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Abstract

Many program analyses involve, or can be expressed
in terms of, a graph reachability problem. We present
a generic worklist-style algorithm capable of expressing
and solving the graph reachability components of many
such analyses. We compare our framework with the lan-
guage reachability framework proposed by Thomas Reps,
and show that some problems are expressible in both frame-
works, and some problems can be expressed in only one of
the frameworks.
Our two main case studies are Choi et al’s escape anal-

ysis and Bacon & Sweeney’s rapid type analysis (RTA). The
reachability problems in these analyses can be directly ex-
pressed in the framework of our algorithm, but not in the
language reachability framework. We discuss why this is the
case, but important future work remains to formally char-
acterize the kinds of problems that are amenable to our ap-
proach.
The paper also summarizes our experimental work with

an implementation of RTA based on our generic algorithm.

1 Introduction

Program analysis is complicated. One of the ways in
which researchers attempt to discover simplicity in this
complexity is by examining the similarity and differences
between analyses, and then developing a framework in
which these can be expressed. One of the earliest, and
best known, of these works in data-flow analysis is Gary
Kildall’s Unified Approach to Global Program Optimiza-
tion from the first POPL conference [14]. More recently,
Thomas Reps has shown how graph reachability problems
in program analysis are related to formal languages, and
how this relation leads to a more succinct expression and
better understanding of certain program analyses [27].

In this paper we propose a generic worklist-style algo-

rithm for graph reachability problems that can be special-
ized to solve specific problems, and to do so as efficiently
as a hand-coded worklist algorithm. Specifically, we show
how our algorithm can be used to express and compute the
reachability problems in Choi et al’s escape analysis [5] and
Bacon & Sweeney’s rapid type analysis (RTA) [1, 2]. Else-
where [21], we have shown how our framework is also ca-
pable of expressing the reachability problems in the clas-
sic ‘gen/kill bit-vector’ intra-procedural data-flow analyses,
program slicing [12], and program chopping [13] (a gener-
alization of slicing).

In comparison to the formal language framework pro-
posed by Reps, we show that certain problems are express-
ible and computable in both frameworks, and that some
problems are expressible in only one of the frameworks.
Our two case studies cannot be directly expressed in the
language reachability framework, and our framework can-
not express the problems that Reps is most interested in. We
need to do further work to formally characterize the kinds
of problems that can be expressed in our framework.

Organization of the Paper: Section two introduces al-
gorithm A, our generic worklist algorithm, and its associ-
ated framework for expressing graph reachability problems.
Section three summarizes the language reachability frame-
work proposed by Reps [27]. Sections four and five explain
Choi et al’s escape analysis and Bacon & Sweeney’s rapid
type analysis, respectively, and discuss expressing them in
both the algorithm A framework and the language reacha-
bility framework. Section six summarizes various experi-
mental studies of RTA, including our own using algorithm
A, and section seven concludes.

2 A Generic Worklist Algorithm

This section introduces algorithm A, our generic work-
list algorithm (Figure 1), and the associated framework
for expressing specific reachability problems. Like most
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worklist-style algorithms, it involves two loops and a con-
ditional: the outer loop continues while there is work to do;
the inner loop iterates over the edges attached to the current
working node; and the conditional ensures that the value
associated with each node changes monotonically (which is
necessary to ensure that the algorithm terminates).

Figure 1 Algorithm A: a generic worklist algorithm

V alues InitialValues(G)
Worklist RootSet(G)
While hasMoreNodes(Worklist) Do

ni  nextNode(Worklist)
While hasMoreEdges(ni) Do

e nextEdge(ni)
�  type(e)
nj  farNode(e; ni)
v0

j  F (�; vi; vj)
If monotonicChange(v0

j ; vj) Then
vj  v0

j

addToWorklist(Worklist; nj)
Return V

The major difference between algorithm A and many
specialized worklist algorithms is captured in the line:

v0j  F (�; vi; vj)

F is the function that characterizes the specific analysis that
the generic algorithm is currently performing; � represents
the type of the edge currently being traversed; vi represents
the value associated with the source node ni; vj represents
the value associated with the target node nj ; v0j is the value
computed by F .

