
On the Role of Design Patterns in Quality-Driven Re-engineering �

Ladan Tahvildari and Kostas Kontogiannis
Dept. of Electrical and Computer Eng.

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fltahvild,kostasg@swen.uwaterloo.ca

Abstract

Design patterns have been widely adopted and well in-
vestigated by the software engineering community over the
past decade. However, their primary use is still associ-
ated with forward engineering and the design phase of the
software life-cycle. In this paper, we would like to ex-
amine design patterns from a different perspective namely,
their classification and usage for software re-engineering
and restructuring. Specifically, twenty three design patterns
originally presented in the “Gang of Four” book are re-
classified for re-engineering purposes into two major cat-
egories, primitive and complex. Moreover, their relation-
ships and their impact to specific re-engineering objectives
are presented in terms of a layered model that is denoted
by six different relations namely : uses, refines, conflicts,
is-similar-to, combines-with, and requires. The paper also
discusses how the classification scheme can be applied for
the re-engineering and restructuring of object-oriented sys-
tems.

1 Introduction

A growing number of researchers consider design pat-
terns to be a promising approach to object-oriented systems
development [2, 5, 6, 7, 13, 22, 24]. The main idea behind
design patterns is to support the reuse of design informa-
tion, thus allowing developers to communicate design in-
formation for a subject system more effectively. New de-
sign patterns are constantly being specified, and applied by
several research groups [8, 12, 16, 17, 23, 31]. Moreover,
numerous development tools that support the design pattern
approach are currently being developed [4, 10, 11, 15, 30].

�This work was funded by the IBM Canada Ltd. Laboratory, Center
for Advanced Studies in Toronto; also by the Ontario Graduate Scholar-
ship(OGS) of Canada.

In [13], a catalogue of design patterns is presented. The
catalogue not only lists a description of the patterns but also
presents how patterns are related. Furthermore, the cat-
alogue presents a classification of all design patterns ac-
cording to two criteria : jurisdiction (class, object, com-
pound) and characterization (creational, structural, behav-
ioral). However, these relationships in [13] are described
informally and each relationship appears to be different in
its formalization from the other ones.

Buildingon related work on refactoring [12], we propose
a classification scheme of the standard design patterns [13]
in a way that we believe it can assist software maintainers
to better assess the impact of these design patterns when ap-
plied to object-oriented software restructuring. This scheme
is based on three primary relationships between patterns
such as : i) a pattern uses another pattern, ii) a pattern refines
another pattern, iii) a pattern conflicts with another pattern.
This paper also describes three secondary relationships be-
tween patterns such as : i) a pattern is similar to another one,
ii) two patterns combine to solve a single problem, iii) a pat-
tern requires the solution of another pattern. We also show
how these secondary relationships can be expressed in terms
of the primary relationships. These classifications motivate
us to update the catalogue and organize the design patterns
into two layers representing different abstraction levels.

This paper is organized as follows. Section 2 discusses
the motivation and objectives to prepare this layered cata-
logue in the re-engineering context. Section 3 presents re-
lated work. Section 4 presents a tabular view of all design
patterns [13] and their relationships as they appear in the
aforementioned catalogue. Section 5 classifies these rela-
tionships and Section 6 modifies the structure of the cata-
logue. Section 7 presents how it is possible to arrange the
design patterns into layers representing different abstraction
levels. Finally, Section 8 discusses an application scenario
of the proposed classification and Section 9 provides the
conclusion and insights of future work.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Engineering

Reverse

Engineering

Reverse

helps to

find starting

can be combined to can be combined to or Features

Extracted
Components

Design
Patterns

Rules
Design

in serves

Metric

Object-Oriented Legacy System

serve as a basic for the correct use of

Analysis

serve as

points for

used

are often derived from

are

Operations
Refactoring

Design

as goals for

 for
hints

give

assess
quality

of

improves the quality of the

blocks
reusable building

Figure 1. Role of Design Patterns in Software Re-engineering.

2 Motivation and Objectives

For our work, we are interested to investigate design
patterns and their relationships as a means to restructure
an object-oriented legacy system so that the new system
conforms with specific design patterns and meets specific
non-functional requirement (NFR) criteria. We call this ap-
proach “Quality-Driven Object-Oriented Re-engineering”.
Specifically, we aim to enhance through re-engineering and
restructuring specific quality characteristics of the subject
object-oriented system by migrating it into more maintain-
able forms [25, 26, 27, 28].

