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Abstract

Call graphs are commonly used as input for automatic
clustering algorithms, the goal of which is to extract the
high level structure of the program under study. Determin-
ing the call graph for a procedural program is fairly simple.
However, this is not the case for programs written in object-
oriented languages, due to polymorphism. A number of al-
gorithms for the static construction of an object-oriented
program’s call graph have been developed in the compiler
optimization literature in recent years. In this study we in-
vestigate the effect of three such algorithms on the auto-
matic clustering of the Java Expert System Shell (JESS).

Object-oriented programs have an inherently richer
structure than those written in procedural languages, and
so even medium sized programs such as JESS produce large
graphs. Existing tools that we are aware of are not able to
process such graphs. Consequently, we have developed our
own algorithm for automatic clustering that is scalable to
large graphs. This algorithm also supports user specified
constraints through the use of ‘weighted’ arcs.

1 Introduction

The majority ‘legacy’ applications have been written in
procedural programming languages, and consequently these
languages have received the most attention from the re-
verse engineering and program understanding communities.
However, the increasing popularity of object-oriented pro-
gramming languages such as Java means that we will soon
be facing a new ‘generation’ of ‘legacy’ code in these lan-
guages. Therefore, we have turned our attention to the anal-
ysis of applications written in object-oriented languages.
Specifically, in this paper, we investigate the application of a
new automatic clustering algorithm to the well known Java

expert system shell JESS.
Automatic clustering algorithms have a rich history in

the artificial intelligence literature, and in recent years have
been applied to understanding programs written in procedu-
ral languages (e.g. [15]). The purpose of an automatic clus-
tering algorithm in artificial intelligence is to group together
similar entities. Automatic clustering algorithms are used
within the context of program understanding to discover the
structure (architecture) of the program under study.

We note here that the termsimilar is inappropriate and
misleading in the context of software clustering, as we wish
to cluster software entities based on theirunity of purpose
rather than theirunity of form.1 To illustrate: it is not
meaningful to cluster all four letter variables together, even
though they are similar. We mention this as the term ‘simi-
lar’ persists in some of the software clustering literature.

In software, we attempt to infer the unity of purpose
of entities based on theirrelationships, commonly repre-
sented in such abstractions as data dependency graphs and
call graphs. These abstractions can be generated for pro-
grams written in procedural languages by simply parsing
the source code. However, this is not the case for programs
written in object-oriented languages, due topolymorphism.
The three most common algorithms for the static construc-
tion of an object-oriented programs call graph are, in order
of increasing accuracy:naive , Class Hierarchy Analysis
(CHA), andRapid Type Analysis(RTA).

Our hypothesis is that the accuracy of the call graph con-
struction algorithm used will affect the accuracy of the au-
tomatic clustering algorithm. In this preliminary investi-

1This, incidentally, is what distinguishes Aristotle’s work from Plato’s.
Furthermore, we posit that what makes clustering ‘library’ code difficult is
that while it hascommonpurpose it has nounity of purpose. We also note
that this whole investigation rather begs the question of whether purpose
can be inferred from an algorithmic examination of form. However, we as-
sume that some headway can be made in this direction, as we are working
within the limitations of computer science.
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gation we have only been able to verify that the choice of
call graph construction algorithm does indeed affect the au-
tomatic clustering process. However, we are not yet able
to state conclusively that the more accurate call graph con-
struction algorithms will produce a more accurate cluster-
ing, as we have not yet determined how to objectively assess
the accuracy of a clustering.2 It seems that most of the ex-
isting literature relies on subjective assessments of cluster-
ing algorithms (and we suspect this indicates a fundamental
difficulty).

Contributions The major contributions of this paper are:

� To the best of our knowledge, this is the first applica-
tion of call graph construction algorithms to program
understanding. These algorithms are usually devel-
oped for compiler optimizations, although mention is
made of their potential for program understanding.

� A new, scalable, user-guided, clustering algorithm.
Programs written in object-oriented languages produce
much larger graphs than those written in procedural
languages, and so a scalable algorithm is required.
Also, our algorithm allows the analyst to force entities
to be clustered together or apart.

� A discussion of the meaning of clustering within
the context of object-oriented programming. Object-
oriented languages are different than procedural lan-
guages, and so clustering means something slightly
different in this context.