Customization Specific analyses can be implemented us-
ing this generic algorithm by providing definitions for F
andmonotonicChange(v0; v). This paper gives these defi-
nitions for Choi et al’s escape analysis and RTA. Definitions
for program slicing, program chopping (a generalization
of slicing [13]), and the classic ‘gen/kill bit-vector’ intra-
procedural data-flow problems are given in [21].

The algorithm can be used for analyses that traverse the
graph forwards or backwards, or in both directions. For
example, RTA is a forwards analysis, program slicing is
a backwards analysis, and program chopping is a bidirec-
tional analysis. The edge type � is used to indicate edge
direction: eg ‘forward-call’ and ‘reverse-call’ would be dif-
ferent types. The graph construction phase is responsible
for typing the edges appropriately.

Termination Algorithm A will terminate if three condi-
tions hold: 1: the values associated with each node are from

a partially ordered domain (ie, there is a lattice that de-
scribes the domain); 2: all of the chains in the lattice be-
tween > and ? are finite; and 3: the values associated with
each node change monotonically. Note that the function F
does not have to return values that change monotonically,
since this property is enforced by the conditional.

Computational Complexity The computational com-
plexity of algorithmA isO(e�c), where e is the number of
edges in the graph and c is length of the longest chain in the
lattice that the values are taken from. Since c is a property
of the specific analysis and is independent of the particu-
lar graph being analyzed, we may say that the algorithm is
linear in the number of edges in the graph.

This analysis of the computational complexity assumes
that all of the functions used in the algorithm execute in
constant time.

Practical Performance Qadah et al’s [20] empirical re-
sults show that the performance of algorithms such as this
one are typically sub-linear in the number of edges because
usually only a subset of the graph is reached, and so only
some of the edges are traversed.

As is commonly known in data-flow analysis (eg [17]),
the practical performance of worklist-style algorithms de-
pends heavily on the worklist management strategy. We
have developed a ‘best-first’ worklist management strategy
for algorithm A, although our prototype implementation
uses a simple breadth-first approach [21].

3 Program Analysis via Graph Reachability

This section summarizes the framework from Reps’ ex-
cellent paper of the same title [27].

A path in a graph can be described with a word in a for-
mal language. Path expressions are a well known example
of this manner of description. In [27] a convention for la-
belling each edge in a graph with a character, and forming
words by concatenating the characters of the edges along
a path is adopted. Specifically, the following definition is
used [27, paraphrased]:

L-path: A path inG is an L-path if its wordw is a member
of a language L. (Where L is a formal language over
alphabet �, andG is a graph whose edges are labelled
with members of �.)

This definition is used to define various kinds of graph
reachability problems:

All-pairs L-path Problem: determine all pairs of nodes
n1 and n2 such that there exists an L-path in G from
n1 to n2.
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Figure 2 Example of a Context Free Language Reachability Problem from Reps [27]
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Single-source/single-target L-path Problem: determine
whether there exists an L-path in G from a given
source node n1 to a given target node n2.

Single-source/multiple-target L-path Problem:
determine all nodes n2 such that there exists an
L-path in G from a given source node n1 to n2.

Single-target/multiple-sourceL-path Problem:
determine all nodes n1 such that there exists an
L-path in G from node n1 to a given target node n2.

Multiple-source/multiple-target L-path Problem:
determine all nodes n2 such that there exists an
L-path in G from a source node n1 to n2, where
n1 2 SourceSet and SourceSet is given.

Multiple-target/multiple-source L-path Problem:
determine all nodes n1 such that there exists an
L-path in G from n1 to a target node n2, where
n2 2 TargetSet and TargetSet is given.

Language Recognition Problem: Given a string w and a
language L, the problem is to determine if w 2 L.
To treat this as a reachability problem, create a linear
graph s ! ::: ! t that has j w j edges, and label the
ith edge of with the ith letter of w. There is an L-path
from s to t if and only if w 2 L. This is a special case
of the single-source/single-targetL-path problem.

3.1 Classifying Program Analyses

Given the above definitions of various reachability prob-
lems, Reps divides program analyses according to the class
of grammar required to describe them.