For achieving this goal, we need to develop a catalogue
of specific design patterns and refactoring operations [12]
that can be used to enhance specific software qualities
during re-engineering namely, maintainability and perfor-
mance. Performance is a vital quality factor in real-time,
transaction-based, or interactive systems. Such systems
have to handle incoming data and transactions, provide an
interface with external users, and maintain persistent stor-
age. Without good performance, such systems would be
practically unusable, leading to lack of service, lack of in-
formation, clients who are dissatisfied, and corporate loss.
Hence, it is important to consider performance requirements
during re-engineering such systems. Also, a major motiva-
tion for re-engineering is to make applications more main-
tainable. This can be partially achieved with the use of de-
sign patterns. For example, State design patterns make it
easier to add new states in a system without altering the
functionality of the existing states. Ironically, the software
engineer practice reports that improved methods during sys-

tem maintenance and evolution result in higher maintain-
ability indicators. Hence, it is important to consider how to
improve maintainability during re-engineering activities.

Figure 1 provides an overview on how the design pat-
tern approach is related to several other concepts of object-
oriented software development as we plan to use in the pro-
posed requirements-driven re-engineering process. As Fig-
ure 1 depicts the components or source code features that
can be directly extracted from the object-oriented legacy
system provide important information for guiding the de-
velopers to detect and apply candidate patterns in a way that
can improve the quality of target system. In a nutshell, our
re-engineering approach consists of : i) requirements analy-
sis to identify specific re-engineering goals, ii)model analy-
sis to understand the system’s design and architecture which
Design Rules provided by reverse engineering gives proper
information, iii) source code analysis to understand a sys-
tem’s implementation through Extracted Components and
Features, iv) remediation specification to examine the par-
ticular problem through Refactoring Operations and to se-
lect the optimal transformation for the system, v) transfor-
mation to apply transformation rules in order to re-engineer
a system in a way that complies with specific quality crite-
ria, and vi) evaluation process to assess whether the trans-
formation has addressed the specific requirements set that
Metric Analysis can do this job.

Once software artifacts have been understood, classified,
and stored during the reverse engineering phase, their be-
havior can be readily available to the system during the for-
ward engineering phase. The forward engineering phase
aims to produce a new version of object-oriented legacy

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

system that operates on the target architecture and meets
specific non-functional requirements (i.e., maintainability
or performance enhancements). The proposed process is it-
erative and incremental in nature. It means that at each itera-
tion cycle, an evaluation procedure is applied to ensure that
each transformation step conforms with the requirements
set for the new system.

As a part of this project, we have carefully analyzed
the existing patterns presented by “Gang of Four” [13]
to determine their relationships and their usage in the re-
engineering area. The classification scheme for relation-
ships between patterns presented in this paper was devel-
oped to support the wider goal of improving the quality and
the design of migrant code while maintaining its original
functionality (behavior preserving transformations).

3 Related Work

Design patterns were discussed by Christopher Alexan-
der, an architect, in order to describe techniques for town
planning, architectural designs, and building construction
techniques [1]. Each design pattern description contains a
section where relationships to other patterns of a higher or
of a lower granularity level are presented. These relation-
ships influence the construction process. A classification
for the patterns was given, however their mutual relation-
ships have not been provided.

In [13], a large collection of well described design pat-
terns was presented. The relationships between design pat-
terns are also described, but not classified. However a clus-
tering of related design patterns was included. Such clus-
tering according to jurisdiction (class, object, compound)
and characterization (creational, structural, behavioral) is
orthogonal to the one derived in this paper. In this context,
patterns in a specific cluster can be considered as similar to
another one which supports the selection of an appropriate
design patterns for a certain problem.

Frameworks [14, 34] are also considered as high-level
design patterns, usually consisting of many interrelated de-
sign patterns of lower levels.

In [2], it is indicated that “Patterns can be used at many
levels, and what is derived at one level can be considered a
basic pattern at another level”. Furthermore, it is stated that
“This is probably typical of most architects; some patterns
will be generic and some will be specific to the problem
domain” which also confirms the organization depicted in
our proposed layers in Figure 3.

Booch [3] also discussed that design patterns are ranging
from idioms to frameworks.

In [6], several design patterns are combined in an exem-
plary application, but the relationships are not investigated
further.

The relationships between object-oriented design pat-
terns were first analyzed in [5] where three kinds of rela-
tionships between patterns are described. These include :
i) use - one pattern can use another pattern, ii) variant - one
pattern can be a variant of another pattern, iii) combine -
two patterns can be used in combination to solve a problem.

