selected for a module (Figure 5).

5.2 Score valuation

The score valuation of a new binding ?Xd=vald, occur-
ring at some node Ni in depth d, is used by the branch
and bound algorithm to expand the search tree. The branch
and bound algorithm selects the best entity in the domain of
main-seed (according to a score function) for the new bind-
ing. Some important criteria in modularization of a system
include:

� providing low-coupling and high cohesion among en-
tities of different modules,

� conforming with the user defined constraints, and

� collecting more entities in a module.

For evaluation of the score function we employ some no-
tions from the clustering paradigm. A similarity matrix
[17] is used to assess the closeness of a candidate item to
a group of items in a module. This information is used in
a closeness-score function and is evaluated at each node of
the search tree.

The similarity matrix S is a symmetric matrix (i.e., aij =
aji). Each matrix entry aij is a record of various similarity
information between two system entities ei and ej (either
function, type, or variable). The following categories are
used to assess the closeness between entities:

� Shared features, which is based on the number of fea-
tures (also called property or attribute) that exist for
both entities. We use the Jaccard method (Jaccard =

A\B
A[B

, where A and B represent the sets of feature val-
ues for two entities) [9] to assess the closeness between
two entities based on a single feature. For example,
in measuring the closeness of two functions based on
data type usage, A and B represent the sets of data-
types used by the two functions. The Jaccard similar-
ity is obtained for each separate feature in a similar-
ity matrix entry, and then an average closeness based
on all features in that entry is obtained. The features
to be considered include: shared types, shared vari-
ables, shared child function, and shared parent func-
tion. The only similarity feature between a function
and a type/var is sharing scope of usage (i.e., parent
function).

� In-between relationships, which are based on direct
properties such as call between two functions, and us-
age between a function and a type/var. More complex
relationships such as: in-loop, call-depth, and domi-
nance relationships between two functions can also be
considered.

The closeness-score function provides high score for an
entity which has high “average value for shared features”
and high “association level” with respect to the entities of a
module. This guarantees a high-cohesion among a module’s
entities. Similarly, the closeness-score function provides
high score for an entity that has high “relationships” with
the members of a module. This guarantees a low-coupling
among different modules.

The similarity matrix is generated in a pre-processing
phase, hence, does not impose extra computation load dur-
ing the search. The group average method (i.e., average
value of closeness between an entity and each member of
a group of entities) [9] is used to evaluate the closeness of
an entity and a module’s entities. The Jaccard and group
average method are among the most popular techniques for
similarity evaluation and clustering operation, respectively
[9].

We use the following linear closeness-score function
with empirical coefficients (between a candidate entity E
and a group of entities G already in a module).

closeness-score (E, G) = (2 � t:a:s+
a:s
10

+
g:s
20
�

l:t:m
g:s

)

where t:a:s: total average similarity of the entity E
with respect to all entities in the group G, a:s: association
strength of the entity E with respect to the main-seed (from
data mining), g:s: group size , and l:t:m: less than mini-
mum number of bound multi-valued placeholders, obtained
from the AQL query. The latter term signifies the demerit
point if the module does not meet the user defined con-
strains for minimum number of entities in a module which
are assigned through multi-valued placeholders.

6 Experimental results

We use two systems as the vehicles to conduct our ex-
periments: i) the CLIPS system (C-Language Interface Pro-
cessing System), a medium size (approx. 40 KLOC) rule-
based system, with 734 functions, 59 aggregate data-types,
and 163 global variables; ii) TwentyOne, a small game pro-
gram with size 1.6 KLOC consisting of 3 files, 38 functions,
and 16 global variables.

In this section, we investigate two groups of experiments.
In the first group, we focus on the recovery and restructur-
ing tasks of a target system into distinct modules. In the
second group, we verify the precision, recall, and stabil-
ity of the matching process, using an information retrieval
framework.