Regular Grammars The simplest regular language
reachability problem is ‘ordinary graph reachability’, where
the alphabet is � = feg and the language is L = e�. More
interesting reachability problems may be described with
richer regular grammars. For example, the two-pass reacha-
bility problem presented as a part of program slicing in Hor-
witz, Reps & Binkley [12] may be considered as a regular
language reachability problem: label edges to be traversed
on the first pass only with a; label edges to be traversed on

the second pass only with b; label edges to be traversed on
either pass with c; the language is L = (ajc)�(bjc)�. This
reachability problem is described with an imperative algo-
rithm in [12]; our formulation is detailed in [21].

AlgorithmA can express and compute reachability prob-
lems described by regular grammars.

Context Free Grammars Reps is particularly focused
on program analyses that can be described with context-
free languages because such languages allow one to de-
scribe call/return sequences in a program (the stack of the
language recognizer traces potential call stacks in the pro-
gram). A simple example adapted from [27] is represented
here in Figure 2. A labelled graph is given on the left, and
the grammar for the language L is given on the right (the
non-terminalm stands for ‘matched’). L may be described
as the language that consists of strings of matched parenthe-
ses and square brackets, with zero or more e’s interspersed.
The word ‘[(e[])eee[e]]’ indicates the only L-path from s to
t, which goes around the loop exactly once.

Reps is primarily concerned with inter-procedural anal-
yses, including inter-procedural program slicing, certain
data-flow analysis problems, one kind of heap shape anal-
ysis, and one kind of flow-insensitive points-to analysis.
He shows how all of these can be described as context-
free language reachability problems. The data-flow anal-
yses amenable to this approach are characterized as IFDS:
inter-procedural, finite, distributive, subset [27]. ‘Finite’
means that the set of data-flow facts is finite. ‘Distribu-
tive’ means that the data-flow functions distribute over the
confluence operator, which is either set union or set in-
tersection (in other words, the problems are ‘separable’).
The IFDS problems include the classic ‘gen/kill bit-vector’
problems, as well as many other non-gen/kill problems,
such as possibly-uninitialized variables, truly-live variables,
and copy-constant propagation [27].

As is well known, context-free languages require O(n3)
time to recognize in general [32], and Reps argues that this
provides important theoretical insight into why certain pro-
gram analyses require O(n3) algorithms. Context-free lan-
guages can be recognized in sub-cubic time if the graph is
acyclic [31], but this is rarely the case in program analysis.

AlgorithmA can neither express nor compute reachabil-
ity problems described by context-free grammars.
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4 Escape Analysis

The purpose of Escape Analysis is to determine if an ob-
ject is containedwithin a single method or a single thread. If
an object is contained within a single method then it may be
automatically stack allocated instead of heap allocated, and
if it is contained within a single thread then all of its syn-
chronization operations may be removed. Escape analysis
is somewhat similar to points-to or live-variable analysis.

Escape analysis for Java is a topic that has attracted quite
a bit of attention recently (eg, there are four papers in [18]).
This section explains the reachability problem in the escape
analysis proposed by Choi et al from IBM Research [5],
which is based on a program abstraction called a Connec-
tion Graph. This escape analysis proposal describes two
main phases: first, the connection graph is constructed, and
then it is traversed to determine which objects escape. The
mechanics of graph construction is described fully in [5],
and is not our main concern here. The remainder of this
section represents the connection graph definition and de-
scribes the reachability problem.

Connection Graph The connection graph is defined as:

CG = (No [Nr [Nf [Ng; Er [Ed [ Ef )

Where No is the set of nodes that represent objects, Nr is
the set of nodes that represent reference variables,Nf is the
set of nodes that represent instance fields, and Ng is the set
of fields that represent static fields (ie, global variables);Er

represents the set of ‘points-to’ edges, Ed represents the set
‘deferred’ edges, and Ef is the set of ‘field’ edges.

Three other sets of nodes, other than those used in
the definition, are identified for initialization purposes:
Nrunnable represents all objects that instantiate a class
that implements the Runnable interface (ie, all thread
objects); Nfinalizable represents all objects that instanti-
ate a class with a non-trivial finalizer/destructor method;
Nparamater represents all objects that are passed between
methods as parameters.