Similarly, Mesazaros and Doble [18] identified five re-
lationships between patterns, a pattern can use, be used by,
generalize, specialize, or provide an alternative to another
pattern.

4 Overall Structure of the Catalogue

Table 1 is a tabular presentation in alphabetic order of
the design patterns and their relationships that can be found
in [13]. No further information nor new patterns are pro-
posed in this paper. However, Table 1 provides an overview
of the structure of the proposed catalogue. It serves as a ref-
erence point to the rest of the paper as it contains the most
detailed information about the pattern relationships. This
table also serves as the starting point for the further classifi-
cation and the revision of the relationships. On the basis of
Table 1, we build our proposed classification scheme that is
presented in the following sections.

5 Classifying Relationships

Our classification scheme is based on the following rela-
tionships between any pairs (X;Y) of design patterns found
from the description in Table 1 :

� X Uses Y

When building a solution for the problem addressed by
X, one subproblem is similar to the problem addressed
by Y . Therefore, the design pattern X uses the design
pattern Y in its solution [1, 5, 13]. Thus, the solution
of Y represents one part of the solution forX. It means
that a pattern which has a larger or more global impact
on a design will use patterns which have smaller or
more local impacts.

For example, Chain of responsibility uses Decorator.
Tools supporting the design pattern approach can ben-
efit from this information as such a relationship can be
checked in existing designs. Also design patterns like
Y can be visualized as blocks without internal imple-
mentation details in order to raise the abstraction level.
The uses relationship can also be used to simplify the
descriptions of more complex patterns by composition.

We can also consider the used by (Y used by X) re-
lationship which is the inverse of the uses relation-
ship (X uses Y) and can be analyzed in the same way

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Pattern Name (X) Description of Relationship Pattern Name (Y)

Abstract Factory Are often implemented with Factory Methods.
Can also be implemented using Prototype.

Adaptor Has a structure similar to Bridge.
Bridge Is similar to Adaptor.
Builder Is similar to Abstract Factory.
Chain of Responsibility Uses Decorator.
Commands Uses Composite.
Composite Is used for a Chain of Responsibility.

Can be used to implement Commands.
Creates composite Builder.
Defines simple instance of Interpreter.

Decorator Supports recursive composition, not possible with Adaptor.
Is often used with Composite.
Have similar implementation as Proxies.

Facade Is similar to Mediator.
Factory Method Is usually called within Template Methods.
Flyweight Lets you share components such as Composite.
Interpreter traverses the structure by using Iterator.
Iterator Can used to traverse Composites.

Can be combined with Visitor.
Mediator Is similar to Facade.
Memento Can keep state to undo its effect using Command.

Is often used in conjunction with Iterator.
Observer Can use Singleton.
Prototype Is often a Singleton.

Is competing pattern in some way with Factory Method.
Proxy Defines a representative for another object without Adaptor.

changing the interface in the comparison with
Singleton Is used by Observer.
State Is similar to Strategy.
Strategy Is often best to implement as Flyweight.
Template Method Often calls Factory Method.
Visitor Localizes operations that would be distributed across Composite.

Can be used to maintain the behavior of Interpreter.

Table 1. Overall Structure of the Design Pattern Catalogue.

as that relationship. For example, because Interpreter
uses Iterator, Iterator is used by Interpreter.

� X Refines Y

A specific pattern X refines a more abstract pattern Y
if the specific pattern’s full description is a direct ex-
tension of the more general pattern Y [18]. That is, the
specific pattern X must deal with a specialization of
the problem the general pattern Y addresses, and must
have a similar (but more specialized) solution struc-
ture.

To make an analogy with object-oriented program-
ming, the uses relationship is similar to composi-
tion, while the refines relationship is similar to in-
heritance. For example, Factory Method refines Tem-
plateMethod, because Factory Methods are effectively

Hook Methods [13] which are used by subclasses to
specify the class of an object the Template Method in
the superclass will create. In the description of Fac-
tory Method pattern, one of the main forces addressed
by the pattern is the use of naming conventions to illus-
trate the particular method is in fact a Factory Method.

We can also consider that the refined by or general-
izes relationship (Y is refined by X) is the inverse of
the refines relationship (X refines Y) and can be ana-
lyzed in the same way as that relationship. For exam-
ple, as Factory Method refines Template Method then
Template Method is refined by Factory Method.

� X Conflicts with Y

The third fundamental relationship between patterns
in our classification scheme is conflicts which denotes

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

that the two or more patterns provide mutually exclu-
sive solutions to similar problems. Most pattern forms
do not provide an explicit section to record this rela-
tionship but it is often expressed in the related pattern
section along with the uses relationship.

