i-Cube: A Tool-set for the Dynamic Extraction and
Integration of Web-Data Content

Frankie Poon K ostas Kontogiannis

{fpoon, kostas} @swen.uwaterloo.ca

Department of Electrical &
Computer Engineering
University of Waterloo

Canada

Abstract

Over the past decade the Internet has evolved into the largest public community in the world. It provides a
wealth of data content and services in almost every field of science, technology, medicine, business,

leisure, and education just to name a few. However, this exponential growth came at the price of increased
complexity for the end-user to categorize, prioritize, and select in a customizable way the information and
services that are provided by millions of Web sites across the Internet. This paper presents the Cube
environment, a toolset that allows for Internet data and content originally available as HTML Web pages
and programmatic scripts to be denoted, modeled, and represented in the form of XML documents. These
XML documents conform to specific Document Type Definitions and other structural constraints that are
fully customizable by the end-user or the service provider. The approach is based on representing HTML
document data content in the form of annotated trees. Specific areas of interest and data content in the
original HTML document that need be encoded in the form of an XML representation, are represented as a
collection of annotated sub-trees in the tree that corresponds to a large HTML document. A service
integration module allows for different categories of analysis and presentation rules to be invoked
according to script based user-defined logic.

1. Introduction

The i-Cube platform (Figure 1) is an integrated environment that provides the facilities for extracting data
content from HTML in the form of a tree data structure, representing the extracted data content in XML
format, and mediating the resulted XML data according to a set of lightweight service-logic. The primary
goa of the i-Cube platform is to allow rapid deployment of new web-based information services (i-
services) that are derived from traditional web applications, through HTML wrapping and data mediation.
Secondly, the environment aims to facilitate the creation, integration, and distribution of services in a
distributed Web-based environment. In this context, services are related to extraction and processing of
Web data content as this can be retrieved by specific service providing Web sites.

Application Service Provider

i-grep Query Engine

Interpreter

Register Agent

Figure 1. The i-Cube Integrated Environment

The i-Cube platform serves four main functions, namely, the creation, invocation, registration and query of
XML-based i-service and i-grep specifications. The above functions are performed by the following five
major components of the i-Cube Integrated Environment:

i-editor — a graphical user interface for creating, editing, querying and registering of i-service and
grep specifications.

i-grep Interpreter (HTML wrapper) - performs extraction from an HTML source and maps the
extracted datainto an XML data structure, based on a set of rules defined in an i-grep specification.
i-service Interpreter (XML mediator)— interprets service-logic that controls the invocations of i-grep
requests and performs mediation on the data sets resulted from the invocations.

Query Engine — responsible for searching according to iservice and kgrep specifications that are
based on data content description, data content structure, and data content |ocation.

Register Agent — registers i-service and i-grep specifications composed by certified remote clients in
the repositories.

We define an information grep (i-grep) to be a user-created specification for extracting structured
information from an HTML page, where the resulted data is mapped to a XML document. An i-grep
specification consists of alocation of the HTML page, a set of input parameters, an XML Document Type
Definition (DTD) [18] for modeling the related data to a Web-site data content structure, and a set of data
content extraction rules. An i-grep specification is represented in XML in order to facilitate the interchange
of specifications between service providers and service builders.

Service specific logic, including the sequence of i-grep invocations and the manipulations of data (sorting,
set operations etc) are defined in an information service (i-service) specification. An i-service specification
can be viewed as a simple application that manipulates data resulted from a set of i-grep invocations. The
specification is also represented in XML for the inherent data interchange concern. An XSLT [19]
document can also be attached to an i-service specification for applying presentational transformation on
the resulted i-service XML data.

We give the notions of i-service and i-grep to separate the two levels of abstraction, between service
specific logics that should be processed by an application and extraction and mapping processes that should
be carried out by an HTML wrapper and the mediator.

2. i-Cube Major Components

2.1 The i-editor

The i-Cube editor is a front-end graphical interface that allows users, ranging from web developers to end-
users of the web, to create extraction rules, define XML representation of Web data content and associated
mapping and processing rules, using a declarative approach. The editor is written in Java, and is essentially
an HTML browser with added features for creating i-service and i-grep specifications. The design goal of
this editor is to provide users the exact look-and-feel of their web browser, such that they can easily select
information and data content that is of their interest and should be extracted from the HTML page they
currently browse.

The editor is based on a parser that parses an HTML document (fetched from an URL) and renders it for
displaying on the editor’s browser. At that point, a user can create an i-grep specification by highlighting
HTML segment of their interest. The screenshot in Figure 2 illustrates the rendering of the HTML source
as this is received by the Web-service (in this case the Canadian bookstore Chapters.ca). The significant
difference between the editor and a Web browser is that the editor allows the user to highlight specific
portions of the rendered page and represent this highlighted segment as a tree based data structure. The
editor in operation is depicted in Figure 3 where a highlighted by the user segment is illustrated (the price
$63.70). The editor will assist on modeling specific data content in a fully customizable way for the user.
Note that once a data entity is modeled, similar HTML pages (i.e. information for another book) that
originate from the same Web service provider can be analyzed automatically.