4.1 Reachability Problem

The reachability problem to be solved on the connec-
tion graph is defined with respect to a three element lat-
tice [5]: NoEscape (>), ArgEscape, and GlobalEscape
(?). NoEscape means the object does not escape the
method that allocates it; ArgEscape means the object may
escape the method that allocates it, but does not escape the
thread that allocates it;GlobalEscapemeans that the object
may escape both the method and the thread that allocate it.
The reachability problem is intuitively described like so:

Let CG be a connection graph for method M ,
and let O be an object node in CG. If O can
be reached in CG from any node whose escape
state is not NoEscape, then O escapesM . The
intuition easily extends to the escapement of an
object from a thread. [5, emphasis in original]

Graph Initialization Table 1 lists the initial connection
graph node value assignments used for escape analysis.

Table 1 Connection graph initialization values [5]

Nodes Initial Value

No NoEscape

Nr NoEscape

Nf NoEscape

Ng GlobalEscape

Nrunnable GlobalEscape

Nfinalizable GlobalEscape

Nparamater ArgEscape

The Original Algorithm Choi et al’s original worklist-
style algorithm is represented in Figure 3. This algorithm
involves two applications of a simple worklist algorithm:
the first pass propagates the GlobalEscape values, and the
second pass propagates the ArgEscape values. This divi-
sion of labour saves some computational effort: if an ob-
ject may escape its allocating thread (ie, GlobalEscape),
then by definition it may escape its allocating method (ie,
ArgEscape). So, by propagating theGlobalEscape values
first the algorithm eliminates redundancy from the reacha-
bility computation.

Figure 3 Escape Analysis Reachability [5]
// First Pass: propagate GlobalEscape values
Worklist GlobalEscapeNodes(G)
While hasMoreNodes(Worklist) Do

m nextNode(Worklist)
ForEach outgoing edgem! n Do

If (State(n) 6= GlobalEscape) Then
State(n) GlobalEscape

addToWorklist(Worklist; n)

// Second Pass: propagate ArgEscape values
Worklist ArgEscapeNodes(G)
While hasMoreNodes(Worklist) Do

m nextNode(Worklist)
ForEach outgoing edgem! n Do

If (State(n) > ArgEscape) Then
State(n) ArgEscape

addToWorklist(Worklist; n)
End
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An Equivalent Algorithm A functionally equivalent sin-
gle pass algorithm is presented in Figure 4. There are three
changes of note: 1: the worklist is initialized with all nodes
that have state not equal to NoEscape; 2: the conditional
test compares the states of both the source and target nodes,
rather than the state of the target node and a constant; 3: the
state of the target node is set to the state of source node, in-
stead of to a constant. Replacing the constants with values
from the source node makes this algorithm more general:
it is now independent of the lattice, whereas the lattice is
hard-coded into the original algorithm. Algorithm A is es-
sentially a further generalization of the one in Figure 4.

This functionally equivalent algorithm is not computa-
tionally equivalent unless a best-first worklist management
strategy is used. We have described such a strategy for al-
gorithm A in [21]. The best-first strategy ensures that the
GlobalEscape values are propagated first, and so avoids
redundancy in the same manner as the original escape anal-
ysis reachability algorithm.

Figure 4 Equivalent Reachability Algorithm
Worklist GlobalOrArgEscapeNodes(G)
While hasMoreNodes(Worklist) Do

m nextNode(Worklist)
ForEach outgoing edgem! n Do

If (State(n) > State(m)) Then
State(n) State(m)
addToWorklist(Worklist; n)

End

Expression with Algorithm A Since the lattice is totally
ordered, each position can be represented with an integer:
GlobalEscape = 0, ArgEscape = 1, and NoEscape =
2. The monotonicChange(v0; v) function can then be de-
fined as the less-than (<) relation.

The function F can be defined simply as the identity
function: that is, F always returns the vi parameter (the
value associated with the source node). The other two pa-
rameters, edge type � and target node value vj , are disre-
garded. This definition simply propagates the value from
the source node to the target node.

Expression with Language Reachability Each pass in
the two-pass escape analysis reachability algorithm (Fig-
ure 3) is (almost) equivalent to a multiple-source ordinary
reachability problem (ie, L = e�). When considered as a
language reachability problem, the set of ArgEscape tar-
get nodes must be subtracted from the set ofGlobalEscape
target nodes, since GlobalEscape supersedes ArgEscape.
The algorithm in Figure 3 avoids having to compute this set
subtraction because of the conditional in the second pass.