Our experimentation platform consists of a Sun Ultra
10 (333MHZ, 256M memory) and the experiments are
performed in a low CPU-load environment. It takes 4
minutes to parse the target system (CLIPS), using a parser
written in Refine C, and to construct an annotated AST
in the Refine’s database. The Apriori algorithm requires
approximately 20 minutes to build the frequent itemsets
with support 2. The search time of the branch and bound
algorithm is sensitive to the formulation of the score
function presented in the previous section. We can break
a long search for a module into incremental steps, hence,
limiting the search time to less than 30 seconds for most
cases.

6.1 Architectural recovery

6.1.1 Module recovery

The proper selection of the main-seeds10 for the modules
in an AQL query is the key point in architectural recovery
of a system. The ”closeness” among a group of entities that
most likely belong to the same module is proportionally
related to the association strength between each pair of
entities in that group. This information is an important
criterion for selecting distinct main-seeds when forming
a query. A number of utility functions assist the user to
select the main-seeds for the modules by analyzing the
main-seeds’ domain and comparing them with the already
recovered functions in modules.

TwentyOne system
In this experiment we formed a query for recovering the
architecture of a 1.6KLOC C program into five distinct
modules. The result is shown in figure 6. In this ex-
periment, using the techniques discussed earlier, we se-
lected the following main-seeds: initialize (F-12),

10Refer to section 3.4.

F

Adopt F

F

Import F Export F

V-2
V-3
V-4

M4:
V-8
V-9
V-12

M5:
V-5
V-6
V-7
V-10
V-15
V-16

M1:
V-1
V-11

M2:
V-13
V-14

M3:

M5:
F-7
F-16
F-20

M4:
F-23
F-24
F-25
F-32
F-34
F-35

Contained
functions
in modules

Contained variables
in modules

main-seed

1) Function recovery for modules

F-5

F-4

F-32

F-30

F-27
F-18

M2 M3

M4 M5

M1
F-6 F-38

M2 M3

M4 M5

M1

V-3

V-1

V-11

V-9

V-12

V-14

2) Global-variable recovery for modules

F-3

M1:
F-4
F-5
F-12
F-13
F-14
F-15
F-17
F-19
F-21
F-26
F-31
F-33
F-36
F-37

M2:
F-6
F-8
F-9
F-10
F-11
F-18
F-22
F-27
F-28
F-29
F-30

M3:
F-1
F-2
F-3
F-38

F-8
F-12

Figure 6. Modularization of a small program
TwentyOne into five modules.

deal card (F-18), usage (F-1), player wins (F-24),
and get insurance for player (F-20) for the mod-
ules, respectively. A part of the query for this experiment
has been shown as an AQL example in section 4. The out-
put of the recovery for the first module is presented below:

############### Module 1 ###############
IMPORTS:
F: ((Y1 F-3) (Y2 F-18) (Y3 F-27) (Y4 F-30))
V: ((Y1 V-11) (Y2 V-1))
EXPORTS:
F: ((Y1 F-12))
V: (NIL)
CONTAINS:
F: ((X1 F-5) (X2 F-4) (Y1 F-14) (Y2 F-13)

(Y3 F-15) (Y4 F-17) (Y5 F-31) (Y6 F-36)
(Y7 F-21) (Y8 F-33) (Y9 F-26) (Y10 F-37)
(Y11 F-19) (Y12 F-12))

V: ((Y1 V-6) (Y2 V-10) (Y3 V-16) (Y4 V-15)
(Y5 V-5) (Y6 V-7))
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

File: PLAY (V-16 V-15 F-12 F-19 F-37 F-26
F-33 F-21 F-36 F-31 F-17 F-15 F-13
F-14 F-18 F-27 F-30)

File: UTIL (F-4 F-5)

File: MAIN (F-3 V-7 V-5 V-10 V-6 V-11 V-1)

The Xs and Y s in the recovered parts are the instan-
tiation of the multi-valued placeholders (e.g., $CF(2
..16) generates 2 Xs and 14 Y s). The distribution of the
recovered entities in the three files main.c, play.c
and util.c are also shown. Figure 6 illustrate the shared
and adopted entities among modules. The process is
incremental in terms of the entity-type recovery, i.e., first