P s B

4 o !rrum v s o D] e o e E5 5] B3 1 1144

m r_napters_ca vllla.c Tha sew horme and prdas mone E'ﬂ:lmﬂﬂﬂ a""ﬂ:l

B

R e | ¥

Eilwanied Search | Barnaln Baegfs | Aribgles & Istereierrs | Bests elers | Qg uf Fri

maziers Bastonlers

SR M e Saiior s A T

Sy T Tigirs

Palatiners Waikly

[Elanissin Beoks -
e i 7454 [__ompinvans)
o Sale Pricer $6370
Savinge: §11 35 [15%]
sl shiprs in 3105 veenis = Crdaing 15
Tha gl b of thin #w e oma by
dakEl kb AR Pl b L mm
o vw mmaky, Meswl dy gy frs T

cpllers et W i o ped 0 SR R vty '

e § mre LT

add ko shopping bag |

| = imen Senvicn | [l S Senere Badite Senece Semme trom Serens | Creste Lres Spec | [raeren £

Figure 2. Screenshot of the editor browser.

E.:!L-:r-:p spacfioation sdRor
Professienal WaP = § O] =6REF ik="1=
by Authinr Wins; Auther T i [<Lacatan ui="feWe EAmITmEE St i r
o D <Inpui pram=""x
i | [«Dese uri"im:ever uvateraa.ca-lubsr uihoe="Frarkie Foo =
e Price 74 55 :ge; | [<Lacatan un="Imtkxtwive. chanters.cabaake et Erefaun 45p T i
: |
O Siafe Price: §82.70 0 ! EE“:Z:‘;:'IW.WJWWL
1 (] T =
Sanings: $1125015% o |
paiiheail | Cyiean
Lisualy shops in 3 ta & wesks o | ¥ ol
Thw nnpplim al thin bHs con wwual by dalrsss ibks aw g D ~Bazepalh pake"irimibods ek nd bl
warehause intines bo foe veesks Hom gl dalventimes j } D =DpeTypaDarl ur="hipuksy en i aker o0 Cali D TONI 0T 4941 .OTD Y
nmy b dslarpad if the supplisr rum arlai madk | 8 [Rule=
it D et pake"timionprosts =
T e R —
§ 3 == HE % 3 -Ruke-
[our pree: [=astract pat="rhiratoonbpedattss
[srems ; [T =man palh= Bookituieri=
O st 9 [«Ruk=
O [} =estract pake"rrdnabkamdboni]icsla[1T
§ O =t [Ty it paliv="BonkiFy s i
[} cour Bla Frica = 1
[s6270 % l
% =3 =ront= |
£ <be |
It chaplers cabnok sidetsilsidafaull 3 spA BERE BE0H044 | v A [sgta | Cancel |

Figure 3. Screenshot of the i-grep editor Window.

The i-grep editor takes two steps in its initialization. First, the URL is parsed to obtain information on the
protocol, host, path, application and input parameters required. Second, a basepath (see Section 3) is
formulated to uniquely locate the selected data content in the original HTML document. This path forms
the basis of our HTML hierarchy-based extraction approach.

Next comes the declarative process for defining how data elements are to be extracted and mapped. The
user can select a text node from the HTML tree and specific a name for the data element (e.g. the text
$63.70 that is denoted as a Book/Price data element), which leads to the generation of a <Rule> tuple
consisting of an extraction rule and a mapping rule. Based on the basepath, an extraction rule with the path
“tr/td/table/tr/td/font” is generated and is associated with a mapping rule to the data element “Book/Price.”
Manual editing of the generated rules user is also allowed.

Upon completion of the editing, an XML DTD isinferred from all the specified data elements. The resulted
i-grep specification will be saved to a repository locally or through the register agent to a remote
repository. Note that the inferred DTD will also be stored at the corresponding site, and the igrep
specification will include areference to this DTD through a URI.

Composed i-grep specifications are added to in the i-grep specification tree in the Editor's main window.
The user can then add individual i-grep specifications to an i-service specification, and choose the type of
service-logic associated with the i-grep invocations. Data specific logic such as sorting and set operations
can be applied on the i-grep result sets. The current prototype requires the user to insert an operation tag
(e.g. <Sort>) to encapsulate the set of participating i-grep invocations. The modeled i-service specification
can be saved to alocal or to aremote repository through the register agent. Finally, the editor also provides
the user interfaces for querying and registering data content specifications from various sources (see Query
Engine and Register Agent Sections for amore detailed discussion).

