
 1

m-Roam: A Service Invocation and Roaming Framework
for Pervasive Computing

 Alvin Chin Kostas Kontogiannis
 Dept. of Computer Science Dept. of Electrical and Computer Engineering

University of Toronto University of Waterloo
 achin@cs.toronto.edu kostas@swen.uwaterloo.ca

Abstract

This paper proposes an architectural framework for
integrating services within an enterprise and accessing
them from mobile devices in a pervasive-computing
environment. Present network environments are prone to
failures from disconnections and device crashes. Being
able to maintain service transaction while moving to
different locations and wireless networks (known as
service roaming), is currently a major objective in
pervasive and mobile computing research. This paper
presents a framework (called m-Roam) that allows for
mobile clients to perform service invocation and
roaming. The framework addresses this problem by
introducing a proxy-based architecture so that
invocation context and transaction state can be
maintained or updated accordingly, while the user roams
in different locations.

1. Introduction

Today, there are an increasing number of users that
carry mobile devices such as PDAs, laptops and cell
phones. As a result, existing services and applications
within an enterprise need to be extended towards these
mobile users, so that they can access such plethora of
corporate services and data. To date, there is no uniform
protocol that enables these types of devices to access data
and services on an enterprise network. Special mobile
application servers such as Avantgo, which allow mobile
devices to hook into an enterprise environment to access
corporate resources like e-mail and RDBMSes [15], use
proprietary technology and require significant resources
to maintain and run. Users need to install special
software on each device and configure the mobile
application server to recognize and communicate with
that device. Instead, users should be able to easily access
a service within an enterprise or have services delivered

to them when entering a particular area like a meeting
room. The ability to obtain services and information
from an environment anywhere at anytime is part of
pervasive computing [17]. Users should be able to access
their own personalized services on any type of device and
with any type of wireless technology.

The challenge this paper aims to address is to
determine how to deliver these services in a transparent,
seamless, and customizable fashion, to the mobile client.
Mobile clients have much lower resource constraints in
terms of memory, processor speed, graphics resolution
and bandwidth. To extend these enterprise services into
a dynamic mobile environment, a mobile services
framework needs to be developed. This enables any new
mobile device to be easily integrated into the enterprise
environment by following a uniform protocol. In mobile
computing, wireless networks are unreliable and operate
slower than wired LANs. Additionally, devices and users
are not stationary, but are highly mobile. Furthermore,
devices and networks are prone to failure and
disconnection when migrating to different networks like
Bluetooth, GPRS, 802.11, and CDMA. The complexities
and problems of accessing enterprise services in a
wireless environment, should be insulated from the user.
A user should be able to access services in the location
that the user resides in, and continue to use the same
services without interruption when moving to another
location or different wireless network.

In this paper, we discuss a software architectural
framework called m-Roam designed for dynamically
executing services, based on location (service invocation)
and how a user can roam across different locations and
networks (service roaming). Section 2 presents state of
the art background and related work. Section 3
highlights the user scenario for the basis of our work.
Section 4 outlines the requirements that we identified for
developing our software architecture. Section 5 explains
the current problems and issues in service invocation and
roaming. We describe our design architecture in Section
6. Section 7 details the design of m-Roam according to

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 2

our requirements and addressing the problems and issues
identified from Section 4. Section 8 describes future
work and we conclude the paper in Section 9. Finally,
references used in the paper are found in Section 10.

2. State of the Art

Previous work has addressed roaming at the physical
and network layers. Roaming at the physical layer
involves measuring the strength of the radio signal from
the base station to the device, and determining if handoff
occurs. Network-layer roaming involves performing
seamless translation of network addresses between a
home network and a foreign network, without being
exposed to the application. Most applications use IP as
the network communication protocol, thus roaming
requires having to switch between IP addresses in
different networks. Protocols such as MobileIP [13],
Reverse Address Translation (RAT), multicast-based
handover, HAWAII and CellularIP [9] do this. However,
IP layer approaches are not sufficient to solve the
problem of service roaming because they do not handle
application state which service roaming requires.
Additional infrastructure is required to create this
transparency of change in IP address. For example,
MobileIP requires a home agent and a foreign agent.