For example, Prototype and Factory Method patterns
conflict because they provide two alternative solutions
to the problem of subclasses redefining the class of ob-
jects created in superclasses. When reading or apply-
ing a pattern, this relationship can be exploited in two
ways. When looking for patterns, if a pattern seems
as if it may be applicable, then the conflicting patterns
should be examined because they present alternative
choices but once a pattern has been chosen the other
conflicting patterns can be ignored.

� X is Similar to Y

This relationship is often used to describe patterns
which are similar because they address the same prob-
lem [5]. The similarity relationship seems to be much
broader than just conflicts, and as it is also used to de-
scribe patterns which have a similar solution technique
such as Strategy and State. These can be treated as re-
fining a more abstract pattern, or occasionally related
by uses relationship.

� X Combines with Y

Patterns of Software Architecture [5] introduces a com-
bines relationship in the case where two patterns are
combined to solve a single problem which is not ad-
dressed directly by any other pattern.

In simple cases, we can model this relationship directly
by the uses relationship where one pattern is a larger
scale pattern that addresses the whole problem and the
other pattern is a smaller scale pattern which provides a
solution to a subproblem. For example, Composite and
Decorator are often used together in applications [32].
There are also other kinds of relationships between
them. For example, when looking at the solution as-
pect, Decorator can be seen as a degenerated Compos-
ite. When considering the pattern scope, they both sup-
port recursively structured objects whereby Decorator
focuses on attaching additional properties to objects.
Thus, the design patterns in this category are somehow
similar but it is difficult to state this relationship more
precisely. Therefore, we only insert a relationship of
type “Combines with” and neglect the other ones.

In more complex cases, we consider that this relation-
ship really points to a lack in the patterns themselves.
Although these patterns can be combined to provide a
solution to a problem, the actual problem and the way
these patterns are combined to solve it, is being repre-

sented by the combines relationship and it is not cap-
tured explicitly in a pattern. In these cases, we ensure
that the problem is identified explicitly by locating an
existing pattern or introducing a new pattern which ad-
dresses the problem directly, outlines the whole solu-
tion and uses the patterns that combine to solve it. For
example, Iterator traverses Composite structures and
Visitor centralizes operations on object structures. De-
pending upon the necessary degree of flexibility, one
typically combines two or all three design patterns, for
instance Interpreter.

� X Requires Y

We say that one pattern requires a second pattern if the
second pattern is a prerequisite for solving the problem
addressed by the first pattern. For example, Composite
can be used to implement Command. It means that
Command pattern requires Composite pattern before
it can be implemented successfully.

In general, we consider that this relationship can be
modeled quite adequately by the uses relationship.
The distinction between requires and uses seems to
be based primarily on the order in which the patterns
should be applied. If one pattern requires a second
pattern, the second pattern must be applied before the
first one can be used to produce its solution. This is
also the case with the general uses relationship, since
if one pattern uses a second pattern, the second pattern
must be applied before the solution described by the
first pattern will be completed. This is the reason that
we can model the requires relationship with the uses
relationship.

Based on our classification scheme, we can categorize
those design pattern relationships one level further as fol-
lows :

1. Primary Relationships

Our classification scheme can be based on three pri-
mary relationships such as : i) a pattern uses another
pattern, ii) a more specific pattern refines a more gen-
eral pattern, iii) one pattern conflicts with another pat-
tern when they both propose solutions to a similar
problem.

2. Secondary Relationships

Our scheme also describes three secondary relation-
ships between patterns such as : i) two patterns are be-
ing similar, ii) two patterns are combining to solve a
single problem, iii) a pattern requires the solution of
another pattern. We classify these relationships as sec-
ondary relationships because we have been able to ex-
press them in terms of the primitive relationships as
discussed before.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Pattern (X) Relationship Pattern (Y)

Abstract uses Template.
Factory refines Prototype.
Adaptor is used by Bridge.
Bridge uses Adaptor.
Builder uses Abstract Factory.
Chain of uses Decorator.
Responsibility
Commands uses Composite.
Composite refines Chain of

Responsibility.
conflicts with Builder.
refines Interpreter.

Decorator refines Adaptor.
uses Composite.
refines Proxy.

Facade is refined by Mediator.
Flyweight uses Composite.
Interpreter uses Iterator.

uses Visitor.
Iterator uses Composites.

uses Visitor.
uses Memento.