So, the language reachability approach is not capable of
expressing this escape analysis reachability problem with a
single application of a single language: the same language
(L = e�) must be applied to two different source sets, and
then one result set must be subtracted from the other. There
is no way to express either the repeated application or the set
subtraction. We think that the root of the difficulty is that the
domain of potential node values has three members, and this
is incompatible with viewing the reachability problem as a
language recognition problem: a word is either a member
of a language or it isn’t, and that means a domain with only
two members.

5 Rapid Type Analysis

Rapid Type Analysis (RTA) is a fast and effective means
for statically resolving polymorphic method invocations in
class-based, statically typed, object-oriented programming
languages with method overriding semantics [1, 2]. RTA is
a flow- and context-insensitive whole program analysis.

The basic idea of RTA is to prune the results of Class
Hierarchy Analysis (CHA) [7, 8] with information about
instantiation. This basic idea can be explained by analyz-
ing the sample program listed in Figure 5. The program
contains one polymorphic invocation, s.draw(), in the
Main::foo(Shape)method. The purpose of call graph
construction techniques such as CHA and RTA is to deter-
mine the set of potential targets for such invocations.

A class hierarchy analysis of the example program re-
veals that the signature for the draw method is contained
in the abstract class Drawable, which is the immedi-
ate super-class of Shape. Shape has four sub-classes
(Circle, Triangle, Rectangle, and Square), three
of which implement the draw method. CHA identifies
these three implementations of draw as possible targets for
the invocation s.draw().

RTA tries to eliminate some of the CHA-identified pos-
sible targets by using information about instantiation. Start-
ing at the program entry point(s), in this case main, it can
be seen that the example program only instantiates Circle
and Square. Therefore Triangle::draw cannot be
executed, since neither Triangle nor any of its sub-
classes is ever instantiated. Rectangle::draw may be
executed because its sub-class, Square, is instantiated and
does not re-implement draw.

So, a method implementation may be executed if it is
identified as a potential invocation target by CHA and it is
associated with an instantiated class (ie, it is the method
that will be executed for objects of that class). In reacha-
bility terms, a method implementation may be executed if
it can be reached from the program entry point(s) via both
an ‘invocation’ path and an ‘instantiation’ path. Abstractly,
the reachability problem is a conjunction of paths.
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Figure 5 Example program for explaining Rapid Type Analysis

package ca.uwaterloo.swen;
import ca.uwaterloo.graphics;

public class Main {
public static void main(String[] args) {
Shape shape;
shape = new Circle();
foo(shape);
shape = new Square();
foo(shape);

}
static void foo(Shape s) {
s.draw();

}
}

package ca.uwaterloo.graphics;

abstract class Drawable {
abstract void draw();

}
abstract class Shape extends Drawable {}
class Circle extends Shape {
void draw() { printf("Circle"); }

}
class Triangle extends Shape {
void draw() { printf("Triangle"); }

}
class Rectangle extends Shape {
void draw() { printf("Rectangle"); }

}
class Square extends Rectangle {}

5.1 Expressing RTA with Algorithm A

Our implementation of RTA with algorithm A is based
on a dependency graph model for Java bytecode that we
have described in detail in [21, 23], and partially in [22, 24].
Basically, nodes represent types, fields, and methods; edges
represent declaration, extension, invocation, instantiation,
type tests, fetch, store, etc. The complete model has 41
different types of edges, including six kinds of edges to rep-
resent method invocation. These static dependency graphs
are built from the Java bytecode, and the construction incor-
porates CHA, as discussed in [23, 21].

Lattice The original formulation of RTA in [1] includes a
worklist-style algorithm, but not an explicit lattice.

RTA can also be thought of as an analysis to determine
which parts of the program may be exercised during execu-
tion, and it is often used for this purpose (eg, [29, 23]). The
lattice in Table 2 is designed from this perspective, and the
monotonicChange(v0; v) predicate can be defined as the
greater-than (>) relation for use with these values.