Since service roaming occurs at the application layer,
it is advantageous to combine this with network-layer
roaming to create a hybrid layer that uses the best of
both. Wi-Fi Bridge [3] is one example of this which
creates middleware at the application layer that enhances
the protocol stacks for the mobile host and the gateway
using CellularIP between 802.11b and GPRS networks
and IP tunneling, similar to MobileIP. Takasugi et al.
[16] create a seamless service platform on this hybrid
layer by adding an overlay network at the application
layer which interfaces to the transport and network layers
using seamless proxies (S-proxies) for each node on the
network. The same problems as in network-layer
roaming still exist, they require the addition of network
infrastructure like home and foreign agents. Complexity
is introduced with this overlay network which has to
bridge between the application layer and the network
layer. Furthermore, these approaches do not take into
account location changes when migrations occur, only
network address changes.

2.1. Application-layer roaming

There are several approaches to perform roaming at
the application layer. A directory can be used to store
user information using RADIUS and LDAP [6] so login
authentication can determine if the user moved. To hide

migrations and disconnections from services, proxies can
be used. Yao and Fuchs [18] use a recovery proxy that
intercepts and caches client requests and service
responses so that upon client reconnection, previous
client requests or service responses are retrieved from the
proxy. For roaming, they describe their client migration
protocol involving transferring messages from the old
proxy to the new proxy [19]. An extension of Yao and
Fuchs’ work to geographically dispersed location and
client roaming, is the distributed proxy server system
[10]. Here, a distributed proxy server is associated with a
geographic location and serves mobile clients within that
location. Data objects that are accessed and retrieved
from the back-end servers are restored to clients after
connection has been re-established in the same or
different location. This presents the loss of data and
interruption in service. Our work is similar to Yao and
Fuchs for their proxy operation and our service roaming
architecture is similar to the distributed proxy server
system.

However, proxies form a part of the solution to
service roaming, because they deal only with transferring
data and ignore the user’s activity of a service. Clients
need to maintain state which is compromised during
migrations and disconnections. Sessions provide this
higher level of abstraction and the Migrate architecture
[14] is one such work that does this, where network
disconnections are handled as session continuations and
connection migrations are handled as session migrations.
The SOMA (Secure and Open Mobile Agent)
middleware platform [2] extends the notion of a proxy
into a shadow proxy by adding session information,
which keeps track of the device’s actions and maintains
the device’s state.

To discover services in a network on a mobile device,
a framework for mobile web services is proposed in [4]
using a mobile agent platform. Mobile agents act on
behalf of clients and service agents process the user’s
request, find the service using UDDI and invoke on the
web service using SOAP. However, there is no
discussion on migration and service roaming. Our work
also uses UDDI and web services for service invocation,
but we add a service roaming architecture and protocols.

In addition to handoff of data performed by proxies,
state and context information also needs to be transferred
in this handoff. iMASH [1] achieves this through
application session handoff which is based on existing
work on proxies, content adaptation and client-
awareness. However iMASH requires applications to be
modified to support semantic session savepointing so that
after migration, clients can obtain the appropriate
delivered state. Our Client Migration Protocol is an
application session handoff similar to Yao and Fuchs
[19], but differs from iMASH in that applications do not

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 3

need to be modified because session savepointing is
performed by our system, not the client. In addition,
iMASH distinguishes between three types of application
session handoff depending on client and
middleware server. m-Roam does not distinguish
between these, therefore reducing the complexity of the
logic for application session handoff.