Mediator refines Facade.
Memento uses Command.
Observer uses Singleton.
Prototype uses Singleton.

conflicts with Template.
Proxy conflicts with Adaptor.
Singleton is used by Observer.
State refines Strategy.
Strategy uses Flyweight.
Visitor refines Composite.

Table 2. Revised Classification.

6 Modifying Relationships

This section examines the proposed classification of the
design patterns relationships further. This process results in
some modifications to existing relationships. The organiza-
tion of the relationships in different categories is sometimes
difficult because it partly depends upon subjective criteria.
The difference between “X Uses Y ” or “X Combines With
Y ” depends upon the subjective assessment whether the us-
age of Y is seen as a central part of the solutionX, or if it is
more of a combination of two autonomous design patterns.
Furthermore, two design patterns might be related in dif-
ferent ways. Decorator / Composite and Abstract Factory
/ Prototype are pairs of design patterns which can be com-
bined and are also similar. In this paper, each relationship

is assigned to the most adequate category.
Based on the catalogue, Factory Method does not use

Template Method but it is often called (refine) by Abstract
Factory in a Template Method. It means that Factory
Method often plays the role of a primitive in a Template
Method. Thus, if an Abstract Factory uses Factory Method
in its solution, then it really uses the design pattern Template
Method. Therefore, we do not need to consider Factory
Method as a separate design pattern but as a “X Uses Y” re-
lationship between Abstract Factory and Template Method.
By removing the Factory Method design pattern, we need
to modify the relationship between this pattern and Proto-
type appropriately. It means that from now on, the Proto-
type design pattern has a conflict relationship with Template
Method instead of Factory Method.

The integration of the above modifications as well as the
introduction of the primary relationships after expressing
the secondary relationships in terms of primary ones into
Table 1 results in Table 2.

In this context, Figure 2 is a graphical illustration of Ta-
ble 2, and our proposed classification scheme.

7 Layers of Design Patterns

Up to now, we have classified the relationships between
the design patterns and modified a few of them. As one can
see in Figure 2, “X Uses Y ” is the most frequent relation-
ship.

Therefore, we try to arrange the patterns according to
this predominant relationship. The graph defined by the
primitive relationships is acyclic. This property allows us
to arrange the design patterns straightforwardly in different
layers as shown in Figure 3.

These layered design structure techniques can also be
useful in the reverse engineering context for extracting ar-
chitecture as well as in forward engineering context for
improving the design or enhancing non-functional require-
ments of existing code. These two different layers are dis-
cussed below.

7.1 Primitive Design Patterns

This layer contains the design patterns which are heav-
ily used in the design patterns of higher level and in object-
oriented systems in general. Table 3 gives a list of these pat-
terns in alphabetic order and their respective purpose. The
Composite design pattern seems to be the most important
one as it is used by eight other design patterns. It is a basic
pattern in the sense that the addressed problem of handling
recursively structured objects is a basic problem in many
contexts.

The problem addressed by these design patterns occurs
again and again when developing object-oriented systems.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Structural

Behavioral

Command

Memento

Iterator

Responsibility

InterpreterDecorator

Visitor

Flyweight

Chain ofAdaptor

Proxy

Bridge

Strategy

State

Observer

PrototypeTemplate
Method

Abstract
Factory

Facade

Mediator

Uses

Refines

Creational

Singleton

Composite
Conflicts By

Builder

Legend:

Figure 2. Classified Structure of Design Pattern Catalogue.

The design patterns are thus proven to be very general.
When building a system, one would often look upon them
more as basic design techniques than as patterns. The inten-
tions of these design patterns are very general and applica-
ble to a broad range of problems occurring in the design of
object-oriented systems.

Pattern Purpose

Adaptor Adopting a protocol of one class to the
protocol of another class.

Composite Single and multiple, recursively
composed objects can be accessed by
the same protocol.

Decorator attaching additional properties to objects.
Facade Encapsulating s subsystem.
Mediator Managing collaboration between objects.
Memento Encapsulating a snapshot of the internal

state of an object.
Proxy Controlling access to an object.
Singleton Providing unique access to services

or variables.
Template Objectifying behavior.

Table 3. Primitive Design Patterns.

7.2 Complex Design Patterns

This layer comprises of design patterns which are used
for more specific problems in the design of software. These
design patterns are not used in the design patterns from the

primitive layer, but in patterns from the same layer. Design
patterns in this layer are the most specific and they can often
be assigned to one or more application domains.

Builder, Prototype and Abstract Factory address prob-
lems with the creation of objects, Iterator traverses object
structures, Command objectifies an operation and so on.