<?xm version="1.0"?>
<GREP i d="2078991" >
<Desc url="http://swen. uwaterl oo. ca/ ~i cube/" aut hor ="Franki e Poon">
Chapters | SBN Search Engi ne
<Location url="http://ww. chapters. ca/ books/details/default.asp" type="app"/>
<Param i st>
<paraminit="" type="required">l SBN</ paranr
</ Paraniist>
<Rul eLi st >
<Basepat h path="htm /body/table[2]/tr/td/table"/>
<DocTypeDef uri="http://swen.uwaterl oo.calicube/ DTDY 2078991. DTD’/ >
<Rul e>
<extract path="tr/td/b/font/pcdata"/>
<map pat h="Book/ Title"/>
</ Rul e>
<Rul e>
<extract path="tr/td/a/b/font/pcdata"/>
<map pat h="Book/ Aut hor "/ >

</ Rul e>

<Rul e>
<extract path="tr/td/table/tr/td/font[1]/pcdata[l]"/>
<map pat h="Book/ Price"/>

</ Rul e>

<Rul e>
<extract path="tr/td/al/b/font/pcdata"/>
<map pat h="Book/ Del i very"/ >

</ Rul e>

<Rul e>

<data type="cdata"/>
http://ww. chapters. ca
</ dat a>
<map pat h="Book/ URL"/>
</ Rul e>
</ Rul eLi st >
</ GREP>

2078991. DTD
<! DOCTYPE Book [
<! ELEMENT Book(Narre, Aut hor, Pri ce, Del i very) >
<! ELEMENT Ti t | e(#PCDATA) >
<! ELEMENT Aut hor (#PCDATA) >
<! ELEMENT Pri ce(#PCDATA) >
<! ELEMENT Del i ver y(#PCDATA) >
<! ELEMENT URL(#CDATA) >

Figure 4. Example of an i-grep specification and the inferred DTD

2.2 The i-grep Interpreter

The i-grep interpreter is essentially an HTML wrapper that encapsulates the functionality for modeling,
extracting, and mapping HTML data content according to an XML-based igrep specification. The
interpreter consists of an Extraction and Mapping Rule Engine (Figure 5). As inherited from an HTML
wrapper, its primary responsibility is for retrieving an original HTML document and applying extraction
rules on the document. The Mapping Rule Engine then applies the mapping rules for constructing the final
XML data structure from the data extracted.

The i-grep interpreter uses an XML parser to parse the i-grep specification, and realizes the locations and
input requirement for fetching the HTML page. The HTML page is then processed to output the final XML
data structure.

event XML result

_i-service Interpeter

- ;
5 '_ Control and Data R
: Manager < ;

i remote spec

XML Parser

Session Data
-

>
i S >
i-grep Interpeter invokes 1

| S Extraction and ;
Mapping Rule ;
Engine

1
i
i remote spec :
i 4 A !
:]' threads
Y SN VNI NP VS '

HTML from Web

1abeue uoisses

I
XML Parser

Figureb. Thei-service andi-grep Interpreter

Theresult set of every i-grep invocation is stored in a session data object, belonging to a particular i-service
request, managed by the Session Manager. The i-service interpreter can apply operations to manipulate data
among the i-grep result sets stored in the session object. The extraction and mapping process is discussed
later in this paper.

2.3 i-service Interpreter

Control Mediation

The kservice Interpreter (Figure 5) is responsible for applying higher-level logic for controlling i-grep
invocations, and second, it performs data manipulation on result sets resulted from the invocations. In this
way, distributed services located virtually everywhere in the world, can be combined on as required basis
using script-based transaction scenarios, forming thus collaborative systems [6], [7]. The customization of
the transaction and integration logic required by various processes to complete complex services, opens
new opportunities in Web-enabled e-Commerce and e-Business environments. In this sense, business
partners can customize their business transaction process models to fit specific needs or, specific contract
requirements. This customization is transparent to third parties, and provides means to complete business
transactions accurately and on-time. Organizations can enter the e-Business arena by building and
deploying extensible and customizable services over the Internet using existing data content that can be
delivered over the Web and is readily available as a service over the Internet. Moreover, virtual agencies
that provide a wide range of services can be formed by integrating existing functionality and content over
the Web. For example, a virtual travel agency can be formed, by composing in a customized manner,
services that are readily available in various travel related Internet Web sites. Client processes may post
requests to the virtual agency. The agency can enact its transaction logic (scripts) in order to integrate and
conpose data and services from a wide spectrum of sites. In this scenario, data about pricing, availability
and, travel related special offers, can be fetched by various sites, processed by the agency and presented to
the client in a customized and competitive way for the agency.

Data Mediation

Every invoked i-grep (HTML wrapping) stores its resulted data in a session object, corresponding to the
current i-service reguest. This allows the i-service interpreter to apply data integration related operations on
the result sets, such as sorting and set operations. Our current prototype is able to sort and apply or
operation to some i-grep result sets. Figure 6 illustrates an example of how a sort operation using in an i-
service specification can be defined on the resulting data content (Book/ Pri ce) extracted from various
sites.