The minor contributions of this paper are discussions of the
following: the importance of reflection in understanding
object-oriented programs; the structure of programs writ-
ten with file based compilers vs those written in integrated
development environments (IDE); and the use of XML tech-
nology for managing program understanding data.

Case Study Finally, the case study used for this inves-
tigation is the well known Java expert system shell JESS,
and so we contribute to the body of knowledge on this pro-
gram. JESS is an interesting program to study because it
has almost identical functionality to the well studied CLIPS
expert system shell, which was written in C. Internally, both
programs are based on the Rete pattern matching algorithm.

Outline of the text First we give a discussion of the pur-
pose of clustering an object-oriented program (x2). Then we
explain the three call graph construction algorithms used in
this study (x3). Sectionx4 reviews the domain model and
tools we used. Sectionx5 presents our clustering algorithm.
Experimental results are reported in sectionx6. Sectionx7
concludes and gives directions for future work.

2Objectiveis not a synonym foralgorithmic, automated, or quantified.

2 Understanding Clustering for Java

The purpose of clustering software is to discover theim-
plicit order of the program under study, as opposed to the
explicit order, which is expressed, as such, by the program-
mer. The analyst does not need tools developed with ref-
erence to the artificial intelligence literature to discover the
explicit organization of a program. Before we can consider
the implicit order of a program, we must first know what
its constituent entities are and how they may be explicitly
ordered.

2.1 Entities

Program entities may be identified according to one of
two criteria: either byprogramming language constructs,
or by program representation. It is often, but not always,
the case that these two things coincide.

The programming language constructs that identify en-
tities in Java are, in order of increasing size:field, method,
class, andpackage.3 We will use the term class to mean
any of regular class, inner class, or interface; we will use
these particular terms when appropriate.4 A package corre-
sponds, roughly, with a directory in the source tree. How-
ever, since there are scoping rules associated with packages,
they should be considered entities according to language
constructs and not according to program representation.

The only entity in Java that can be identified on the basis
of program representation isfile. Some languages associate
scoping rules with files, and in those languages a file may
be considered as an entity on the basis of the programming
language. However, in Java, as in Smalltalk, files are simply
an artifact of the program representation. For example, the
IBM VisualAge for Java and IBM VisualAge for Smalltalk
integrated development environments are repository based
anddo not use filesto represent programs.

While the algorithm used in an automatic clustering
methodology for software does not need to be sensitive to
the programming language under consideration, the identi-
fication of entities to be clustered does. Note that there are
no entities namedmoduleor sub-systemin Java.

2.2 Explicit Order

The entities that are expressible in a language can be or-
dered according to one of three bases: bydeclaration con-
tainment, by scoping rules, or by program representation.
It is often, but not always, the case that two or more of these
coincide. Considering each basis in turn:

3Entities at the sub-method level, such as local variables, are too fine
grained to be germane to this work.

4The Java notion of an interface is a special kind of abstract class that
has different inheritance rules associated with it than other classes do.
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Declaration Containment:

� packages contain regular classes and interfaces

� classes contain fields and methods

� classes and methods contain inner classes

Scoping Rules:

� within a class

� within a package

� within an inheritance (extends) hierarchy

� within a method (e.g. inner classes)

Program Representation (HFS):

� directories correspond to packages

� directories contain files

� a file contains one or more classes

Note again that these last groupings are only possible if the
program is represented in a hierarchical file system (HFS),
which is not necessarily the case.

2.3 Looking for Implicit Order

Now that we have identified the entities and their poten-
tial explicit orderings, we can begin to consider the potential
implicit orderings. The implicit order that we are looking
for depends on what we take to be the basic unit of cluster-
ing: methods (and fields), classes, files, or packages. The
clustering that we have done on JESS has taken classes as
the basic unit, but here we consider the meaning of all of
the possibilities, in order of increasing size.

Fields and Methods We can see two reasons why it might
be worthwhile to take fields and methods as the basic units
for clustering. The first is to migrate procedural programs
to object-oriented languages (one of the authors has in-
vestigated this previously [13]). We speculate that a sec-
ond reason may be to migrate object-oriented programs
to either aspect-oriented (AOP) or subject-oriented (SOP)
paradigms. The reason is that both AOP and SOP are con-
cerned with features that ‘cross-cut’ the class hierarchy.