The proposed arrangement of design patterns into two
layers is one of the possible separation of concerns for de-
sign patterns. As more design patterns are described or
new application area are considered, the proposed scheme
should be revised to meet new requirements. For Exam-
ple, when considering the restructuring and re-engineering
of distributed systems the proposed classification scheme is
not fully adequate.

Currently, such a classification allows for the under-
standing of the overall structure of the catalogue, and for
relating new design patterns to existing ones. This arrange-
ment also groups design patterns according to their typical
combinations and plays an important role as typical combi-
nations can be used as building blocks in software design.
At the moment, it helps us to grasp and to understand the
overall structure of GoF catalogue, and to relate new design
pattern to existing one. It is also an aid for traversing or
learning design patterns, as the user can choose between a
bottom-up or a top-down traversal.

The jurisdiction and characterization criteria [13] are
also orthogonalwith our proposed criteria, and result in sev-
eral clusters of design patterns with a similar intent. We be-
lieve that this arrangement can help for the retrieval and se-
lection of an appropriate design pattern for a specific prob-
lem at hand.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Legend:

Creational Structural Behavioral Uses Conflicts ByRefines

DecoratorAdaptorMementoCompositeTemplate
MethodSingleton

Responsibility
Chain ofPrototypeObserver

State

Strategy

Flyweight

Interpreter

Abstract
Factory

Command

Visitor

Bridge

Iterator

Builder

ProxyFacadeMediator

 DPs
Complex

Primitive
DPs

Figure 3. Arrangement of Design Pattern Catalogue in Layers.

8 Usage Application of the Layered Cata-
logue

In this section, we discuss the usage of the proposed
layered catalogue towards the design and development of
a quality and requirements-driven software re-engineering
framework. The readers can also refer to [27] for more de-
tails on the framework and its associated process. Maintain-
ability and performance are the two main non-functional re-
quirement goals that we have considered for developing the
object-oriented re-engineering framework based on our pro-
posed layered catalogue. The reason for selecting these two
non-functional requirements were described in Section 2.

We have applied this layered catalogue in the context of
re-engineering on a medium-size software system, namely
theWELTAB Election Tabulation System [33] that supports
the collection, reporting, and certification of election results
by city and country clerks’ offices in USA. It was originally
written in an extended version of Fortran on IBM and Am-
dahl mainframes under the University of Michigan’s MTS
operating systems. Later, WELTAB was converted to C

and run on PCs under MS/DOS (non-GUI, pre-Windows).
The Object-Orientation Migration Tool [21] has been ap-
plied to WELTABIII in order to migrate the C source code
to new object-oriented C + + code. The object model for
this system is depicted in Figure 4. Our experiments were
carried on a SUN Ultra 10 (440MHZ, 256M memory,512
swap disk) in a single user mode. We use Rigi [19, 20] for
extracting facts from the source code in order to provide
a high-level view of systems. We also use Together/C++
UML Editor [29] to provide an interface to the source code

generated by the Object-Orientation Migration Tool [21].
For collecting software metrics, we use Datrix Tool [9].

First for the restructure transformations, we have consid-
ered a Primitive Structural design pattern namely, Compos-
itewhich is the most popular ones as it is used by four other
design patterns and is refined by three other design patterns
as shown in Figure 3. It means that we have started from
Structural Patterns because they are concerned with how
classes and objects are composed to form larger structures.

The Composite pattern describes how to build a class hi-
erarchy that is made up of different kinds of objects. For
example, in the WELTABIII system, there are two classes,
namely “RECORD” which produces base tables and “RE-
PORT” which prints the tables. It shows the necessity of
having an abstract class that makes up of these different
kind of objects. The key point is to have a Composite pat-
tern, namely “DateGen” that represents both primitives and
their containers. We compose two objects into tree struc-
tures to represent part-whole hierarchy. This lets clients
namely, “ReportGen” and “TableGen” treat individual ob-
jects and compositions of objects uniformly. This Compos-
ite pattern is found to improve maintainability because it
allows for component sharing [27]. Similarly, this pattern
also allows for performance increase because it allows for
explicit superclass references and simplifies component in-
terfaces [27].

Second, we have considered theComplex design patterns
that can be built on top of the Composite design pattern. As
the Behavioral Patterns are concerned with the algorithms
and assignment of the responsibilities between objects, we
started with two of them namely, Iterator and Visitor. The

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Figure 4. Object Model of WELTABIII.