Table 2 Lattice for RTA
Name Description Value

new directly instantiated 5
reqd required for execution 4

invoked may be the target of a (possibly) 3
live polymorphic invocation

member may be required by an 2
instantiated class

file in same file as a required class 1
? not required 0

The invoked lattice value indicates that the program el-
ement (ie, method) may by the target of a polymorphic

method invocation. Themember lattice value indicates that
the program element (ie, method) may be required by an
instantiated class. If a method implementation is both in-
voked and a member, then it is reqd: this is the conjunc-
tion of paths that characterizes RTA.

Function F The function F for RTA can be broken down
into six cases based on the type of the edges. We de-
note these six cases as F 0, F default, F file, F new, Fmemberand
F invoke. The first four are given in Table 3, Fmember is given
in Table 4, and F invoke is given in Table 5. The first four
functions depend only on the source node value; the value
currently associated with the target node is disregarded. The
last two depend on both the current source node and target
node values. All of these functions can be (and have been)
implemented as constant time array lookups.

The ‘not required’ lattice value is denoted with ‘–’ in
Tables 3, 4 & 5. Recall that the F functions do not
have to return monotonically changing values: this prop-
erty is enforced by themonotonicChange(v0; v) predicate.
Therefore, if an F function returns a value that causes the
monotonicChange(v0; v) predicate to fail, it simply means
that the source node is transmitting no new information to
the target node. This is what the ‘–’ return values in Ta-
bles 3, 4 & 5 indicate.

Table 3 RTA F 0, F default, F file, and F new

Source 7! F 0 F default F file F new

– 7! – – – –
file 7! – – – –

member 7! – – – –
invoke 7! – – – –
reqd 7! – reqd file new
new 7! – reqd file new
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Table 4 RTA Function Fmember

Source Target 7! Fmember

– * 7! –
file * 7! –

member * 7! –
invoke * 7! –
reqd * 7! file
new – 7! member
new file 7! member
new member 7! member
new invoke 7! reqd
new reqd 7! reqd
new new 7! reqd

Table 5 RTA Function F invoke

Source Target 7! F invoke

– * 7! –
file * 7! –

member * 7! –
invoke * 7! –
reqd – 7! invoke
reqd file 7! invoke
reqd member 7! reqd
reqd invoke 7! invoke
reqd reqd 7! reqd
reqd new 7! reqd
new * 7! –

The functions Fmember and F invoke are moderately more
complicated than the other four functions. However, they
are still fairly simple: they are both roughly equivalent to
the truth table for logical conjunction, adjusted for the fact
that we are dealing with a domain of six values, rather than
simply the two values zero and one.

A table associating these six functions with the 41 edge
types in the graph schema is presented in [21]. In sum-
mary, F file is associated with field and constructor declara-
tions; F new is associated with instantiations; Fmember is as-
sociated with method declarations; and F invoke is associated
with polymorphic invocations. F default is associated with
most of the other arc types. The exact details of the associ-
ations depend on our class hierarchy analysis implementa-
tion. The interested reader is referred to [21] for details.

5.2 Expressing RTA with Language Reachability

RTA can be expressed as a language reachability prob-
lem, using a dependency graph model similar to the one
used above. To be expressed in this way, RTA requires the
combination of two regular languages, named Linvoke and
Lnew here in Figure 6.

Figure 6 Languages Expressing RTA Reachability Problem

Linvoke = invoke�

Lnew = invoke� new extends� declares

In terms of graph reachability, RTA represents a conjunc-
tion of paths: a method may be executed if it is reachable
via a chain of invocations and some class that declares or
‘inherits’ it is instantiated. The first part of this conjunction
is represented by Linvoke, and the second part is represented
by Lnew. Each of these languages should be applied as a
multiple-source reachability problem.

From the previous example program, it can be seen that
Rectangle::draw may be executed because it can be
reached in both of these ways. The specific paths are shown
in Figure 7 by winvoke and wnew, where winvoke 2 Linvoke and
wnew 2 Lnew. Each arc is indicated by an arrow with a char-
acter over it indicating the type of the arc: imeans ‘invoke’,
n means ‘new’, e means ‘extends’, and d means ‘declares’.