2.2. Approach and contribution

As seen above, much work in application-layer
roaming for mobile devices in wireless networks adapt
existing work for transactional systems in wired
networks. This approach is suited towards mobile and
pervasive systems, because it abstracts away the details of
networking, it is agnostic of the type of wireless network
and mobile device, and these methods have been proven
in the transactional and database community. As such,
there is no need to reinvent the wheel in solving the
problems of disconnections and crashes, therefore we
leverage on this work. They can be applied to the mobile
realm with the addition of migration for roaming. Since
transactional approaches work at the application layer,
they are flexible and thus suited towards solving our
problem. Our contribution to this area is the integration
of proxies, sessions, application session handoffs and web
services into a framework for solving service invocation
and roaming, which is new and novel.

3. User Scenario

A typical scenario is that of a user who wishes to
perform a particular task by searching for services in the
location that the user is in. The user enters a query on a
mobile device (like a cell phone, PDA or laptop)
equipped with a wireless interface (such as Bluetooth,
GPRS or 802.11) and then a list of services is delivered
that satisfy the query. From here, the user can select a
service and then execute operations on that service.
After, the user can issue other queries to perform other
tasks. During this time, the mobile device may get
disconnected, the mobile device may crash, the user may
use another device, or the user may move to a different
location and/or a different wireless network. Upon
recovery from any of these interruptions, the user can
continue the service from where the user left off without
having to start over. This scenario is realized with our
system architecture, specifically our software
architectural framework called m-Roam, which is the
middleware that performs the service invocation and
roaming.

4. Requirements

We identified six requirements that drove the
rationale in developing our software architectural
framework. First, users should be able to execute
services on any client device that runs any operating
system on any network. This requirement is derived
from the vision of pervasive computing. Second, finding
services on the network requires the necessity of a service
discovery protocol (SDP) that is flexible and is widely
used. Third, service interoperability is an important
requirement to achieve so that services can interact with
each other and with clients in a uniform manner. Fourth,
related to this, is the easy integration of services into our
framework. This is especially true for enterprises that
wish to enable their services for use in a mobile and
roaming environment, without having the hassle to
drastically change their implementation and interface.
Fifth, the software architectural framework must be
scalable to support many clients and services without any
significant degradation in performance. Finally, a sixth
requirement is location awareness in which services are
tailored to the location that the user is in. This is
important because this provides focused service discovery
that elicits a response that is customized to the user’s
environment.

5. Service Invocation and Roaming

To accomplish the user scenario described in Section
3, the problem that we are addressing is how to perform
service invocation and roaming that requires minimal
infrastructure changes. Service invocation refers to
executing operations on a service in order to perform a
particular task. We define a service as an entity that
provides a group of related functions with a specific
purpose and is exposed as a well-defined interface. An
example of a service is e-mail. Service roaming involves
having the ability to continue the service while migrating
from one location or network to another.

The current problems and issues in this area are
explained below, and addressed in our architecture.

1) Services are exposed using proprietary and/or
disparate service discovery protocols
Service discovery protocols such as Jini, SLP,

Salutation and UPnP are mostly proprietary and do not
interoperate well with each other. A possible solution to
this problem is to create bridges which perform the
transformation from one SDP to another. However, this
requires an additional component (bridge) which
complicates the process. There is a risk that the target
SDP may not be exactly the same in functionality as the

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 4

original. As well, a front-end service interface needs to
be created to expose the services to clients, and most
service interfaces are language dependent (for example,
Jini requires the use of Java).

2) Service paradigm does not address mobility issues
such as disconnections and crashes
When the client disconnects or crashes, the

connection that was established between the client and
the service is interrupted. As such, after the client
reconnects to the service, a new connection is established
and the client has to restart the service from the
beginning. The goal is to insulate these failures from the
client to maintain transparency and provide seamless
interaction of services.

3) Performing service roaming and handling user
migrations
There are many approaches in order to accomplish

roaming. The most popular and used by cellular WAN
technologies like GSM is physical layer roaming, which
operates at the Physical layer of the network OSI model
and involves base station handover. The second is
network layer roaming which uses a signaling protocol
that operates at the Network layer of the network OSI
model like MobileIP. The third approach is application
layer roaming which uses middleware and application
level signaling to detect that the client is roaming, and
operates at the Application layer of the network OSI
model.