Classes It is clear from the discussion above that JESS
could benefit from clustering classes within a package, and
this is what we have attempted in this study. We refer to
this as intra-package class clustering. It may also be useful
to cluster classes without regard for the package structure,
just as the inheritance structure is orthogonal to the package
structure. File inclusion may (or may not) be taken into
account when clustering classes.

Packages For larger (greater than 10 KLOC) programs
consisting of many packages, it would be useful to take
packages as the basic unit of clustering, at least for an initial
high level view of the program.

Summary The meaning of a clustering is dependent on
what entities are taken as the basic units, and if those enti-
ties are considered in-line with or orthogonal to the explicit
order of the program. Most medium and large size Java pro-
grams would benefit from clustering with classes as the ba-
sic unit. Large size Java programs could benefit from clus-
tering with packages as the basic unit. We speculate that
clustering with fields and methods as the basic units may be
useful for migrating object-oriented programs to either the
aspect-oriented or subject-oriented paradigms. In this study
we have used classes as the basic entity for clustering.

3 Call Graph Construction Algorithms

Devising cost-efficient algorithms for constructing an
object-oriented program’s call graph from a static analysis
of the source code has been an active area of research for
the last few years. This research is usually carried out in
the context of compiler optimization, as many conventional
optimizations such as in-lining cannot be performed with-
out a call graph. A good discussion of the problem is given
by Grove et al in [7]. In this section we will explain three
of the most common approaches to solving this problem by
constructing the call graph forfoo():5

static void foo(Shape s) f

s.draw();

g

The target of the invocations.draw() depends on the ac-
tual type of the object that is bound to the formal param-
eters each timefoo() is executed. Thedeclaredtype is
Shape, but theactualtype may be any sub-type ofShape.
Furthermore, the actual type may ‘inherit’6 the implementa-
tion from theimplementingtype, which may be any super-
type of the actual type (including super-types of the de-
clared type). Supposefoo() is written with reference to
the following code:

abstract class Shape f
abstract void draw();

g

class Circle extends Shape f
void draw() fprintf("circle");g

g

5All code examples are written in a Java-like syntax.
6The term ‘inheritance’ as it is used in computer science is metaphori-

cal, and hence equivocal [18]. Likewise for the terms ‘parent’ and ‘child’.
We make an effort to avoid such terms, and anthropomorphism in general.
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class Triangle extends Shape f
void draw() fprintf("triangle");g

g

class Rectangle extends Shape f
void draw() fprintf("rectangle");g

g

class Square extends Rectangle fg

3.1 Naive

A simple and inaccurate solution to this problem is to as-
sume that the actual and implementing types are the same
as the declared type. In the terms of this example, to assume
that becauses is declared to be aShape, thats.draw()
always resolves toShape.draw(). This is the result
recorded in the bytecode by every Java compiler, and the
one used in the static analysis of regular function calls in
procedural languages.

The benefits of this solution are that it requires no
extra analysis, is sufficient for the purposes of a non-
optimizing compiler, and is very simple. However, its accu-
racy leaves something to be desired. In the given example
Shape.draw() is abstract, and so thes.draw()
invocation could not actually branch there: there is no code
to branch to. This is a somewhat less than desirable solution
for re-engineering tasks that require a reasonably accurate
call graph, such as automatic clustering.

3.2 Class Hierarchy Analysis

Class Hierarchy Analysis (CHA) [4, 5] is awhole pro-
gram analysisthat determines the actual and implementing
types for each method invocation based on the type structure
of the program. The whole program is not always available
for analysis, due to features such as reflection and remote
method invocation. However, for many practical reverse
engineering tasks it is sufficient to analyze the code that is
available for analysis (this may not be conservative enough
for the purposes of compiler optimization).

In the above example, Class Hierarchy Analysis would
construct three invocation arcs froms.draw(), to
Circle.draw(), Triangle.draw(), andRectan-
gle.draw(). CHA would not produce an invocation arc
to Shape.draw(), as it isabstract. This result is
a significant improvement over the naive approach, which
produced only one arc that could not possibly be traversed
during execution.

Class Hierarchy Analysis is flow and context insensitive,
and consequently is efficient in both time and space.

3.3 Rapid Type Analysis

Rapid Type Analysis (RTA) [1, 2] uses extra informa-
tion from the program to eliminate spurious invocation arcs
from the graph produced by CHA. This extra information
is the set of instantiated (used) types: clearlyTrian-
gle.draw() can never be invoked ifTriangle is never
used in the program. This analysis is particularly effective
when a program is only using a small portion of a large li-
brary, which is often the case in Java.