Figure 7Words reaching Rectangle::draw

winvoke = main
i! foo

i! Rectangle :: draw

wnew = main
n! Square

e! Rectangle
d!

Rectangle :: draw

Once it is determined that Rectangle::drawmay be
executed, then it must be considered as a starting point for
Linvoke and Lnew (as main currently is). This requirement
indicates that not only must these two languages be com-
bined, but this combination must be repeatedly applied un-
til no more potentially executing methods are discovered.
This successive re-application makes this problem differ-
ent than a regular multiple-source reachability problem, be-
cause the set of source nodes grows during the analysis (eg
Rectangle::draw becomes a source node). For these
two reasons RTA cannot be expressed solely in terms of
language reachability: extra work is necessary for the con-
junction of paths and the growing source set.

6 Summary of Experiments

This section summarizes our experimental results
from [21], in context with studies from (in chronological
order): Bacon & Sweeney [1, 2], Porat et al [19], Tip et
al [29], Sundaresan et al [28], and Tip & Palsberg [30].
This section is not intended as a critical comparison of these
studies but, rather, to demonstrate that our implementation
produces results similar to those obtained in other studies.
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Table 6 Summary of studies of RTA’s effectiveness for static resolution of polymorphic method calls

Study Language Lib. Incl. min max avg

Bacon & Sweeney [1, 2] C++ � 28% 100% 75%
Porat et al [19] Java

p
53% 99% 99%

Sundaresan et al [28] Java
p

8% 81% 40%
Tip & Palsberg [30] Java � 81% 97% 92%
Rayside & Kontogiannis [21] Java

p
83% 89% 85%

Table 7 Summary of studies of RTA’s effectiveness at application/library-subset extraction

Study Language Lib. Incl. Measure min max avg

Bacon & Sweeney [1, 2] C++ � bytes 1% 63% 25%
Bacon & Sweeney [1, 2] C++ � methods 6% 89% 40%
Porat et al [19] Java � methods 10% 65% 43%
Tip et al [29] Java � methods 10% 89% 41%
Tip et al [29] Java � bytes 13% 90% 53%
Rayside & Kontogiannis [21] Java � bytes 1% 76% 28%
Rayside & Kontogiannis [21] Java

p
bytes 65% 97% 80%

Our contribution is the novel way in which we have imple-
mented RTA using algorithmA, not RTA itself.

The two most common objectives of RTA are
static resolution of polymorphic method invocations and
application/library-subset extraction. (We have also exam-
ined RTA for the purposes of automatic clustering [26] and
program understanding [25].)

All of the measurements presented here are with respect
to the statically available code, not against what a dynamic
trace considers to be ‘live’. Bacon & Sweeney [1, 2] report
in both ways.

Call-Graph Construction RTA is fairly effective at re-
solving virtual method calls to a single target, as is shown
in Table 6. The average result of the five studies summa-
rized in Table 6 is that RTA usually resolves about 80% of
the virtual method calls to a single target. It is important to
note that this average is indicative only and not critical: each
of these studies measures slightly different things on differ-
ent benchmarks. Some of the peculiarities in measurement
include: whether the libraries the program depends on are
included (this is indicated by the lib. incl. column in Ta-
ble 6); whether abstract methods are counted ([30] excludes
them); whether final methods are counted ([19] excludes
them); and whether the analysis is based on source code,
byte code, or some other intermediate format (eg, [28] is
based on the JIMPLE intermediate format, which incorpo-
rates some type inference of the stack [9]).

One of the peculiarities of our study is that we group
call sites with identical target signatures by introducing a

polymorphic choice vertex, in a manner similar to [15]. This
technique reduces the overall size of our graph and the time
taken for our class hierarchy analysis. Table 6 reports the
number of call site groups resolved to a single target in our
study, rather than the number of actual call sites.

The studies from Sundaresan et al [28] and Tip & Pals-
berg [30] propose algorithms that are more effective than
RTA and have similar cost — VTA and XTA, respectively.

Application Extraction Since RTA builds a call graph by
identifying which methods may be executed (in a conserva-
tive fashion), it also identifies which methods may never be
executed by a particular program. Table 7 summarizes the
results of four studies. As with Table 6, this comparison is
indicative only and not critical.