M1:
F-49
F-84
F-85
F-86
F-87
F-88
F-93
F-94
F-95
F-96
F-97
F-98
F-99
F-100

M2

M4 M3

M1

7

funcs

14

funcs

14

funcs

9

funcs

funcs
10

M2:
F-19
F-24
F-25
F-27
F-37
F-41
F-45
F-65
F-67
F-69
F-80
F-81
F-101
F-114

M3:
F-23
F-33
F-47
F-50
F-58
F-61
F-63
F-71
F-73

M4:
F-16
F-30
F-31
F-32
F-36
F-40
F-44

Function Recovery

in modules

Exported function

functions
Contained

Figure 7. Modularization of the three files of
the CLIPS system into four modules.

functions and then global variables have been recovered.

CLIPS system
In the second experiment, a subsystem of the CLIPS,

i.e., files bc.c, object.c, and method.c are con-
sidered for modularization. The main-seed domain anal-
ysis for these files showed that on average over 90% of
the domain of each function (if it is considered as a main-
seed) with high average association value is covered by the
same three files and two other files (i.e., factmngr.c and
evaluatn.c). Therefore we need to focus on only five
files for our experiment as opposed to 46 files of the CLIPS.
Figure 7 illustrates the result of experiment with four mod-
ules. The first module consists of 76% of the functions in
the file bc.c with no shared entities with other modules.
The second and third modules have 10 functions in common
which indicates that these two modules are good candidates
to join and make one module. The fourth module recovered
the functions from the file object.c. An overall observa-
tion is that the file bc.c itself is a module but the other two
files can be decomposed into two or more modules.

6.1.2 Module restructuring

In the recovery phase, discussed above, the target system is
modularized according to the property of the system entities
and their interaction. However, the recovered modules may
produce an ill-formed modular system in terms of uneven
module sizes, or unbalanced inter-module interactions. The
proposed methodology allows the user to refine the AQL
query and impose extra constraints on the recovery process.
This causes the search algorithm to allocate high score val-
ues to those modules whose single-valued links have been
instantiated and therefore, producing better modularization
results.

For example, in the experiment above we obtained four

F-47
F-50
F-58
F-61
F-63
F-71
F-73
F-80
F-81

F-41
F-33
F-27
F-23
M3:M1:

F-49
F-84
F-85
F-86
F-87
F-88
F-93
F-94
F-95
F-96
F-97
F-98
F-99
F-100

M2:
F-19
F-24
F-25
F-37
F-45
F-65
F-67
F-69
F-101
F-114

M4:
F-16
F-30
F-31
F-32
F-36
F-40
F-44

M2

M4 M3

M1

7

funcs

14

funcs

10

funcs

funcs

Function Recovery

6
funcs

13

funcs
4

in modules
functions
Contained

Exported function

Figure 8. Restructuring of the recovered mod-
ules M2 and M3 in Figure 7.

modules out of three source files. The high interaction
among the second and third module suggested that we com-
bine those two modules into one module with a total of 23
functions. Another possibility is to maintain the two mod-
ules separate and impose the search algorithm to recon-
figure the imported/exported entitles based on the single-
valued query links, and then assign the remained shared
entities as before. To do this we define two single-valued
query links (see below) between the modules in the oppo-
site direction of those shown in Figure 7 and run the query.

MODULE: M2
IMPORTS:
FUNCTIONS: func $IF(0 .. 10),

func ?F1(), func ?F2()
MODULE: M3

EXPORTS:
FUNCTIONS: func $EF(0 .. 10),

func ?F1(), func ?F2()

In the result illustrated in Figure 8, the single-valued links
have been instantiated with two functions (i.e., F-80 and F-
81). Also, two other functions (i.e., F-27 and F-41) have
been moved from the second module to the third module.
This replacement is done since these functions are now
closer to the third module than to the second module.