Iterator pattern allows to access an aggregate object’s con-
tents without exposing its internal representation. The pat-
tern also supports multiple traversals of aggregate objects.
Providing a uniform interface for traversing different aggre-
gate structures is another reason to use this pattern that sup-
ports polymorphic iteration. Our experimental results [27]
indicate that by applying the Iterator pattern, we obtain an
increase in maintainability. However, the Iterator pattern
reduces the performance because of more than one traver-
sal can be pending on an aggregate object. One proper ex-
ample of this pattern can be “Info” class. As illustrated in
Figure 4, there are different basic information such as units,
offices, precincts, and candidates that have been spread cor-
respondingly over the classes, namely “VOTEUNIT”, “OF-
FICE”, “CMPREC”, and “RECORD”. Structuring this part
of the system into subsystems helps to reduce its complex-
ity. For achieving this goal, we introduced an iterator object
that provides a single simplified interface, called “Info” as
shown in Figure 5, to the more general facilities of the basic
information. This new class defines an interface for access-
ing and traversing elements. This results to a system that
is more maintainable because of the simplification of the

aggregate interface.

On the other hand, the Visitor pattern helps making the
migrant system more maintainable because a new opera-
tion over an object structure can be modified simply only
by adding a new visitor class. An explanation is that as a re-
structuring operation,Visitorshelp in applying operations to
objects that don’t have a common parent class. This has as
a result the reduction of the tree traversal time and therefore
it may be considered as a heuristic that improves perfor-
mance. For example, consider the “REPORT” class in Fig-
ure 4 supports multiple reports. Different reports have dif-
ferent appearances and headers for printing. To be portable
across reports, an application should not be hard-coded for
a particular report. We can solve this problem by defining
an abstract “ReportGen” class that declares an interface for
creating each kind of reports as shown in Figure 5. This
class acts as a Visitor pattern. Our results indicate that this
pattern can be considered as a heuristics that improves both
maintenance and performance [27].

In this context, the proposed classification scheme
helped us to select those target design patterns that may
have the maximal measurable impact with respect to per-

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Figure 5. Object Model of WELTABIII with Design Patterns.

formance and maintainability enhancements on the migrant
code. These enhancements can be measured in term of soft-
ware maintainability index metrics and profiling measure-
ments [27].

9 Conclusion

We have presented a classification of the relationships
between design patterns which can lead to a new catego-
rization of the GoF design patterns into different layers.
Our classification scheme is based on three primary rela-
tionships between patterns such as use, refine, and conflict
and three secondary relationships such as similar, combine,
and require which can be expressed in terms of the primary
ones.

The proposed classification can assist software engineers
with : i) understanding better the complex relationships be-
tween design patterns, ii) organizing existing design pat-
terns as well as categorizing and describing new design pat-
terns, iii) building tools which support the application of
design patterns during restructuring.

The next steps of our work focus on the formalization

of the impact different transformations have on the migrant
system with respect to maintainability and performance en-
hancements, and the formal description of the source code
transformations required for the migrant system to conform
with the proposed design pattern classification scheme.

About the Authors

Ladan Tahvildari is a Ph.D. candidate at the Department of
Electrical and Computer Engineering, University of Water-
loo. Her research interests include software evolution, pro-
gram understanding, quality based re-engineering. She may
be contacted at ltahvild@swen.uwaterloo.ca.

Kostas Kontogiannis is an Associate Professor at the De-
partment of Electrical and Computer Engineering, Univer-
sity of Waterloo. His research interests include software re-
engineering, software migration, software reuse and knowl-
edge based software engineering. He may be contacted at
kostas@swen.uwaterloo.ca.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

References

[1] C. Alexander. A Pattern Language. Oxford University Press,
1977.

[2] K. Beck. Patterns and software development. Dr. Dobbs
Journal, 19(2):18–23, 1993.

[3] G. Booch. Patterns. Object Magazine, 3(2), 1993.
[4] K. Brown. Design reverse engineering and automated design

patterns detection in smalltalk. Master’s thesis, Department
of Computer Engineering, North Carolina State University,
1996.

[5] F. Buschmann et al. Pattern-Oriented Software Architec-
ture : A System of Patterns. John Wiley and Sons, 1999.

[6] P. Coad. Object-oriented patterns. Communications of ACM
(CACM), 35(9):153–159, September 1993.

[7] J. O. Coplien. Advanced C++ Programming Styles and Id-
ioms. Addison-Wesley, 1992.

[8] J. O. Coplien and D. Schmidt, editors. Pattern Languages of
ProgramDesign. Addison-Wesley, 1994.