RTA begins at all program entry points and traverses over
the program, building the call graph and the set of instanti-
ated types as it goes. Consider the followingmain() as an
entry point for the example program:

static void main(String[] args) f
foo( new Square() );

g

Now it can be seen that the only sub-type ofShape instan-
tiated in the program isSquare, and so this must be the
actual type ofs in foo(). Note, however, that theimple-
mentingtype isRectangle: that is,Square ‘inherits’
the implementation ofdraw() fromRectangle.

Like CHA, RTA is flow and context insensitive, and con-
sequently is efficient in both space and time. Again like
CHA, RTA also requires the whole program for analysis.
However, RTA is more sensitive to the use of reflection: the
analyst must inform the algorithm if reflection is used to in-
stantiate any class, otherwise the algorithm may incorrectly
eliminate some arcs from the call graph. CHA is not as sen-
sitive to the use of reflection, as long as the whole program
is available for analysis.

In summary, for this example, the naive approach pro-
duces a single impossible arc, CHA produces three possible
arcs, and RTA narrows these three down to a single target.
Most studies have shown that RTA is a significant improve-
ment over CHA, often resolving more than 80% of the poly-
morphic invocations to a single target [2, 16, 17]. Further-
more, RTA is an extremely fast analysis: in our experience
it can usually be computed in a matter of seconds, even for
very large programs [20]. RTA does require the results of
CHA, which can usually be computed in a minute or two.
Both of these analyses combined take less than 10% of the
time required to parse the program.7

RTA is implemented in the Jax [24] and Toad [16] tools
from IBM Research, both available on the alphaWorks web-
site, as well as the front end of the IBM VisualAge C++
compiler [10]. For this study we used a research version of
the jport tool, which was originally developed as a part of
IBM VisualAge for Java, Enterprise Toolkit 390. We have

7Our implementation is written in Java and uses bytecode as input. It
can typically parse about 1mb of bytecode per minute on a relatively mod-
est personal computer (with a good JIT, of course).

0-7695-0656-9/00 $10.00 � 2000 IEEE 



used this research tool in previous studies on impact analy-
sis [19] and library subset extraction [20].

Rapid Type Analysis is currently considered to be the
best practical algorithm for call graph construction in
object-oriented languages because it produces good results
very inexpensively. There are a number of research groups
looking for algorithms that produce better results than RTA
for similar cost (e.g. [23]).

4 Domain Model and Tools

We use the domain model for Java that is summarized
in [19, 20], and presented fully in [17]. This domain model
needs to be transformed somewhat for use in clustering,
which is described in [8]. In brief, we represent programs
with a typed (nodes and arcs), directed, multi-graph.

4.1 Arc Identity

It is interesting and insightful to compare how various
tools consider arc identity. This is an indication of how ac-
curate the tool is at representing the source code.

Obviously the goal of automatic clustering is to represent
the program at a higher level of abstraction, and this neces-
sarily requires removing some detail. However, we take the
position that as much detail should be kept as long as pos-
sible during computation, and then removed as a final step
before presentation to the user. By analogy to numerical
computation, rounding is not performed at every step along
the way, but only at the very end; otherwise, the result may
be significantly in error.

Besides the source node and target node of the arc, we
note three other characteristics that may be used to identify
it: direction, type, and source code line number. An ‘x’
in Table 1 below indicates that the particular tool uses the
particular characteristic for identifying arcs.

Tool Direction Type Line No.

javac x x x
jport x x

Rigi x

Bunch x
Hawa� x w

Table 1. Arc Identity

Obviously the compiler (javac) identifies arcs at the
finest level of granularity, including direction, type and
source code line number. jport does not use line number
for arc identity. In other words, if a method fetches some
field on two different lines, jport will only extract one fetch
arc from the method to the field.

We feel that it is not necessary to include line number
information in an arcs identity for most reverse engineering
tasks, although it may be useful to record such information
separately. It may also be useful to record a count of how
many lines an arc occurs on. However, Rigi Standard Form
(RSF) does not allow such information (attributes on arcs)
to be recorded easily.