<?xm version="1.0"?>

<SERVI CE i d="3453342">

<Desc url ="http://swen. uwaterl 0o.cal/icube/" author="Frankie Poon">
Met a | SBN Book Search Service

</ Desc>

<Location url="http://ww. chapters. ca/ books/ det ai | s/ defaul t.asp"

type="app"/>
<Paran i st >
<param type="required" initval ="">| SBN</ par an»
</ Parani i st>
<Sort order="ascend" key="Book/Price">
<DocTypeDef wuri="http://swen.uwaterl 0o.ca/icube/ DTDY 3453342. DTD" >
<grep id="2078991"/>
<grep id="4581155"/>
<grep id="901546"/ >
<grep id="24159757"/>
</ Sort >
</ SERVI CE>

Figure 6. Example of an i-service specification

In addition to manipulating i-grep result sets, the i-service interpreter has a special feature for promoting a
particular i-grep service. Section 2.6 discusses in more detail the different roles of i-Cube clients. In short,
this feature gives end-users the flexibility of invoking more formally defined i-services and i-grep
specifications, created by either the service provider or the original web site. This feature involves sending
a query request to registered i-Cube platforms, specifically to their Query Engine, for finding services that
match a particular data structure, location and description. Once a speciation is matched, the iservice
interpreter either pulls the new specification from the remote site, or requests the invocation of the
specification at the remote site.

2.4 Query Engine

The Query Engine of the i-Cube platform provides a searching facility for specifications that match the
description, data structure and URL specified in a query request. This module is beneficial to end-users
who wish to reuse existing specifications. Moreover, end-users can look for a more formal specification,
either at the service provider site or the original web site, to replace the one that they have defined
previously.

Specifications that match the query constraints are either returned to the user as an XML document, or
invoked at the i-Cube platform where the specification resides. In general, the Query Engine offers two
classes of query services. Explicit Querying is used by end-users who wish to compose their own i-service
specifications and who want to know if formal specifications have been previously defined by the service
providers or the original web site. This type of querying is performed by end-users through the Editor user
interface.

Application Service Provider

Figure 7. i-Cube clients and their operating environments

The second type of querying service is called Transparent Querying, which is primarily used by the i-
service interpreter. Composers of i-service specifications can indicate that they would like to invoke more
formal igrep specifications defined at the service provider (or original web site), if such specifications
exist. A query request is sent to the corresponding remote query engine, if a specification exists at the
remote site, then the interpreter will discard the local specification and invoke the remote one. This scheme
is also known as promoting as mentioned in previous section.

2.5 Register Agent

The Register Agent provides an interface for remote certified i-Cube clients to register composed i-service
and i-grep specificationsto the repositories. This allows clients who do not possess the full i -Cube platform
to submit customized i-Cube specifications to a service provider. The service provider in turn, will provide
the application platform for processing their specifications upon request of the owner of the specifications.

2.6 Roles of i-Cube clients

We now focus on demonstrating the different roles that are played by different i-Cube clients and their
corresponding operational environments. In Figure 7, three types of i-Cube clients, service provider, end-
users and original web sites areillustrated.

Service provider
A service provider isadedicated i-Cube platform that offersi-Cube based servicesto end-users. In addition

to enhanced web services that it developed for end-users, it also allows i-Cube certified clients to register
their composed specifications through the register agent, providing them an application platform for
invoking these services. In the figure, the application service provider that offers enhanced web services to
end-users represents the service provider. The service provider consists of all five of the i-Cube
components described in the previous section.

<htm| > Night Right
Antoine De Saint Exupery

Sz AR

p A

/ Night Hight /< Artoine De St Exupary
Title Author

Figure 8. An Example of HTML hierarchy

Internet clients such as handheld devices and desktop users can use the wide selections of enhanced web
services offered at the site, which are represented as a typical HTML page. An example will be an HTML
form that contains a Textbox and a Submit button for an enhanced search engine of books from various
online bookstores where the form corresponds to a particular kservice specification. Once the user has
submitted the HTTP request, the service provider carries out the appropriate service-logic, invokes the
corresponding igrep specifications, processes the result sets, and presents the resulted data in HTML
format. Following the previous book example site, it means that the list of book titles is returned to the user
asan HTML page.

Web-Site

A web site is where the HTML information originates. For non i-Cube enabled web sites, it is transparent
whether enhanced web services have been derived from their web applications. It is certain that if enhanced
services are to put into acommercial use, legal agreement must be established between the service provider
and the web site. On the other hand, for web sites that provide their own enhanced web services to the
users, but do not wish to apply major changes to their existing infrastructure, they can adopt the i-Cube
platform as the wrapping agent for rapid deployment of new web-services. Web sites can also compose
their own specifications and register them at the service provider site, making the services available to a
wide group of end-users.

End-User

End-users correspond to the users of these enhanced web-services. In the figure, the handheld device and
the desktops are classified as end-users. Typical clients, like desktop users (non i-Cube enabled) can use
these services by navigating on the service provider web site, where different selections of web-services are
presented to them either as hyperlinks or input forms, in HTML format. The type of services will be
transparent to the clients, in terms of whether they are i -Cube based or not.