6.2 Matching process performance

In this group of experiments, we compare the contents
of the recovered modules against the contents of the CLIPS
files11. In our experiment, for each source file we defined
two modules in AQL with the main-seeds selected from that
file. Then the functions in the recovered modules were com-
pared against the functions contained in the file.

11According to the CLIPS documentation, the CLIPS files have been
designed as modules.

50 70 9040 80 10060

70

50

60

80

90

100

Precision

Recall

Figure 9. The interpolation curve for the ob-
tained Recall and Precision values.

Figure 9 illustrates the interpolating curve between the
resulting points in the Precision-Recall plane. The results
indicate that our matching process behaves very well con-
sidering that we maintain a Precision level of 90% for a 60%
level of Recall. Informally, this result means that we can re-
trieve 60% of the architecture as documented in the manual
while having only 10% total noise in the obtained results.

Figure 10 represents the stability of the recovered mod-
ules with respect to the change of the selected seeds. For
this experiment, 20 functions (seeds) including the main-
seed (F-127) from the file expressn.c (consisting of
28 functions) were defined in a module to be recovered.
The recovered functions in different files are shown using
columns. A sequence of 20 experiments conducted. In each
subsequent experiment we deleted one more seed (the least
associated seed with the other seeds) from the query. The
result shows that once the number of seeds in the query
reaches to a threshold (here 12 seeds), the experiments re-
cover the same group of entities until only the main-seed
remains. Therefore, our recovery method tends to produce
the same result when we increase or decrease the number
of seeds considered in the query. This experiment has been
performed for different files of the CLIPS system with sim-
ilar results. From this experiment we conclude that we can
break the recovery process of a module with a large search
space into smaller steps and use the result of the initial steps
as the seeds for the next steps.

7 Conclusion

In this paper we present a methodology for architectural
design recovery based on data mining techniques. In this
approach, a legacy system is parsed and its source code is
represented as a variation of the data mining frequent item-
sets representation. A structured query language is used to
describe possible architectural design abstractions for the

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

19 18 17 2 1

1

2
3
4
5
6
7
8
9

11
12

13
14
15
16
17
18

20

10

19

20 16 15 14 13 10 8 7 6 5 4 312 11 9

recovered module

expressn.c analysis.cgenerate.c

No. of functions in the

Seeds in query

Main Seed: group_actions() = F-127

Domain size of "F-127" = 129

No. of functions in file "expressn.c" = 28

No. of shared funcs in domain "F-127" and file "expressn.c" = 24

Figure 10. Investigating the stability of the re-
covery process with respect to the change of
a module’s seeds.

given legacy system. A pattern matching engine uses data
mining, clustering, and a modification of the branch and
bound search algorithm to obtain the components of the
legacy system. The result is an architectural design with the
best matching to the query specified by the user. Queries
are incremental and allow to specify (describe) different
parts of the system. A score is associated with each pos-
sible match which guides the pattern matching mechanism
to rank architectural design alternatives and present an opti-
mum design to the user for further evaluation. Initial results
obtained by applying the proposed technique to medium
size systems (30-50 KLOC) show that the technique is ac-
curate and scalable. In particular, the technique has been
applied on the architectural recovery of the APACHE web
server, and BASH Unix shell. On-going work includes the
evaluation of the recovery technique on larger software sys-
tems at the IBM Toronto Lab, Center for Advanced Studies.

References

[1] Rigi, Web site, URL =
http://www.rigi.csc.uvic.ca/rigi/rigiindex.html.

[2] Architectural Design Recovery using Data
Mining Techniques, Web site, URL =
http://se.math.uwaterloo.ca/ksartipi/papers/tech-
rep.ps.

[3] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast
similarity search in the presence of noise, scaling, and
translation in time-series databases. In Proceedings
of the 21st International Conference on Very Large
Databases, Zurich, Switzerland, September 1995.