[9] Datrix metric reference manual, version
4.1. Bell Canada, 2000. Also available at
http://www.iro.umontreal.ca/labs/gelo/datrix.

[10] A. Eden, A. Yehudai, and J. Gil. Precise specification and
automatic application of design patterns. In Proceedings
of the IEEE Automated Software Engineering (ASE), pages
143–152, November 1997.

[11] G. Florijn, M. Meijers, and P. Winsen. Tools support in de-
sign patterns. In Proceedings of the ACM European Confer-
ence on Object-Oriented Programming (ECOOP), volume
1241, pages 427–495, June 1997.

[12] M. Fowler, editor. Analysis Patterns. Addison-Wesley, 1997.
[13] E. Gamma, R. Helm, R. Jahnson, and J. Vlissides. Design

Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[14] R. E. Johnson and V. F. Russo. Reusing object-oriented de-
signs. Technical report uiucdcs 91-1696, University of Illi-
nois, May 1991.

[15] R. Keller, R. Schaure, S. Robitaille, and P. Page. Pattern-
based reverse engineering of design components. In Pro-
ceedings of the IEEE International Conference on Software
Engineering (ICSE), pages 226–235, Los Angeles, USA,
1999.

[16] D. H. Lorenz. Tiling design patterns - a case study using
the interpreter pattern. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 206–
217, 1997.

[17] R. Martin, D. Riehle, and B. F., editors. Pattern Languages
of Program Design, volume 3. Addison-Wesley, 1998.

[18] G. Meszaros and J. Doble. A pattern language for pattern
writing. In R. Martin, D. Riehle, and B. F., editors, Pattern
Languages of Program Design, volume 3, pages 529–574.
Addison-Wesley, 1998.

[19] H. Muller. Rigi as a reverse engineering tool. Technical
Report DCS-160-IR, University of Victoria, Victoria, BC,
Canada, 1991.

[20] H. Muller, M. Orgun, S. Tilley, and J. Uhl. A reverse en-
gineering approach to subsystem identification. Software
Maintenance and Practice, 5:181–204, 1993.

[21] P. Patil. Migration of procedural systems to object-oriented
architectures. Master’s thesis, Department of Electrical and
Computer Engineering, University of Waterloo, 1999.

[22] W. Pree. Meta patterns : Ameans for capturing the essentials
of reusable object-oriented design. In Proceedings of the
ACM European Conference on Object-Oriented Program-
ming (ECOOP), volume 0821, pages 150–162, 1994.

[23] D. Riehle. Composite design patterns. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOP-
SLA), pages 218–228, 1997.

[24] M. Shaw. Heterogeneous design idioms for software ar-
chitecture. In Proceedings of the Sixth International Work-
shop on Software Specification and Design, pages 158–165,
Como, Italy, October 1991.

[25] L. Tahvildari, R. Gregory, and K. Kontogiannis. An ap-
proach for measuring software evolution using source code
features. In Proceedings of the IEEE Asia-Pacific Software
Engineering (APSEC), pages 10–17, Takamatsu, Japan, De-
cember 1999.

[26] L. Tahvildari and K. Kontogiannis. A workbench for qual-
ity based software re-engineering to object-oriented plat-
forms. In Proceedings of the ACM International Conference
in Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) - Doctoral Symposium, pages 157–
158, Minneapolis, Minnesota, USA, October 2000.

[27] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos.
Requirements-driven software re-engineering. In Proceed-
ings of the IEEE 8

thInternational Working Conference on
Reverse Engineering (WCRE), pages 71–80, Stuttgart, Ger-
many, October 2001.

[28] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Weaving
between non-functional requirements and object-oriented
re-engineering. In Proceedings of the 11th Annual Cana-
dian Conference on Intelligent Systems, pages 64–65, Ot-
tawa, ON, Canada, June 2001.

[29] Together/c++ uml editor. Also available at
http://www.togethersoft.com/.

[30] P. Tollena and G. Antoniol. Object oriented design patterns
inference. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM), pages 230–238,
September 1999.

[31] J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors. Pat-
tern Languages of Program Design, volume 2. Addison-
Wesley, 1996.

[32] A. Weinand, E. Gamma, and R. E. Johnson. et + + : An
object-oriented application framework in c++. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languagesand Applications (OOP-
SLA), pages 46–57, 1988.

[33] Weltab election tabulation system. Also available at
http://pathbridge.net/reproject/cfp2.htm.

[34] R. J. Wirfs-Brock and R. E. Johnson. Surveying current re-
search in object-oriented design. Communications of ACM
(CACM), 33(9):105–123, September 1990.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