On the other hand, i-Cube-enabled clients are permitted to compose their own specifications or build on
existing specifications offered by service providers and web sites. They can either register their composed
specifications at an i- Cube-enabled service provider, or invoke these serviceslocally.

3. Extracting XML data structure from HTML

Implementation of thei-grep Interpreter

Thei-grep Interpreter uses an XML parser to read information contained in an i-grep specification. It forms
a complete URL request by attaching the URL and the input parameters, if appropriate, for fetching an
HTML document. To assure that the document is well formed, it is being cleaned up using the conbination
of aHTML parser and HTML Editor Toolkit from the Java Swing class. Then according to the extraction

rules specified, the extraction rule engine extracts information, and maps each piece of information to the
corresponding element in the XML data structure.

HTML hierarchy

An HTML document is a structured document that contains text and hyperlink data stored under different
presentational tags. An HTML document can be parsed by an HTML parser to construct a DOM tree that
corresponds to its HTML hierarchy, such as the one in Figure 8. Each node in the figure corresponds to an
HTML tag, where each leaf node corresponds to a PCDATA node for text chunk, or an empty tag such as
“
" or “". The significance of this tree hierarchy is that an HTML tree path can be derived to
locate a particular nodein the hierarchy.

Extraction Approach

Our extraction approach takes advantage of the tree hierarchical structure that is used for denoting HTML
data content in a Web page in order to localize and extract specific data elements from the HTML
document representing such a page. We first define the concept of an absolute HTML tree path to be a path
for locating a specific node on a HTML tree. This path adopts similar features in XPath [20] to locate
elements on a HTML tree, starting from the root node to a specific node on the tree. Using a Document
Object Modeling (DOM) implementation, it is straight forward to navigate on the HTML tree along the
path, “html/body/table/tr[0] /td[1] /pcdata,” in order to obtain the text data “Night Flight” from the HTML
document in Figure 8.

Each HTML element that should be traversed is separated by the character “/” to represent a parent-to-child
relationship in the tree hierarchy. Identical children are indexed with respect to their sequential appearances
at the parent node. The syntax “element[id]” is used for this purpose to indicate a child node at a specific
index, such astd[0], td[1], td[2], etc.

Once the corresponding HTML node is located, three types of data can be chosen for extraction: PCDATA
(Parsed Character DATA), CDATA (Non-parsed Character DATA) and attribute values. They are specified

at the last element in the path as“ pcdata”, “cdata”, and “ element(@attributename).”

It should be noted that the HTML hierarchical path aone is only effective at extracting static HTML
sources that are not subject to change, and sources with no repeating data structures (e.g. 7 matches resulted
from a book title query). To extend our extraction approach — such that it can provide some degree of
flexibility when extracting data from a modified source, and can identify and extract one or more data
structures contained within the HTML document -- we include the notion of keyword definition.

Keywords are string constants associated with a data structure that carry some contextual meanings and are
defined during the creation time of i-grep specification. For every keyword defined, its corresponding
HTML hierarchical path, with reference to the basepath, is computed and a conditional expression is
formulated based on the keyword constant “ element/pcdata= keyword.”

Extraction Process

Figure 9 illustrates the rule listing of an i-grep specification that corresponds to extracting the data content
from Figure 8. The extractor first locates the basenode that contains the descendants constituting the data
structure, which is specified by the basepath.

After locating the basenode, the extractor applies a validation process to examine whether the structure
located under this node is valid according to the two criteriat HTML hierarchy and keyword definitions.
Each data to be extracted is defined as an individual <Rule> tuple consisting of the HTML hierarchy and
one or more keyword definitions. If the extractor has successfully located the keywords and the data
according to the HTML hierarchy, then it proceeds to the next <Rule> tuple. If however, the extractor has
failed to locate the basenode in the initial stage, or failed to locate the HTML hierarchy and keywords
associated with the data structure, then it will declare the process as afailure.

A recovery phase will proceed in the event of afailure. The recovery phase assumes the existence of the
data structure -- that is, it preserves the rules contained in a <Rule> tuple -- but under a different basepath.

The extractor then begins a search on the HTML tree, starting among the sibling nodes of the base node, in
an attempt to locate the same data structure specified. The extractor continues to search at the ancestors and
descendants one level at atime, starting at the basenode level, until a matching structure can be found.

<RuleList>
<Basepath path="html/body/tabl€[0]" />
<Rule>
<extract from="tr[1]/td[1]/pcdata’ >
<keyword from="tr/td[0]=Title">
<map to="Book/Title">
</Rule>
<Rule>
<extract from="tr[2]/td[1]/pcdata’ >
<keyword from="tr[2]/td[0]=Author” >
<map to="Book/Author” >
</Rule>
</RuleList>

Figure9. Therulelisting of an | -grep specification

A successful recovery phase updates the specification by inserting a new basepath to the rule list. This
provides a recommended alternative for the extractor to locate the data structure before a recovery phase
should take place. The new basepath will become the primary path while the original one will become the
secondary of the searching criteria.