4) Location awareness in service invocation and
roaming
Several questions come to mind like how to specify

location in the service discovery protocol and in the
client query, as well as the type of infrastructure that is
required to support location-based services.

6. Design Architecture Overview

Understanding the requirements from Section 4 and
the issues from the previous section, we provide a high-
level overview of our design architecture to realize the
user scenario from Section 3.

6.1. System architecture

The high-level system architecture is illustrated in
Figure 1. The wireless client connects and authenticates

to the enterprise network via a wireless access point.
Once the client is successfully connected, the user logs in
to m-Roam using an HTTP web browser, by sending a
login request. After the user is authenticated by m-
Roam, the user can start to use the services offered in this
location.

The user enters a client query to perform a particular
task by executing a client query request. For example in
the context of a conference scenario, a client query could
be to “find a service that can provide today’s conference
agenda in the conference lounge area”. The client query
is in the form of “find a service or list of services that
provide features A, B, C.. in location L”. We create this
query as an HTTP request and append a location attribute
to the request URL, because it is simple to process. This
satisfies issue 4 from Section 5 addressing how to specify
location in the client query. From these requests, m-
Roam discovers for services that match the query request.
Services in the enterprise are exposed to m-Roam as web
services. Web services are services that are encapsulated
into interfaces that can be accessed using HTTP for
transport and XML for data communications. We choose
web services for service invocation because it is
standardized by the W3C, and they separate the content
from the display using standardized protocols (HTTP and
XML). As such, the display at the client is just rendered
in HTML such that any client with an HTTP browser can
be used. This satisfies requirement 1 (services can be
executed on any client) and requirement 2 (flexible,
widely used SDP). Since we adopt the notion that all
services are encapsulated as web services and the service
discovery protocol is UDDI [7], then service
interoperability disappears thus satisfying requirement 3.
Therefore, we solve the problem of using proprietary
and/or disparate service discovery protocols (issue 1 from
Section 5).

Services are described in WSDL [7] and are
advertised to m-Roam using UDDI during service
registration. Once the desired services are found, the user
can select the service and then execute operations on that
service using SOAP [7], by having m-Roam make service
operation calls directly on its corresponding web service.
The service executes the requested operation and returns
the result back to its web service. A service operation
response is generated by the web service and is forwarded
to m-Roam, which then processes it and relays it back to
the wireless client as the response to the original client
query.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 5

client
request

cl ient
response

Service
operation call

Service
operation
response Web

Serv ice B

Web Services

Serv ice A

Serv ice B

client
request

client
response

m-Roam Enterprise
Services

Web
Serv ice A

Wireless
client

Wireless access
point

m-Roam
Framework

Service
registration

Figure 1. High-level system architecture

UDDI
registry

Service operation call

Service operation response

Service
discovery

lookup
UDDI

registry
Web

Serv ice B

Web Services

Service
registration

Distributed
directory of

serv ices

Serv ice
Roaming

Framework

Serv ice
Inv ocation
Framework

client
request

client
response

service
request

service
response

SIF
request

SIF
response

m-Roam

Web
Serv ice A

HTTP
web

serv er

Application
serv er

Wireless access
point

Front-end
Content

Figure 2. Architecture of m-Roam

If at any point in time, the client experiences a network
disconnection, crash or a move to a different location
and possibly a different type of network, then m-Roam
is able to recover from the service that the user had
previously accessed, and continue using it. After the
user has finished with m-Roam, a logout request is sent
in the client request. We explain the underlying details
of the m-Roam architecture in the next subsection.