[4] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In Proceedings of the 20th Interna-
tional Conference on Very Large Databases, Santiago,
Chile, 1994.

[5] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In Proceedings of the International Conference
on Data Engineering (ICDE), Taipei, Taiwan, March
1995.

[6] Burnstein and K. Roberson. Automated chunking to
support program comprehension. In Proceedings of
IWPC’97, pages 40–49, Dearborn, Michigan, 1997.

[7] D. N. Chin and A. Quilici. Decode: A co-operative
program understanding environment. Software Main-
tenance: Research and Practice, 8:3–33, 1996.

[8] C. M. de Oca and D. L. Carver. A visual representa-
tion model for software subsystem decomposition. In
WCRE: Working Conference on Reverse Engineering,
pages 231–240, Honolulu, Hawaii, October 1998.

[9] B. S. Everitt. Cluster Analysis. John Wiley, 1993.

[10] U. M. Fayyad. Advances in knowledge discovery and
data mining. MIT Press, Menlo Park, Calif., 1996.

[11] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogian-
nis, et al. The software bookshelf. IBM Systems Jour-
nal, 36(4):564–593, November 1997.

[12] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo.
A cliche-based environment to support architectural
reverse engineering. In IEEE International Confer-
ence on Software Maintenance (ICSM), pages 319–
328, 1996.

[13] D. Garlan, R. Monroe, and D. Wile. Acme: An ar-
chitecture description interchange language. In J. H.
Johnson, editor, Proceedings of CASCON’97, pages
169–183, November 1997.

[14] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamen-
tals of Software Engineering. Prentice Hall, Upper
Saddle River, NJ 07458, 1991.

[15] D. R. Harris, H. B. Reubenstein, and A. S. Yeh.
Recognizers for extracting architectural features from
source code. In Proceedings of Second Working
Conference on Reverse Engineering, pages 252–261,
Toronto, Canada, July 14-16 1995.

[16] R. C. Holt. Structural manipulations of software ar-
chitecture using tarski relational algebra. In WCRE:
Working Conference on Reverse Engineering, Hon-
olulu, Hawaii, October 1998.

[17] A. K. Jain. Algorithms for Clustering Data. Prentice
Hall, Englewood Cliffs, N.J., 1988.

[18] P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, pages 42–50, November 1995.

[19] B. Lague, C. Leduc, A. L. Bon, E. Merlod, and
M. Dagenais. An analysis framework for understand-
ing layered software architectures. In Proceedings of
IWPC’98, pages 37–44, Ischia, Italy, 1998.

[20] D. C. Luckham, J. J. Kenny, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4):336–355, April 1995.

[21] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Proceedings of IWPC’98, pages 45–53, Ischia, Italy,
1998.

[22] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion model: Bridging the gap between source and
higher-level models. In In proceedings of the 3rd ACM
SIGSOFT SFSE, pages 18–28, October 1995.

[23] Reasoning Systems Inc., Palo Alto, CA. Refine User’s
Guide, version 3.0 edition, May 1990.

[24] L. Rising and F. W. Calliss. Problems with determin-
ing package cohesion and coupling. Software Practice
and Experience, 22(7):553–571, July 1992.

[25] M. Shaw, R. DeLine, et al. Abstractions for software
architecture and tools to support them. IEEE Transac-
tions on Software Engineering, 21(4):314–335, April
1995.

[26] V. Tzerpos and R. C. Holt. The orphan adoption prob-
lem in architecture maintenance. In Proceedings of the
Working Conference on Reverse Engineering, Amster-
dam, October 1997.

[27] T. A. Wiggerts. Using clustering algorithms in legacy
systems modularization. In Proceedings of the Fourth
Working Conference on Reverse Engineering, pages
33–43. IEEE Computer Society Press, October 1997.

[28] S. G. Woods, A. Quilici, and Q. Yang. Constraint-
Based Design recovery for Software Reengineering:
Theory and Experiments. Kluwer Academic Publish-
ers, 1998.