In many cases in addition to using the exact HTML hierarchy to locate specific data content that is to be
extracted, it is also necessary to match specific larger portions of the HTML structure. This requires
techniques in applying approximate or partial pattern matching that can be based on regular expressions or
stochastic techniques. Work on regular expression based pattern matching has been investigated within the
context of bio-informatics, image processing, and in the area of compiler optimization [1], [5], [14].

Mappingtoan XML DTD

Once the data structure is successfully extracted, it is assigned to an interchangeable format. For this
purpose, we adopt Extensible Markup Language (XML) as the interchangeable format for the extracted
data. Mapping rules are created at i-grep specification creation time. Similar to our extracting rules, we use
a notation analogous to XPath to designate the mapping relationship between the extracted data set and the
corresponding XML Document Type Definition (DTD) that models the domain at the specific Web site and
service (i.e. bookstore, travel agency).

A mapping rule corresponds to a many-to-one relationship between extracted data and an element in the
XML DTD. It can contain one or more extraction rules, where al the extracted data (string based) are
concatenated together, with each separated by a white space. Following the example, a rule for mapping
the extracted book name to the <Name> element in the DTD isillustrated in Figure 9.

4. Applications

4.1 Building a Meta Book Search Engine.

We now illustrate a specific example of using our integrated environment for building a meta book search
engine -- a service for comparing the prices of a book from different online bookstores. Using the editor,
any user can create an i -service based on a set of i-grep specifications for checking the price of abook from
various online bookstores. Most online bookstores offer a service for searching a book title based on its

T <om | |books | musio | dvdvien | ids | nessate | git conter | catencars | [7
Fid i~ Besks ~ Mus ~ DVDNVies At

Prodssional WaP-... —— Professional WAP: With WhIL, WHILS eripr,

LPSL R ASP, JSP, XML, X5TL, WTA, Push &

WHE® = VoiceXML, Programmer to Progrommer Ser.
. e r T4 L aoes Wlrey F k

T |
sor ous socksTores. ETEENTINNE| ©

Professional Wap
B A, Charles ¢ Chidsmharsen, Ml § E1 Al

Ondria Price: $41.95 List Price: 50,00
H Sofoower 1000 Pope=:
b 0% off [t (pou sanes 518,04 Publshad by WROR Priss Pricas
=l Crate Publehed: 072000
o Ak b Bl 150N: 136L0CHDH
i The Pemle S o In Sodk- Cedgry g nd by o, ship e Jmy diy
H
Explofe this book List Price: §55-56 e o Wi Lot
B Onir Price: §47.90 el i o
ot o Vou Sava: £12.00 e me i gt
e i — Wicrw my Wieh List
ead o6 excerit
Avadabd@ity: Usuly <rips withn 24 ioues
ediional pewews
CuElOmAr redees | [Pl this Tor the hadidaysT Mo problam! Salact any
See mara by the shipping method for delivery by December 23 (LS
S addressEs onlyd,

Figure 10. ISBN search results for other online bookstores

ISBN. To simplify our example, let’s assume our meta search engine offers the same service, but for five
different web sites.

From the editor’s browser, we visit an online bookstore, for example, Amazon.com and use its advanced
search engine to look for a specific book title. The page showing in Figure 3 is actualy the result of

submitting the ISBN query “1861004044” on its advanced search engine facility, which displays the book
title “Professional WAP” and itsrelated information in HTML. In this context, we are interested in creating
aservice that displays the name of the bookstore, the title, price, availability of the book aswell asan URL
link to the result page, in order to achieve so, we highlight on the browser the portion that corresponds to
these information and create an | -grep specification based on the selection.

The editor then brings us to a declarative process for defining the data structure that corresponds to the
selected portion as shown in Figure 4. As an example, we define the element title and associate this element
with the text “Professional WAP” contained in that page. The editor, in turn, will generate the
corresponding extraction and mapping rules for this data element. We can fill in the name element with the
appropriate bookstore name. A small description about this specification can also be included, like “search
book title using ISBN.”

Since al ISBN searches for books on a specific site will generate HTML documents with identical

structure, this mapping will work for all HTML pages generated as a result of an ISBN book search. It
becomes then apparent how this process can be applied similarly to other online bookstores as in Figure 9.
The result is a set of igrep specifications that takes a common input parameter (ISBN) and its output
conforms to our book information domain model format Book:{bookstore,title,author,price,delivery,url}.
This is feasible because the mapping conforms to a domain model (i.e. DTD) for a given type of service
(i.e. book store) results obtained from various other sites can also be mapped to the same domain model
and DTD. This alows for direct algorithmic processing such as sorting the obtained results by a specific
field. In this context, domain models and DTDs for other services such as airline ticketing or B2B

transactions can be easily built and customized to accommodate specific post-processing requirements.