6.2. m-Roam architecture

m-Roam is responsible for processing client requests
originating from client queries, performing service
invocation and roaming logic, hiding disconnections
and crashes, and delivering service responses to
wireless clients. The detailed architecture of the m-
Roam framework represented in Figure 1, is shown in
Figure 2 and consists of four main parts: Front-end
Content, Service Roaming Framework, Service
Invocation Framework and Distributed Directory of
Services.

Front-end content. The Front-end Content acts as the
front-end interface to the Service Invocation and
Roaming Framework, and is responsible for processing
HTTP client requests which can be either a service

query request (to find a particular service or select a
service) or a service operation request (to invoke an
operation on a service). From here, the HTTP service
requests are forwarded to the Service Roaming
Framework. Once the service response is received, the
Front-end Content formats the response using the
content repository and delivers it back to the wireless
client’s web browser.

Service roaming framework. The Service Roaming
Framework consists of the logic needed to perform
roaming, brokers client requests (service requests) and
service responses, and insulates client disconnections,
crashes and migrations from the Enterprise Services.
Service invocation framework. The Service
Invocation Framework processes the service requests
relayed from the Service Roaming Framework
(designated as SIF requests), and discovers available
services that satisfy that request based on authorization
and location (returned as SIF responses).

Distributed directory of services. The Distributed
Directory of Services provides a repository for the
description, operation and lookup of back-end
enterprise services and uses UDDI registries. Services
are described using WSDL, published in the UDDI

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 6

Figure 3. Proxy instance finite state machine

registry, discovered using UDDI, and executed using
SOAP by the Service Invocation Framework.

7. Detailed Design of m-Roam

In m-Roam, we focus on solving the research issues
involved in service invocation and roaming. We use the
requirements from Section 4 to justify our design. Two
components are used in m-Roam that collectively
perform seamless service invocation and roaming:
session and proxy. Together, they are fundamental in
addressing disconnections and crashes, migrations and
user queries.

When interacting with m-Roam, the system needs
to associate certain activities for a specific client, so
that when disconnections, crashes or migrations occur,
the last activity performed can be continued without
interruption. As a result, each user is assigned a
session which is defined as user activity from the time
that the user first logs on to the system until the time
that the user successfully logs off.

Central to service roaming is the introduction of a
middleware recovery and roaming proxy, similar in
concept to that of an HTTP proxy for HTTP requests on
the web. A proxy is assigned to each client in a
particular location, and tracks service requests and
responses throughout the lifetime of the client session
inthat location by caching client requests and service
responses. This lifetime is modeled as a proxy instance
finite state machine, and is illustrated in Figure 3.

• Service invocation
Clients make queries for a particular service or for a

list of services in two ways: 1) search for all services in
this location or, 2) find service(s) that match specified
user criteria in the form of “find a service or list of

services that provide features A, B, C,... in location L”.
This service search query is processed as an ECA
(Event-Condition-Action) rule [5] by the Service
Invocation Framework which performs service
discovery in the UDDI registries for the appropriate
web service. The ECA Rule Engine returns the
service(s) that match the service search query [5]. Once
the web service is found from the service search query,
clients can invoke operations on the web service
(service operation call) using SOAP operation requests.
SOAP (Simple Object Access Protocol) is a protocol for
running operations on a remote web service using XML
over HTTP. A SOAP response is returned from the
web service that is embedded in an HTTP service
response [7].

• Disconnections and crashes
In order to insulate client disconnections and

crashes from the service, the proxy assigned to a client
is used to cache client requests and service responses.
When the client reconnects, the existing client session
is recovered. The process that illustrates this can be
shown from Figure 3. While the client is accessing
services, the proxy is in the Running state and once the
service response is received, it goes into the Waiting
state, awaiting further service requests. When the
client disconnects or crashes, the proxy is unaware of
this and therefore still remains in the Waiting state.
Just after the client gets reconnected, the proxy moves
into the Recovering state where it has to retrieve the
last saved client request and service response. Once
recovery is complete, the proxy goes into the Waiting
state.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 7

Proxy
Manager

Dispatcher Proxy
Unit (DPU)

Proxy
Server

DPU

proxy

Find
location

and proxy

Find proxy

service request/response proxy request / response

Dispatcher
Proxy

Controller
(DPC)

Service roaming f ramework

Proxy
Manager

SIF
request

SIF
response

DPC
Manager

Service
Translator

translate request/
response

Figure 4. Service Roaming Framework

• Service roaming
Each location in the system has a Service Roaming

Framework instance which can reside on a single server
or can be distributed within the network. This
architecture is illustrated in Figure 4.