It is interesting to note that while Rigi records arc type
information, it is not used for arc identity. For example, if
there are two arcs of different types from node A to node
B, Rigi will consider the second arc a duplicate and will
discard it. This is particularly annoying when viewing the
graphs produced by our fact extractor, which contain many
such ‘duplicates’. The Bunch clustering tool also does not
use arc type as a characteristic to identify arcs.

The clustering tool that we have developed (referred to
as ‘Hawa’ above, for hierarchical, agglomerative, weighted,
algorithm) retains arc direction, but replaces arc type with
arc weight. The weights we used are described next.

4.2 Arc Type and Weight

We have translated arc type into arc weight for use with
our clustering tool according to Table 2. We note that these
weights are based on our judgment, which is described in
this section. Obviously the weights have a significant effect
on the clustering process, and this is an area for future study.

Arc Type Weight
Inheritance low
Inner Class Decl. high

Type dependence low
Exceptions low

Instantiation high
Array Creation medium

Field Read medium
Static Field Read low
Field Write high
Static Field Write high

Invocation medium

Table 2. Arc Weights

The ‘inheritance’ arcs includeextends, imple-
ments, and an arc to represent ‘inherited’ method imple-
mentations. The previous example would contain one of
these latter arcs, fromSquare to Rectangle.draw().
All of these arcs are produced by Class Hierarchy Analysis.
The reason we give ‘inheritance’ related arcs a low weight-
ing is that we do not want the result of the clustering to
simply reflect the class hierarchy: this can be extracted with
significantly less effort. However, each sub-class will still
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have a fairly strong relationship with its super-class, due
to the ‘inherited’ method implementations, as well as con-
structor invocations (every sub-class constructor must in-
voke a super-class constructor [6]).

The type dependence arcs include method parameter and
return types, field types, as well as casting and type tests.
These are given a low weight because they are common,
and do not really distinguish the use of a type in the same
way as instantiation does, for example.

The invocation arcs include constructors, private meth-
ods, static methods, as well as the three types of polymor-
phic invocation in Java: virtual, interface, and super. For a
more detailed discussion of these see [6, 14, 17].

4.3 Tools and XML Technology

As mentioned previously, we have used the Rigi com-
mand language to execute the results of our clustering algo-
rithm, which produces a tree over the input data. We have
found, however, that Rigi is not the best tool for viewing the
results of the clustering, for the reason that Rigi’s graphical
representation of a tree does not leave room on the screen to
show the names of the leaves (classes). It has become very
apparent that one of the main ways in which we judge the
results of the clustering algorithm is by how the names of
the classes are organized.

Therefore, we have written another RCL script to trans-
form the clustering results into XML, and have used the
Xeena XML browser/editor from IBM Research (available
on alphaWorks) for analysis. XML files are tree structured
by nature, so they are a very good fit for the results of a hi-
erarchical clustering algorithm. The point of this, of course,
being that any XML browser will show the tree in a text
oriented way such that the names of the nodes are readable.

A further benefit of encoding the clustering results in
XML is that there are tools available for comparing XML
trees to each other, such as XML Tree Diff (available on al-
phaWorks). This provides the opportunity to compare our
three clustering results with each other, as well as compar-
ing them with the package and ‘inheritance’ hierarchies.

5 Our Clustering Algorithm

The clustering algorithm that we have designed works
by collapsing (agglomerating) lower level nodes into higher
level nodes. This process builds a tree structure over the in-
put nodes, and the process terminates when the root of the
tree is reached. Lower level nodes are selected to be clus-
tered together based on their ‘proximity’, which is deter-
mined by summing the weights of the edges between them.
The user can guide the results of the algorithm by setting a
very large weight between two nodes: a positive weight will
force them to be clustered together, and a negative weight

will force them apart. This section discusses the details of
our algorithm and its implementation.

Main Steps The main steps in the algorithm are:

1. select active node

2. select agglomerate node

3. combine active and agglomerate nodes

4. repeat until only one node remains (the root)

Active Node Selection There are a number of possible
criteria for selecting the active node, such as the following:

� external dependencies (coupling) normalized by the
number of nodes in the cluster

� ratio of external dependencies to internal dependencies
(coupling / cohesion)

� difference between internal and external dependencies
(coupling� cohesion)

Our implementation uses the first approach because of
its simplicity and because it allows us to incorporate arc
weights into the calculation efficiently (see data structure
discussion below). The Bunch clustering tool uses the third
criterion for selecting the active node [15].