Your Results: ISBN 1861004044

Avallablllty

Fatbrain.com Professional WAP f@(]es Arehart, $41.95 Tpsnzocskhlpotaie;z:fg%';sd by
bamm.com Professional WAP [Cmrgillae.s”Arehart, $43.19 ;ﬁ(‘ﬁ: Ships with 2-3 days
BN.com Professional WAP E:C)Lga‘s.,.Arehart, $47.99 ;ﬁ(}k 24 hours (Same Day)
Amazon.com Professional WAP [C@(]e.s..Arehart, $47.99 Usually ships within 24 hours.
Borders.com Professional WAP }/&]Fir.ess Inc., $50.00 ;Qilsrstfﬂe usually ships in 24

Figure11. Book Price Comparison Results

The next step in the process is to compose an i-service specification based on these i-grep specifications,
such that we can apply control logic to the i-grep invocations and also apply data manipulating operations
such as sorting in this case, on the resulted i-grep data sets. All the specifications created are then registered
at the service provider’ srepositories.

To access the new service, assuming we have created a very simple HTML entry page that contains an
HTML form that consists of a Textbox and a Submit button. We can type in the desired ISBN number and
perform a meta search on al the associated online bookstores. The backend processing will involve
fetching the corresponding i-service specification and associated i-grep specifications and invoking them
respectively. Each i-grep invocation will extract the book data from a HTML web site, based on an ISBN,
which is then stored in a Session Data Object at the remote site. The result sets are then sorted according to
their prices as defined in the kservice specification; the final data structure is an XML document that
encapsulates all the book data called Booklist:{ Book} .

A default XSLT template is provided by the service provider for transforming the resulted XML data set
into HTML, then we will be able to see the list of books, including the bookstore, title, author, price,
availability and an URL link to the bookstore presented in aHTML table format as shown in Figure 10.

4.2 Notification Service.

A service can be created for monitoring changes on a web site [13], and the resulted information can be
sent to the end-user through email, or other types of notification mechanism such as the PUSH mechanism
in WAP [17]. To illustrate a practical example, assume an online library book search system that returns to
the user the information of a book, including its name, author and status. A book that is currently on loan
will display that status information: “Satus. On Loan,” user can make use of this information and define a
service for monitoring changes of the status until the book becomes available, for example “Satus: In
Library.” At that time, the service will compose a natification email indicating the availability of the book.
All it requiresisthat the service periodically analyzethe HTML page for the user.

4.3 Migrating from HTML to VoiceXML and WML applications.

The introduction of new presentational markup languages not only provides tailored presentational means
for different types of devices, but also at the same time aims to attract a new domain of web users.
VoiceXML [16], for example, aims to attract users who are familiar with interactive voice system;
similarly, WML is designed for mobile handsets that adopt the WAP standard [17]. To migrate existing
HTML pages into these markup languages, it is possible to use transformational language such as XSLT
(eXtensible Stylesheet Language for Transformation) to define one-to-one, or one-to many mapping
between the elements in two markup languages. However, it becomes avery difficult task for the XSL

developer to write rules for the rather long and complex structure of HTML. It will be ideal if significant
segment of the HTML pageisrepresented in a XML format that carries contextual meaning (data structure)
using the i-Cube editor, such that the XSL development process will become more obvious to the
developer.

5. Related Work

Different approaches for extracting information from HTML sources have been recently developed. While
many approaches focus on the definition of a formal and expressive extraction grammar [8], [11], and [12],
others[2][3] focus on an SQL-like language for querying semi-structured information from HTML sources.
The inherent problematic nature of writing extraction rules manually has motivated the development of
graphical tool to assist the generation of extraction rules. In This context, W4F [15] uses a similar
hierarchical-based navigation approach for extracting structure from HTML. Its extraction wizard provides
agraphical interface for visualization of annotated HTML segment to assist the writing of extraction rules.

Other approaches take a step further to enhance the extraction rule generation process by incorporating an
inductive learning mechanism [9] and using a two-phase code generation framework for the wrapper
generation process. A micro-feedback approach is also used in order to customize the generated wrapper at
runtime.

It should be noted that many of the explored approaches taken, like those presented in [4][9] and [12], are
amed at the generation of a set of extraction rules that is fed to a code generator for building a standalone
wrapper application. Our approach is different in that we focus on the building of an interpreter that
understands extraction and mapping specification, in addition to the location of the HTML pages. We adopt
the XML technology in our interpreter design to encourage the exchange of wrapper specifications over the
Internet, which in turn, allows derived information services to expose to a wider domain of web users.
Finally, work that deals with control integration aspects of various distributed services using scripting
languages, such as the Event-Condition-Action (ECA) framework has been presented in [10].