When a client enters a new location, the system
needs to locate a proxy to be allocated to the client in
this location. This is performed by the Dispatcher
Proxy Controller (DPC). If the system detects that the
client has an existing session, then the client is in
roaming mode and migration of service state and data
from the previous location needs to be transferred.
Migration is coordinated between the old and new
DPCs using the Client Migration Protocol, and
functions like a handover in physical layer roaming.
The Client Migration Protocol operates as follows.
From Figure 3, the proxy in the new location receives a
migration request and enters the Migrating state. In this
state, the proxy in the new location must notify the
proxy from the previous location to transfer all proxy
messages from the proxy queues over. For the old proxy
in the previous location, its state moves from Waiting to
Migrating, whereas for the new proxy its state moves
from either Started or Available to Migrating. During
the migration process, the client could disconnect, crash
or recover from those failures. In either case, the proxy
remains in the Migrating state since it has to finish the
migration process. Once the migration is complete, the
old proxy is made available for other clients to use so it
enters the Available state. The new proxy can now
service requests for the client in the Waiting state.
After, m-Roam retrieves the last saved service response
from this proxy or updates it, depending on whether the
last saved service request is a location-dependent query.

The retrieval process follows the recovery from
disconnection or crash mentioned earlier.

To address scalability (requirement 5), multiple
proxies are controlled by a Dispatcher Proxy Unit
(DPU). The DPU locates an available proxy that can be
used by this client for the duration that the client is in
this location. Multiple DPUs are controlled by the
DPC. The Proxy Manager maintains the proxies, keeps
track of client state for all proxies, sends service
requests to the Proxy Server, sends service responses
from the Proxy Server to the client, and recovers from
disconnections and crashes.

8. Future Work

Currently, the system only allows for keyword-based
search queries for services. One area for future work is
to extend our system for more intelligent search queries
that involve a natural language query, and use DAML-
S and ontologies [8,11] to add these semantics. In this
case, UDDI would have to be extended to allow for
DAML-S ontologies to be added. This would involve
having to map DAML-S attributes to UDDI records,
and creating a DAML-S matchmaking engine that
would locate the appropriate service directly using a
DAML-S query or by translating the DAML-S query
into a UDDI query on the UDDI registry [12]. This
will allow users to perform more accurate and useful
semantic queries, in addition to keyword matching with
UDDI and for the personalization of services according
to location.

Another area for future work is to support user
profiles which would have user preferences like a user’s
quality of service for a particular service, and the types
of services that a user would want to access, based on

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

 8

the context of where the user is located and what the
user is doing. These user profiles can be integrated into
an enterprise-wide network through the existing use of
LDAP (Lightweight Directory Access Protocol).
Security in our architecture and framework is very
simple through the use of a user name and password,
and access to services through a simple service
authorization table. RADIUS can be employed to
support user authorization and authentication for
enterprise security.

9. Conclusion

In this paper, we have proposed an architectural
framework called m-Roam that allows a user to
continue using a service without interruption, despite
network and client disconnections, client crashes, and
user migration within and between networks. We have
achieved this by creating a distributed proxy-based
architecture that accommodates for location. The
architecture was implemented in a prototype system and
we have solved various issues in service invocation and
roaming with our architecture. This architecture is by
no means complete, and due to its openness, additional
plug-in components can be inserted in order to extend
and improve its functionality and performance. With
the proliferation of many mobile devices, wireless
networks and the rapid adoption of them, systems like
m-Roam will assist users to roam for services, thus
making it one step closer to achieving Weiser’s vision.