Agglomerate Node Selection There are also a number of
possible criteria for selecting the agglomerate node:

� resulting external dependencies (coupling)

� ratio of external to internal dependencies

� internal dependencies produced (cohesion)

We have opted for the first criterion: the active node is ag-
glomerated with the agglomeration node that yields the low-
est number of external dependencies for the resulting higher
level node. The objective is to reduce the number of external
arcs by collapsing them inside the higher level node. This
approach gives priority to low coupling, but also considers
cohesion.

Figure 1 illustrates the agglomerate node selection: the
black node is the active node, and the circled node has been
selected as the agglomerate node, since it minimizes the ex-
ternal dependencies of the resulting node.
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Figure 1. Agglomerate Node Selection

Combining Nodes The reader may note that always com-
bining two lower level nodes into one higher level node
will produce a binary tree over the input nodes. To reduce
the height of this tree we distinguish between input level
nodes and higher level nodes (i.e. those produced by the
algorithm). The expected binary tree structure is created
when combining two input level nodes, and when combin-
ing two higher level nodes. However, when combining an
input level node with a higher level node, we simply add
the input level node to the existing higher level node: a new
higher level node is not created.

This strategy makes the resulting tree structure shallower
and hence easier for the analyst to work with. Neverthe-
less, larger graphs still produce trees around ten levels deep.
These trees are manageable, but we feel that applying a
second algorithm to reduce the height of the tree would be
worth investigating. It is worth noting that some other clus-
tering approaches cannot produce a result for graphs of this
size: a tall tree is better than nothing. A tall tree also may
be of some benefit when analyzing a large program, as it al-
lows the analyst to look at the clustering results at different
levels of granularity.

In the Context of AI There are many different types of
clustering algorithms that have been developed in the arti-
ficial intelligence literature, and so a standard terminology
has also been developed to describe these algorithms. In this

terminology, our algorithm may be described as hierarchi-
cal, exclusive, intrinsic, agglomerative, serial, and mono-
thetic [3, 9, 21, 22].

5.1 Data Structure

We use a fairly standard adjacency matrix to represent
the graph: one dimension represents the source node, and
the other represents the target node. We also use a vector to
hold the names of the individual nodes.

Each off-diagonal cell represents a potential arc between
two nodes. Apositivevalue signifies that there is an arc be-
tween the two nodes; the magnitude of the value indicates
the ‘weight’ of the arc. Azerovalue indicates that there
is no arc between the two nodes, which is the most com-
mon, and so a sparse matrix is used in practice. Anegative
value indicates that the two nodes should not be clustered
together: this allows the analyst to place constraints on the
outcome of the algorithm.

On-diagonal cells are used to record information about
each node. We use these cells to record the number of nodes
in the cluster.

5.2 Formulae

The adjacency matrix representation reduces all of the
steps in the algorithm to simple matrix operations. These
are given by the following formulae:

� M adjacency matrix.

� Wi;j = M [i; j] weight from nodei to nodej.
(off-diagonal values)

� Ci = M [i; i] count of nodes clustered in nodei.
(on-diagonal values)

� Ei =
P

8j(Wi;j +Wj;i)� 2�Wi;i

(Sum of the weighted external arcs connected to nodei

= row sum + column sum� on diagonal value.)

� Activei = Ei �Ei � Ci

(active node objective function for nodei)

� Agglomeratei = Ei �Ei

(agglomerate node objective function for nodei)

The function to combine two lower level nodesx andy into
one higher level nodez is:

W 0

r;z = Wr;x +Wr;y8r

W 0

z;c = Wx;c +Wy;c8c

C 0

z = Cx + Cy

In practice, the new higher level nodez takes the row and
column formerly occupied byx, and the row and column
formerly occupied byy are deleted from the matrix.
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5.3 Implementation

We have implemented our hierarchical agglomeration al-
gorithm as matrix operations in MatLab. The algorithm
generates a Rigi Command Language (RCL) script that in-
structs Rigi to cluster the graph according to the findings of
the algorithm. There are two benefits to this approach: it
reduces the memory required for the clustering algorithm,
because it does not need to remember what is in each clus-
ter, only the number of things in the cluster; and, Rigi is a
well known and well tested tool for graph visualization and
manipulation.