There are two main measurements that can be used to
assess the volume of code removed: bytes of object code
or number of methods. Some studies report only one of the
measurements, other studies report both, as is indicated in
Table 7. On average, 41% of the methods were removed
from the application, which constituted 35% of the applica-
tion size (these are averages of the results that do not include
the libraries the application depends on).

In [21, 24, 23] we show that applications typically use
less than half of the code (in bytes) of the libraries that they
depend on. For example, the maximum 97% reported in
Table 7 is for HelloWorld, which uses only 3% of the stan-
dard Java library; our bytecode analyzer uses only 7% of
the standard library.

The study of Tip et al [29] reports results from their Jax
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tool which also incorporates a number of more advanced
analyses and transformation, such as class hierarchy spe-
cialization. Consequently, Jax eliminates more bytes of
code than tools based solely on RTA.

7 Conclusion

We have proposed algorithm A, a generic worklist-style
algorithm for graph reachability problems in program anal-
ysis, and its associated framework for expressing specific
reachability problems. We have also summarized experi-
mental work comparing our algorithmA based implementa-
tion of RTA with other specialized implementations of RTA.

We have compared our framework to the language reach-
ability framework proposed by Reps [27], and shown that
while some problems may be expressed in both frame-
works, there are also problems that can be expressed in only
one of the two frameworks. Both frameworks are capable
of expressing reachability problems that can be described
by a single regular language. Reps is primarily interested in
modeling inter-procedural program analyses with context-
free languages, and our framework does not support these
problems. Our two case studies, Choi et al’s escape analy-
sis [5] and Bacon & Sweeney’s rapid type analysis [1, 2],
can be directly expressed in the framework of algorithm A

but not in the language reachability framework.
The critical feature of the escape analysis reachability

problem is that it the lattice of values that may be associated
with a node has three members: NoEscape, ArgEscape,
and GlobalEscape. Modeling a reachability problem as a
language recognition problem limits one to a domain of two
values: accept or reject.

The rapid type analysis reachability problem has two
critical features: a conjunction of paths and a growing
source set. The basic idea of RTA is that a method imple-
mentation may be executed if it is reached from the program
entry point(s) via both an invocation path and an instantia-
tion path. Once a method implementation has been reached
by both paths, then it must be considered as a new origin
point for other invocation and instantiation paths. The in-
vocation paths and instantiation paths can be individually
modeled in the language reachability framework, but the
way in which they must be combined cannot.

Future Work The most important future work is to try
and characterize the problems that can be expressed with al-
gorithmA more formally. Two possible avenues of enquiry
here are graph grammars and the Tarski relational algebra
approach advocated by Ric Holt [10].

A number of people have mentioned to us that there may
be some related work in model-checking, and we are look-
ing into this.
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Shäfer, editors, ICSE’01, pages 113–122, Toronto,
Canada, May 2001.

[26] Derek Rayside, Steve Reuss, Erik Hedges, and Kostas
Kontogiannis. The effect of call graph construc-
tion algorithms for object-oriented programs on auto-
matic clustering. In Margaret-Anne Storey, Anneliese
von Mayrhauser, and Harald Gall, editors, IWPC’00,
pages 191–200, Limerick, Ireland, June 2000.

[27] Thomas Reps. Program analysis via graph reach-
ability. Information and Software Technology,
40(11):701–726, November 1998.

[28] Vijay Sundaresan, Laurie Hendren, Chrislain
Razafimahefa, Raja Vallée-Rai, Patrick Lam, and Eti-
enne Gagnon. Practical virtual method call resolution
for Java. In Lea [16], pages 264 – 280.

[29] Frank Tip, Chris Laffra, Peter F. Sweeney, and David
Streeter. Practical experience with an application ex-
tractor for Java. In Northrop [18], pages 292 – 305.

[30] Frank Tip and Jens Palsberg. Scalable propagation-
based call graph construction algorithms. In Lea [16],
pages 281 – 293.

[31] L.G. Valiant. General context-free recognition in less
than cubic time. J. Comp. Syst. Sci., 2(10):308–315,
April 1975.

[32] D.H. Younger. Recognition and parsing of context-
free languages in time n3. Inf. and Cont., 10:189–208,
1967.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02) 
1534-5351/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