10. References

[1] R. Bagrodia et al. “iMASH: Interactive Mobile
Application Session Handoff”. In Proceedings of MobiSys
2003: The First International Conference on Mobile Systems,
Applications, and Services, The USENIX Association, 2003,
pp. 259-272.
[2] P. Bellavista, A. Corradi, and C. Stefanelli, “The
Ubiquitous Provisioning of Internet Services to Portable
Devices”. IEEE Pervasive Computing, July-September 2002,
pp.81–97.
[3] A. Calvagna et al. “WiFi Bridge: Wireless Mobility
Framework Supporting Session Continuity”. In Proceedings
of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom’03), IEEE, 2003,
pp. 1-8.
[4] S. Cheng, J. Liu, J. Kao, and C. Chen, “A New
Framework for Mobile Web Services”. In Proc. 2002
Symposium on Applications and the Internet (SAINT)
Workshops, January 28-February 1, 2002, pp 218–222.
[5] K. H. Cheung, A Customizable Web Services Integration
Environment. Master’s thesis, University of Waterloo, 2002.

[6] C. Corbi and G. Sisto. “A Directory Enabled Solution for
Internet Roaming”. In Proc. IEEE International Symposium
on Computers and Communications, IEEE, 1999, pp. 39-45.
[7] F. Curbera et. al. “Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI”. IEEE Internet
Computing, March-April 2002, pp. 86–92.
[8] DAML Services. DAML Coalition,
http://www.daml.org/services/.
[9] A. Festag, H. Karl, and G. Schafer. “Current
Developments and Trends in Handover Design for ALL-IP
Wireless Networks”. Technical Report TKN-00-007,
Telecommunication Networks Group, Technical University
Berlin, 2000.
[10] K. Kim et al., “A Distributed Proxy Server System for
Wireless Mobile Web Service”. In Proc. 15th International
Conference on Information Networking (ICOIN’01), 2001,
pp. 749–754.
[11] S. A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web
Services”. IEEE Intelligent Systems, March-April 2001, pp.
46-53.
[12] M. Paolucci et al., “Importing the Semantic Web in
UDDI”. In Proc. Workshop on Web Services, e-Business, and
the Semantic Web (WES): Foundations, Models, Architecture,
Engineering and Applications, The Fourteenth International
Conference on Advanced Information Systems Engineering
(CAiSE’02), Toronto, Canada, May 27-28, 2002, pp. 225–
236.
[13] Charles E. Perkins. Mobile Networking Through Mobile
IP. IEEE Internet Computing Online,
http://www.computer.org/internet/v2n1/perkins.htm.
[14] M. Snoeren. “A Session-Based Architecture for Internet
Mobility”. PhD thesis, Massachusetts Institute of Technology,
2003.
[15] V. Stanford, “Pervasive Computing Goes To Work:
Interfacing to the Enterprise”, IEEE Pervasive Computing,
July-Sept 2002, pp. 6-12.
[16] K. Takasugi et al. “Seamless Service Platform for
Following a User’s Movement in a Dynamic Network
Environment”. In Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications
(PerCom’03), IEEE, 2003, pp. 71-78.
[17] M. Weiser, “The Computer for the 21st Century”. IEEE
Pervasive Computing, January-March 2002, pp. 18–25.
[18] B. Yao and W. K. Fuchs, “Proxy-based Recovery for
Applications on Wireless Hand-held Devices”. In Proc. 19th
IEEE Symposium on Reliable Distributed Systems (SRDS’00),
October 16-18, 2000, pp. 2–10.
[19] B. Yao and W.K. Fuchs. “Recovery Proxy for Wireless
Application”. In Proc. 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), IEEE, 2001,
pp. 112-119.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