5.4 Testing

We have tested our algorithm with the simple file system
given in [15] and the CLIPS expert system shell. Our al-
gorithm produced the same result as the Bunch clustering
tool [15] on the simple file system example, and produced
reasonable results for CLIPS [8].

The file system example was chosen as a simple com-
parison of our tool with a known tool (Bunch). CLIPS was
chosen for three reasons: one, it has an architecture manual;
two, it is reasonably well studied in the literature; and three,
it provides an opportunity to compare a procedural program
with its object-oriented equivalent.

Our algorithm is able to cluster very large graphs, with
thousands of nodes and tens of thousands of arcs efficiently.
In fact, our algorithm is able to handle graphs larger than
Rigi can: Rigi can load the graphs, but it runs out of mem-
ory before it can complete execution of the clustering script.

The running time of our algorithm is proportional to the
number of nodes in the graph, as all of the arcs are reduced
to their weight and then dealt with via matrix operations.
The number of nodes determines the size of the matrix. For
JESS, it was necessary to apply a heuristic to the graph to
reduce it from about 2700 nodes to about 240 nodes so that
Rigi could execute the clustering script. Our algorithm took
about 10 minutes and 30mb of RAM to cluster these sim-
plified graphs.

6 Experimental Analysis of JESS

We have chosen to use the Java Expert System Shell
(JESS) version 5.0b1 as the main case study for this pa-
per. JESS provides almost identical functionality to the
well studied CLIPS expert system shell: in fact, JESS can
read and execute CLIPS rule sets. Internally, both JESS
and CLIPS are based on the Rete pattern-matching algo-
rithm. JESS is also able to perform backward-chaining, and
will also be able to do ‘fuzzy-logic’ in an upcoming release.
JESS has been written such that it is fairly easy to integrate

into any Java program, and can work directly with Java ob-
jects from that program.

JESS was developed with the file based Jikes compiler
from IBM Research, and the author has used files to orga-
nize JESS. From Table 3 below, it can be seen that there
are 91 source files and 238 binary files in JESS. 24 of these
binary files represent inner classes, so there are 123 regu-
lar classes that are tertiary classes in a file in which some
other class is the primary class. These classes represent al-
most half of the classes in JESS. JESS is organized into two
packages:jess for most of the code, andjess.awt for
the GUI code (which is a small fraction of the total).

Size Metric jess ./awt Total

No. of .java files 76 15 91
No. of .class files 223 15 238

No. of methods 1227 56 1283
No. of fields 525 11 536

No. of source lines 19746 807 20553
No. of; source lines 5596 143 5739

Table 3. JESS Size Metrics

6.1 Three JESS Clusters

The naive call graph for JESS has 2048 invocation arcs;
while the Class Hierarchy Analysis graph has 3872 arcs;
Rapid Type Analysis prunes 343 arcs from the CHA graph.
RTA resolves 291 call groups to a single target within JESS,
while 35 call groups still have more than one target within
JESS. This shows that RTA can produce fairly accurate call
graphs: in this example almost 90% of call groups are re-
solved to a single target. RTA also identifies 604 entities
in JESS that are not strictly required for the program to ex-
ecute (note that these may provide extra functionality for
Java programs that incorporate JESS).

We have used the XML Tree Diff tool, to compare the
clustering results with each other and the source file organi-
zation. Unfortunately, it seems that this tool has had some
difficulty with these problems, and was not always able to
compute a result. The only problems that it was able to
compute successfully were transforming the CHA cluster-
ing to the RTA clustering, and transforming the RTA clus-
tering to the source file organization. CHA to RTA requires
the following tree operations: 6 adds, 1 graft, 18 moves,
125 prunes, and 52 removes. RTA to source organization
requires the following tree operations: 294 adds, 0 grafts,
322 moves, 2 prunes, and 61 removes.

So, as mentioned previously, we have only been able to
partially verify our hypothesis at this time: each call graph
does indeed produce a different clustering, but we have not
yet developed an objective basis upon which to assess them.
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6.2 Considering Reflection

In our investigation of JESS, we feel that we have learned
more about how it is organized from examining its use of re-
flection than from our attempts to cluster it. Recall that it is
necessary to examine how a Java program uses reflection
in order to compute Rapid Type Analysis accurately. This
finding agrees with our past experience analyzing Java pro-
grams much larger than JESS, and so here we consider why
this may be the case.