6. Conclusion

In this paper we have presented the i-Cube integrated environment and demonstrated its capabilities for
rapid deployment of web-based information services to end-users by wrapping existing HTML pages and
reusing data structure that they provide. We have also presented the extraction and mapping rules that are
used for precisely extracting data from HTML into a corresponding XML data structure. In particular, the
extraction rules that we propose make use of the inherent tree characteristic of HTML hierarchy, which
allows for the denotation and localization of data content based on an HTML tree path. At the servicelevel,
a prototype system that allows for the definition of the control logic of invoking i-grep specifications and
operations that pertain to specific data mediation processes.

The integrated environment provides a set of tools for creating, customizing, invoking, registering and
querying of composed specifications. This makes iCube an environment, not only suitable for the
commercial Web sites, but also suitable for service providers who wish to provide to end-users a new
domain of web services derived from existing ones. Moreover, end-users can benefit from using the tool for
creating customized web services, which works in conjunction with a registering mechanism for storing
their composed specifications at a remote service provider, serving as an application platform for the end-
users.

From an end-user perspective, the environment provides a common platform for deploying customizable
web services tailored to user’s own needs. Existing web systems, on the other hand, can easily realize the
added benefit of deriving and deploying new domain of web services without the expense of applying
changes in their existing infrastructure. Finally, the service provider who acts as the broker of the entire
architecture plays the important role of driving the process of distributing web services among web systems
and end-users.

References

[1] Aho, A., Ganapathi, M., Tjiang, S., “Code Generation Using Tree Matching and Dynamic
Programming" ACM Transactions on Programming Languages and Systems, vol. 11, No. 4, October 1989,
Pages 491-516.

[2] G. Arocena, A. Mendelzon, G. Mihaila. “Applications of a Web Query language,” Proceedings of the
6th International WWW Conference, Santa Clara, California, April 1997.

[3] Gustavo Arocena and Alberto Mendelzon. “WebOQL: Restructuring Documents, Databases, and
Webs,” In Proceeding of the SIGMOD Conference, Seattle, June 1998.

[4] N. Ashish and C. Knoblock. “Wrapper Generation for Semi-structured Internet Sources.” Workshop on
Management of Semistructured Data. V entana Canyon Resort, Tucson, Arizona.

[5] B. S. Baker, “"Parameterized Pattern Matching: Algorithms and Applications", Journal Computer and
System Sciences, 1994.

[6] J.A.Bergstra, P.Klint, “The Discrete Time ToolBus,”
http://adam.wins.uva.nl/\~olivierp/toolbus/index.html, February 1995

[7] Control and Coordination of Complex Distributed Services (C3DS), http://www.newcastle.
research.ec.org/c3ds

[8] A. Gal, S. Kerr, J. Mylopoulos “Information Services for the Web: Building and Maintaining Domain
Models", International Journal of Cooperative Information Systems, 8(4):227-254, 1999.

[9] Ling Giu, Calton Pu, Wei lian. “XWRAP: An XML-enabled Wrapper Construction System for Web
Information Sources.”

[10] Richard Gregory, Kostas Kontogiannis, “Customizable Integration in Web-enabled Environments,”
Lecture Notesin Computer Science, Special 1ssue on Engineering Distributed Objects (to appear).

[11] JHammer, H.Garcia-Molina, J.Cho, R.Aranha, and A.Crespo. “Extracting Semisructured Information
from the Web,” In Proceedings of the Workshop on Management of Semistructured Data. Tucson, Arizona,
1997.

[12] Gerad Huck, Peter Fankhauser, Karl Aberer, and Erich JNeuhold, “JEDI: Extracting and
Synthesizing Information from the Web,” In COOPIS, New-Y ork, 1998.

[13] Ling Liu, Calton Pu, Wei Tang, Dave Buittler, John Biggs, Paul Benninghoff, Wei Han, Fenghua Y u.
" CQ: A Personalized Update Monitoring Toolkit". Proceedings of the ACM SIGMOD, May, 1998.

[14] Myers, E., Miller W. "Approximate Matching of Regular Expressions’, Bulletin of Mathematical
Biology, Vol.51, No.1, 1989, pp.5-37.

[15] A. Sahuguet and F.Azavant. “Wysiwyg Web Wrapper Factory (W4F),” In Proceedings of WWW
Conference, 1999.

[16] VoiceXML Forum “VoiceXML Specification 1.0,” 2000. URL: http://www.voicexml.org/

[17] WAP Forum, “Wireless Application Protocol Architecture Specification”, 1998. URL:

[18] World Wide Web Consortium (W3C), “Extensible Markup Language (XML) Version 1.0,” 1998.

[19] World Wide Web Consortium (W3C), “Extensible Markup Language (XSL) Version 1.0,” 1998.

[20] World Wide Web Consortium (W3C), “XML Path Language (XPath) Version 1.0,” 1999.
http://www.wapforum.org/

[21] Ying Zou, Kostas Kontogiannis, “Web Based Specification and Integration of Legacy Services,”
CASCON 2000, Toronto, 2000.