Java reflection is one of two options that the programmer
has to deal with the ‘make isn’t generic’ problem [11]. The
other way to deal with this problem is through some pro-
gramming idiom, such as delegation or the creational de-
sign patterns (e.g. abstract factory). Dynamically bound
class level method can also be used to address this prob-
lem in some circumstances, but these are not available in
Java (although they are in some other object-oriented lan-
guages). While the creational design patterns make instan-
tiation more generic through the use of polymorphism, the
actual instantiation is still bound statically at compile time.
Reflection is the only option the Java programmer has for
instantiation to be determined dynamically at run time, and
therefore represents a major abstraction boundary.

Furthermore, reflection is not implemented as part of the
Java languageper se, but as a part of the virtual machine
and class libraries. This makes Java reflection rather cum-
bersome to use, in comparison to languages that incorporate
reflection more directly, such as Smalltalk, or languages that
support a meta-object protocol [12].

So, because reflection addresses the ‘make isn’t generic’
problem at the deepest level possible in Java, it tends to
serve an important role when it is used. Also, because re-
flection is rather cumbersome to use, and because the ‘make
isn’t generic’ problem usually only needs to be addressed
for a few key classes, reflection tends to be used sparingly.
Therefore, the use of reflection in Java programs can usu-
ally be analyzed fairly quickly, and often gives good insight
into the relation of the parts to the whole.

6.3 Compilers and Program Organization

There is a wide variation in the style in which Java pro-
grams are organized by Java programmers. JESS and our
fact extractor (an experimental version of jport) serve as dis-
tinctive examples. The contrast between the package struc-
ture of these two similarly sized programs is striking: JESS
consists of 238 classes in 91 files, divided into two pack-
ages. jport consists of 147 classes divided into 17 packages.
JESS has an average of 119 classes (45 files) per package,
whereas jport has an average of 8.6 classes per package.
This is an order of magnitude difference.

However, there are some strong similarities between
JESS and jport: both are of around 5 KLOC of uncom-
mented code; both were written by a single author; and
both are written in an advanced object-oriented style that
displays good understanding of Java and design patterns.

JESS and jport differ in the development tools that were
used to create them: JESS was written with a file based
compiler (Jikes, from IBM Research), whereas jport was
written with a repository based integrated development en-
vironment (IBM’s VisualAge for Java).

While the organization of a program is certainly subject
to the peculiarities of the programmer who wrote it, we feel
that the choice of development environment has a signifi-
cant impact. We suspect that using a repository based IDE
leads to a more organized package structure for three rea-
sons: one, the package structure is always visible to the pro-
grammer, and so is likely to get more attention than it might
otherwise; two, there is no opportunity to group classes
in files, and so the programmer must focus on the pack-
ages; and three, it is easier to organize classes into packages
within a repository based IDE than within the file system.

7 Conclusions

We conclude along the lines of our contributions, out-
lined in the introduction:

� Call graph construction algorithms do indeed have an
affect on clustering. Further study is required to state
conclusively that the more accurate call graphs result
in more accurate clusterings. Specifically, an objective
basis for determining the accuracy of a clustering must
be developed. This will depend on what the clustering
is supposed to mean, and we have explored potential
solutions to that problem here.

� We have developed a clustering algorithm that pro-
duces reasonable results on large graphs. This is
important for clustering object-oriented programs, as
even medium sized programs produce large graphs.

� Clustering object-oriented programs is a worthwhile
area of research, as current programming languages
still only allow the programmer to express limited
structure (even though this has improved tremendously
over the years).

� Programs developed with file based compilers and
those developed with integrated development environ-
ments can display very different organizational charac-
teristics. The influence of compiler technology of pro-
gram organization is an area deserving further study.

� XML technology can be useful for managing program
understanding data, particularly if that data is tree
structured.
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Finally, we feel that call graph construction algorithms
are essential to understanding object-oriented programs. As
with procedural programs, almost all important analyses re-
quire a call graph. This is even more important in object-
oriented programs, as methods tend to be shorter than func-
tions and composed of more calls.

We note that call graphs generated from actual program
execution traces may also be used, as well as those con-
structed from a static analysis. We intend to continue in-
vestigating the application of call graph construction algo-
rithms to the understanding of object-oriented programs.

In the future, as our clustering algorithm represents arc
type with a numerical value (‘weight’), we are considering
‘training’ the algorithm against well organized programs to
determine optimal values for each arc type.
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